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FBMC System: An Insight into Doubly Dispersive
Channel Impact

Lei Zhang, Pei Xiao, Adnan Zafar, Atta ul Quddus and Rahim Tafazolli

Abstract—It has been claimed that the filter bank multicarrier
(FBMC) systems suffer from negligible performance loss caused
by moderate dispersive channels in the absence of guard timepro-
tection between symbols. However, a theoretical and systematic
explanation/analysis for the statement is missing in the literature
to date. In this paper, based on one-tap minimum mean square
error (MMSE) and zero-forcing (ZF) channel equalizations, the
impact of doubly dispersive channel on the performance of
FBMC systems is analyzed in terms of mean square error (MSE)
of received symbols. Based on this analytical framework, we
prove that the circular convolution property between symbols and
the corresponding channel coefficients in the frequency domain
holds loosely with a set of inaccuracies. To facilitate analysis,
we first model the FBMC system in a vector/matrix form and
derive the estimated symbols as a sum of desired signal, noise,
inter-symbol interference (ISI), inter-carrier interfer ence (ICI),
inter-block interference (IBI) and estimation bias in the MMSE
equalizer. Those terms are derived one-by-one and expressed as
a function of channel parameters. The numerical results reveal
that in harsh channel conditions, e.g., with large Doppler spread
or channel delay spread, the FBMC system performance may be
severely deteriorated and error floor will occur.

Index Terms—FBMC, IBI, ICI, ISI, one-tap channel equaliza-
tion, circular convolution, dispersive/distortion channel

I. I NTRODUCTION

As a promising air-interface candidate solution for the next
generation wireless communications, filter bank multicarrier
(FBMC) has drawn significant attention by both academia
and industry in the last few years [1], [2], [3], [4], [5].
Apart from its main advantage of significantly reduced out-of-
band emission in comparison to the widely used orthogonal
frequency division multiplexing (OFDM) system [1], [2],
[6]; another major benefit is ease in the implementation of
multi-user (MU) access in the uplink transmission since the
strict synchronization requirements for OFDM systems can
be relaxed in FBMC systems [7], [8]. In addition, it has
been reported in [9] that FBMC system is more robust to
carrier frequency offset (CFO) [10], which is critical for this
waveform when employed in high mobility environments and
multi-cell cooperation scenarios [7], [11].

Unlike the widely used CP (cyclic-prefix) based OFDM
system, where the effect of frequency selective channels can
be removed with low complexity one-tap channel equalization.
The FBMC system, however, may encounter inter-symbol
interference (ISI) and inter-carrier interference (ICI) caused
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by either imperfect prototype filter or dispersive channelsthat
can not be eliminated completely by low-complexity channel
equalization. For the imperfect prototype filter induced inter-
ference, the authors in [12] proposed an analytical expression
of the overall distortion innon-dispersivechannels by consid-
ering a finite-length discontinuous prototype filter. However,
it has been reported that a well designed prototype filter with
moderate length (e.g. overlapping factorK = 4 ∼ 6) incurs
negligible self-interference1 [1], [6].

There have been some investigations in the literature on
the dispersive channel induced interference in the form of
ICI and/or ISI for FBMC systems. However, most works
focused only on simulation-based evaluations and performance
comparisons, e.g. [6], [13], [14]. In addition, a few papers
claimed that in comparison to OFDM, the FBMC system with
well localized prototype filter in time and frequency domain
guarantees immunity to dispersive channels [15]; as a result,
the low-complexity one-tap frequency domain equalizationis
applicable to FBMC systems for moderate dispersive channels
in the absence of guard time between FBMC symbols [15].
However, there is no theoretical analysis to prove why the
circular convolution property holds true in non-CP based
FBMC systems as in the CP-OFDM systems. In addition,
it is unclear how much performance loss will be anticipated
when the circular convolution property is not strictly fulfilled
in various channel conditions.

Few works in the literature focused on the advanced channel
equalization approaches to reduce the ICI in highly frequency
selective channels. Authors in [16] proposed a two stage
ordered successive interference cancelation (OSIC) technique.
The first stage consists of using the OSIC technique to provide
an initial estimation of the transmitted symbols. In the second
stage, the rough initial estimation is used to remove ICI andthe
OSIC technique is then applied again. In addition, the authors
in [17] proposed frequency sampling-based (FS) equalizer
design techniques for MIMO (multiple-input-multiple-output)
FBMC systems. It was shown that significant gain can be
achieved at a cost of slightly higher complexity. The authors in
[18] have analyzed the effect of multi-tap subcarrier equaliza-
tion on error performance of precoded MIMO-FBMC systems
transmitting through highly frequency selective channel.Their
results suggest that subcarrier equalizers with more than
three taps do not bring any noticeable improvement in the
system performance. In another study, the authors in [19]
evaluated the performance of precoding and receiver pro-

1Indeed, the analytical and simulation results in Section V show that this
type of interference contributes less than to -40 dB means square error (MSE)
in total.
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cessing techniques for multiple access MIMO-FBMC system.
Results show that for the uplink transmission, forward error
correction is required in addition to receiver processing to
obtain satisfactory performance. With channel state and all
users information available, the downlink produces betterbit
error rates comparatively. In addition, both linear and non-
linear transceiver processing approaches for MIMO-FMBC
systems were considered in [20] to evaluate the performanceof
FMBC in terms of bit error rate (BER). It was shown that the
linear processing technique cannot offer adequate performance
improvement while the non-linear processing can eliminatethe
error floor effectively.

The aforementioned studies focused on advanced equal-
ization algorithms to eliminate ICI by using simpli-
fied/approxmiated models and by partially considering time
domain distortion caused by the channel. However, an analyt-
ical system model to analyze the impact ofdoubly dispersive
channel is unavailable to date. In addition, it is still an open
question as to how much performance penalty will occur in
the presence of dispersive channel with specific quantized dis-
persions (e.g. Doppler spread or delay spread), and in what sit-
uation multi-tap channel equalization is required to minimize
the ICI/ISI induced performance loss. Furthermore, the block-
based FBMC system (i.e. several consecutive symbols belongs
to a block are correlated to each other) is different from
the symbol-based OFDM system, the inter-block interference
(IBI) is another source of interference which should be taken
into consideration in multipath channel environments whenno
guard interval is available between FBMC transmission blocks.

In this paper, we establish a theoretical framework for
FBMC systems by taking into account both frequency and
time domain channel dispersions. For our analysis, we first
represent the FBMC system model in a vector/matrix form,
all types of interference (IBI, ISI and ICI), noise and desired
signal estimation bias are derived for two most representative
linear channel equalization algorithms: zero-forcing (ZF) and
MMSE. We then prove that the circular convolution prop-
erty between modulated symbols and corresponding channel
coefficients in frequency domain can be satisfied in FBMC
systems with minor inaccuracies. The MSE of received symbol
is derived accordingly. The contributions of this paper are
summarized as follows:

• We derive an analytical expression of the FBMC system
signal model in a matrix form, in terms of IBI, ISI and
ICI, noise and desired signal estimation bias as presented
in Section III. MSE due to each term is derived individ-
ually in Section IV, and those expressions are given as
functions of channel parameters such as Doppler spread
and delay spread. Our analysis clearly and quantitatively
shows how the channel dispersion degrades system’s
performance. This analytical framework provides a useful
guideline for optimal system design by minimizing the to-
tal interference caused by dispersive channels. The work
also explains when and why the FBMC system is immune
to dispersive channels and how much performance loss
will be incurred by a specific channel.

• We provide a mathematical proof to show that the circular
convolution relationship between modulated symbols and

channel coefficients is a valid assumption for the FBMC
system in moderate dispersive channel without CP inser-
tion. This explains why one-tap equalization is sufficient
for FBMC in moderate dispersive channels.

• In this paper, we focus our analysis on SISO (single-
input-single-output) system, However, it can be readily
extended to MIMO system. In addition, the developed
mathematic framework serves as a basis for different
types of performance analysis. In the numerical examples,
we adopt two sets of the most representative channels:
3GPP (3rd Generation Partnership Project) LTE (long
term evolution) channels and IEEE (Institute of Electrical
and Electronics Engineers) 802.11 channels. However,
the analysis is generic and broadly applicable to different
channel models.

Notations: Vectors and matrices are denoted by lowercase
and uppercase bold letters, and{·}H , {·}T , {·}∗ stand for
the Hermitian conjugate, transpose and conjugate operation,
respectively.E{A} denotes the expectation operation ofA.
We useℜ{A} and ℑ{A} to denote taking the real and
imaginary part of the scalar/variable/matrixA. ‖A‖ refers
to the Frobenius norm of matrixA. Im×m refers to m
dimension identity matrix and for some cases the subscript will
be dropped for simplification whenever no ambiguity arises.
1m×n means anm × n matrix with all its element being
1. Tr{A} denotes taking the trace of matrixA. We use∗
as a linear convolution operation of two vectors/matrices.In
addition, We use{̄·} and {̃·} over a symbol to refer to the
real and imaginary branches related scalars/vectors/matrices,
respectively.

II. BACKGROUND

A. FBMC/OQAM System

Without loss of generality, we assume that the transmitting
data is modulated to QAM (quadrature amplitude modulation)
symbols. To satisfy the orthogonality requirements, the FBMC
system has to transmit a real symbol every half symbol dura-
tion, resulting in the so-called FBMC/OQAM (offset QAM)
system [21]. Alternatively, it could be implemented by shifting
the prototype filter while extending the real and imaginary
parts of the symbol into the whole symbol duration [15],
[22], which is equivalent to the traditional FBMC/OQAM
implementation. One advantage of this alternative is that it
can avoid the staggered processing of mapping the complex
QAM symbols into OQAM symbols [21]. However, the real
and imaginary branch should be processed independently, as
depicted in Fig. 1. In this paper, we will use this alternative
implementation for our analysis. The baseband discrete signal
at i-th sample ofm-th FBMC symbol at the output of a
synthesis filterbank is expressed by [15]

xi[m] =
1√
N

ḡi[m] ∗
N∑

n=0

ām,ne
jπ(n+2m)

2 e
j2πni

N

+ j · 1√
N

ḡi−N/2[m] ∗
N∑

n=0

ãm,ne
jπ(n+2m)

2 e
j2πni

N (1)
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wherem, n andN are the time index for the FBMC symbol,
the index of subcarrier and the total number of subcarriers
in each FBMC symbol, respectively.̄am,n and ãm,n are the
real and imaginary part of the input QAM symbolam,n, i.e.
am,n = ām,n + jãm,n. ḡi[m] = ḡ[mN + i] and ḡi−N/2[m] =
ḡ[mN + i − N/2] are the prototype filters of the real and
imaginary branches, respectively, which will be introduced in
Section II-C in detail. From Eq. (1) we can see that rather than
offsetting the QAM symbols, this model shifts the prototype
filter instead.

B. Doubly dispersive Channel Model

We consider tap-delay-line based channel model that has
L taps with itsl-th tap power beingρ2

l , which keeps constant
during the transmission of the wholeFBMC block. Each block
containsM FBMC symbols and we assume that the channel
is static in oneFBMC symbol duration, then the channel for
them-th FBMC symbol can be expressed in a vector form as

hm = [hm,0, hm,1, · · · , hm,L−1]
T

= [ρ0zm,0, ρ1zm,1, · · · , ρL−1zm,L−1]
T (2)

wherehm,l = ρlzm,l is thel-th tap in the time domain channel
impulse response, and the complex random variablezm,l with
complex Gaussian distribution asCN (0, 1) is a small-scale
multipath fading factor of thel-th tap of the channel. We
assumezm,l1 is independent ofzm,l2 for l1 6= l2. To show the
time domain channel dispersion, thel-th tap multipath fading
factor at thei-th sample of of them-th FBMC symbols can
be expressed by [23], [24]:

zi,l = λm−izm,l + em−i,l (3)

(3) is also called Jake’s model whereλm−i = J0[2πfD(m −
i)∆T ] is the temporal correlation factor [23], [24].J0 is
the zero-order Bessel function of first kind,fD and ∆T
refer to the Doppler spread and the FBMC symbol duration,
respectively, andem−i denotes the channel mismatch vector
with each element being modeled asCN (0, 1 − λ2

m−i) [23],
[24]. Note thatfD is a parameter to measure the channel
dispersion in time domain, largerfD leads to a smallerλm−i

and the channel between two consecutive symbols are more
uncorrelated.

On the other hand, the channel frequency domain dispersion
(i.e. Doppler spread) can be measured by root mean square

(RMS) delay spread asτRMS =
√

∑L−1
l=0 ρ2

l l
2/ρtot − τ2

0 ,

where ρtot =
∑L−1

l=0 ρ2
l is the total power of the channel,

andτ0 =
∑L−1

l=0 ρ2
l l/ρtot is the mean delay [23]. Apparently,

largerτRMS leads to more frequency selective channels.

C. Prototype Filters and Filter Matrices

Let us suppose the overlap factor of the prototype filter is
K, then the total length of prototype filter̄g is KN , and the
filter can be written as

ḡ = [ḡ0, ḡ1, · · · , ḡK−1] = [ḡ0, ḡ1, · · · , ḡKN−1] (4)

with its k-th sub-vector̄gk (for k = 0, 1, · · · , K − 1) being
defined as

ḡk = [ḡkN , ḡkN+1, · · · , ḡkN+N−1] ∈ R
1×N (5)

The prototype filter will be linearly convolved with the
signals in the transmitter and receiver. In order to simplify
the derivation, we replace linear convolution operations by
matrices multiplications and define a diagonal matrixḠk =
diag(ḡk) for k = 0, 1, · · · , K−1. Then the convolution matrix
C̄ ∈ C

(K+M−1)N×MN becomes

C̄ =



















Ḡ0 0 0 · · · 0

Ḡ1 Ḡ0 0 · · · 0
... Ḡ1 Ḡ0 · · · 0

ḠK−1

... Ḡ1 · · · 0

0̄ ḠK−1

... · · · Ḡ0

0̄ 0 ḠK−1 · · · Ḡ1

...
...

...
. . .

...
0̄ 0 0 · · · ḠK−1



















(6)

Note that FBMC system consists of two independent
branches as shown by Eq. (1) and Fig. 1, where the imaginary
branch prototype filter can be expressed as a shift of the real
branch as

g̃ = [g̃0, g̃1, · · · , g̃K−1] = [g̃0, g̃1, · · · , g̃KN−1]

= [ḡN/2, ḡN/2+1, · · · , ḡKN−1, ḡ0, ḡ1, · · · , ḡN/2−1] (7)

Following the same method as for the real branch to design
G̃k = diag[g̃k] with g̃k = [g̃kN , g̃kN+1,
· · · , g̃kN+N−1]. The convolution matrixC̃ for imaginary
branch can be defined with the same structure asC̄ in Eq.
(6) with Ḡk replaced byG̃k.

Let us define the autocorrelation and cross-correlation ma-
trices ofC̄ andC̃ as

¯̄D = C̄HC̄, ˜̄D = C̄HC̃, ˜̃
D = C̃HC̃, ¯̃

D = C̃HC̄ (8)

where the matrices̄̄D, ˜̄D, ˜̃
D and ¯̃

D have dimensionMN ×
MN . The four matrices can be split intoM row andM col-
umn sub-matrices (in totalM2 sub-matrices) with dimension
N ×N , respectively, with¯̄Dm,i, ˜̄Dm,i,

˜̃
Dm,i and ¯̃

Dm,i being
the m-th row andi-th column sub-matrices.

III. I NTERFERENCEANALYSIS IN THE PRESENCE OF

DOUBLY DISPERSIVE CHANNELS

The block diagram for both transmitter and receiver of the
FBMC system is shown in Fig. 1, where real and imaginary
branches are independently and simultaneously processed at
both the transmitter and the receiver sides. We will first focus
on the real branch derivation, followed by derivations for the
imaginary branch.

A. Transmitter Processing

FBMC takes a block-based processing approach, we assume
that each FBMC block containsM FBMC symbols and
each symbol hasN subcarriers in frequency domain (or
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Fig. 1. Blocks diagrams for FBMC transmitter and receiver inmatrix operation form.

equivalentlyN samples in time domain), then in totalMN
modulated QAM symbols can be transmitted by one FBMC
block. We assume the power of modulated signalsam,n (for
m = 0, 1, · · · , M − 1 and n = 0, 1, · · · , N − 1) is ̺2, i.e.
E{‖am,n‖2} = ̺2. The modulated symbolsam,n can be
expressed in a vector form asam = ām + jãm ∈ CN×1,
with am = [am,0, am,1, · · · , am,N−1]

T being them-th FBMC
symbol. ām and ãm are real and imaginary parts ofam,
respectively.

1) Real Branch Phase Shifting:According to Fig. 1, the
first step is multiplyinḡam by phase shifterϕm symbol-by-
symbol, i.e.,

b̄m = ϕmām ∈ C
N×1, for m = 0, 1, · · · , M − 1 (9)

where ϕm is a diagonal matrix with itsn-th diago-
nal element beingϕm,n = e−jπ(n+2m)/2, i.e. ϕm =
diag[e−jπ(0+2m)/2, e−jπ(1+2m)/2, · · · , e−jπ(N−1+2m)/2].

2) Real Branch IDFT Processing:The signal after phase
shifting will pass to anN -size IDFT (inverse discrete Fourier
transform) block , then the real branch output after IDFT
processing is

x̄ = [x̄0; x̄1; · · · ; x̄M−1]

= [FH b̄0;F
H b̄1; · · · ;FH b̄M−1] ∈ C

MN×1 (10)

where x̄m = FH b̄m. FH is the normalizedN -point IDFT
matrix with FH = F−1.

3) Real Branch Prototype Filtering:The output of IDFT
xk is linearly convolved with the prototype filter̄gm, which
can be expressed as

v̄ = C̄x̄ ∈ C
(M+K−1)N×1 (11)

where the real branch convolution matrix̄C is defined in (6).
Note that the output of the filter will have(K − 1)N more
samples than the input due to the linear convolution operation.

4) Imaginary Branch Processing:Following the same
derivation as for the real branch in III-A1, III-A2 and III-A3,
we obtain the imaginary branch signal as follows:

ṽ = C̃x̃ ∈ C
(M+K−1)N×1 (12)

with C̃ being defined after Eq. (6) and

x̃ = [x̃0; x̃1; · · · ; x̃M−1]

= [FH b̃0;F
H b̃1; · · · ;FH b̃M−1] ∈ C

MN×1 (13)

with b̃m = jϕmãm.

B. Passing Through Channel and Interference Analysis

The real and imaginary branch signalsv̄ and ṽ will be
added together (i.e.v = v̄ + ṽ) and send to the receiver via
the channel. The received signal can be written as

y = h ∗ v + n = h ∗ (v̄ + ṽ) + n (14)

where n is the Gaussian noise and its elements have zero
mean and varianceσ2. h is the time domain channel im-
pulse response in vector form. Using (2), we define thel-
th tap multipath fading factor of channel in a matrix form
as: Zl = diag[z0,l11×N , z1,l11×N , · · · , zM+K−1,l11×N ] ∈
C(M+K−1)N×(M+K−1)N . The definition ofZl implies that
theN samples in them-th FBMC symbol experience the same
channel (e.g.zm,l) and samples in different symbols will pass
through different channels (e.g.zi,l, m 6= i), then we can
change (14) to

y =

L−1∑

l=0

ρlZl(v̄
↓l + ṽ↓l) + vIBI + n (15)

where

vIBI =

L−1∑

l=0

ρlZlyB,l (16)

is the IBI caused by channel multipath effect withyB,l =
[yp,l;0[(M+K−l)N−l]×1] and yp,l ∈ Cl×1 is the interfering
signal from the last FBMC block.̄v↓l andṽ↓l are thel-sample
delay of v̄ and ṽ with zero padding in the front. They can
be expressed as̄v↓l = [0l×1; v̄f,l] and ṽ↓l = [0l×1; ṽf,l],
respectively,̄vf,l and ṽf,l denote the first(M + K − 1)N − l
elements of̄v and ṽ, respectively.

By using Eqs. (11) and (12), we can writēv↓l = C̄↓lx̄

and ṽ↓l = C̃↓lx̃, where C̄↓l = [0l×MN ; C̄f,l] and C̃↓l =
[0l×MN ; C̃f,l] with C̄f,l and C̃f,l are the first(M + K −
1)N− l rows ofC̄ andC̃, respectively. Then we can rewritten
(15) as

y =

L−1∑

l=0

ρlZl(C̄
↓lx̄ + C̃↓lx̃) + vIBI + n (17)
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(17) indicates that as a result of channel multipath effect,the
original C̄ and C̃ are replaced by distorted filters̄C↓l and
C̃↓l, respectively. In order to demonstrate the relationship of
the distortion and the multipath effect on the FBMC system,
we first introduce a block diagonal exchanging matrixEl ∈
R

MN×MN as follows

El =








Esub,l 0 · · · 0

0 Esub,l · · · 0
...

...
.. .

...
0 0 · · · Esub,l








(18)

with Esub,l = [0l×(N−l), Il×l; I(N−l)×(N−l),0(N−l)×l] ∈
RN×N . By usingET

l El = I, we have

v̄↓l = C̄↓lET
l Elx̄ = C̄↓l

e x̄↓l
e (19)

whereC̄↓l
e = C̄↓lET

l and x̄↓l
e = Elx̄. The functionsET

l and
El are used to exchange the locations of elements ofC̄↓l and
x̄. Specifically, forx̄, by multiplying the permutation matrix
El, the lastl symbols of itseachsub-vector̄xm will be moved
to the front, i.e.

x̄↓l
e,m = [xm,N−l · · · , xm,N−1, xm,0, · · · , xm,N−l−1]

T (20)

and

x̄↓l
e = [x̄↓l

e,0; x̄
↓l
e,1; · · · ; x̄↓l

e,M−1] (21)

The effect of multiplyingET
l with C̄↓l is similar. ET

l

only changes the elements locations inC̄↓l. All the non-zero
elements inC̄↓l

e are comprised of the elements of prototype
filter ḡ (i.e. ḡi, i = 0, 1, · · · , KN − 1), which is the same
as matrixC̄. Specifically, the counterpart elements inC̄↓l

e are
delayed byl elements inḡ comparing withC̄, e.g., if the
non-zeroi-th row andk-th column element of̄C is ḡn, then
the element ofC̄↓l

e at the same location will bēgn+l. The
difference of ḡn and ḡn+l is very small withN ≫ L since
the values of adjacent elements of the prototype filter are close
to each other.

Similarly, for ṽ↓l we have

ṽ↓l = C̃↓lET
l Elx̃ = C̃↓l

e x̃↓l
e (22)

whereC̃↓l
e andx̃↓l

e have exactly the same structure asC̄↓l
e and

x̄↓l
e , except replacing all upper-scripts{̄·} by {̃·}. Substituting

(19) and (22) into (17), we have

y =

L−1∑

l=0

ρlZl(C̄
↓l
e x̄↓l

e + C̃↓l
e x̃↓l

e ) + vIBI + n (23)

As discussed earlier, non-zero elements ofC̄↓l
e and C̄ are

very close. In order to show the error caused by the multipath
on the filter distortion, we define

C̄↓l
e = C̄ + ∆C̄↓l, C̃↓l

e = C̃ + ∆C̃↓l (24)

The diagonal matrixZl in (23), which is caused by the
channel fading, boils down to a unitary matrix and can thus
be omitted if the channel is static during the whole FBMC
block transmission, i.e., there is no performance loss caused
by channel frequency dispersion on FBMC system. However,

in high mobility environments,Zl is a non-unitary diagonal
matrix and its impact is not negligible. Let us modelZl as:

Zl = zm,lI + ∆Zl (25)

with ∆Zl = ∆Z1,l + ∆Z2,l, where∆Z1,l = zm,ldiag[(1 −
λm)11×N , (1 − λm−1)11×N , · · · , (1 − λ1)11×N ,01×N , (1 −
λ1)11×N , · · · , (1 − λM+K−1−m)11×N ] and ∆Z2,l =
diag[em,l11×N , em−1,l11×N ,
· · · , e1,l11×N ,01×N , e1,l11×N , · · · , eM+K−1−m,l · 11×N ].
With a small Doppler spreadfD, the variance of each element
of ∆Z1,l is always much smaller than∆Z2,l, i.e.(1−λl)

2 <<
1 − λ2

l whenλl is close to one.
Substituting (24) and (25) into (23) leads to

y =

L−1∑

l=0

ρlzm,l(C̄x̄↓l
e +C̃x̃↓l

e )+vIBI +vfm+vfd+n (26)

where the filter mismatch errorvfm due to the channel
multipath effect (time domain dispersion) can be written as

vfm =

L−1∑

l=0

ρlZm,l(∆C̄↓lx̄↓l
e + ∆C̃↓lx̃↓l

e ) (27)

and the channel fading (frequency domain dispersion) caused
errorvfd is defined as

vfd =
L−1∑

l=0

ρl∆Zl(C̄
↓l
e x̄↓l

e + C̃↓l
e x̃↓l

e ) (28)

Note that the cross error term
∑L−1

l=0 ρl∆Zl(∆C̄↓lx̄↓l
e +

∆C̃↓lx̃↓l
e ) in Eq. (26) is omitted since it is a second order error

and negligible comparing with the error termsvfm andvfd.
Apparently, the value ofvfm depends on the delay spread of
the channel and a largerτRMS results in a stronger interference
to the system. On the other hand,vfd depends on the Doppler
spread of the system and a largerfD leads to a largervfd.

C. Receiver processing

1) Receiver Filtering of Real Branch:Passing the received
signaly to the prototype filter leads to the following output

p̄ = C̄Hy = C̄HC̄

L−1∑

l=0

ρlzm,lx̄
↓l
e + C̄HC̃

L−1∑

l=0

ρlzm,lx̃
↓l
e

+ C̄H(vIBI + vfd + vfm + n) (29)

2) DFT Processing and Phase Shifting of Real Branch:
Vector p̄ = [p̄0, p̄1, · · · , p̄MN−1]

T is split into M segments,
each of which hasN elements to perform theN -point DFT
and phase shifting operation. Define them-th segment of̄p
as p̄m = [p̄mN , p̄mN+1, · · · , p̄mN+N−1]

T . We can have the
signal before channel equalization as

r̄m = ϕH
mFp̄m (30)
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3) Channel Equalization of Real Branch:We assume that
one-tap channel equalizer diagonal matrixWm is applied to
the real branch datārm as follows

ūm = Wmϕ
H
mFp̄m (31)

By using (8) and the definition of̄pm, we can expand (31)
as sum of desired signals, interference and noise

ūm = Wmϕ
H
mF

M−1∑

i=0

¯̄Dm,i

L−1∑

l=0

ρlzm,lx̄
↓l
e,i

︸ ︷︷ ︸
=ūR,m

+ Wmϕ
H
mF

M−1∑

i=0

˜̄Dm,i

L−1∑

l=0

ρlzm,lx̃
↓l
e,i

︸ ︷︷ ︸
=ūI,m

+ Wmϕ
H
mFC̄H

mvIBI
︸ ︷︷ ︸

=ūIBI,m

+Wmϕ
H
mFC̄H

mvfd
︸ ︷︷ ︸

=ūfd,m

+ Wmϕ
H
mFC̄H

mvfm
︸ ︷︷ ︸

=ūfm,m

+Wmϕ
H
mFC̄H

mn
︸ ︷︷ ︸

=ūnoise,m

(32)

where ¯̄Dm,i and ˜̄Dm,i are them-th row i-th column sub-
matrices of¯̄D and ˜̄D, respectively, as defined after Eq. (8). Eq.
(32) includes 6 terms, the third term̄uIBI,m, the fourth term
ūfd,m and fifth termsūfm,m are interference caused by the
doubly dispersive channel. The last term̄unoise,m is the noise
that has been processed by prototype filter, DFT and phase
shifter. The second term̄uI,m is the interference generated by
the imaginary part of signals (i.e.̃am,n). The first termūR,m

is the only term that contains the desired symbols (i.e.ām,n).
We will show that channel circular convolution property

holds for ūR,m and ūI,m. Since the derivation on̄uR,m and
ūI,m are similar, we will only givēuR,m derivation in detail.

We prove that the channel coefficients and the transmitted
signal āi for i = 0, 1, · · · , M − 1 in ūR,m satisfies the
circular convolution property and therefore can be writtenas
the following point-wise multiplication form in the frequency
domain

ūR,m =

M−1∑

i=0

Wm
¯̄Qm,iHmāi (33)

with ¯̄Qm,i = ϕH
mF ¯̄Dm,iF

Hϕi. Hm =
√

Ndiag(Fhm) is
the frequency domain channel coefficients in diagonal matrix
form.

Proof: See Appendix A.
Clearly, with diagonal matrixHm, the multiplicationHmāi

implies that the channel coefficients and symbols in the
corresponding subcarriers perform point-wise multiplications.
However, even though this circular convolution property holds,
we will show that one-tap channel equalization will bring ICI
due to the filter operation (i.e., non-diagonal matrix̄̄Qm,i)
between equalizerWm and the channelHm.

According to the orthogonality of FBMC, with infinite filter
length, e.g.K → ∞, ¯̄Qm,i have the following properties:

¯̄Qm,i =

{

I + jℑ{ ¯̄Qm,m} for i = m

jℑ{ ¯̄Qm,i} for i 6= m
(34)

whereℑ{·} means taking the imaginary part operation. Eq.
(34) implies that the real part of̄̄Qm,m is an identity matrix
for i = m; while for i 6= m, ¯̄Qm,i is an imaginary matrix.
Substituting (34) into (33) yields

ūR,m = WmHmām + j

M−1∑

i=0

Wmℑ( ¯̄Qm,i)Hmāi (35)

which shows that the desired signalām has been successfully
extracted.

As shown in the first term of equation (35) (i.e.,
WmHmām), the channel frequency response (diagonal matrix
Hm) and the transmitted signal (ām) has been written as a
point-wise multiplication. This implies that the circularconvo-
lution property holds for FBMC system in the real domain only
as there is an additive second term (i.e., intrinsic interference)
j
∑M−1

i=0 Wmℑ( ¯̄Qm,i)Hmāi in equation (35). However, with
a complex-valued channelHm, j

∑M−1
i=0 Wmℑ( ¯̄Qm,i)Hmāi

is a complex-valued matrix sinceℑ( ¯̄Qm,i) is not a diagonal
matrix. Taking the real part on̄uR,m in the following stage
cannot totally eliminate the interference, i.e., the ICI exists in
the system even with circular convolution property holding.

Next, we consider two most widely used channel equalizers:
ZF and MMSE equalizer [25], [26]

Wm = HH
m(HmHH

m + νσ2/̺2I)−1 (36)

whereν is a parameter defined by

ν =

{
0 ZF receiver
1 MMSE receiver

(37)

Note thatWm is a diagonal matrix for either ZF or MMSE
equalizer. Now let us consider then-th element ofūR,m in
(35)

ūR,m,n = βm,nām,n + jWm,n

M−1∑

i=0

ℑ{¯̄qm,i,n}Hmāi (38)

with

βm,n = Wm,nHm,n =
|Hm,n|2

|Hm,n|2 + νσ2/̺2
(39)

and ¯̄qm,i,n is then-th row of matrix ¯̄Qm,i. Wm,n andHm,n

are then-th diagonal element ofWm andHm, respectively.
In order to show the channel frequency selectivity caused
interference, let us define the differences of the channel
coefficients in then-th subcarrier with the other subcarriers
in the following matrix form

∆Hm,n = Hm − Hm,nI (40)

then we haveWm,nHm = Wm,n∆Hm,n+βm,nI, substituting
it into (38) results in

ūR,m,n = βm,nām,n + ūR,intri,m,n

+ jWm,n

M−1∑

i=0

ℑ{¯̄qm,i,n}∆Hm,nāi (41)

where ūR,intri,m,n = jβm,n

∑M−1
i=0 ℑ{¯̄qm,i,n}āi is purely

imaginary since βm,n, ℑ{¯̄qm,i,n} and āi are real-
valued. Writing ūR,intri,m,n as a vector: ūR,intri,m =
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[ūR,intri,m,0, · · · , ūR,intri,m,N−1]
T ∈ IN×1. Let us further

define ūR,td,m,n = jWm,n

∑M−1
i=0 ℑ{¯̄qm,i,n}∆Hm,nāi, in a

vector form as

ūR,td,m = [ūR,td,m,0, · · · , ūR,td,m,N−1]
T ∈ I

N×1 (42)

SubstitutingūR,td,m and ūR,intri,m into (41) and write it as
a vector form, yields

ūR,m = βmām + ūR,intri,m + ūR,td,m (43)

whereβm = diag[βm,0, βm,1, · · · , βm,N−1].
Similarly, the second term̄uI,m in Eq. (32) can be obtained

by following the same derivation and using the same circular
convolution property as

ūI,m = ūI,intri,m + ūI,td,m (44)

where ūI,intri,m = [ūI,intri,m,0, · · · , ūI,intri,m,N−1]
T , with

ūI,intri,m,n = βm,n

∑M−1
i=0

˜̄qm,i,nãi, and

ūI,td,m = [ūI,td,m,0, · · · , ūI,td,m,N−1]
T ∈ I

N×1 (45)

with its n-th element being ūI,td,m,n =

Wm,n

∑M−1
i=0

˜̄qm,i,n∆Hm,nãi, and ˜̄qm,i,n is the n-th

row of matrix ˜̄Qm,i defined as

˜̄Qm,i = jϕH
mF ˜̄Dm,iF

Hϕi ∈ I
N×N (46)

So far we have calculated both̄uR,td,m andūI,td,m in Eqs.
(43) and (44), substituting them into (32) leads to the output
of real branch

ūm = βmām + (ūR,intri,m + ūI,intri,m) + ūIBI,m

+ ūtd,m + ūfd,m + ūfm,m + ūnoise,m (47)

where we have defined a new vector

ūtd,m = (ūR,td,m + ūI,td,m) (48)

and (ūR,intri,m + ūI,intri,m) is the so-called intrinsic inter-
ference.

Comparing (47) with (32), except the already defined in-
terference terms̄ufm,m, ūfd,m and ūnoise,m, the first and
second terms are written as a sum of desired signalβmām,
intrinsic interference(ūR,intri,m + ūI,intri,m) and the extra
ICI/ISI ūtd,m caused by channel frequency selectivity.

4) Real Branch Symbol Recovery:The intrinsic interfer-
ence can be removed by taking the real part ofūm, the
estimated real-valued branch of them-th FBMC symbol is

āest,m = ℜ{ūm} = βmām+ℜ{ūIBI,m}+ℜ{ūfd,m}
+ ℜ{ūtd,m}+ℜ{ūfm,m}+ℜ{ūnoise,m} (49)

5) Receiver Operation for Imaginary Branch:The imag-
inary branch follows the same procedure and the derivation
results are given by:

ãest,m = ℑ{ũm} = βmãm+ℑ{ũIBI,m}+ℑ{ũtd,m}
+ ℑ{ũfd,m}+ℑ{ũfm,m}+ℑ{ũnoise,m} (50)

where

ũIBI,m = Wmϕ
H
mFC̃H

mvIBI , ũtd,m = ũI,td,m + ũR,td,m

ũfd,m = Wmϕ
H
mFC̃H

mvfd, ũfm,m = Wmϕ
H
mFC̃H

mvfm

ũnoise,m = Wmϕ
H
mFC̃H

mn (51)

ũI,td,m and ũR,td,m can be expressed as

ũR,td,m = [ũR,td,m,0, · · · , ũR,td,m,N−1]
T ∈ I

N×1

ũI,td,m = [ũI,td,m,0, · · · , ũI,td,m,N−1]
T ∈ I

N×1 (52)

with ũR,td,m,n = Wm,n

∑M−1
i=0 ℜ{˜̃qm,i,n}∆Hm,nãi and

ũI,td,m,n = Wm,n

∑M−1
i=0

¯̃qm,i,n∆Hm,nāi, where˜̃qm,i,n and
¯̃qm,i,n are then-th row of matrix ˜̃

Qm,i and ¯̃
Qm,i, respectively,

which hold the following properties

˜̃
Qm,i=jϕH

mF
˜̃
Dm,iF

Hϕi=

{

jI+ℜ{ ˜̃
Qm,m} for i = m

ℜ{ ˜̃
Qm,i} for i 6= m

(53)

and

¯̃
Qm,i = ϕH

mF
¯̃
Dm,iF

Hϕi ∈ R
N×N (54)

6) Combining Real and Imaginary Branches:With (49) and
(50), we can derive an estimation ofam as

aest,m = āest,m + jãest,m = am
︸︷︷︸

Desired signal

+ (βm − I)am
︸ ︷︷ ︸

MMSE estimation bias

+ uIBI,m
︸ ︷︷ ︸

IBI by multipath

+ ufd,m
︸ ︷︷ ︸

ICI & ISI by fading

+ ufm,m + utd,m
︸ ︷︷ ︸

ICI & ISI by multipath

+unoise,m
︸ ︷︷ ︸

Noise

(55)

where

uIBI,m = ℜ{ūIBI,m} + jℑ{ũIBI,m}
ufd,m = ℜ{ūfd,m} + jℑ{ũfd,m}
ufm,m = ℜ{ūfm,m} + jℑ{ũfm,m}
utd,m = ℜ{ūtd,m} + jℑ{ũtd,m}
unoise,m = ℜ{ūnoise,m} + jℑ{ũnoise,m} (56)

Note that the desired signal estimation bias(βm − I) is an
effect of compromising the interference and noise of MMSE
equalizer. However,(βm − I) = 0 when ZF receiver is used.

The error termsuIBI,m, ufd,m, ufm,m andutd,m depend
on the dispersion of the channel, a large delay spread and/or
Doppler spread leads to a larger estimation error. However,as
will become evident in the next section, the FBMC system
is robust to dispersive channels due to the well-localized
prototype filters.

IV. I NTERFERENCEMSE ANALYSIS

According to Eq. (55), the equalized signal is contaminated
by 6 interferences/noise terms. Among them, the noise term
unoise,m is independent of all other terms and interference;
the IBI contributionuIBI,m is independent of all of the other
terms as well since the interference comes from the previous
FBMC block. The MMSE receiver estimation biasubias,m =
(βm − I)am is also independent of others since it is the only
term that contains the desired signal.ufd is a function of∆Zl

that is dominating by channel temporal correlation errorem,l

(i.e., ∆Z2,l , see Eq. (25) and after), which is uncorrelated to
signals and noise. However,ufm,m andutd,m are functions of
channel in time and frequency domain, respectively, which are
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correlated to each other. Then we can write the MSE of the
n-th modulation symbol estimation in them-th FBMC symbol
as

γm,n =E||aest,m,n−ām,n||2 =E
[
‖unoise,m‖2

n+‖ubias,m‖2
n

+‖uIBI,m‖2
n+‖ufd,m‖2

n+‖ufm,m + utd,m‖2
n

]
(57)

‖A‖2
n means taking then-th diagonal element of matrix

‖A‖2 = AAH .

A. Variance of noise

Let us first consider the MSE caused by noise and the
derived result can serve as a basis for other derivations. It
can be proved that

γnoise,m,n = E‖unoise,m‖2
n = σ2|Wm,n|2 (58)

Proof: see Appendix B.
Eq. (58) shows that the receiver processing (i.e. filtering,

DFT and phase shifting) do not change the noise power.

B. Variance of desired signal estimation bias

The desired signal estimation bias is a result of compro-
mising the desired signal and the noise power by the MMSE
receiver. From Eq. (57) and the definition ofβm,n in (39), we
have

γbias,m,n = E‖ubias,m‖2
n = E{‖(I− βm)am‖2

n}

= ̺2‖(I− βm)‖2
n = ̺2 ν2σ4

(̺2|Hm,n|2 + νσ2)2
(59)

Apparently, when ZF receiver is adopted,γbias,n = 0 since
ν = 0. The total contribution due to the noise and desired
signal estimation bias for MMSE receiver can be written as

γbias,m,n + γnoise,m,n =
σ2

|Hm,n|2 + νσ2/̺2
(60)

Substitutingν = 1 and ν = 0 into (60), which corresponds
to MMSE and ZF receivers, respectively. We can see that

σ2

|Hm,n|2+νσ2/̺2 ≤ σ2

|Hm,n|2 with limited ̺2 and non-zeroσ2,
i.e. MMSE receiver always outperforms ZF receiver in the
absence of other interference.

Apparently, we have the following relationship between
noise and desired signal estimation bias

ξbias,m,n =
γbias,m,n

γnoise,m,n
=

ν

|Hm,n|2SNR
(61)

with SNR = ̺2/σ2 being the input SNR.

C. Variance of IBI

Let us consider the IBI due to the lack of guard time. We
proved in Appendix C that

γIBI,m,n =
̺2

4
|Wm,n|2αIBI,m,n (62)

with

αIBI,m,n = Tr(ḠH
0 Ccorr

h Ḡ0+G̃H
0 Ccorr

h G̃0)

Ccorr
h =

L−1∑

l=0

ρ2
l (C̄(l)C̄

H
(l) + C̃(l)C̃

H
(l)) (63)

where C̄(l) = [C̄(last−l);0(M+K−1)N−l×MN ] and C̃(l) =

[C̃(last−l);0(M+K−1)N−l×MN ]; C̄(last−l) and C̃(last−l) are
matrices that contain the lastl-th rows of C̄ and C̃, respec-
tively.

In order to compare with noise contribution, we derive (62)
by (58), then

ξIBI,m,n =
γIBI,m,n

γnoise,m,n
=

SNR

4
αIBI,m,n (64)

From (64) we can observe that with a fixed SNR, the
MSE contribution by IBI is proportional toTr(ḠH

0 Ccorr
h Ḡ0+

G̃H
0 Ccorr

h G̃0), which is generally very small even for very
harsh channel conditions such as LTE ETU (Extended Typical
Urban) channel, e.g.,γIBI,m,n < −78 dB from simulation
results in Section V. Thus, this term could be treated as an
interference attenuation factor of FBMC systems comparing
with (non-CP) OFDM systems, where the IBI (whenM = 1,
it is equivalent to ISI) has a linear relationship withρ2

l without
any attenuation (p.137) [27].

D. Variance ofufd,m

Now let us consider MSE caused by frequency domain
channel dispersion. We can prove that

γfd,m,n = E‖ufd,m‖2
n =

̺2

4
αfd,m,n|Wm,n|2 (65)

where

αfd,m,n =ℜ{fn(C̄H
mψC̄m + C̃H

mψC̃m)fH
n } (66)

with fn being the n-th row of DFT matrix F. ψ ≈
∑L−1

l=0 ρ2
l̟diag[C̄↓l

e (C̄↓l
e )H +C̃↓l

e (C̃↓l
e )H ] and ̟ = I −

diag[λ2
m11×N , · · · , λ2

211×N , λ2
111×N , λ2

011×N , λ2
111×N ,

λ2
211×N , · · · , λ2

K+M−m−111×N ].
Proof: see Appendix D.
The interference caused by fading channel depends on both

real-valued matrices̟ and diag[C̄↓l
e (C̄↓l

e )H+C̃↓l
e (C̃↓l

e )H ].
Among the diagonal elements of the matrix diag[C̄↓l

e (C̄↓l
e )H+

C̃↓l
e (C̃↓l

e )H ], the n-th element has the largest value and drop
rapidly for the elements depart from then-th element. How-
ever,̟ has an inverse trend as the matrix diag[C̄↓l

e (C̄↓l
e )H+

C̃↓l
e (C̃↓l

e )H ]. Specifically, the value ofn-th element of̟
is equal to zero and increases as the index departs fromn,
which implies that the largest element of diag[C̄↓l

e (C̄↓l
e )H+

C̃↓l
e (C̃↓l

e )H ] will not contribute any error at all and its adjacent
elements will be attenuated by the corresponding element of̟

significantly. Due to this property, the channel fading impact
is limited to the adjacent symbols.

To compare the impact of the factor ofufd,m with the noise,
we divide (65) by (58) yielding

ξfd,m,n =
γfd,m,n

γnoise,m,n
=

SNR

4
αfd,m,n (67)

E. Variance ofufm,m and utd,m

Finally, we derive the interference caused by multipath in
Appendix E as

γfm+td,n=E‖ufm,m+utd,m‖2
n=

̺2

2
αfm+td,m,n|Wm,n|2 (68)



9

with

αfm+td,m,n = ᾱfm+td,m,n + α̃fm+td,m,n (69)

where

ᾱfm+td,m,n = |ℜ(ejθm,n(

M−1∑

i=0

¯̄qm,i,n∆Hm,n + fnC̄H
mT̄))|2

+|ℑ(ejθm,n(

M−1∑

i=0

¯̃qm,i,n∆Hm,n + fnC̃H
mT̄))|2

α̃fm+td,m,n = |ℜ(ejθm,n(
M−1∑

i=0

˜̄qm,i,n∆Hm,n + fnC̄H
mT̃))|2

+|ℑ(ejθm,n(
M−1∑

i=0

˜̃qm,i,n∆Hm,n + fnC̃H
mT̃))|2 (70)

with T̄ =
∑L−1

l=0 ρl∆C̄↓l and T̃ =
∑L−1

l=0 ρl∆C̃↓l, θm,n is
the phase ofWm,n, i.e. Wm,n = |Wm,n|ejθm,n .

There are two types of errors that are caused by the channel
multipath effect, i.e. the channel equalization error due to
¯̄qm,i,n (and ˜̃qm,i,n, ¯̃qm,i,n and ˜̄qm,i,n), and filter mismatch
error related toT̄ (and alsoT̃). For the former, then-th
element of∆Hm,n is equal to zero and the index (i.e.,n)
corresponds to the largest value of¯̄qm,i,n (and ˜̃qm,i,n, ¯̃qm,i,n

and ˜̄qm,i,n). In addition, for fixedn, larger |i − n| results in
larger value of thei-th element of∆Hm,n. On the contrary,
the element of̄̄qm,i,n shows an inverse trend and its absolute
value vanishing rapidly as|i− n| goes up. Therefore, ISI and
ICI can be reduced significantly by the attenuation factors∆C̄

and∆Hm,n, which makes the FBMC systems more robust to
multipath than OFDM ststems.

To show the effect of the factor ofutd,m over the noise, we
divide (68) by (58), resulting in

ξfm+td,m,n =
γfm+td,m,n

γnoise,m,n
=

SNR

2
αfm+td,m,n (71)

F. Total MSE of FBMC System

So far, we have derived all the terms listed in (57) one-by-
one. Substituting (58), (59), (62), (65), (68) into (57), wehave
the total MSE of the FBMC system in the presence of doubly
dispersive channel and noise as follows:

γm,n = γnoise,m,n + γbias,m,n + γIBI,m,n

+ γfd,m,n + γfm+td,m,n (72)

Using the relationship of each term with noise caused MSE
in (61), (64), (67) and (71), we have

γm,n = γnoise,m,n

[
1 +

SNR

4
(αIBI,m,n + αfd,m,n

+2αfm+td,m,n) +
ν

SNR|Hm,n|2
]

(73)

Comparing with the MSE caused by noise only, Eq. (73)
reveals that the errors caused by the doubly dispersive channel
(also desired signal estimation bias for MMSE receiver) will
increase the total MSE by a factor of

[
1+SNR/4(αfd,m,n +

αIBI,m,n + αfm+td,m,n) + ν/SNR/|Hm,n|2
]
. The result

implies that for a given MSE caused by noise, we can estimate
the total MSE of the system, which provides a theoretical
guideline to design a FBMC systems. More precisely, one can
obtain the MSE caused by the noise as a baseline, then derive
the total MSE analytically by considering the parameters such
as Doppler spread, delay spread, filter parameters.

For any given specific channel and Doppler spread, one can
always analytically calculate the interference caused by the
channel dispersions by Eq. (73), based upon which we can
determine whether the FBMC system under a certain channel
condition will result in a negligible or significant ICI/ISI/IBI
in comparison to the error caused only by the noise.

G. SINR of FBMC System

With the given estimation MSEγm,n and normalized de-
sired signal power, we can readily express the SINR of the
FBMC system in the doubly dispersive channel as

SINRm,n =
1

γm,n
(74)

V. NUMERICAL RESULTS

In this section, we use Monte-Carlo simulations to compare
the simulated MSE to the analytical and examine the effects
of different contributing factors on the system performance
in various time and frequency dispersive channels. We adopt
the LTE/LTE-A defined radio frame structure, i.e. 20 MHz
bandwidth containing 1200 subcarriers with subcarrier spacing
∆f = 15 KHz and the symbol duration∆T = 1/15000 s.
The three radio channels: EPA (Extended Pedestrian-A)/EVA
(Extended Vehicular-A)/ETU channels used in LTE/LTE-A are
adopted in our simulations [28]. Note that the delay spread of
these three channels are fixed, which areτRMS = 43 ns,357
ns, 991 ns, respectively. In order to investigate the impact of
the continuously changingτRMS on the FBMC system, we
will later use IEEE 802.11 radio channel models with variable
length of delay spread [29]. The Doppler spread also varies
to illustrate the impact of channel time domain dispersion
on the FBMC system. For the FBMC specified parameters:
the IOTA (isotropic orthogonal transform algorithm) prototype
filter is adopted in our simulations [15] with overlapping factor
K = 6 for most simulations. However, simulation results
with smaller overlapping factorK = 4 will also be shown
for comparison purposes. The desired signal is modulated
by QPSK (Quadrature Phase Shift Keying) with normalized
power and the input SNR is controlled by the noise power.
Since MMSE and ZF equalizers show similar trend and the
former one is more generic, therefore, we only present results
for the MMSE-based algorithm in our simulations.

1) Impact of frequency domain dispersive channel:To
investigate the effect of Doppler spread, we plot the MSE
versus to SNR values with variousfD in the LTE EPA channel.
fD changes in the range[10, 50, 100, 300, 600] Hz, which
correspond to[5.4, 27, 54, 162, 324] km/h moving speed at
2 GHz carrier frequency, or[2.2, 10.8, 21.6, 64.8, 130] km/h
moving speed at 5 GHz carrier frequency. From Fig. 2, we can
see that in all cases, the analytical results match the simulation
results nearly perfect. In addition, interference floors are shown
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for different values offD and it can be seen that a largerfD

leads to a higher floor. As an extreme case, the MSE can reach
−13 dB with fD = 600 Hz at SNR = 30 dB in EPA channel.

Note that as the SNR increases, the output MSE decreases
first and then goes up slightly, e.g., whenfD = 600 Hz, the
MSE achieves a minimum value at SNR =30 dB and goes up
when SNR larger than 30 dB, which is due to the reason that in
the high SNR region, the total MSE of the estimated symbol is
dominatingly contributed by the interference instead of noise
and the desired signal estimation bias, i.e., we can rewrite(73)
asγm,n ≈ 1

4 |Wm,n|2̺2(αIBI,m,n +αfd,m,n +2αfm+td,m,n),
by considering MMSE equalizer defined in (36) and fixed
signal power̺ 2 = 1, we then have|Wm,n|2 =

|Hm,n|2

(|Hm,n|2+σ2)2 .
In the frequency selective channel environments, the relatively
larger noise powerσ2 can significantly reduce|Wm,n|2 in the
deep fading subcarriers (i.e.,|Hm,n| ≈ 0). In other words,
the smallerσ2 (i.e., higher SNR) leads to larger scaling
factor |Wm,n|2, as a result, the interference will be amplified
significantly and contributes more MSE than the reduction of
the contribution from noise and desired signal estimation bias
in a higher SNR value.

Note that the simulation results forfD = 10 Hz with K = 4
are also shown in Fig. 2 for comparison purposes. It can be
seen that the error floors caused byboth channel and prototype
filter in this case (EPA channel withfD = 10 Hz) are−42 dB
and−40.5 dB for K = 6 and K = 4, respectively. In other
words, the finite length prototype filter caused interference is
less than−42 dB and−40.5 dB for K = 6 and K = 4,
respectively. With a larger Doppler shift (e.g., fromfD = 10
Hz to fD = 50 Hz), the doubly dispersive channel caused
errors tend to be dominant, rendering the prototype filter
caused interference to be negligible and the curves forK = 6
completely overlap withK = 4, which are not shown in the
figure for brevity.

The effect of various contributing factors contributing to
MSE listed in Eq. (72) (or Eq. (73)) are shown in Fig. 4
where the MSE caused by noise goes down linearly as the
SNR increases, and it can be seen that the interference caused
by IBI in the EPA channel is negligible (< −88 dB), while
EPA channel multipath effect (e.g.γfm+td) can be more
significant than noise when SNR> 53 dB. Otherwise, it
remains negligible compared to noise. While the effect of
channel fading depends onfD, for example, whenfD = 600
Hz, the γfd becomes dominating for SNR> 15 dB, which
will affect symbol detection in high modulation level.

In addition to MSE, the output SINR versus to symbol
input SNR values with variousfD in the LTE EPA channel
is shown in the left-hand side subplot in Fig. 3. Again, the
analytical results match the simulation results nearly perfectly
for all cases. The reason that the output SINR values increases
first and then goes down slightly is the same as for MSE
performance shown in Fig. 2.

2) Impact of time domain dispersion:The multipath effect
of the channel is shown in Fig. 5 with Doppler spreadfD = 0
Hz, where we used the EPA, EVA and ETU channels. Again,
the simulated and analytical curves concur with each other.
As the delay spread increases, the error floor due to the
channel multipath effect (especially,ufm and ufd) goes up
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Fig. 2. MSE under EPA channel and various Doppler spreadfD, solid lines
and dashed lines are for the analytical and simulated results with K = 6,
respectively, dotted line is the simulated results withK = 4.
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Fig. 3. Output SINR versus symbol input SNR under various Doppler spread
fD and channels. Solid lines and dashed lines are for the analytical and
simulated results, respectively. Left: output SINR versusinput SNR under
various Doppler spreadfD in EPA channel; Right: output SINR versus input
SNR under various channels with Doppler spreadfD = 0 Hz.

accordingly. In the ETU channel, the MSE can reach as high
as−20 dB.

We also provide the simulation results forK = 4 in EPA
channel in Fig. 5. Again, from the figure we can see that the
insufficient overlapping factor caused errors are smaller than
−45 dB and−42 dB for K = 6 and K = 4, respectively,
which are negligible for most of the wireless communication
systems. With a more harsh channel (e.g., from EPA to
EVA), the doubly dispersive channel caused error tends to
be dominant, making the prototype filter caused interference
negligible and the curves forK = 6 are totally overlapped
with K = 4, which are not shown in the figure for brevity.

The effect of the contributing factorsγIBI , γfm+td, γnoise,
γbias (γfd = 0 since fD = 0) are shown in Fig. 6 for the
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Fig. 5. MSE versus SNR under EPA/EVA/ETU channels withfD = 0.

ETU channel, where the IBI contributed MSE is negligible,
however, comparing to the curve shown in Fig. 4, where
the IBI generates−98 dB MSE at SNR= 10 dB in the
EPA channel, it rises to−88 dB in the ETU channel at the
same SNR. The factorγfm+td can create relatively larger
interference than noise when SNR> 25 dB. Again, the output
MSE decreases first and then goes up slightly, which is again
due to the behavior of MMSE equalizer in the presence of
interference as explained in the last simulation.

The output SINR versus to symbol input SNR with various
channel withfD = 0 Hz is shown in the right-hand side
subplot in Fig. 3. It can be seen that the analytical results
match the simulation results nearly perfectly for all channels.

3) Impact of doubly dispersive channel:Next, we as-
sume both Doppler spread and delay spread as variables
and examine the system performance in different channel
conditions. In order to show the impact of continuously
changing delay spread on the FBMC system, we adopt the
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Fig. 6. MSE contributing factors in ETU channel withfD = 0.

-60
2000

-50

-40

1500 1000

-30

M
S

E
 (

dB
) -20

800

Delay spread (ns)

1000

-10

600

Doppler frequency (Hz)

0

400500
200

0 0

Fig. 7. MSE under various Doppler spreadfD and delay spreadτRMS .

IEEE 802.11 channel model with the delay spreadτRMS =
[10, 50, 100, 200, 500, 1000] ns and sampling frequency30.72
MHz. Note that due to the very close agreement between
simulation and analytical results, we will only show analytical
results in Fig. 7 for high SNR region at SNR= 50 dB to focus
on the interference only. From the 3D figure we can see that
the joint impact of both time and frequency domain channel
dispersion can bring significant performance degradation.

4) Optimal system design:For a given channel, a reduction
on subcarrier spacing∆f can reduce the impact of multipath,
however, it will certainly increase symbol duration∆T since
∆T∆f = 1 to maintain the real-domain orthogonality and
leads to a larger impact by Doppler spread. Thus, the optimal
radio frame design should adapt to the specific channel condi-
tions to minimize the total MSE caused by doubly dispersive
channels.

Fig. 8 shows the optimal symbol duration of the FBMC
system for various Doppler spread and delay spread, where
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the optimal symbol duration is normalized by LTE symbol
duration (i.e.,∆T = 1/15000 s), e.g. an optimal value equal to
0.4 implies that the optimal symbol duration is0.4∆T . From
the figure it can be seen that a largerfD leads to a smaller
optimal symbol duration to mitigate the channel frequency
domain dispersion effect. A largerτRMS , however, will lead
to a richer multipath channel, requires a smaller subcarrier
spacing (therefore, a larger symbol duration) to mitigate the
channel frequency selectivity. Note that the corresponding op-
timal values will change when advanced multi-tap equalization
algorithms are adopted.

VI. CONCLUSIONS ANDFUTURE WORKS

The impact of doubly dispersive channels on FBMC sys-
tems has been analyzed in terms of MSE, for both MMSE
and ZF-based one-tap channel equalization algorithms. The
contributing interference and noise factors have been derived
individually under our analytical framework. We first proved
that the circular convolution property between the symbols
and corresponding channel coefficients holds for the FBMC
system by adding a set of inaccuracies, whose values are given
analytically. The quantitative analysis helps identify whether
each error term is negligible or not for given radio channel.
Our theoretical analysis has been validated by simulations. In
addition, the results reveal that with extremely large Doppler
spread or channel delay spread, the FBMC system perfor-
mance may be severely be limited by strong interference.
In such cases, we need to resort to more complex multi-
tap equalization schemes, rather than one-tap equalization.
The analytical framework developed in this paper provides a
valuable reference for the design and development of practical
FBMC systems.

Future work can be focused on the following topics: 1)
the prototype filter caused interference (especially with small
overlapping factor) can be taken into consideration; 2) the
analytical bit error rate for the FBMC system in the presence

of doubly dispersive channel could be another metric for the
performance analysis.
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APPENDIX A
PROOF OFEQ. (33)

According to (20) and (21), we can write
∑L−1

l=0 ρlzm,lx̄
↓l
e,i = X̄cir,ihm with X̄cir,i = [x̄↓0

e,i, x̄
↓1
e,i · · · ,

x̄
↓L−1
e,i ] being acircular convolution matrix. We can express

ūR,m as

ūR,m = Wmϕ
H
mF

[
M−1∑

i=0

¯̄Dm,iX̄cir,ihm

]

= Wmϕ
H
mF

M−1∑

i=0

¯̄Dm,iF
HFX̄cir,iF

HFhm(75)

where we usedFHF = I. Then we can use the circular
convolution property as follows (pp. 129-130) [27]

FX̄cir,iF
HFhm = Hm(Fx̄i) (76)

with x̄i being the first column of̄Xcir,i. And Fx̄i denotes the
DFT processing of̄xi and according to (10) and (9), we have
Fx̄i = b̄i = ϕiāi, substituting it into (76) and (75) leads to

ūR,m =

M−1∑

i=0

Wmϕ
H
mF ¯̄Dm,iF

HHmϕiāi (77)

The order ofHm and ϕi are exchangeable since both are
diagonal, we can thus obtain (33).

APPENDIX B
PROOF OFEQ. (58)

From Eq. (56), we can write

γnoise,m =E‖ℜ{ūnoise,m}+jℑ{ũnoise,m}‖2

=
1

4
E‖(ūnoise,m+ũnoise,m)+(ū∗

noise,m−ũ∗
noise,m)‖2

=
1

4
[E‖ūnoise,m+ũnoise,m‖2+E‖ū∗

noise,m−ũ∗
noise,m‖2] (78)

(ūnoise,m + ũnoise,m) and (ū∗
noise,m − ũ∗

noise,m) are uncor-
related under the assumption that the noise is proper [30]. By
using the last term of (32) and the last Eq. in (51), we have

γnoise,m=
1

4
ℜ{E

[
Wmϕ

H
mF

(
C̄H

mnnHC̄m+C̃H
mnnHC̃m

+C̄H
mnnHC̄m+C̃H

mnnHC̃m)FHϕmWH
m

]
}

=
σ2

2
ℜ{Wmϕ

H
mF

M∑

i=0

( ¯̄Dm,i − j ˜̃
Dm,i)F

HϕmWH
m} (79)

According to (34) and (53),
∑M−1

i=0
¯̄Qm,i =

I + ℑ{∑M−1
i=0

¯̄Qm,i} and −j
∑M−1

i=0
˜̃
Qm,i =

I − ℑ{∑M−1
i=0

˜̃
Qm,i}), i.e. ℜ{∑M−1

i=0 ( ¯̄Qm,i + ˜̄Qm,i)} = 2I,
substituting it into (79) leads toγnoise,m = σ2E(WmWH

m).
Taking then-th diagonal element ofγnoise,m, we obtain (58).
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APPENDIX C
PROOF OFEQ. (62)

Using Eq. (56) and following the same derivation as in (78)
for the noise, we have

γIBI,m = E‖ℜ{ūIBI,m} + jℑ{ũIBI,m}‖2

=
1

2
ℜ{E‖ūIBI,m + jũIBI,m‖2} (80)

With the definitions ofūIBI,m and ũIBI,m in the first term
of (32) and the first Eq. in (51), then

γIBI,m =
1

2
ℜ{E‖Wmϕ

H
mF[(C̄m + jC̃m)vIBI,m‖2}

=
̺2

4
ℜ{Wmϕ

H
mF(C̄m+jC̃m)ψIBI(C̄m−jC̃m)HFHϕmWH

m}(81)

whereψIBI = E{vIBIv
H
IBI}. From (16) we haveψIBI =

E{∑L−1
l=0 ρ2

l ZlE(yB,ly
H
B,l)Z

H
l }, where the factorsZl and

yB,l are uncorrelated.E(yB,ly
H
B,l) is dependent on the

signal type of the last block, where we assume it is
also occupied by an FBMC symbol with the same power,
then we haveE(yB,ly

H
B,l) = C̄(l)E{x̄lastx̄

H
last}C̄H

(l) +

C̃(l)E{x̃lastx̃
H
last}C̃H

(l), x̄last andx̃last are the real and imag-
inary parts of symbols (after IDFT and phase shifting) in
the last block, and̄xlast and x̃last are uncorrelated to each
other. Note thatx̄last and x̃last have the same definition
as (10) and (13). It is easy to prove thatE{x̄lastx̄

H
last} =

E{x̃lastx̃
H
last} = ̺2/2I. Then we haveE(yB,ly

H
B,l) =

̺2

2 (C̄(l)C̄
H
(l) + C̃(l)C̃

H
(l)) = ̺2

2 Ccorr
(l) , whereCcorr

(l) is a di-
agonal matrix with the firstl-th diagonal elements being non-
zero andE{∑L−1

l=0 ρ2
l ZlC

corr
(l) ZH

l } =
∑L−1

l=0 ρ2
l C

corr
(l) . Then

we haveψIBI = ̺2

2 E{∑L−1
l=0 ρ2

l ZlC
corr
(l) ZH

l } = ̺2

2 Ccorr
h ,

substituting it into (81), yields

γIBI,m=
̺2

4
ℜ

[
Wmϕ

H
mF

(
ḠH

0 Ccorr
h Ḡ0−jḠH

0 Ccorr
h G̃0

−jG̃H
0 Ccorr

h Ḡ0+G̃H
0 Ccorr

h G̃0)F
HϕmWH

m

]
(82)

Note that ḠH
0 Ccorr

h Ḡ0, G̃H
0 Ccorr

h G̃0, ḠH
0 Ccorr

h G̃0 and
G̃H

0 Ccorr
h Ḡ0, are real-valued diagonal matrices. By taking the

n-th element ofγIBI , we can obtain (62).

APPENDIX D
PROOF OFEQ. (65)

Using Eq. (56) and following the same derivation in (78)
for noise MSE, we have

γfd,m = E‖ℜ{ūfd,m} + jℑ{ũfd,m}‖2

=
1

2
ℜ{E‖ūfd,m + jũfd,m‖2} (83)

With the definitions of̄ufd,m andũfd,m in the fourth term of
(32) and third Eq. of (51) respectively, and further notice the
definition of vfd,m in (28), we have

γfd,m=
1

2
ℜ{E‖Wmϕ

H
mF[(C̄m+jC̃m)vfd‖2}

=
̺2

4
ℜ{Wmϕ

H
mF(C̄m+jC̃m)ψ(C̄m−jC̃m)HFHϕmWH

m} (84)

where ψ = E{vfdv
H
fd} 2

̺2 = E{
[∑L−1

l=0 ρl∆Zl(C̄
↓l
e x̄↓l

e +

C̃↓l
e x̃↓l

e )
][∑L−1

l=0 ρl∆Zl(C̄
↓l
e x̄↓l

e + C̃↓l
e x̃↓l

e )
]H}. By using

∆Zl ≈ ∆Z2,l (see Eq. (25) and after) and the fact
that x̃↓l

e and x̄↓l
e are independent, we haveψ ≈

E{∑L−1
l=0 ρ2

l ∆Z2,l[C̄
↓l
e (C̄↓l

e )H + C̃↓l
e (C̃↓l

e )H ]∆ZH
2,l}. Using

the fact that the diagonal matrices∆Z2,l and ∆Z2,k

are independent forl 6= k, we can derive ψ ≈
∑L−1

l=0 ‖ρl‖2̟diag[C̄↓l
e (C̄↓l

e )H +C̃↓l
e (C̃↓l

e )H ], substituting it
into (84) leads to

γfd,m=
̺2

4
ℜ{Wmϕ

H
mF(C̄H

mψC̄m+C̃H
mψC̃m)FHϕmWH

m} (85)

By taking then-th diagonal element ofγfd,m, we obtain (65).

APPENDIX E
PROOF OFEQ. (68)

Both utd,m andufm,m are a mixture function of two sets
of uncorrelated random variables:ām and ãm, we can write
γfm+td,m,n in the following form

γfm+td,m,n =
|Wm,n|2̺2

2
(ᾱfm+td,m,n + α̃fm+td,m,n) (86)

where ᾱfm+td,m,n and α̃fm+td,m,n are due tōam and ãm,
respectively. Let us first consider the terms that containsām

only. With the definition ofutd,m andufm,m in Eq. (56), we
have

ᾱfm+td,m,n =
2

|Wm,n|2̺2
E‖ℜ(

M−1∑

i=0

Wm,n¯̄qm,i,n∆Hm,nāi)

+jℑ(

M−1∑

i=0

Wm,n
¯̃qm,i,n∆Hm,nāi)

+ℜ(Wm,nfnC̄H
m

L−1∑

l=0

ρl∆C̄↓lām)

+jℑ(Wm,nfnC̃H
m

L−1∑

l=0

ρl∆C̄↓lām)‖2
n (87)

Using T̄ =
∑L−1

l=0 ρl∆C̄↓l, E{ām} = E{ãm} = ̺2/2, and
Wm,n = |Wm,n|ejθm,n into (87), yields

ᾱfm+td,m,n = ‖ℜ
[
ejθm,n(

M−1∑

i=0

¯̄qm,i,n∆Hm,nfnC̄H
m

L−1∑

l=0

ρl∆C̄↓l)
]
‖2

n + ‖ℑ
[
ejθm,n(

M−1∑

i=0

¯̃qm,i,n∆Hm,n

+fnC̃H
m +

L−1∑

l=0

ρl∆C̄↓l)
]
‖2

n (88)

Similarly, can derivẽαfm+td,m,n as shown in (70), substitut-
ing them into (86) leads to (68).
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