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ABSTRACT Skin lesion segmentation in dermoscopic images is still a challenge due to the low contrast
and fuzzy boundaries of lesions. Moreover, lesions have high similarity with the healthy regions in terms
of appearance. In this paper, we propose an accurate skin lesion segmentation model based on a modified
conditional generative adversarial network (cGAN). We introduce a new block in the encoder of cGAN
called factorized channel attention (FCA), which exploits both channel attention mechanism and residual
1-D kernel factorized convolution. The channel attention mechanism increases the discriminability between
the lesion and non-lesion features by taking feature channel interdependencies into account. The 1-D
factorized kernel block provides extra convolutions layers with a minimum number of parameters to
reduce the computations of the higher-order convolutions. Besides, we use a multi-scale input strategy
to encourage the development of filters which are scale-variant (i.e., constructing a scale-invariant rep-
resentation). The proposed model is assessed on three skin challenge datasets: ISBI2016, ISBI2017, and
ISIC2018. It yields competitive results when compared to several state-of-the-art methods in terms of Dice
coefficient and intersection over union (IoU) score. The codes of the proposed model are publicly available
at https://github.com/vivek231/Skin-Project.

INDEX TERMS Skin lesion, conditional generative adversarial network, channel attention, factorized
kernel, residual convolution.

I. INTRODUCTION

According to the world health organization (WHO), around
100,000 melanoma skin cancer cases appear every year [1].
For early diagnosis, different diagnostic algorithms [2], such
as theABCDDermoscopyRule, and 7-Point Check List, have
been utilized. For example, the ABCD rule of dermoscopy
helps dermatologist to discriminate between benign and
malignant tumors by analyzing the following features in skin
images: asymmetry (A), border irregularity (B), color (C),
and dermoscopic structures (D).

The associate editor coordinating the review of this manuscript and
approving it for publication was Ran Su.

Nowadays, computer-aided diagnosis (CAD) systems are
widely used for the early-stage diagnosis of skin diseases
using dermoscopic images. These CAD systems are used to
train inexperienced dermatologists and to devise automated
diagnostic procedures. One of the important tasks of these
CAD systems is to accurately segment the lesions from the
dermoscopic images that help follow-up lesions. Moreover,
CAD systems are also designed to extract basic features (e.g.,
ABCD features) that can be used for in-depth pattern, shape
or region of interest analysis.

Figure 1 presents four examples of skin images containing
lesions. As shown in Figure 1, there are many challenges for
skin lesion segmentation methods to properly segregate the
observed lesions, such as the presence of hair, illumination
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FIGURE 1. Examples of skin lesions with presence of hair, illumination
changes, noise, color variations and fuzzy boundaries.

changes, noise, color variations, and fuzzy boundaries [3].
These challenges degrade the performance of the automatic
segmentation methods.
Several skin lesion segmentation methods have been pro-

posed in the literature [4]–[6], and [7], which are based
on traditional computer vision, machine learning and/or
deep learning techniques. Regarding traditional computer
vision techniques, adaptive thresholding, region growing,
and contour-based methods have been used to segment skin
lesions [8]. However, these methods yield poor results on low
contrast skin images.
Recently, different deep learning techniques have been

used to segment biomedical images [9]–[12]. Several
approaches [7], [13] have been proposed to automatically
segment skin lesions. These methods yield more accu-
rate results than traditional ones. However, most methods
apply several pre-processing (e.g., hair removal, color space
transformation, and data augmentation) or post-processing
techniques (e.g. morphological operations) to improve their
results. Among of used deep models, conditional generative
adversarial network (cGAN), a cutting-edge idea in image-to-
image translation, has been used [14] to segment skin lesions.
It gave a Dice coefficient of 86.7%.
Enhancing the contextual information extracted by some

layers of the cGAN model could increase the segmentation
accuracy. In order to enhance the contextual information,
a dual attention block was proposed that integrates the spa-
tial and channel long-range dependencies for general scene
segmentation [15]. However, the dual attention block signifi-
cantly increases the number of training parameters, especially
in the spatial attention branch. Therefore, we substituted
that branch with a residual connection joined with four lay-
ers of 1-D factorized kernel convolution. The factorization
method proposed in [16] further helps in reducing the train-
able parameters of the equivalent two layers of 2D kernel
convolution. Consequently, for our skin lesion segmentation
method, we introduce a novel layer, called Factorized Chan-
nel Attention (FCA), which integrates channel attention and
residual 1-D factorized kernel convolution. On one hand,
we assume that a high cross-channel correlation in activation
maps of the encoder layers indicates the presence of relevant
cues for distinguishing skin lesion pixels from normal skin
pixels. On the other hand, we also assume that the residual
convolutions can learn some spatial dependencies in neigh-
boring positions of the feature maps, which lead to a more
compact pixel labeling of the lesion regions, but with a min-
imal set of trained parameters. Consequently, by integrating
both methods in [15] and [16] we are able to formulate an
efficient and accurate segmentation network.

The main contributions of this paper are outlined below:

1) We propose a fully automated skin lesion segmenta-
tion model based on cGAN, which can learn more
effective features for small-size skin lesions without
using pre-processing (e.g., color space transformation)
or data augmentation techniques.

2) To model channel and spatial inter-dependencies inside
the feature maps of the encoder layers, we introduce
the FCA block, which integrates channel attention and
residual 1-D factorized convolutions to boost feature
discriminability between the lesion and non-lesion pix-
els.

3) We also use a multi-scale input strategy, in which the
input images are resized into three different scales of
the original size. Thus, the FCA-Net can explicitly
deal with variation in resolution, object size and image
scale, by encouraging the development of filters which
are scale-variant, while constructing a scale-invariant
representation.

Section II of this paper presents the related works on
skin lesion segmentation. Section III explains the proposed
model. The results and discussion of the proposed model are
provided in Section IV. Lastly, Section V summarizes our
study and provides some insights into future work.

II. RELATED WORK

In the literature, various skin lesion segmentation methods
have been proposed. Table 1 summarizes some of these meth-
ods that have been recently published. These methods include
traditional computer vision techniques, convolutional neural
network (CNN) and generative adversarial network (GAN)
based methods.

A. TRADITIONAL COMPUTER VISION METHODS

These methods usually exploit pixel values, color, texture and
shape statistics, i.e., hand-crafted features used for the seg-
mentation process. For instance, Rahman et al. [8] proposed
an automatic lesion segmentation using adaptive threshold-
ing and region growing methods to segment skin lesions.
These areas were then fed them into an extreme learning
machine (ELM) to classify skin lesions. The main drawback
of thresholding based methods is that they can achieve good
results only if there is a high contrast between the lesion
area and the surrounding skin region, which is not always the
case. Also, Wong et al. [29] suggested an iterative stochas-
tic region-merging approach, which was employed to seg-
ment skin lesions from macroscopic images. In this method,
stochastic region merging was initialized on a pixel level, and
then on a regional level until convergence. An active contour
method (snakes) based on gradient vector flow (GVF) was
proposed in [30] for lesion contour extraction. An exten-
sion of GVF based on a mean shift method was proposed
in [31]. In [32], two contour-based methods were applied
to skin images: adaptive snake and active contour. However,
contour-based methods usually fail in the presence of hair or
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TABLE 1. Summary of skin lesion segmentation methods. Dashes (−) indicate that the information is not reported in the referred references.

air bubbles and if the transition between the lesion and the
surrounding skin is smooth.

B. CNN-BASED METHODS

Nowadays, deep convolutional neural networks are widely
used to analyze natural and medical images for tasks of
detection, segmentation, and classification. Several deep
learning-based image segmentation methods have been pro-
posed in the last five years. One of the prominent models
is the fully convolutional network (FCN) [33] that includes
encoder and decoder layers. In [34], the U-Net model was
proposed for biomedical image segmentation. It adapted the
FCN model by using a skip connection from each encoder
layer to the corresponding decoder layer to keep the fea-
tures extracted from the first layers. Furthermore, the SegNet
model was proposed in [35] to improve the accuracy of image
segmentation by using a max pooling in the decoder layers
that extend from the corresponding encoder layer to achieve
a non-linear upsampling of their input feature maps.
Recently, researchers have used state-of-the-art image seg-

mentation based deep learning models to obtain more accu-
rate skin lesion segmentation. In [17], a CNN-based fully
convolutional residual network (FCRN) and multiscale con-
textual information were proposed to segment skin lesions.
However, this method is not able to properly segment low
contrast dermoscopic images and that includes hairs and
irregular skin lesion shapes. Also, this method cannot fully
utilize the discrimination capability of the deep CNN with
limited training data, according to the authors of the paper.
Furthermore, Bissoto et al. [18] used the U-Net network
to segment skin lesions. They assessed their model on the
ISIC2018 skin lesion dataset and achieved an IoU score of
72.8%. The main limitation of this method is that it requires
several pre-processing steps for removing noise present in
dermoscopic images.
To accurately segment the lesion boundaries,

Vesal et al. [24] proposed the SkinNet model, which is based
on the U-Net architecture. The authors replaced standard

convolution layers at every level of both the encoder and
decoder with densely connected convolution layers. The
SkinNet model was evaluated on ISBI2017 dataset and
achieved a Dice coefficient of 85.10% and an IoU score of
76.7%. To extract rich features from a dermoscopic image,
Sarkar et al. [25] utilized a residual network weighting and a
spatial pyramid pooling network. They also proposed the use
of a loss function called End Point Error (EPE) to preserve
the lesion boundaries. Furthermore, Jahanifar et al. [26] inte-
grated a multilevel segmentation algorithm, regional contrast,
background descriptors, and a random forest regressor to
create saliency scores for each region in the image. This
method gives poor segmentation results with low contrast
dermoscopic images.

To add image appearance information as well as con-
textual information, Mirikharaji et al. [20] employed the
U-Net based method to predict the pixel-wise probability of
a skin lesion segmentation. It achieved a Dice coefficient of
90.11% and an IoU score of 83.30% on ISBI2016 dataset.
Furthermore, Li et al. [21] proposed a transformation con-
sisting of a self-ensemble model, which enhances the regu-
larization effects by utilizing the unlabeled data. It achieved
a Dice coefficient of 87.40% and IoU scores 79.87% on
ISBI2017 dataset. In turn, Venkatesh et al. [22] used the
U-Net model that is based onmulti-scale input with a shortcut
connection at each block of the U-Net. The suggested method
has evaluated on ISBI2017 dataset, obtaining a Dice coeffi-
cient and IoU scores of 85.60% and 76.40%, respectively.
Galdran et al. [23] also exploited the U-Net architecture
and used color constancy methods to normalize the color
throughout the dataset images while retaining the estimated
illumination information, enabling them to randomly change
the color and illumination of normalized images during the
training process. They achieved a Dice coefficient of 82.40%
on ISBI2017 dataset.

Bi et al. [27] proposed a FCN-based class-specific train-
ing to extract visible features of different kinds of skin
lesions and a probability-based step-wise combination of
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the derived class-specific segmentation maps to guarantee
visible persistence of the segmented regions. Also, Yuan [6]
introduced a FCN-based model, which contains 29 layers to
segment skin lesions from dermoscopic images. They have
employed an upsampling and deconvolutional layers to com-
pute multi-resolution loss while carrying over the global per-
spective from pooling layers. However, their model requires
several pre- and post-processing operations, such as color
space transformations and threshold selection. Moreover,
Al-Masni et al. [5] proposed a full resolution convolutional
networks (FrCN), that learns the full resolution features of
each pixel of the input data without the requirement of pre or
post-processing methods.

C. GAN-BASED METHODS

Recently, several GAN-based segmentation models have
been applied to medical images. For instance, cGAN has
been used in [11] and [36] to segment breast cancer sub-
types, in which a Dice loss was used in the generator net-
work to refine pixel-wise segmentation results. To segment
skin lesions, Xue et al. [14] proposed an adversarial-based
model with residual blocks and skip connections. The model
was evaluated on ISBI2017 dataset, achieving a Dice coef-
ficient of 86.70% and an IoU score of 78.50%. Moreover,
Bisla et al. [19] introduced the Deep Convolutional Genera-
tive Adversarial Network (DCGAN) and ResNet-50 models
to jointly segment the skin lesion and classify the lesions
into benign and malignant. They exploited pre-processing
steps to suppress the artifacts from the skin images. With
ISBI2017 and ISIC2018 test datasets, they obtained IoU
scores of 77.00% and 70.20%, respectively.
Most of the methods stated in Table 1 have utilized data

augmentation/preprocessing techniques in the training phase
while others applied postprocessing techniques (e.g., mor-
phological operations) on the resulting masks. In turn, during
the training of the proposed FCA-Net, we utilize the origi-
nal images of ISBI2016, ISBI2017, and ISIC2018 datasets
without applying any data augmentation technique. For a
fair comparison with the state-of-the-art methods, we sep-
arately trained and tested the proposed model on the train-
ing and testing sets of the aforementioned datasets. The
proposed cGAN model that includes FCA blocks and a
multi-scale stage highlights the most important features (of
a highly receptive field) and disregards the artifacts from
images.

III. METHODOLOGY

A. THE FACTORIZED CHANNEL ATTENTION BLOCK

Figure 2 presents the design of the proposed FCA block,
which applies a weighted aggregation between the output
features of two mechanisms: channel attention (see upper
branch) [15] and residual 1-D factorized convolutions (see
lower branch) [16]. The proposed FCA block increases the
representational power of features computed by encoder lay-
ers in generator and discriminator networks.

FIGURE 2. Proposed FCA block with integration of channel attention and
residual 1-D factorized convolution.

1) CHANNEL ATTENTION

This mechanism is intended to boost feature channels that
have similar values in the same image positions. Assume that
γ ∈ RC×H×W is the activation map (i.e. set of features)
obtained by the original encoder layer. To calculate the chan-
nel attention map X ∈ RC×C , γ is firstly reshaped to RC×N

(N = H × C), then multiplied by its transpose, and finally
normalized with the softmax function:

xji =
exp(γi.γj)

∑C
i=1 exp(γi.γj)

(1)

where γi and γj are vectors of length N, containing the values
of all map positions in channels i and j, respectively, and
γi.γj represents their dot product. Hence, xji represents a
normalized correlation degree between those two channels.
The output of the channel attention branch, O1 ∈ R

C×H×W ,
can be expressed for each channel j as follows:

O1j = η

C
∑

i=1

(xjiγi) + γj (2)

where
∑C

i=1(xjiγi) includes the feature values of all channels
modulated by the correlation degree between each channel
with respect to the jth channel. Moreover, this summation
is weighted by η, which is a learned weighting parameter
and then added to the original activation map. In this way,
channels that present more similarities increase their rele-
vance in the output. This mechanism improves the segmenta-
tion accuracy because relevant patterns corresponding to skin
lesion areas create high activation values in several feature
channels, while other irrelevant patterns, like healthy skin
areas or hairs, may have associated very few feature channels
as they representatives.

2) RESIDUAL 1-D FACTORIZED CONVOLUTIONS

This mechanism is intended to boost feature values that are
similar in different image positions. The core working is
the same as a typical residual convolution, i.e., to learn the
difference between input and output activation maps, but
using factorized 1-D kernels instead of regular 2D kernels.
We hypothesize that the output of this branch will tend to
detect image areas that present similar skin patterns in neigh-
boring image positions. This output does not entirely take
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FIGURE 3. The architecture of the generator network.

over the role of the full spatial attention mechanism, where
similar patterns in disconnected image areas can be enhanced.
Nevertheless, in the skin lesion context, the residual convo-
lution is enough if we assume that most of the lesions are
contained in a contiguous image region.
Factorized kernels can effectively preserve the spatial

information of regular 2D kernels and maintain the accuracy
with significantly less computation.
Assume thatW ∈ R

C×dh×dv×F are the weights of a typical
2D convolutional layer, whereC is the number of input planes
(i.e. channels), F is the number of output planes (i.e. feature
maps) and dh × dv is the kernel size of each feature map
(typically dh ≡ dv ≡ d). f i ∈ R

dh×dv is the ith kernel in
the layer. As proposed in [16], f i can be expressed as a linear
combination of 1-D filters:

f i =

K
∑

k=1

σ ik v̄
i
k

(

h̄ik
)T

(3)

where σ ik is a scalar weight, K is the rank of f i, v̄ik and
(

h̄ik
)T

are vectors of length d . The ith output of the decomposed layer
O2i can be expressed as a function of its input γ , as follows:

O2i=ϕ

(

bhi +

L
∑

l=1

h̄Til ∗

[

ϕ

(

bvl +

C
∑

c=1

v̄lc ∗ γc

)])

+γi (4)

where ϕ(.) represents the non-linearity of the 1-D decom-
posed filters (where we used ReLU), bhi and b

v
l are the hori-

zontal and vertical biases of each filter. The residual strategy
of this branch combines the original features provided by
the previous layer with a new set of feature maps with 1-D
convolutional filters. 1-D convolutional filters have intrinsi-
cally less computational cost and less number of parameters
than their 2D equivalent filters. Additionally, the 1-D com-
binations improve the compactness of the generator layers
by minimizing redundancies in the features coming from the
previous 2D convolution layers and theoretically improve the
learning capacity. Besides, the residual 1-D kernel factor-
ization is faster in terms of the computation time than the
normal non-bottleneck [37] and has fewer parameters than
the bottleneck design keeping a high learning capacity and
accuracy.

To determine the final output of the FCA block, we aggre-
gate the channel attention and the residual 1-D factorized
convolutions outputs as follows:

O = (1 − �) × O1 + � × O2 (5)

Here, � is the weighting factor. We checked the system
performance for � values from 1.0 to 0.0, in steps of 0.1.
We have found that � = 0.3 provides the best results.

B. NETWORK ARCHITECTURE

The proposed model comprises a generator and a discrimi-
nator network. The generator network includes an encoder
section and a decoder section. As shown in Figure 3, both
encoder and decoder sections include seven sequential layers
(En refers to an encoder layer and Dn refers to a decoder
layer).

1) THE ENCODER

We use a multi-scale input strategy [38], where the input
images are resized into three different scales with ratios
of 1/8, 1/4 and 1/2 of the original size. In this way, the
FCA-Net explicitly deals with variation in resolution, object
size and image scale, by encouraging the development
of filters which are scale-variant, while constructing a
scale-invariant representation. Scale-variant filters help seg-
ment some small skin lesion pixels. After each scale, we add
a convolution layer with 3×3 kernels along with the proposed
FCA block to extract more rich features from a skin lesion.
The sizes of the features that are fed into the aggregation
module from up to down are 128×128×64, 64×64×64, 32×
32×64 and 16×16×64, respectively. Before aggregating the
features of all scales, lower-scale features are upsampled to
the size of the feature vector extracted from the original image
(128 × 128 × 64), and then we input them into the encoder
layers. We added the proposed FCA block in all layers of the
encoder part, and we did not add it to the decoder layers.
We used batch normalization with LeakyReLU (slope 0.2)
after the first six layers of encoder and the ReLU activation
function after E7. The size of all convolutional kernels is 4×4
with a stride of 2. The encoder can learn low-level features
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FIGURE 4. The architecture of the discriminator network.

of the skin images, such as spatial information (e.g., edge,
intensity, texture) throughout the training process.

2) THE DECODER

To avoid overfitting, we used batch normalization and
dropout (rate = 0.5) in D1, D2 and D3. We added the ReLU
activation function after each layer of the decoder. The size
of the deconvolutional kernels is 4 × 4 with a stride of 2.
We also added skip connections between each convolutional
layer to its corresponding deconvolutional layer. To outline
the segmented skin lesion into a binary mask, we added Tanh
after D7. We used a threshold of 0.5 to convert the output of
Tanh activation function to binary masks.

3) THE DISCRIMINATOR NETWORK

In Figure 4, similar to the generator network, we apply a
multi-scale stage with the FCA block to enhance the scale
independence of the discriminator between the ground truth
and the generated masks. The masks are also resized into
three scales with ratios 1/8, 1/4 and 1/2 of the original image
size. The extracted features are up-sampled, concatenated and
inputted into two successive convolutional layers A1 and A2.
We add LeakyReLU activation function in A1 and sigmoid
function in A2.

C. LOSS FUNCTION

To optimize the proposed segmentation model, we employ
a loss function composed of three terms: Adversarial loss
as Binary Cross Entropy (BCE), ℓL1 loss and End Point
Error (EPE) proposed in [25]. Assume x is the skin image
containing a lesion, y is the ground truth mask, G(x, z) and
D(x,G(x, z)) are the outputs of the generator and the discrim-
inator, respectively, the loss function of the generator network
G is as follows:

ℓGen(G,D) = Ex,y,z(− log(D(x,G(x, z))))

+ λEx,y,z(ℓL1(y,G(x, z)))

+ βEx,y,z(ℓEPE (y,G(x, z))) (6)

where z is a random variable, and β and λ are empirical
weighting factors. The ℓL1 loss forces the model to sup-
press the outliers and artifacts and speed up the optimization
process.

The EPE loss [39] compares the magnitude and orientation
of the edges of the predicted mask with its ground truth for
preserving the boundaries of the segmented regions. The EPE
can be defined as:

Lepe =

√

(G(x, z)x − yx)2 + (G(x, z)y − yy)2 (7)

where (G(x, z)x , G(x, z)y) and (yx , yy) are the first derivatives
in x and y directions of G(x, z) and y, respectively.
In the discriminator network, we only used the BCE loss,
which is defined as:

ℓDis(G,D) = Ex,y,z(− log(D(x, y)))

+Ex,y,z(− log(1 − D(x,G(x, z)))) (8)

The optimizer will fit D to maximize the loss values for
ground truth masks (by minimizing − log(D(x, y))) and min-
imize the loss values for generated masks (by minimizing
− log(1 − D(x,G(x, z))). The generator and discriminator
networks are optimized concurrently, one optimization step
for both networks at each iteration, where G tries to generate
an accurate lesion segmentation mask and D learns how to
discriminate between the synthetic and the real segmentation
masks.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Datasets: To assess the efficacy of the proposed model,
we use three skin lesion challenge datasets, which are
publicly available: ISBI20161 [40], ISBI20172 [13] and
ISIC20183 [41]. The images of the datasets were acquired
using different devices at several medical centers worldwide.
In the ISBI2016 dataset, the training set has 900 annotated
images while the testing set has 379 annotated images. The
size of the images varies from 542 × 718 to 2848 × 4288
pixels. The ISBI2017 dataset has three sets: the training set
(2000 images), validation set (150 images) and testing set
(600 images). In the ISIC2018 dataset, the training set has
2594 images, the validation set has 100 images and the testing
set contains 1000 images. Ground truth of mask images (pro-
vided for training and used internally for scoring validation
and test phases) were generated using several techniques, but
all data were reviewed and curated by practicing dermatol-
ogists with expertise in dermoscopy. Our model has been
trained on randomly chosen 2546 skin lesion images from
the ISIC 2018 dataset and validated on the rest 48 images.
The model is then evaluated on the validation and testing sets.
This process has only been used to tune the hyperparameters
of the model. Note that the trained model is evaluated on the
testing sets of ISBI2016 and ISBI2017 datasets. Our model
is further assessed on the ISIC2018 validation and test sets.
Evaluation Metrics: Assume A is the ground truth and

B is the segmented mask (using our model). The true pos-
itive (TP) rate is defined as TP = A ∩ B, which is the
region of the segmented part common in both A and B.

1https://challenge.kitware.com/#challenge/560d7856cad3a57cfde481ba
2https://challenge.kitware.com/#challenge/583f126bcad3a51cc66c8d9a
3https://challenge.kitware.com/#challenge/5aab46f156357d5e82b00fe5
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TABLE 2. Analyzing different configurations of the proposed method with ISBI2016 and ISBI2017 datasets.

The false positive (FP) rate is defined as A ∩ B, which is
the segmented area not belonging to A. The false-negative
(FN) rate is defined as A ∩ B, which is the true area missed
by the segmentation model. To assess the performance of
the segmentation models, we use the accuracy (ACC), Dice
Coefficient (Dice), Jaccard index (IoU), sensitivity (SEN),
and specificity (SPE) [42].
Parameter Settings: Each input image is resampled to

128 × 128 pixels and apply a normalization for rescaling the
pixel values between [0, 1] before feeding it into our network.
The hyper-parameters of the model were empirically tuned.
We used Adam optimizer with β1 = 0.5 and β2 = 0.999,
a learning rate of 0.0002 and a batch size of 2. The weighting
factors of the ℓL1 and EPE losses (λ and β) were set to
100 and 50, respectively. We have trained our model till
300 epochs and during training, the best results were obtained
with 240 epochs.
Implementation Details: The experiments were conducted

out on an NVIDIA GeForce GTX 1070 with 8 GB of
video RAM. The operating system was Ubuntu 16.04 using
a 3.4 GHz Intel Core-i7 with 16 GB of RAM. The main
required packages involve Python 3.6, CUDA 9.1, cuDNN
7.0 and PyTorch 0.4.1. The codes of the proposed model
are publicly available at https://github.com/vivek231/Skin-
Project.

A. ABLATION STUDY

To demonstrate the effect of each part of the proposed block,
an ablation study has been done. We firstly trained a base-
line (BL) model without adding the channel attention or
factorized convolution blocks. Then, we added the channel
attention block to the encoder layers of the generator network
(called the BL+CA model). Furthermore, the factorized ker-
nel was also separately added to the encoding layers (called
the BL+FK model). Finally, the proposed model (FCA-Net)
is constructed by adding both CA and FK blocks with and
without multi-scale. Note that all models used in this ablation
study have been trained on the ISIC2018 dataset and tested on
the ISBI2016 and ISBI2017 datasets. We did not consider the
testing images of ISBI2016 and ISBI2017 that appear in the
training set of the ISIC2018 dataset.

Table 2 presents the results of the BL, BL+CA and
BL+FKmodels.With the dataset of ISBI2016 dataset, the BL
model yields a Dice and IoU scores of 88.23% and 81.59%
respectively, while the BL+CA model provides a small
improvement of 0.5% and 1.0% for Dice and IoU scores,
respectively. This improvement is achieved because the CA

block explicitly models inter-dependencies among channels.
Besides, the BL+FK model gives a Dice of 90.33% and IoU
scores of 84.16% yielding better improvement than BL and
BL+CA models. In turn, the proposed FCA-Net achieves
an improvement of around 4.0% and 3.0% of Dice and IoU
scores, respectively, better than the BL+FKmodel. Similarly,
on ISBI2017 dataset, FCA-Net improved the results com-
paring with other checked strategies and achieved a Dice of
88.28% and IoU scores of 78.94%.
To demonstrate the effectiveness of the multi-scale stage,

in Table 2 we provide the results of FCA-Net with and
without employing themulti-scale stage (w/oMS). As shown,
the multi-scale stage improves the segmentation performance
of the proposed FCA-Net model with an increment of approx-
imately 2% in Dice and IoU scores.

In Fig. 5, we present a couple of difficult samples, jointly
with visualizations of the activation maps created by the sec-
ond (Conv2) and third (Conv3) encoder layers, as well as the
output of the last decoder layer (Deconv7) compared with the
ground truth (more examples in Fig. 8). The layer outputs
have been obtained with four variants of the FCA block (see
figure captions).

The BL variant (basic cGAN) can distinguish lesion from
non-lesion areas in low-level layers of the network, as shown
with pink and green zones in Conv2 activation maps, but
artifacts like hair and texture/color variability are interfering
with the detection of the lesion area. Besides, for image 2
there is a false lesion detection at the left of the true lesion.
Although next layers can get rid of such inaccuracies up to a
certain degree, the final outputs show a high amount of false
negatives (red pixels in output 1) or a fair amount of false
positives (green pixels in output 2). Also, note that the output
for image 1 comprises small holes (red spots inside the yellow
area).

The CA variant obtains a more consistent identification of
the target classes. In Conv2, almost all lesion region renders
one single color (dark red), although their pixels show vary-
ing shading due to different activation degrees (especially
for image 1). In Conv3, the lesion areas are more compact
(shaded in dark blue), but for image 1 there is a visible break.
Nevertheless, this groove will be filled in by further layers.
Noticeably, the output for image 1 has reduced the number of
FN with respect to the baseline output, although there are still
too many red pixels. The output for image 2 has not trimmed
the false (green) elongation at the right of the lesion, but it
has trimmed the extra green pixels at its left boundary, so the
performance metrics have been improved. Despite that these
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FIGURE 5. Visualization of two sample images and the corresponding activation maps generated by the second and third convolutional layers of the
generator network in four variants w.r.t. the use of the FCA block: BL is our baseline cGAN; CA includes the channel attention branch; FK includes the
residual 1-D factorized convolutions; FCA-Net is our fully-fledged network. The figure also shows the output (Deconv7) of the variants, graphically
compared with the ground truth segmentation, color-coded as yellow: TP, green: FP, red: FN and black: TN, as well as the Dice and IoU indexes for each
experiment.

TABLE 3. Analyzing the effect of the FCA block on different segmentation models on ISBI2016 dataset.

TABLE 4. Analyzing the effect of the FCA block on different segmentation models on ISBI2017 dataset.

outputs still present some misled areas, the obtained degree
of improvement empirically proves that the channel attention
mechanism can significantly smooth the effect of artifacts
since lesion features are consistently enhanced.
The FK variant obtains a much more compact coloring of

the target areas, thanks to the local spatial coherence provided
by the residual filters. Despite this good property, lesion
regions in Conv2 maps contain different colors (red, pink,
dark blue), which indicates that several feature channels are
responsible for characterizing different areas of the lesions.
In Conv3, however, the lesion features are more consistent,
showing one single blue color. Segmentation outputs are
better than outputs from BL and CA variants, which highlight
the power of the residual branch.
Finally, the FCA-Net combines the good properties of CA

and FK variants, since the activation maps from Conv2 and
Conv3 tend to be both spatial and channel coherent within the
lesion area. For the non-lesion area, however, in Conv3 there
is a color gradation (halo) around the lesion, which may turn
out intomisleading boundary delineation, like the small green
area on top of the lesion in the final segmentation of image 1.
This inconvenience is largely compensated by the significant

reduction of false negatives in output 1. At the same time,
there is also a significant reduction of false positives in output
2. In summary, the combination of the two branches of the
FCA block helps each other to provide the best results of the
four variants.

In our experiments, we added the proposed FCA block
to different state-of-the-art image segmentation methods
(FCN8 [33], U-Net [34], SegNet [35], LinkNet [43] and
RefineNet [44]) and evaluated them on ISBI2016 and
ISBI2017 dataset. Tables 3 and 4 present the results of all
models with andwithout the proposed FCA block. It is impor-
tant to note that all compared models have a multi-scale input
layer (they have the same configuration of the multi-scale
input layer of our model). We can see that all models give
better results when adding the FCA block. Besides, our model
gives the best results among all evaluated methods.
To demonstrate the effectiveness of the proposed model,

we provide descriptive statistics of Dice and IoU scores.
In Fig. 6 (a,b), we show the boxplots of the Dice and
IoU scores of the proposed model, FCN8, U-Net, SegNet,
LinkNet, and RefineNet models with the ISBI2016 dataset.
As shown in Fig. 6 (a), among the testedmodels, the proposed
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FIGURE 6. Boxplots of Dice and IoU scores for all test samples in ISBI2016 dataset (a,b) in the upper row and ISBI2017 dataset (a,b) in the bottom
row. Different color boxes indicate the score range of several methods, the red line inside each box represents the median value, box limits
include interquartile ranges Q2 and Q3 (from 25% to 75% of samples), upper and lower whiskers are computed as 1.5 times the distance of upper
and lower limits of the box, and all values outside the whiskers are considered as outliers, which are marked with the (+) symbol.

model has the highest mean Dice score and the smallest stan-
dard deviation with few outliers. Indeed, with the 379 images
of the test set of ISBI2016, the proposed model produces
13 outliers of the boxplot with IoU scores while the LinkNet
and SegNet models have 18 and 17 outliers, respectively.
In turn, Fig. 6 (c,d) shows the boxplots of Dice and IoU scores
of the six models with ISBI2017 dataset. The FCN8 and
U-Net models have no outliers but the deviation of IoUmetric
is much bigger than the one of our model as shown in Fig. 6
(d). With the 600 images of the test set of ISBI2017, our
model has 10 outliers with IoU scores while the RefineNet
model has 14 outliers.

B. COMPARISON WITH THE STATE-OF-THE-ART METHODS

In Table 5, the FCA-Net model is compared with
8 state-of-the-art skin lesion segmentation methods on
ISBI2016 dataset. For fair comparisons, we have also trained
and tested FCA-Net with the ISBI2016 training set and
evaluate themwith the ISBI2016 test set. As shown, FCA-Net
gives a Dice score of 92.80% and an IoU score of 86.41% that
is the second best value. Li et al. [45] achieve a sensitivity
score higher than our model but we obtain better specificity
and accuracy.
Table 6 shows a comparison between the results of

FCA-Net and 11 state-of-the-art skin lesion segmentation
methods on ISBI2017 dataset. For fair comparisons, we have
also trained FCA-Net with the ISBI2017 training set and
evaluate it with the ISBI2017 test set. The IoU score of [21]
is slightly better than our FCA-Net method, our score is
the second-best. Moreover, we achieve the best Dice and

TABLE 5. Comparing the proposed model with 8 state-of-the-art methods
on ISBI2016 dataset. Best results are marked in bold.

accuracy scores. Also, [25] obtains a specificity 1% higher
than FCA-Net but the values of other metrics are much lower
than the ones of the latermodel. Note that the results of related
methods mentioned in Table 5 and Table 6 are taken from the
cited references.

The performance of the FCA-Net model is also assessed
on the validation set of ISIC2018. The segmented images are
submitted to the Leaderboards platform, which calculates an
IoUth score of the provided results. Note that this IoUth score
is computed as follows [41]:

IoUth =

{

IoU , if IoU > 0.65

0, otherwise.
(9)

In Fig. 7, we show a screenshot of the live leaderboard. Our
model has been ranked in the 11th position among 52 tested
models, at the time of the submission. On the validation set,
it has achieved an IoU score of 77.2%. On the test set (on
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FIGURE 7. Screenshot of the live leaderboard on ISIC2018 dataset challenge.

TABLE 6. Comparing the proposed model with 11 the state-of-the-art
methods on ISBI2017 datasets. Best results are marked with the bold.
Dashes (−) indicate that results are not reported in the cited papers.

1000 skin images), our method has achieved an average Dice
score of 85.8% and IoU score of 78.2%.

An additional comparison has been performed by compar-
ing the FCA-Net model with FCN, U-Net, SegNet, FrCN
(reported in [46] ), GAN-FCN [47], and hand-crafted [48].
In the case of GAN-FCN model, GAN is used to derive
additional training data from ISIC2018 dataset, and then this
data is combined with the original training data to train the
FCN model for skin lesion segmentation. The authors of [48]
transform skin images into the RGB space and trained a color
classifier to discriminate between lesions and normal skin
tissue based only on RGB color vectors. Then, they use a
Gaussian mixture model (GMM) to model the probability
density functions of skin lesions and a support vectormachine
regression algorithm to segment the images. As shown in

TABLE 7. The performance of FCA-Net on the ISIC2018 validation dataset.
The proposed model has been evaluated on skin lesion leaderboard
(https://submission.challenge.isic-archive.com/).

Table 7, our model achieves an IoU score close to the one of
GAN-FCN. In turn, the U-Net model yields the worst results
with an IoU of 54%.

Fig. 8 presents qualitative results of skin lesion segmen-
tation that include a variety of challenging conditions: hair
presence, blurriness, illumination variations (intensity, chro-
maticity, fading, etc.), fuzzy borders, irregular borders, sharp
or straight borders, big and small lesions, and two-color
lesions. Each row of Fig. 8 includes a skin lesion image along
with its segmentation obtained with FCN8, U-Net, SegNet,
Refine-Net, LinkNet and the proposed model. To visualize
the accuracy of each model, we compare the ground truth
mask with the generated mask and use four different color
codes to mark up the classification result for each pixel. Note
that yellow refers to TP, red refers to FN, green refers to
FP and black refers to TN. An ideal segmentation model
will assign yellow to skin lesion pixels and black to the
background pixels.

For all examples, our model achieves the best Dice and IoU
scores with all images (Fig. 8). Moreover, it produces a tiny
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FIGURE 8. Skin lesion segmentation using the FCN8, U-Net, SegNet, RefineNet, LinkNet and FCA-Net models. Note that D and J represent the Dice
coefficient and the IoU score, respectively. Further visualization for the segmentation results of the proposed method can be found at
https://youtu.be/GeUM8FglhFA.

FIGURE 9. Examples of inaccurately segmented lesions with the proposed FCA-Net model and compared with other baseline segmentation models. Note
that D and J represent the Dice coefficient and the IoU score, respectively.

amount of red or green pixels, which are usually distributed
around the border of the skin lesion, while the other methods
have a higher number of FP and FN.
The sample in the first row has a small lesion with thick

hair in the background. The U-Net model failed to properly
segment by over-extending the lesion area, while the rest of
the models give accurate segmentation and high Dice and

IoU scores. The sample of the second row has low contrast
with bad illumination conditions, along with a framing effect
due to the optic lenses. In this case, FCN8, U-Net, SegNet,
RefineNet, and LinkNet give a low Dice and IoU scores
(≤ 88%), while our method outputs a decent result. In the
third row, the pixels inside the lesion region have inhomoge-
nous colors, and some of them are similar to the ones of the
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background. The U-Net and LinkNet method give bad seg-
mentation results while the proposedmodel achieves themost
accurate fit of the lesion, with very high Dice and IoU scores.
In the fourth row, the lesion region is not homogeneous
and has low contrast. With this case, our model achieves a
Dice of 87.34% and an IoU of 77.53%, which correspond
to the best matching of the lesion. The last row has a small
skin lesion with very dense hair in the background. Here,
the proposed model obtains promising segmentation results
compared to the other models.

C. LIMITATIONS

Although the proposed FCA-Net outperforms several deep
learning-based models (FCN8, UNet, SegNet, RefineNet and
LinkNet), it may produce inaccurate results with some cases
as shown in Figure 9. As we can see, it is difficult to manually
segment such images. The skin image of the first row has
fuzzy boundaries, low contrast and intensity inhomogeneity.
With this case, our model achieves a Dice score of 84.21%
and an IoU score of 78.56%. The other five models provide
less accurate segmentation results, while the FCA-Net almost
fit the lesion area. The second sample has two distinct color
shades in the lesion. All models have failed to accurately
segment the lesion because of this dual shading, selecting the
stronger one as the lesion and misclassifying the weaker one
as background. It leads to IoU scores less than 50% in all
segmentations, although FCA-Net has achieved the second
best result.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an accurate skin lesion seg-
mentation model based on a generative adversarial network
with the proposed FCA block that integrates a channel atten-
tion mechanism with residual 1-D factorized kernel convolu-
tions. The FCA block noticeably improves the performance
of our cGANmodel as well as other well-known architectures
(FCN8, U-Net, etc.). We have run several qualitative and
quantitative experiments that show how both channel atten-
tion and 1-D residual convolution mechanisms contribute
to the segmentation improvement. Those mechanisms boost
similar features across all channels or in neighboring regions
of the encoder activation maps. As expected, those similar
features tend to correspond more robustly with relevant pat-
terns of lesion/non-lesion areas.
Our model is fully automated and fully self-contained,

in the sense that we did not use any data augmentation
techniques in the training phase or pre-processing steps. The
efficiency of the proposed model is assessed on three pub-
licly available skin lesion segmentation challenge datasets:
ISBI2016, ISBI2017, and ISIC2018. Our model outperforms
several state-of-the-art methods, such as FCN8, U-Net, Seg-
Net, ExB, CUMED, MResNet-Seg, and FrCN, in terms of
Dice and IoU metrics.
In future work, we will focus on adapting the proposed

model to segment lesions in different organs (e.g., breast,
colon and eye) using multi-modal medical images.
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