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Abstract

We consider an infinite sequence of customers of types C = {1, 2, . . . , I } and an infinite
sequence of servers of types S = {1, 2, . . . , J }, where a server of type j can serve a
subset of customer types C(j) and where a customer of type i can be served by a subset
of server types S(i). We assume that the types of customers and servers in the infinite
sequences are random, independent, and identically distributed, and that customers and
servers are matched according to their order in the sequence, on a first-come–first-served
(FCFS) basis. We investigate this process of infinite bipartite matching. In particular, we
are interested in the rate ri,j that customers of type i are assigned to servers of type j . We
present a countable state Markov chain to describe this process, and for some previously
unsolved instances, we prove ergodicity and existence of limiting rates, and calculate ri,j .
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1. Introduction

We consider a service system with C = {1, 2, . . . , I } customer types and S = {1, 2, . . . , J }
server (service) types. A server of type j can serve a subset of customer types C(j) and
customers of type i can be served by a subset of server types S(i). This service system can be
represented by a bipartite graph G = (C + S, G), where the arc (i, j) connecting nodes i ∈ C
and j ∈ S belongs to G if and only if j ∈ S(i) (or, equivalently, i ∈ C(j)). We assume that
this bipartite graph is connected. As an illustrating example, Figure 1 depicts a bipartite graph
with three customer types, two server types, and customer-to-server matching S(1) = {1},
S(2) = {1, 2}, S(3) = {2} and server-to-customer matching C(1) = {1, 2}, C(2) = {2, 3}; G

consists of {(1, 1), (2, 1), (2, 2), (3, 2)}. This is the so-called ‘W’-model in the taxonomy for
routeing topologies in service networks proposed in [13].

Given an arbitrary service system G = (C+S, G), we will construct a stochastic first-come–
first-served (FCFS) infinite bipartite matching based on G. For this, we consider all infinite
sequences of customers of varying types C∞ = {(cn)n≥1 : cn ∈ C, n ≥ 1}, and similarly all
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Figure 1: The bipartite graph for the ‘W’-model.

infinite sequences of servers S∞ = {(sn)n≥1 : sn ∈ S, n ≥ 1}. For a given pair of sequences
(cn, sn)n≥1 ∈ C∞ × S∞, the stream of customers is matched to servers (of appropriate types)
according to the order in the sequence on an FCFS basis. Thus, the first server in the sequence
of servers will pick the first customer in the sequence of customers which he can serve. In
general, the nth server in the sequence will pick the first customer in the sequence of customers
which he can serve and which has not been matched to one of the previous n − 1 servers. The
matching can also be regarded symmetrically from the point of view of customers. The first
customer will be matched to the first server in the sequence of servers which can serve it, and the
nth customer in the sequence will be matched to the first server in the sequence which can serve
it, and which has not been matched to any of the previous n − 1 customers. This introduces
an infinite bipartite matching between the two infinite sequences, which is well defined and
unique for each pair of sequences. Figure 2 shows an instance of this bipartite matching for the
‘W’-model of Figure 1.

To model the stochastic nature of the FCFS infinite bipartite matching, we endow the product
space C∞ ×S∞ with the probability product measure P such that the nth coordinate of the pair
of sequences (cn, sn)n≥1 ∈ C∞ ×S∞ has probability distribution P((cn, sn) = (i, j)) = αiβj ,
for probability vectors α = (αi) ∈ RI and β = (βj ) ∈ RJ . In other words, we assume that the
sequences of customer and service types are random, independent, and identically distributed
(i.i.d.) from the distributions given by α on C and β on S.

Our purpose in this paper is to investigate these random infinite matchings. We wish to
establish limiting results and in particular calculate the matching rates rij at which customers
of type i are matched to servers of type j .

In Section 2 we motivate the research and survey some previous approaches. In Section 3
we make some definitions and obtain preliminary results. In Section 4 we formulate Markovian
models to describe the matching. We conjecture that, under some natural assumptions, these
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Figure 2: The FCFS infinite matching for the ‘W’-model.
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models are ergodic, which implies the existence of limiting matching rates. In Section 5 we
analyze some simple cases, solve for the stationary distributions, and obtain the matching
rates ri,j . These lead to convergence results and formulae for the matching rates for every
system with a bipartite graph which is almost complete, where each customer can be served by
all except at most one server and vice versa. These results were previously unobtainable. In
Section 6 we consider a more complex system, for which we are able to prove ergodicity and
existence of limiting rates, by constructing an appropriate Lyapunov function. In Section 7 we
give a more streamlined description of the Markov chains for systems with general bipartite
graphs. In Section 8 we discuss two failed conjectured methods to calculate rij .

2. Motivation and background

Our approach to the bipartite matching of multiclass customers to multiclass servers appears
to be new. The matching problem has previously been considered as a queueing model:
customers arrive in independent Poisson streams of rates λi , and pools of servers serve them
at combined rates µj , with the same bipartite matching of customer and server types. This is
a complicated model, and its analysis under the FCFS policy seems intractable. We are aware
of only one case of such a queueing system that has been analyzed in detail: the ‘N’-model,
which we introduce in Section 5.1, has been analyzed by Adan et al. [1], who obtained exact
asymptotics for its stationary distributions.

Interest in the queueing model arises especially in the context of call centers, where various
types of customer call, and are routed to various groups of skill-based servers [2], [13]. It is
then often the case that the queueing system operates in balanced heavy traffic, where the sum
of the λis equals the sum of the µj s. If that is the case then we expect departures at the rates λi

and service with no interruptions at the rates µj , but this is an unstable system, which is at best
null recurrent. The heavy-traffic analysis of this system, under an FCFS policy, has so far been
intractable. A more realistic heavy-traffic model has

∑
λi >

∑
µj , and stability is achieved

by reneging: customers of type i renege according to some patience time distribution Fi . This
model was suggested and analyzed by Talreja and Whitt [20].

In the model of Talreja and Whitt the queues are stable, but reneging adds another level of
complexity, and the stochastic model for this system still seems intractable. Whitt and Talreja
considered the formal continuous and deterministic fluid model for this system. They derived
the following important result. Under overload and reneging, the formal fluid system achieves
global FCFS, and all classes of customers have the same waiting times. As a consequence, the
rates of reneging as well as the actual carried load for each type can be calculated for the fluid
model. From this, Whitt and Talreja derived equations which the matching rates ri,j need to
satisfy. These were used to obtain the matching rates for two important cases, treelike graphs
and complete graphs, as well as for graphs which are hybrids of the two. Two difficulties remain:
(i) the solution of the equations for ri,j for general graphs may not be unique, and (ii) although
simulations indicate that the stochastic matching in the queueing system converges to the rates
obtained from the fluid model, proofs of convergence are currently unobtainable.

In view of the difficulty of the queueing models, it seems reasonable to look for simpler
models. A first simplification which leads to our model is that there are no service times.
Instead of servers being busy and providing service while they are busy at rates µj , there is an
infinite sequence of servers, who are arriving at rates µj , and they are matched with the infinite
sequence of customers, who arrive at rates λi . The matched customer and server simply leave
the system, with ‘service complete’ at the instant of matching.
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While this model may not be suitable for call centers, it is nevertheless useful to model
several other applications. The following example arose in the Boston area public housing
administration (some 20 years ago), and motivated Kaplan [16], [17]:

Households applying for public housing are allowed to specify those housing projects in
which they are willing to live; when a public housing unit becomes newly available, of those
households willing to live in the associated housing project, the one that has been waiting
the longest is offered the unit.

In this case households which apply for public housing and housing units which become
available both arrive over time, and once a match is made, the housing service is complete.
The housing unit is now occupied for a period which presumably is longer than the decision
horizon. Thus, the housing units do not become available again, and correspond to our notion
of an arrival stream of servers, rather than a pool of servers with service times, which become
available again each time that they complete a service.

A further example also mentioned by Kaplan [6] is the matching of adoptive parents and
adopted infants. Organ transplants, in particular kidney transplants, are another important
example, though reneging is important in this context as many patients die while waiting for a
suitable organ match [21]. Further applications of this type are the matchings of consumers and
goods, matrimonial matches, etc. We believe there may also be applications in data switches
and in peer-to-peer computer networks to which the model of infinite matching between two
multiclass sequences is appropriate.

We make a second simplification in our model: by ignoring the arrival times, we simply
consider the order of the customers and the order of the servers in the sequences of arrivals,
and study the matches of the 1st, 2nd, 3rd, … customer, and the matches of the 1st, 2nd, 3rd
… server. Thus, instead of Poisson arrivals of customers and servers with rates λi and µj ,
the only relevant parameters are the frequencies αi and βj . In particular, the temporal random
interleaving of customers and servers is irrelevant.

To illustrate the significance of this second simplification, consider the following (single-
class) model of a taxi rank. Passengers and taxis arrive at the rank in random independent
Poisson streams of rates λ and µ, and are matched instantly. Thus, when some taxis are
waiting at the rank, an arriving passenger will immediately depart with one of them, and when
passengers are waiting at the rank, an arriving taxi will immediately depart with a passenger.
Counting passengers as positive integers and taxis as negative integers, the contents of the taxi
rank will form a Markovian continuous-time simple random walk process, with rate λ to move
up and rate µ to move down. This however is transient for λ �= µ, and null recurrent for λ = µ,
and no long-term average analysis can be done. On the other hand, the matching here is trivial:
the first taxi will take the first passenger, the second taxi will take the second passenger, etc.

With these two simplifications, no service periods, and no arrival times, we are at the bare
bones of the FCFS multiclass infinite matching problem. If anything is tractable, this must
be it. Surprisingly, the resulting problems are far from trivial, and the models which emerge
seem very interesting, though extremely hard to analyze. We have made only limited progress,
beyond formulation and solution of simple models. Our main contribution in this paper is
the formulation of a Markovian framework in which the problem becomes meaningful. This
enables us to formulate the question of existence of matching rates in the form of a conjecture
about ergodicity of some Markov chains. Our main new discovery is the complete analysis
of the almost-complete graph case, in Section 5, which enabled us to calculate the (previously
unknown) matching rates for this case. We also prove in Section 6 the ergodicity of a more
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complex model, in which the bipartite graph has each node connected to all except at most two
nodes. We hope that this paper will serve as a challenge and motivation for further results.

3. Preliminaries

Definition 1. We say that the system has a balanced infinite matching if the fraction of cus-
tomers of type i among the first n, who are matched by one of the first n servers, converges
almost surely to αi , and the fraction of servers of type j among the first n, who are matched by
one of the first n customers, converges almost surely to βj as n → ∞.

We make two observations about balanced infinite matching. First, consider the pair of
infinite sequences of customers and servers (cn, sn)n≥1, and define Um,n for 0 ≤ m < n as the
number of unmatched customers in the FCFS matching of (cm+1, . . . , cn) and (sm+1, . . . , sn).
This, of course, is also the number of unmatched servers.

Proposition 1. Um,n is a stationary subadditive array of random variables, satisfying all the
requirements of the subadditive ergodic theorem (cf. [9, Section 6.6, p. 361]).

Proof. We check all four conditions (i)–(iv) of [9] for the subadditive ergodic theorem,
beginning with conditions (ii)–(iv). (ii) (Unk,(n+1)k)n≥1, the number of unmatched customers
for nonoverlapping sections of length k, is a sequence of i.i.d. random variables; hence, it is
clearly stationary and ergodic for each k. (iii) The distribution of the sequence (Um,m+k)k≥1
does not depend on m. (iv) By definition, 0 ≤ E(U0,n) ≤ n.

The main point to verify is the subadditivity (i). We need to show that U0,m + Um,n ≥ U0,n

for all 0 < m < n. In words, we need to compare matching separately the first m and the
remaining n − m, against matching the combined n, and show that the latter gets at least as
many matches.

To prove this, we start from the matches obtained separately from 1, . . . , m and from m +
1, . . . , n, and construct the joint matching of 1, . . . , n. We perform an outer loop on the list
of customers and servers c1, s1, c2, . . . , cn, sn in that order, and adjust the matching. When
the outer loop reaches ck , if it is matched, we leave it alone and continue to the next in the
outer loop. If ck is unmatched, we look for a match, performing an inner loop on the servers
s1, . . . , sn in that order. If sj ∈ S(ck) and if sj is unmatched, we add this match for a gain of
one in the number of matches, and continue to the next in the outer loop. If sj ∈ S(ck) and if
sj is currently matched to c�, where � > k, we cancel that match and replace it by the match
of ck and sj , so the number of matches remains unchanged. We then continue to the next in
the outer loop. In all other cases we go to the next server in the inner loop, until we reach sn,
at which point we leave ck unmatched and go to the next in the outer loop. Clearly, this leads
to the desired joint FCFS matching of 1, . . . , n, and the number of matches can only increase.
This proves the subadditivity and completes the proof of the proposition.

We therefore have the following result.

Theorem 1. The fraction of unmatched customers converges almost surely to

lim
n→∞

U0,n

n
= lim

n→∞
E(U0,n)

n
= inf

n≥1

E(U0,n)

n
= γ.

The fraction of unmatched servers converges almost surely to the same constant.

Proof. This follows directly from the subadditive ergodic theorem.
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We have shown that there are two possibilities. Either the system is balanced, as defined in
Definition 1 (when the limit is almost surely γ = 0), or it almost surely has a fixed proportion of
unmatched customers. Note, however, that at this stage we cannot say which types of customer
will be unmatched, or indeed whether the makeup of the unmatched customers (and servers)
obeys any rules. Also, at this stage we cannot calculate the value of γ , or say when the system
is balanced with γ = 0.

Our second observation is a necessary condition for γ = 0. We introduce some notation.
For C ⊆ C, let α(C) = ∑

i∈C αi , and similarly, for S ⊆ S, let β(S) = ∑
j∈S βj . For C ⊆ C,

let S(C) = ⋃
i∈C S(i), and similarly, for S ⊆ S, let C(S) = ⋃

j∈S C(j).

Proposition 2. A necessary condition for the system to be balanced, equivalently for γ = 0,
is

α(C) ≤ β(S(C)), β(S) ≤ α(C(S)), for all C ⊆ C, S ⊆ S. (1)

Proof. Assume that, for some set of customer types C, we have α(C) > β(S(C)). Then
clearly the fraction of servers in the sequence that can serve types in C converges almost surely
to β(S(C)), and so the fraction of customers of types C in the sequence which are matched
cannot exceed this, i.e. lim supn→∞ of the fraction served is less than or equal to β(S(C)). The
total fraction of customers of types C in the sequence converges almost surely to α(C). Hence,
the unmatched customers will comprise at least α(C)−β(S(C)), so the fraction of unmatched
customers of types C satisfies the condition that lim infn→∞ is greater than or equal to α(C)−
β(S(C)). Hence, the fraction of unmatched customers converges to γ ≥ α(C)−β(S(C)) > 0,
and the system is not balanced. The necessity of β(S) ≤ α(C(S)) is proved similarly.

Definition 2. For (i, j) ∈ G, we denote the fraction of i, j matches among c1, . . . , cn and
s1, . . . , sn by rn

i,j . If ri,j = limn→∞ rn
i,j exists almost surely and is a constant, we call ri,j the

i, j matching rate.

Our objective in this paper is to find conditions under which ri,j exists for all (i, j) ∈ G,
and to calculate their values. We are still very far from a complete analysis of this problem.

Proposition 3. Assume that the system is balanced and that the ri,j exist. Then they must
satisfy the following rate balance equations:∑

i∈C(j)

ri,j = βj , j = 1, . . . , J,

∑
j∈S(i)

ri,j = αi, i = 1, . . . , I. (2)

Proof. This follows directly from the fact that the system is balanced.

Proposition 4. ([6].) A necessary and sufficient condition for the existence of nonnegative
solutions to (3) is condition (1).

Proof. The proof is based on the min-cut max-flow theorem of network flows [12, Theo-
rem 5.1, p. 11]. Consider the system graph and formulate the following max-flow problem.
Direct the arcs of the graph from customer type to server type, and endow them with infinite
capacity. Add node a and arcs from a to each customer type i with capacity αi (customer arcs),
and add node b with arcs from each server type j to b with capacity βj (server arcs). We wish
to find the maximal flow from a to b. Equivalently, we look for the minimal cut.

The customer arcs provide a cut with capacity 1 (as do the server arcs); hence, the maximal
flow is less than or equal to 1. A nonnegative solution of (3) provides a flow of 1 and vice versa,
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a flow of 1 defines nonnegative values of flow from i to j which solve (3). Hence, (3) has a
nonnegative solution if and only if the minimal cut is 1.

A cut of capacity less than 1 will need to cut through a subset C1 ⊂ C of the customer arcs,
and through a subset S2 ⊂ S of the server arcs, such that α(C1) + β(S2) < 1. Let C2 and S1
be the complements of C1 and S2. The customer arcs C1 and server arcs S2 will be a cut if and
only if there are no arcs (i, j) ∈ G which go from C2 to S1. Equivalently, C(S1) ⊆ C1 and
S(C2) ⊆ S2. Hence, for this cut,

β(S1) = 1 − β(S2) > α(C1) ≥ α(C(S1)),

and (1) is violated. Conversely, if (1) is violated by β(S1) > α(C(S1)) then customer arcs
C1 = C(S1) and server arcs S2 form a cut with capacity less than 1.

When condition (1) fails, then by necessity γ > 0 and there is no nonnegative solution
to (3). Consider then the minimum capacity cut as in the proof of Proposition 4. In this case
the capacity of the cut is α(C1)+β(S2) = 1 − γ0, and β(S1)−α(C1) = α(C2)−β(S2) = γ0.
All the customers of S1 are in C1 and all the servers of C2 are in S2. It follows that the fractions
of unmatched customers and of unmatched servers have to be at least γ ≥ γ0, and to include
at least γ0 out of C2 and out of S1. We conjecture that in this case γ = γ0, and that limiting
matching rates, summing up to 1 − γ , will still exist.

We will not consider unbalanced cases any further, and assume from now on that condition (1)
holds. This guarantees the existence of solutions to (3), but in general these solutions are not
unique. Two cases that were discussed by Talreja and Whitt [20] are special.

The complete graph case. If the bipartite graph is complete (i.e. every server can serve every
customer), then the FCFS infinite matching will match customer cn with server sn in the
sequence, and clearly rn

i,j will converge almost surely to the matching rates ri,j = αiβj .

The tree graph case. When the bipartite system graph is a tree (i.e. it has no loops), then the
solution to (3) is unique. Hence, if there exist any limiting values for rn

i,j , they must equal that
unique solution. In general, we do not yet have convergence proofs for this case.

4. A Markovian model

We introduce three Markov chains, each of which describes the process of FCFS matching.
First we consider the process of matching the successive servers. Assume that the servers
s1, . . . , sn have all been matched. In the process of matching them some customers have been
considered in order, and not matched to any of them. Let Xn be the ordered list of these
unmatched customers. Consider the matching of server sn+1. It first examines Xn, and if there
are any suitable customers in Xn, it will be matched to the first of them, which will be removed
from the list. If none of the list Xn is compatible with sn+1, it will examine the rest of the infinite
sequence in order until it finds a match. In doing so, it will add a geometrically distributed
greater than or equal to 0 number of ordered unmatched customers to the list. The resulting list
is Xn+1, the ordered list of unmatched customers which were examined and left unmatched by
s1, . . . , sn, sn+1. Here Xn is a Markov chain on the countable state space of finite words in the
alphabet of the customer types C.

Symmetrically, we can define the Markov chain Yn, which describes the matching of
successive customers. It moves on the state space of finite words in the alphabet S, and
Yn consists of the ordered list of unmatched servers left over by customers c1, . . . , cn.
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More in keeping with our Definitions 1 and 2 of U0,n and rn
i,j , we can also look at the

matching of customers and servers, c1, . . . , cn with s1, . . . , sn, and denote by Zn = (Zc
n, Z

s
n)

the pair of ordered lists of the leftover unmatched customers and servers.
These Markov chains, driven by the sequences of customers and servers, are of course closely

related, as stated in the following proposition. For simplicity of notation, we denote the empty
state by 0.

Proposition 5. (i) Zc
n is a prefix of Xn, and Zs

n is a prefix of Yn.

(ii) Let |Zc
n| and |Zs

n| denote the length of Zc
n and Zs

n. Then |Zc
n| = |Zs

n|.
(iii) There are no possible matches between Zc

n and Zs
n.

(iv) Let Xn = 0, Yn = 0, Zc
n = 0, and Zs

n = 0 state that there are no unmatched customers or
servers. Each one of these four statements implies all the others.

(v) The Markov chains are irreducible and a-periodic.

(vi) If one of the chains Xn, Yn, Zn is null recurrent or positive recurrent, so are the other two.

Proof. (i) Let the latest of the matches of s1, . . . , sn be cn+L, where L ≥ 0. Then the list
Xn contains L customers out of c1, . . . , cn+L−1. Zc

n consists of the intersection of the ordered
list Xn with the ordered list c1, . . . , cn. Similarly for Zs

n.
The proofs of parts (ii) and (iii) are immediate.
(iv) All four statements say that all of c1, . . . , cn are matched with all of s1, . . . , sn.
(v) Clearly, the state Zc

n = 0, Zs
n = 0 can be reached from every other state, and state 0 can

be followed by state 0.
(vi) Follows from (iv), since if any of these irreducible chains is (positive) recurrent then 0

is a (positive) recurrent state in all of them (by (iv)), and, hence, all are (positive) recurrent.

The usefulness of these Markov chains hinges on the following crucial conjecture. While we
have verified this conjecture for some special cases, we are still far from proving it in general.

Conjecture 1. A sufficient condition for ergodicity of X, Y, Z is

α(C) < β(S(C)), β(S) < α(C(S)), for all C � C, S � S. (3)

Denote by Aij the indicator of (i, j) ∈ G, where A is the I × J adjacency matrix of the
bipartite system graph. Define the matrices L and M as follows:

Li,j = αiAi,j

α(C(j))
, Mi,j = βjAi,j

β(S(i))
.

Here Lij is the probability that a server of type j , searching a new stream of customers, will
be matched with a customer of type i, and Mij is the probability that a customer of type i,
searching a new stream of servers, will be matched with a server of type j . Note that L′ and
M , and, hence, also ML′ (of dimension I × I ) and L′M (of dimension J × J ) are stochastic
matrices (i.e. nonnegative elements with rows sum equal to 1).

Theorem 2. If the Markov chains of the unmatched words are ergodic then rn
i,j converges

almost surely as n → ∞. Furthermore, the limiting values ri,j can be calculated from the
steady-state distributions of these Markov chains. Let πX(·), πY (·), πZ(·), πZc

(·), and πZs
(·)

be the steady-state probabilities of the Markov chains Xn, Yn, and Zn, and the marginal steady-
state probabilities of the components of Zn. Let Wc(i, j) be the countable set of customer words
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in which the first customer that matches server type j is customer type i. Let W
c
(j) be the

countable set of customer words that do not contain any match for j . Let Ws(i, j) and W
s
(j)

be sets of server words defined analogously. Then, for (i, j) ∈ G,

ri,j = βjπ
X(Wc(i, j)) + βjπ

X(W
c
(j))Lij (4)

= αiπ
Y (Ws(i, j)) + αiπ

Y (W
s
(i))Mij (5)

= αiπ
Zs

(Ws(i, j)) + βjπ
Zc

(Wc(i, j)) + αiβjπ
Z(W

s
(i) ∩ W

c
(j)). (6)

Proof. We discuss the convergence first. Assume that the processes X, Y , and Z are ergodic.
Let 0 < n1 < n2 < · · · be the successive times at which Xnk

= Ynk
= Znk

= 0. They are
regeneration points for the matching process. Let Tk = nk − nk−1, and let Rk be the count of
(i, j) matches for snk−1+1, . . . , snk and cnk−1+1, . . . , cnk . Then the Tk are i.i.d. and the Rk are
i.i.d., and by the strong law of large numbers for renewal reward processes, almost surely we
have

lim
n→∞ rn

i,j = lim
k→∞ r

nk

i,j = lim
k→∞

∑k
l=1 Rl∑k
l=1 Tl

= E(R1)

E(T1)
.

So the limits exist.
We need the following two facts.

(i) Recall that rn
ij was defined as the fraction of (i, j) matches for s1, . . . , sn with c1, . . . , cn.

However, the convergence proof holds also, with the same limit, if we count the fraction
of (i, j) matches for s1, . . . , sn (with the entire (cm)m≥1 sequence), or if we count the
fraction of (i, j) matches for c1, . . . , cn (with the entire (sm)m≥1 sequence).

(ii) Furthermore, since the 0 ≤ rn
i,j ≤ 1 are uniformly bounded, we have

ri,j = lim
n→∞ rn

i,j = lim
n→∞ E(rn

i,j ).

We now look at (i, j) ∈ G, and prove (4)–(6).
To prove (4), consider the process X, and follow the matching of sn. Let I s

n(i, j) be the
indicator of the event that the match of sn is an (i, j) match. This event is the union of two
disjoint events: sn is matched with one of the leftover customers, i.e. sn is matched with
c� ∈ Xn−1, and this is an (i, j) match, or sn finds no match in Xn−1, and is matched with a new
customer, and the match is (i, j). Using the independence of sn, Xn−1, and c�, � > n+|Xn−1|,
we obtain

E(I s
n(i, j)) = P(sn has an (i, j) match)

= βj P(Xn−1 ∈ Wc(i, j)) + βj P(Xn−1 ∈ W
c
(j))

αi

α(C(j))
.

As n → ∞, this converges to the right-hand side of (4). By (i) and (ii),

ri,j = lim
n→∞

∑n
m=1 E(I s

m(i, j))

n
,

which completes the proof of (4).
The proof of (5) is analogous to (4).
To prove (6), we consider the process Z = (Zc, Zs), and follow the matching of (cn, sn).

We note that these two matches can include at most one (i, j) match, and this event can happen
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in one of the following three mutually exclusive ways:

• sn = j and the first match for j in Zc
n−1 is i,

• cn = i and the first match for i in Zs
n−1 is j ,

• (cn, sn) = (i, j) and (Zc
n−1, Z

s
n−1) have no match for cn and no match for sn.

These events are mutually exclusive because, by Proposition 5(iii), we cannot have i ∈ Zc
n−1

and at the same time j ∈ Zs
n−1. Define In(i, j) as the indicator of the event that (cn, sn)

introduce a new (i, j) match. Clearly, as n = 1, 2, . . ., the indicators In(i, j) count all the (i, j)

matches, where the three mutually exclusive events correspond to an (i, j) match of cm, sn with
m < n, m > n, or m = n. Then

E(In(i, j)) = P((cn, sn) introduce an (i, j) match)

= βj P(Zc
n−1 ∈ Wc(i, j)) + αi P(Zs

n−1 ∈ Ws(i, j))

+ αiβj P(Zn−1 ∈ W
c
(j) × W

s
(i)).

As n → ∞, this converges to the right-hand side of (6). The rest of the proof of (6) is the same
as for (4).

The Markovian structure here is somewhat similar to random walks on free products of
cyclic groups and to zero-automatic queues and product form recently discussed in [7], [8],
[18], and [19].

5. Some simple examples

While we were unable to prove Conjecture 1 in general, we can try and verify it for specific
models, and if possible we can then solve the balance equations and obtain the matching
rates. This is what we do in this section. We start with two simple systems, the ‘N’- and the
‘W’-models. These are tree graphs, and so the matching rates are easy to obtain. However, the
analysis of the Markov chains X, Y , and Z provides a proof for the almost-sure convergence to
these rates. Next we consider the almost-complete graph case, in which each server type can
be matched to all except at most one customer type (and vice versa). For these, we are able to
prove Conjecture 1, solve the balance equations, and obtain the matching rates. These are the
main new results in this paper.

5.1. Example 1: the ‘N’-model

Customers are of types C = {1, 2} and servers are of types S = {1, 2}, with C(1) = {1, 2}
and C(2) = {1}. The frequency of cn = 1 is α, the frequency of sn = 1 is β. This is the
‘N’-model in the taxonomy of [13], as depicted in Figure 3. The queueing version of this
system under an FCFS policy is the one analyzed in [1]. While the analysis of the queueing
system is far from simple, the infinite matching problem here is quite easy. Conditions (3) for
the ‘N’-model are given by α + β > 1.

We analyze the Xn process first. In this system only customers of type 2 may be left with
no match, and so a complete description of the state of the system, as seen by each successive
server, is given by the number of unmatched type-2 customers. After servers s1, s2, . . . , sn

have been matched, there are Xn type-2 customers which were left unmatched and are first in
line for the next servers. When server sn+1 is of type 1, he will reduce Xn by 1. When server
sn+1 is of type 2, he will increase Xn by a geometric greater than or equal to 0 number of type-2
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C
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1–β β

1–αα

Figure 3: The bipartite graph and probabilities for the ‘N’-model.

unmatched customers. It is not hard to see that {Xn}n≥0 is a Markov chain starting at X0 = 0
and with transition probabilities

P(Xn+1 = y | Xn = x) =

⎧⎪⎨
⎪⎩

β + (1 − β)α if x = y = 0,

β if y = x − 1 ≥ 0,

(1 − β)α(1 − α)y−x if y > x = 0 or y ≥ x ≥ 1.

(7)

Proposition 6. Under the condition that α + β > 1, the Markov chain {Xn} is ergodic with
stationary distribution {πX

x } given by

πX
0 = α + β − 1

αβ
and πX

x = (1 − β)

(
1 − α

β

)x

πX
0 , x ≥ 1. (8)

Proof. As we shall see, this is a special case of Proposition 10, below. Our proof here serves
as a first building block to the proof of Proposition 10.

Figure 4 depicts the states and the transitions of Xn for the ‘N’-model. The balance equations
for Xn are

πX
0 = (β + (1 − β)α)πX

0 + βπX
1 ,

πX
x =

x∑
y=0

(1 − β)α(1 − α)x−yπX
y + βπX

x+1, x ≥ 1.

It is not difficult to check that the probabilities in (8) satisfy these equations. However, because
this Markov chain involves jumps to distant states, it is not easy to derive the steady-state
distribution directly from the balance equations.

For easier derivation, we consider a new Markov chain, X̃m, which moves through states
(x, a) and (x, b), x = 0, 1, . . ., and is defined as follows. The visits of X̃m to the states (x, a)

coincide with the sample path of Xn. The states (x, b) correspond to a server of type 2 searching
for a match. In state X̃m = (x, a) assume that this corresponds to Xn = x. We then move

x–1

ββ

(1–β)α(1–α)y(1–β)α(1–α)

(1–β)α

10 x x+yβ+(1–β)α

Figure 4: States and transitions for the Xn Markov chain of the ‘N’-model.
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to X̃m+1 = (x − 1, a) if server sn+1 is of type 1. If server sn+1 is of type 2, we move to
X̃m+1 = (x, b). In state X̃m = (x, b) we examine the next customer in line, which has not
been considered for matching yet, say ck . If it is of type 1, it will be matched with the server
and we move to X̃m+1 = (x, a), if it is of type 2 then this customer will join the other leftover
unmatched type-2 customers, and we move to X̃m+1 = (x+1, b). The advantage of the chain X̃

is that its transitions are only to neighboring states. The transition probabilities for the Markov
chain X̃m are

P(X̃m+1 = v | X̃m = u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β if u = (0, a) and v = (0, a),

or u = (x, a) and v = (x − 1, a), x > 0,

1 − β if u = (x, a) and v = (x, b), x ≥ 0,

α if u = (x, b) and v = (x, a), x ≥ 0,

1 − α if u = (x, b) and v = (x + 1, b), x ≥ 0.

(9)

Figure 5 depicts the states and the transitions of X̃m for the ‘N’-model. Denote by ax and bx

the steady-state probabilities of the states (x, a) and (x, b), respectively. The balance equations
for X̃m are

(1 − β)a0 = αb0 + βa1,

b0 = (1 − β)a0,

ax = αbx + βax+1, x > 0,

bx = (1 − α)bx−1 + (1 − β)ax, x > 0.

By considering the partition of states with first coordinates less than or equal to x and greater
than or equal to x + 1, we obtain the balance equation

(1 − α)bx = βax+1, x ≥ 0.

Hence,

bx = β

1 − α
ax+1.

Substituting in the balance equation for a0, ax, x > 0, we obtain

(1 − β)a0 = α
β

1 − α
a1 + βa1 = β

1 − α
a1,

ax = α
β

1 − α
ax+1 + βax+1 = β

1 − α
ax+1, x > 0.

β

1–β

1–α

x–1,b x+1,b

x+1,ax,a

x,b1,b

1,a

0,b

0,a

β

β

1–β 1–β αα

1–α

β

1–β 1–β αα

1–α 1–α

Figure 5: States and transitions for the X̃n Markov chain of the ‘N’-model.
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Hence,

a1 = (1 − β)
1 − α

β
a0, ax =

(
1 − α

β

)x−1

a1, x > 0,

and so

ax = (1 − β)

(
1 − α

β

)x

a0, x > 0.

Since the visits of X̃m to states (x, a) coincide with visits of Xn to states x, we have
πX

x = ax/(
∑∞

x=0 ax) and the proposition follows.

Analogously, if we match successive customers, the leftover server words will consist of
type-2 servers and the Markov chain which describes this, Yn, will count the number of
unmatched type-2 servers. Analogous to (8), the steady-state probabilities for Yn are

πY
0 = α + β − 1

αβ
and πY

x = (1 − α)

(
1 − β

α

)x

πY
0 , x ≥ 1. (10)

We now consider the process Zn of the words of customers and servers that are left over after
matching c1, . . . , cn with s1, . . . , sn. As a rule, we write the state of Z as a pair of words, of
the ordered leftover customers and ordered leftover servers. However, in the ‘N’-model there
will be only type-2 servers and customers left over, in equal number, so we let Zn = x denote
that there are x type-2 customers and x type-2 servers left over, where x = 0, 1, . . . .

Proposition 7. Under the condition that α + β > 1, the Markov chain {Zn} is ergodic with
stationary distribution {πZ

x } given by

πZ
x = α + β − 1

αβ

(
(1 − α)(1 − β)

αβ

)x

, x ≥ 0. (11)

Proof. The transition probabilities are obtained as follows. For x > 0, if the next customer
and server pair are of types 1, 1 then there will be two new matches (a (1,2) match and a (2,1)
match) and we will have x → x −1. If the pair are 1, 2 or 2, 1 then there will be one new match
(a (1,2) match in the first instant, a (2,1) match in the second instant) and the new type 2 will be
left over, so x → x. If the pair are of types 2, 2 then both will be left over, and x → x + 1. In
the case of x = 0 the only difference is that if the pair are of types 1, 1 then the two will match
and the next state will still be 0. Hence,

P(Zn+1 = y | Zn = x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α + β − αβ if y = x = 0,

αβ if y = x − 1, x ≥ 1,

α(1 − β) + β(1 − α) if y = x, x ≥ 1,

(1 − α)(1 − β) if y = x + 1, x ≥ 0.

(12)

It is immediate to obtain the steady-state distribution for this chain.

It is easy to check that calculation of the matching rates ri,j according to any of the three
Markov chains X, Y , or Z as in (4)–(6) yields exactly the unique solution of (3), which is

r1,2 = 1 − β, r1,1 = α + β − 1, r2,1 = 1 − α, r2,2 = 0. (13)
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5.2. Example 2: the ‘W’- or ‘M’-model

Customers are of types C = {1, 2, 3} and servers are of types S = {1, 2}, with C(1) = {1, 2}
and C(2) = {2, 3}, and with S(1) = {1}, S(2) = {1, 2}, and S(3) = {2}; see Figure 1.
The frequencies of the customers and servers are given by αi, i = 1, 2, 3, βj , j = 1, 2.
Conditions (3) for the ‘W’-model are β1 > α1 and β2 > α3. We will consider the processes
Xn, Yn, and Zn.

The process of matching servers starts with X0 empty. All type-2 customers are
always matched, and because every server can serve either type-1 or type-3 customers, the
unmatched customers left by s1, . . . , sn are either all of type 1 or all of type 3. We let
Xn = (Xn,1, Xn,3), where Xn,i is the number of unmatched type-i customers, and where,
for all n ≥ 1, Xn,1Xn,3 = 0. The transition probabilities of Xn are

P(Xn+1 = (z1, z3) | Xn = (x1, x3))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1β1 + α2 + α3β2 if z1 = z3 = x1 = x3 = 0,

β1 if z1 = x1 − 1, z3 = x3 = 0,

β2 if z1 = x1 = 0, z3 = x3 − 1,

β2α
z1−x1
1 (1 − α1) if z1 > x1 = 0 or z1 ≥ x1 ≥ 1 and z3 = x3 = 0,

β1α
z3−x3
3 (1 − α3) if z1 = x1 = 0 and z3 > x3 = 0 or z3 ≥ x3 ≥ 1.

Proposition 8. If β1 > α1 and β2 > α3 then the Markov chain {Xn = (Xn,1, Xn,3)} of
the ‘W’-model is ergodic with stationary distribution πX = {πX

x1,x3
} such that πX

x1,x3
= 0 if

x1x3 > 0 and

πX
x1,0 = (1 − β1)

(
α1

β1

)x1

πX
0,0, πX

0,x3
= (1 − β2)

(
α3

β2

)x3

πX
0,0, x1, x3 ≥ 1,

where

πX
0,0 = (β1 − α1)(β2 − α3)

β1β2α2
.

Proof. This is also a special case of Proposition 10, below, and our proof here serves as a
second building block to the proof of Proposition 10. Comparison with the ‘N’-model shows
that

πX
x,0 =

(
α1

β1

)x−1

πX
1,0, πX

0,x =
(

α3

β2

)x−1

πX
0,1, x = 1, 2, . . . .

Consider the transitions from state (0, 0) to states of the form (x, 0), i.e. from no unmatched
customers to unmatched customers of type 1, and back from (1, 0) to (0, 0), and similarly from
(0, 0) to (0, x), with unmatched type-3 customers, and back from (0, 1) to (0, 0), as illustrated
in Figure 6.

By equating the flow across the cuts we obtain the equations

β1π
X
1,0 = β2α1π

X
0,0, β2π

X
0,1 = β1α3π

X
0,0,

from which we obtain

πX
x,0 = β2

(
α1

β1

)x

πX
0,0, πX

0,x = β1

(
α3

β2

)x

πX
0,0, x = 1, 2, . . . .

The value of πX
0,0 is obtained by summing all probabilities to 1.
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β
2
α

1
β

1
α

3

β
1

β
2

0,0

0,1

0,22,0

1,0

Figure 6: Transitions out of state (0, 0) for the X process of the ‘W’-model.

The process of unmatched servers left by customers c1, . . . , cn is described by Yn =
(Yn,1, Yn,2), where Yn,i is the number of unmatched servers of type i, and Yn,1Yn,2 = 0.
The stationary distribution of Yn is derived analogously to that of Xn: πY

y1,y2
= 0 if y1y2 > 0

and

πY
y1,0 = α3

(
β1

1 − α3

)y1

πY
0,0, πY

0,y2
= α1

(
β2

1 − α1

)y2

πY
0,0, y1, y2 ≥ 1,

where

πY
0,0 = πX

0,0 = (β1 − α1)(β2 − α3)

β1β2α2
.

We now consider the process Zn of the words of customers and servers that are left over
after matching s1, . . . , sn with c1, . . . , cn. As a rule, we write the state of Z as a pair of words,
of the ordered leftover customers and the ordered leftover servers. However, here again in the
‘W’-model this can be simplified. The possible situations are either no unmatched customers
and servers, or unmatched customers of type 1 and servers of type 2, in equal number, or
unmatched customers of type 3 and servers of type 1, in equal number. So we let Zn = (x, 0)

denote that there are x type-1 customers and x type-2 servers left over, and we let Zn = (0, x)

denote that there are x type-3 customers and x type-1 servers left over.
The transition rates for the Z process are simpler than for the X or Y process.

P(Zn+1 = (u, v) | Zn = (x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2 + α1β1 + α3β2 if u = v = y = x = 0,

α1β1 + (1 − α1)β2 if u = x, v = y = 0, x ≥ 1,

(1 − α1)β1 if u = x − 1, v = y = 0, x ≥ 1,

α1β2 if u = x + 1, v = y = 0, x ≥ 1,

α3β2 + (1 − α3)β1 if v = y, u = x = 0, y ≥ 1,

(1 − α3)β2 if v = y − 1, u = x = 0, y ≥ 1,

α3β1 if v = y + 1, u = x = 0, y ≥ 1.
(14)

Proposition 9. Under the conditions that β1 > α1 and β2 > α3, the Markov chain {Zn} is
ergodic with stationary distribution {πZ

x,y} given by

πZ
x,0 =

(
α1(1 − β1)

β1(1 − α1)

)x

πZ
0,0, πZ

0,x =
(

α3(1 − β2)

β2(1 − α3)

)x

πZ
0,0, x ≥ 1, (15)

with

πZ
0,0 = πY

0,0 = πX
0,0 = (β1 − α1)(β2 − α3)

β1β2α2
.
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Figure 7: State transitions for the Z process of the ‘W’-model.

Proof. Figure 7 shows the state transitions of the Z process of the ‘W’-model. As can be
seen, this has the transition mechanism of a simple birth-and-death process, moving on the
whole integer line. Derivation of the steady-state probabilities is straightforward.

5.3. Almost-complete system graph

Examples 1 and 2 are special cases of a more general type of matching problem. Indeed,
consider a model with I + 1 customer types C = {0, 1, . . . , I }, and J = I + 1 server types
S = {0, 1, . . . , I }, such that C(0) = C, C(i) = C \ {i}, i = 1, . . . , I (equivalently, S(0) = S,
S(i) = S \ {i}, i = 1, . . . , I ). In words, server type 0 and customer type 0 are ‘universal’ and
can be matched with every type, while the other servers can serve all types of customer except
one (for convenience, with the same index), and, similarly, all other customers can be served
by all types of server except one type of server (with the same index). In terms of the system
graph, it is almost complete: of the total (I + 1)2 possible arcs, the only arcs excluded are the
I arcs (i, i), i = 1, . . . , I .

For the almost-complete system graph model, we can define the Markov chain {Xn}n≥1 ⊆
ZI+, where Xn,i is the number of unmatched type-i customers left by servers s1, . . . , sn. Clearly,
there will never be any unmatched customer of type 0. Because each server can serve at least
I − 1 customer types among 1, . . . , I , it follows that Xn,iXn,i′ = 0 for all 1 ≤ i �= i′ ≤ I .

Let ZI⊥ ⊆ ZI+ be defined as follows: (x1, . . . , xI ) ∈ ZI⊥ if and only if xi ≥ 0 for all
i = 1, . . . I and xixi′ = 0 for all i �= i′; in words, ZI⊥ consists of the origin and the positive
integer axes. Then the process Xn is a Markov chain on ZI⊥ starting at X0 = 0 and having
transition probabilities

P(Xn+1 = y | Xn = x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − ∑I
k=1 αkβk if yk = xk = 0 for all k = 1, . . . , I ,

1 − βk if yk = xk − 1 ≥ 0 for some k = 1, . . . , I ,

βk(1 − αk)α
yk−xk

k if 0 ≤ xk ≤ yk �= 0 for some k = 1, . . . , I ,

0 otherwise.

Proposition 10. Suppose that αi + βi < 1 for all i = 1, . . . , I . Then the Markov chain
{Xn = (Xn,1, . . . , Xn,I )} admits a stationary distribution πX = {πX

x : x ∈ ZI⊥} given by

πX
0 =

(
1 +

I∑
i=1

αiβi

1 − αi − βi

)−1

and πX
x = βk

(
αk

1 − βk

)xk

πX
0

for all x ∈ RI⊥ such that xk ≥ 1.
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Proof. Let us denote by ek ∈ ZI⊥ the kth unit vector in ZI and by πX the stationary
distribution of {Xn}. Proceeding exactly as in the ‘N’-model, we see that

πX
xek

= πX
ek

(
αk

1 − βk

)x−1

.

Proceeding exactly as in the ‘W’-model, we obtain the partial balance equation

αkβkπ
X
0 = (1 − βk)π

X
ek

,

and, hence,

πX
xek

= βk

(
αk

1 − βk

)x

πX
0 .

Finally, equating the sum of all probabilities to 1, we obtain the expression for πX
0 .

The form of πY is symmetric to that of πX, with the roles of the αs and βs reversed.
Now consider the Markov chain Zn. Clearly, if Zn = (x, y) �= 0 then x = y ∈ ZI⊥. Exactly

as in the ‘N’- and ‘W’-models, we obtain

πZ
(ekx,ekx) =

(
αkβk

(1 − αk)(1 − βk)

)x

πZ
0 ,

and, as always,

πZ
0 = πY

0 = πX
0 =

(
1 +

I∑
i=1

αiβi

1 − αi − βi

)−1

.

We note an interesting product-form-like property here:

πZ{(ekx, ekx) | x > 0} = πX{ekx | x > 0}πY {ekx | x > 0}.
Note that we can have some server types j with βj = 0 among the I +1 server types, or some

customer types i with αi = 0 among the I + 1 customer types. Indeed, in the ‘W’-model we
can add a third server type with β3 = 0 whose customers are of types 1, 3, and universal server
and customer types with α0 = β0 = 0, which will make it into the almost-complete graph
model with I = 3. The ‘N’-model of course is the almost-complete graph model with I = 1.

5.4. Matching probabilities for the almost-complete graph model

For I ≥ 3, the almost-complete system graph problem does not admit a unique solution to
the rate balance equations (3). We now use the steady-state probabilities, πX, πY , and πZ ,
and (4)–(6) to calculate ri,j .

Proposition 11. The matching rates for the almost-complete graph model are given, for i �= 0,
j �= 0, and i �= j , by

ri,j = αiβj [(1 − αi)(1 − βj ) − αjβi]
(1 − αi − βi)(1 − αj − βj )

πZ
0 , (16)

ri,0 = β0
αi(1 − αi)

1 − αi − βi

πZ
0 , r0,j = α0

βj (1 − βj )

1 − αj − βj

πZ
0 , (17)

and

r0,0 = α0β0π
Z
0 . (18)
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Proof. For i �= 0, j �= 0, and i �= j , the three alternative formulae (4)–(6) read

ri,j = βj

∞∑
x=1

πX
xei

+ βj

∞∑
x=0

πX
xej

αi

1 − αj

= αi

∞∑
x=1

πY
xej

+ αi

∞∑
x=0

πY
xei

βj

1 − βi

= αi

∞∑
x=1

πZ
xej

+ βj

∞∑
x=1

πZ
xei

+ αiβjπ
Z
0 .

Hence, using just the third equation,

ri,j = αi

∞∑
x=1

(
αjβj

(1 − αj )(1 − βj )

)x

πZ
0 + βj

∞∑
x=1

(
αiβi

(1 − αi)(1 − βi)

)x

πZ
0 + αiβjπ

Z
0

= αi

αjβj

1 − αj − βj

πZ
0 + βj

αiβi

1 − αi − βi

πZ
0 + αiβjπ

Z
0

= αiβj [(1 − αi)(1 − βj ) − αjβi]
(1 − αi − βi)(1 − αj − βj )

πZ
0 .

In addition, for i �= 0, we obtain, from (6),

ri,0 = β0

∞∑
x=1

πZ
xei

+ β0αiπ
Z
0

= β0

∞∑
x=1

(
αiβi

(1 − αi)(1 − βi)

)x

πZ
0 + β0αiπ

Z
0

= β0
αiβi

1 − αi − βi

πZ
0 + β0αiπ

Z
0

= β0
αi(1 − αi)

1 − αi − βi

πZ
0 ,

and similarly for r0,j . Finally, from (6),

r0,0 = α0β0π
Z
0 .

6. Complete minus two bipartite system graphs

In this section we consider infinite matching when each of the j = 1, . . . , J server types
can serve all except at most two of the customer types, and each of the i = 1, . . . , I customer
types can be served by all except at most two of the server types. The Markov chains for these
complete minus two systems are considerably more complicated than for the almost-complete
graph systems. We analyze in some detail the simplest system of this form, the ‘NN’-model.
We study the Z Markov chain for this model and show that it is positive recurrent under the
assumptions of Conjecture 1, thus proving the conjecture for this particular system. We prove
this by using a Lyapunov function argument [3, pp. 167–173], [10, pp. 26–32]. For the general
complete minus two graph case, we have so far only been able to describe the Markov chain.
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6.1. The ‘NN’-model

We consider the following ‘NN’-model, described in Figure 8. Here C(1) = {2, 3}, C(2) =
{1, 2}, and C(3) = {1}. This is the simplest system in which one server type has more than one
excluded customer type. Servers of type 3 cannot serve any customers of type 2 or 3. Similarly,
customers of type 3 cannot be served by servers of type 2 or 3.

The graph of this system is a tree, and we immediately see that the unique matching rates
solving (3) are

r1,3 = β3, r1,2 = α1 − β3, r2,2 = 1 − β1 − α1, r2,1 = β1 − α3, r3,1 = α3.

From this we see that the necessary conditions in (1) for a balanced system and for the existence
of matching rates are

α1 ≥ β3, β1 ≥ α3, α1 + β1 ≤ 1.

We now describe the Markovian model for this system. Clearly, the unmatched customers
in Xn (or in Zc

n) are either all of type 1 (left over by type-1 servers) or all of types 2 and 3
(left over by type-2 and type-3 servers). Consider the matching of sn+1 to Xn. If sn+1 is of
type 1, it will be matched by the first customer in Xn if Xn consists of customers of types 2
and 3, and it will add a geometric greater than or equal to 0 number of customers of type 1 to
Xn if Xn is empty or consists of type-1 customers. If sn+1 is of type 3, it will be matched by
a type-1 customer if Xn consists of type-1 customers, otherwise it will add a geometric greater
than or equal to 0 number of type-2 and type-3 customers, which will be mixed according to
the conditional probabilities α̃2 = α2/(α2 + α3) and α̃3 = 1 − α̃2. Finally, if sn+1 is of type 2
then it will be matched by a type-1 customer if Xn consists of type-1 customers or by a type-2
customer if Xn consists of type-2 and type-3 customers and there is at least one type-2 customer.
Otherwise, it will add a geometric greater than or equal to 0 number of type-3 customers to Xn.

We can give a succinct description of the word of unmatched customers as follows. We
write Xn = 0 if the word is empty, and we write Xn = z, z = 1, 2, . . . , if it consists of z > 0
type-1 customers. We will write Xn = (x, y), where x = 0, 1, 2, . . . , y = 0, 1, 2, . . . , and
x + y > 0, to denote that Xn starts with x type-3 customers, and continues with y type-2 and
type-3 customers, the first of which is of type 2 and the remaining are of unspecified type, each
of them being of type 2 with probability α̃2 or of type 3 with probability α̃3, independent of all
others.

Similarly, we can describe Yn as Yn = z for empty or z type-1 server words, and Yn = (x, y)

for a word starting with x type-3 servers and continuing with a mix of type-2 and type-3
servers, the first of which is type 2 and the remainder being unspecified, with probabilities
β̃2 = β2/(β2 + β3) and β̃3 = 1 − β̃2 for types 2 and 3.

C

S

1 2 3

3 2 1

α
1

α
2

α
3

β
3

β
2

β
1

Figure 8: The bipartite graph for the ‘NN’-model.
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The lists of unmatched servers and customers left by the first n pairs of customers and servers,
Zc

n and Zs
n, can be described exactly in the same way as Xn and Yn, respectively. We note,

however, that in the pair (Zc
n, Z

s
n) one of the pair is always determined by the other. We can

therefore combine them and describe Zn as moving on Z2 with the following definition. For
any integers z > 0, x, y ≥ 0, x + y > 0,

Zn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 0) if both Zc
n and Zs

n are empty,

(−z, 0) if Zc
n = Zs

n = z,

(x, y) if Zc
n = (x + y, 0) and Zs

n = (x, y),

(x, −y) if Zc
n = (x, y) and Zs

n = (x + y, 0).

Figure 9 depicts the states and transitions of the Markov chain Z. The figure may appear
confusing at first sight, but we found it very useful for studying this system. The various states
are drawn as open circles in the (x, y)-plane with 0 at the origin. Inside the circle we put the

actual state, as the pair of
Zc

n

Zs
n

words. The order of servers and customers in the words Zc
n and

Zs
n is left to right, and we use ‘∗’ to denote an unspecified type-2 or type-3 server or customer.

Further explanations of the figure follow in the next paragraphs.

We now describe the Markov transitions for the Z chain. The process Zn is a random walk
in Z2 with Zn+1 = Zn +Un+1, where {Un} is a sequence of independent random variables and
the distribution of Un+1 depends on Zn in a very structured way: there are seven distributions,
a distribution of Un+1 when Zn is on the positive y-axis, on the negative y-axis, on the positive
x-axis, in the positive quadrant, in the x ≥ 1, y ≤ −1 quadrant, on the negative x-axis, and at
the origin. In addition, Un+1 is reflected at the x-axis in the sense that no transition is allowed
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Figure 9: Nearest-neighbor transitions for the ‘NN’ model.
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to cross the x-axis in a single step. We use the following notation to write the distribution
of Un+1:

P(Un+1 = (i, j) | Zn = (x, y)) = 1(x(x + i) ≥ 0, y(y + j) ≥ 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p+
i,j x, y ≥ 1,

p−
i,j x ≥ 1, y ≤ −1,

p0
i,j x ≥ 1, y = 0,

p′+
i,j x = 0, y ≥ 1,

p′−
i,j x = 0, y ≤ −1,

p00
i,j x = y = 0,

p−0
i,j x ≤ −1, y = 0.

We find it convenient to use the indicator function 1(·) to capture boundary conditions (such as
nonnegativities and the x-axis reflection described above) so that the remaining terms such as
p+

i,j or p−
i,j are independent of x and y.

Most of the transitions are to adjacent states, i.e. pi,j = 0 for |i|, |j | > 1, but if server sn+1

or customer cn+1 are of type 2 and |y| > 1 then |y| can decrease to any value 0, . . . , |y|, and x

will increase, with x + |y| unchanged or decreased by 1.

On the positive quadrant, x ≥ 1 and y ≥ 1,

p+
0,0 = α3β1 + α2β2, (19a)

p+
0,1 = α3(1 − β1), (19b)

p+
−1,1 = α1(1 − β1), (19c)

p+
−1,0 = α1β1, (19d)

p+
j,−j = α2β2

(
β3

1 − β1

)j

, j = 1, 2, . . . , (19e)

p+
j,−j−1 = α2β2

β1

1 − β1

(
β3

1 − β1

)j

, j = 0, 1, 2, . . . . (19f)

The reflection at the x-axis is expressed by

P(Zn+1 = (x + y, 0) | Zn = (x, y)) =
∞∑

j=y

p+
j,−j

= α2β2

(
β3

1 − β1

)y(
1 + β3

1 − β1
+

(
β3

1 − β1

)2

+ · · ·
)

= α2(1 − β1)

(
β3

1 − β1

)y

, (20)

P(Zn+1 = (x + y − 1, 0) | Zn = (x, y)) =
∞∑

j=y−1

p+
j,−j−1 = α2β1

(
β3

1 − β1

)y−1

.
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Similarly, on the positive y-axis, when x = 0 and y ≥ 1,

p′+
0,0 = α3β1 + (1 − α3)β2, (21a)

p′+
0,1 = α3(1 − β1), (21b)

p′+
j,−j = (1 − α3)β2

(
β3

1 − β1

)j

, j = 1, 2, . . . , y − 1, (21c)

p′+
j,−j−1 = (1 − α3)β2

β1

1 − β1

(
β3

1 − β1

)j

, j = 0, 1, 2, . . . , y − 2, (21d)

and the reflection at the x-axis is expressed by

P(Zn+1 = (y, 0) | Zn = (0, y)) = (1 − α3)(1 − β1)

(
β3

1 − β1

)y

,

P(Zn+1 = (y − 1, 0) | Zn = (0, y)) = (1 − α3)β1

(
β3

1 − β1

)y−1

.

(22)

Transitions on the negative quadrant, x ≥ 1 and y ≤ −1, and on the negative y-axis are
symmetric to y > 0 with an exchange of αs and βs. These transition probabilities and the
remaining ones, for the x-axis, are shown in Figure 9, where we have marked the transitions
according to five of the different distributions, on five states (open circles): (−2, 0), (0, 0),
(3, 0), (0, 2), and (3, 2). We did not draw the symmetric transitions for y < 0.

Instead of having transitions to nonadjacent states, we can resort to the same device which
we used in the analysis of the ‘N’-model in Section 5.1: we add shadow states, and instead of
Zn moving directly to Zn+1, which is nonadjacent, we move from Zn to a shadow state, and we
then move along adjacent shadow states until we reach the state Zn+1, where all the transitions
out of shadow states are done in zero time. We represent this in Figure 9 as filled circles which
are half hidden behind the open circles for all x ≥ 0. The transitions which involve shadow
nodes are as follows: for y ≥ 0, we enter a shadow state (x, y) (filled circle) from a regular
state (x, y) (open circle) with probability α2(1 − β1) or from a regular state (x, y + 1) with
probability α2β1, or (if x ≥ 1) from a shadow state (x − 1, y + 1) with probability β̃3. We
leave a shadow state (x, y) to go to a regular state (x, y) with probability β̃2 if y > 0, and with
probability 1 if y = 0. Transitions for shadow states (x, y), y ≤ 0, are symmetric.

The device of shadow states has some advantages: it allows for a neater Figure 9, it is
better for describing the reflection at the x-axis, and it may simplify the solution of the balance
equations. We have not however been able to solve the balance equations for the ‘NN’-model
so far.

6.2. Ergodicity of the ‘NN’-model

We now show that Conjecture 1 holds for the ‘NN’-model. We assume that condition (3)
holds, that is,

α1 > β3, β1 > α3, α1 + β1 < 1. (23)

We then prove that the Z process of the ‘NN’-model is ergodic. We consider Z as a Markov
chain with states (x, y) ∈ Z2, as described in the previous section. We discuss first the states
and the transitions for x < 0, where there are −x unmatched type-1 customers and servers.
The chain Z performs a simple random walk on the negative x-axis, moving towards 0 with
probability (1 − α1)(1 − β1) and away from 0 with probability α1β1. The chain will return to
0 in finite expected time if and only if α1 + β1 < 1. We now ignore these states and consider
the chain restricted to (x, y), x ≥ 0.

https://doi.org/10.1239/aap/1253281061 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1253281061


FCFS infinite bipartite matching 717

We show that the Z process is ergodic by constructing a Lyapunov function and verifying the
Foster Lyapunov criterion. We use the same type of Lyapunov function which was developed
in the monograph of Fayolle et al. [10] for the homogeneous random walk on Z2+. In fact,
our proof is very close to the one given in [10, Section 3.3]. The random walks considered
by Fayolle et al. have downward jumps that do not exceed 1 in any direction, so they have
no ‘reflection’ at the axes, which makes them more homogeneous. This enabled them to find
necessary and sufficient conditions for ergodicity. In our case there is reflection at the x-axis,
so we need to work a little harder to adapt their method to our model. However, we already
have necessary conditions for ergodicity, so we only need to prove the sufficient condition.

6.2.1. Calculation of the first vector field. Let the coordinates of Zn+1 − Zn be (θ1(x, y),

θ2(x, y)), which depend on the location of Zn = (x, y), as described above. We now calculate
the first vector field, M(x, y), of the process Zn. For this, we use the fact that (θ1(x, y), θ2(x, y))

depends on x only in so far as x = 0 or x ≥ 1, and so we can write M(x, y) as functions of y

exclusively if we distinguish these two cases:

M(x, y) = E(Zn+1 − Zn | Zn = (x, y)) = (E(θ1(x, y)), E(θ2(x, y)))

=
{

(M1(y), M2(y)), x ≥ 1,

(M ′
1(y), M ′

2(y)), x = 0.

We start with calculation of M1(y) in the positive quadrant, x ≥ 1 and y ≥ 1. We use the
transition probabilities (19a)–(19f) and (20):

M1(y) = E(θ1(x, y))

= −1(p+
−1,0 + p+

−1,1) +
y−1∑
j=1

jp+
j,−j + y

∞∑
j=y

p+
j,−j

+
y−2∑
j=1

jp+
j,−j−1 + (y − 1)

∞∑
j=y−1

p+
j,−j−1

= −1(p+
−1,0 + p+

−1,1) +
y∑

k=1

∞∑
j=k

p+
j,−j +

y−1∑
k=1

∞∑
j=k

p+
j,−j−1

= −α1 +
y∑

k=1

∞∑
j=k

α2β2

(
β3

1 − β1

)j

+
y−1∑
k=1

∞∑
j=k

α2β2
β1

1 − β1

(
β3

1 − β1

)j

= −α1 +
y∑

k=1

α2(1 − β1)

(
β3

1 − β1

)k

+
y−1∑
k=1

α2β1

(
β3

1 − β1

)k

= −α1 + α2β3 +
y−1∑
k=1

α2(β1 + β3)

(
β3

1 − β1

)k

= −α1 + α2β3 + α2(β1 + β3)
β3

β2

(
1 −

(
β3

1 − β1

)y−1)

= −α1β2 + α2β3

β2
− 1 − β2

β2
α2β3

(
β3

1 − β1

)y−1

.
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The calculation of M2(y) is similar, and so are the calculations of M ′
1(y) and M ′

2(y), from the
transition probabilities (21a)–(21d) and (22). In summary, we obtain the first vector field, for
y ≥ 1:

M1(y) = β3α2 − α1β2

β2
− 1 − β2

β2
α2β3

(
β3

1 − β1

)y−1

, ↗ y, (24a)

M2(y) = (1 − β1)(β2 − α2)

β2
+ 1 − β2

β2
α2β3

(
β3

1 − β1

)y−1

, ↘ y, (24b)

M ′
1(y) = (1 − α3)β3

β2
− 1 − β2

β2
(1 − α3)β3

(
β3

1 − β1

)y−1

, ↗ y, (24c)

M ′
2(y) = − (1 − β1)(β1 + β3 − α3)

β2
+ 1 − β2

β2
(1 − α3)β3

(
β3

1 − β1

)y−1

, ↘ y. (24d)

As indicated, M1(y) and M ′
1(y) are increasing functions of y, while M2(y) and M ′

2(y) are
decreasing functions of y. This is because the expected length of the nonadjacent diagonal
moves is greater as y increases. All four quantities are bounded above and below for all y by
the values at y = 1 or y = ∞ as follows:

β3α2 − α1 ≤ M1(y) ≤ β3α2 − α1β2

β2
, (25a)

(1 − β1)(β2 − α2)

β2
≤ M2(y) ≤ 1 − β1 − α2 − α2β3, (25b)

(1 − α3)β3 ≤ M ′
1(y) ≤ (1 − α3)β3

β2
, (25c)

− (1 − β1)(β1 + β3 − α3)

β2
≤ M ′

2(y) ≤ −(β1 − α3 + β3(1 − α3)). (25d)

We can repeat the calculations for y ≤ −1, but this is unnecessary, as by the symmetry we
can use the above formulae with αs and βs interchanged, y replaced by |y|, and the signs for
M ′

2 and M2 reversed.
For the following calculations, we need to keep track of the signs of the vector field

coordinates. Let us first consider the case in which y ≥ 1. Under condition (23), it is easy
to verify that M ′

1(y) > 0 and M ′
2(y) < 0. On the other hand, the signs of M1(y) and M2(y)

depend on the relationship between α1 and β2. If α2 ≤ β2 then it follows that M1(y) < 0 and
M2(y) > 0. If α2 > β2 then M1(1) < 0, but it may change sign as y increases depending on
the sign of M1(∞). Also, if α2 > β2 then M2(∞) < 0, but it may change sign as y decreases
depending on the sign of M2(1). From the fact that M1(y) + M2(y) = α3 − β1, we conclude
that M1(y) + M2(y) < 0 for all y. In particular, this implies that there exist 1 ≤ y1 < ∞ and
1 < y2 ≤ ∞ with y1 < y2 such that M2(y) changes sign at y1 and M1(y) changes sign at y2
(if y1 = 1 then M2(y) < 0 for all y, and does not change sign, if y2 = ∞ then M1(y) < 0 for
all y, and does not change sign).

Similar conclusions hold for y ≤ −1, with the condition on α2 and β2 reversed, where we
have M1(y) − M2(y) < 0, and y3 and y4 such that −∞ ≤ y4 < −1, −∞ < y3 ≤ −1, and
y4 < y3 replacing y1 and y2. Table 1 summarizes the behavior of the vector field: the top half
of the table corresponds to y ≥ 1 with 1 ≤ y1 < y2 ≤ ∞, the bottom half corresponds to
y ≤ −1 with −1 ≥ y3 > y4 ≥ −∞. (See also Figure 10 in Section 6.2.3 for a drawing of the
vector field.)
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Table 1: Behavior of the first vector field of Z for the ‘NN’-model.

α2 < β2 α2 > β2

y ≥ 1

M ′
1(y) > 0 ↗ M ′

2(y) < 0 ↘ M ′
1(y) > 0 ↗ M ′

2(y) < 0 ↘

M1(y) < 0 ↗ M2(y) > 0 ↘
[1, y1) M1(y) < 0 M2(y) > 0
[y1, y2) M1(y) < 0 ↗ M2(y) < 0 ↘
[y2, ∞) M1(y) > 0 M2(y) < 0

y ≤ −1

M ′
1(y) > 0 ↗ M ′

2(y) > 0 ↘ M ′
1(y) > 0 ↗ M ′

2(y) > 0 ↘
(y3, −1] M1(y) < 0 M2(y) < 0

M1(y) < 0 ↗ M2(y) < 0 ↘(y4, y3] M1(y) < 0 ↗ M2(y) > 0 ↘
(−∞, y4] M1(y) > 0 M2(y) > 0

6.2.2. The Lyapunov function. We will use a Lyapunov function of the form suggested by
Fayolle et al. [10, pp. 39–56]. For x ≥ 0 and y ≥ 0, we take

Q(x, y) = ux2 + vy2 + wxy,

f (x, y) = Q1/2(x, y),

�f (x, y) = Q1/2(x + θ1(x, y), y + θ2(x, y)) − Q1/2(x, y),

where u > 0, v > 0, and 4uv > w2.
It is then shown in [10, Lemma 3.3.3] that, as x2 + y2 → ∞,

E(�f (x, y)) = x[2u E(θ1(x, y)) + w E(θ2(x, y))] + y[w E(θ1(x, y)) + 2v E(θ2(x, y))]
2f (x, y)

+ o(1). (26)

In other words, E(�f (x, y)) is almost constant along rays of constant y/x, if x2 + y2 is
large. Strictly speaking, in [10, Lemma 3.3.3, pp. 42–43], θ1(x, y) and θ2(x, y) have just
three distributions which are independent of x and y. In our case, there are seven possible
distributions and some of them depend on y. However, because all of these distributions are
stochastically bounded by a single random variable with finite expectation, the lemma still
holds.

To verify the Foster Lyapunov criterion, we require that

2u E(θ1(x, y)) + w E(θ2(x, y)) < −ε, x ≥ 1, y ≥ 1,

w E(θ1(x, y)) + 2v E(θ2(x, y)) < −ε, x ≥ 0, y ≥ 1,
(27)

for some ε > 0. We will deal with y < 0 and with y = 0 later.
We will now choose appropriate u, v, and w so as to satisfy (27). In the next paragraphs, all

the inequalities hold by the following argument: if 0 < A < B then 0 < (A − t)/(B − t) < 1
and it is decreasing in t for 0 < t < A.

Assume first that α2 < β2. In this case (see Table 1) M1(y) < 0, M2(y) > 0, M ′
1(y) > 0,

and M ′
2(y) < 0. The conditions on u, v, and w are as follows:

• for x ≥ 1, to obtain 2u E(θ1(x, y)) + w E(θ2(x, y)) < 0, we need

2u

w
>

M2(y)

−M1(y)
or w < 0,
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• for x ≥ 0, to obtain w E(θ1(x, y)) + 2v E(θ2(x, y)) < 0, we need

2v

w
<

−M1(y)

M2(y)
,

2v

w
>

M ′
1(∞)

−M ′
2(∞)

, and w > 0.

We see by (24a)–(24d), (25a)–(25d), and Table 1 that

K1 := M ′
1(∞)

−M ′
2(∞)

= M ′
1(y)

−M ′
2(y)

+ o(1) (as y becomes large)

= (1 − α3)β3

(1 − β1)(β1 + β3 − α3)

< 1,

and also that

−M1(∞)

M2(∞)
≥ −M1(y)

M2(y)

≥ −M1(1)

M2(1)

= α1(1 − β1) + (1 − β2)α2β3 − (1 − α3)β3

α1(1 − β1) + (1 − β2)α2β3 − (1 − β1)(β1 + β3 − α3)

= K2

> 1.

(28)

Hence, to satisfy (27), we need to imposeK2 > 2v/w > K1 andw/2u < K2 (this automatically
includes the requirement that w > 0, since K1 > 0 and u, v > 0).

Now assume that α2 > β2, with y1 and y2 defined as above. Then

M1(y) < 0 and M2(y) > 0 when 0 < y < y1,

M1(y) < 0 and M2(y) < 0 when y1 < y < y2,

M1(y) > 0 and M2(y) < 0 when y2 < y < ∞.

In fact, there are four cases depending on whether y1 = 1 or y1 > 1 and on whether y2 < ∞
or y2 = ∞. We will consider the case in which 1 < y1 < y2 < ∞, where (y1, y2) includes
some integer values. All other cases are somewhat simpler.

For the range of values 1 ≤ y ≤ �y1�, the calculations in (28) remain valid. Rewriting this
for 1 ≤ y ≤ �y1�, we have

−M1(�y1�)
M2(�y1�) ≥ −M1(y)

M2(y)
≥ −M1(1)

M2(1)
=: K2 > 1.

For the nonempty range of integer values of y such that y1 ≤ y ≤ y2, we have both
M1(y) ≤ 0 and M2(y) ≤ 0, and because their sum is negative, at least one of M1(y) or M2(y)

is not equal to 0 for every y1 ≤ y ≤ y2. We can therefore find a δ > 0 such that

min(M1(y), M2(y)) < −δ for all y1 ≤ y ≤ y2.

Therefore, for any u, v, w > 0, we can find ε small enough to satisfy (27).
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For the remaining range of values, �y2� ≤ y ≤ ∞, we have M1(y) > 0 and M2(y) < 0,
and so the conditions on u, v, and w are as follows:

• for x ≥ 1, to obtain 2u E(θ1(x, y)) + w E(θ2(x, y)) < 0, we need

2u

w
<

−M2(y)

M1(y)
and w > 0,

• for x ≥ 0, to obtain w E(θ1(x, y)) + 2v E(θ2(x, y)) < 0, we need

2v

w
>

M1(y)

−M2(y)
,

2v

w
>

M ′
1(∞)

−M ′
2(∞)

, or w < 0.

We now see by (23), (25a)–(25d), and (28) that

1 > K1

> K3 := M1(∞)

−M2(∞)

= α1(1 − β1) − (1 − α3)β3

α1(1 − β1) − (1 − β1)(β1 + β3 − α3)

≥ M1(y)

−M2(y)

≥ M1(�y2�)
−M2(�y2�) . (29)

So we need to impose 2v/w > K3 and w/2u > K3 (automatically, w > 0).

6.2.3. Verification of the Foster Lyapunov condition. We now assume without loss of generality
that α2 < β2 (else we switch the roles of the αs and βs). Using the definitions of K1, K2, and
K3 above, we let

K+
1 = (1 − α3)β3

(1 − β1)(β1 + β3 − α3)
,

K+
2 = α1(1 − β1) + (1 − β2)α2β3 − (1 − α3)β3

α1(1 − β1) + (1 − β2)α2β3 − (1 − β1)(β1 + β3 − α3)
,

K−
1 = (1 − β3)α3

(1 − α1)(α1 + α3 − β3)
,

K−
2 = β1(1 − α1) + (1 − α2)β2α3 − (1 − β3)α3

β1(1 − α1) + (1 − α2)β2α3 − (1 − α1)α1 + α3 − β3)

if M2(−1) < 0, and undefined otherwise,

K−
3 = (1 − β3)α3 − β1(1 − α1)

(1 − α1)(α1 + α3 − β3) − β1(1 − α1)
if M1(−∞) > 0, and equal to 0 otherwise.

We will use the Lyapunov function

f (x, y) =
{

(u1x
2 + v1y

2 + w1xy)1/2, y ≥ 0,

(u2x
2 + v2y

2 − w2xy)1/2, y < 0,
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with the following choice of parameters:

u1 = u2 = 1, w2 = K−
1 + max(0, K−

3 ), w1 = min{1, 2 − w2},
v1 = 1

2w1, v2 = 1
2w2.

It is straightforward to check that

K+
1 <

2v1

w1
< K+

2 ,
w1

2u1
< K+

2 , 4u1v1 > w2
1,

K−
3 , K−

1 <
2v2

w2
< K−

2 , K−
3 <

w2

2u2
< K−

2 , 4u2v2 > w2
2,

where the requirement related to K−
2 is only imposed if K−

2 is well defined.
With these choices, we can find a ε such that

2u E(θx) + w E(θy) < −ε, w E(θx) + 2v E(θy) < −ε,

for all x = 0, 1, 2, . . . and all y = ±1, ±2, . . .. We note that as a result, by (26),

E(�f (x, y)) < − x + |y|
f (x, y)

ε < − min

(
1

u1 + v1 + w1
,

1

u2 + v2 + w2

)
ε.

The final step is to check that this Lyapunov function works at y = 0 for large x. We note
that, for large x and fixed A and B,

f (x + A, B) = (u(x + A)2 + w(x + A)B + vB2)1/2

= (x + A)

(
u + wB

x + A
+ v

B2

(x + A)2

)1/2

= √
u

(
(x + A) + w

2u
B

)
+ o(1) as x becomes large.

Hence, we need to evaluate

E(�f (x, 0)) = α1β1 − α1β2 − α2β1 + α3β3 + w1

2
(1 − α2)β2 + w2

2
α2(1 − β2) + o(1)

= 1
2 (α3 + β3 − α1 − β1) − 1

2 (1 − w1)(1 − α2)β2

− 1
2 (1 − w2)α2(1 − β2) + o(1).

Recall that α3 < β1, β3 < α1, and α2 < β2. Since we have chosen

w1 ≤ 1 and w1 + w2 ≤ 2,

we will have E(�f (x, 0)) < −h < 0 for some h > 0 and all large enough x.
This completes the proof that the ‘NN’-model, under the required assumptions in (3), is

ergodic.

Example. We take α = ( 7
16 , 3

16 , 3
8 ) and β = ( 5

12 , 1
4 , 1

3 ). The Lyapunov function is

f (x, y) =
{(

x2 + 130
207xy + 65

207

)1/2
, y ≥ 0,(

x2 − 284
207xy + 142

207

)1/2
, y < 0.

Figure 10 shows the first vector field and the contours of the Lyapunov function.
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Figure 10: Vector field and Lyapunov function contours for the ‘NN’-model example.

6.3. The general system with a complete minus two bipartite graph

Systems with complete minus two bipartite graphs are best described by partitioning all
customer and server types into incompatibility chains. Each chain consists of alternating server
and customer types (all different), so that each two successive types are incompatible. The
first and last in the chain are compatible, with all the types not in the chain, and they are
either incompatible, in which case we call the chain circular (it can be started at any member
type), or they are incompatible only with their neighbor in the chain, in which case we call the
chain linear. For the ‘NN’-model, these incompatibility chains are (1, 1), which is linear, and
(2, 3, 3, 2), which is circular.

Conditions (3) of Conjecture 1 for these systems are

αi + βj < 1 if S(i) = S \ j or C(j) = C \ i,

αi < 1 − βj1 − βj2 if S(i) = S \ {j1, j2},
βj < 1 − αi1 − αi2 if C(j) = C \ {i1, i2}.

(30)
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No further conditions are necessary, since β(S(C)) = α(C(S)) = 1 for all subsets S and C

which contain more than two types.
We now describe the Markov chains X, Y , and Z. The unmatched customers in the X

process are all of one type or of two types, and the unmatched servers in the Y process are all
of one type or all of two types. In the Z process, if Zc consists of � customers of two different
types then Zs must consist of � servers of the unique type which is incompatible with both,
and vice versa. The state space of Z can be described as a bundle of one-dimensional rays and
of two-dimensional nonnegative quadrants, similar to the ‘NN’-model. The rays correspond to
types which have only a single incompatible type (those that start or end linear incompatibility
chains) or to circular incompatibility chains of length 4, of the form (i1, j1, i2, j2), where i1
and j2 are incompatible. In the latter case, we can define the state of Z simply by the length
of the Zc and Zs words, which is the total number of unmatched customers of type i1 or i2,
and the total number of unmatched servers of type j1 or j2. The nonnegative quadrants are
similar to those used in the description of the ‘NN’-model. All the rays and quadrants intersect
at 0. The difficulty is that the quadrants now intersect along both axes, some with reflection
and some with crossover, as we now explain.

We denote by Z+
(i1,i2),j

the states in which we have unmatched servers of type j and
unmatched customers of types i1 and i2, where the earliest unmatched customer is of type i1.
The state (x, y) ∈ Z+

(i1,i2),j
, x, y ≥ 1, consists of x + y unmatched servers of type j and x + y

unmatched customers of types i1 and i2, where the first (earliest) x unmatched customers are
of type i1 and the last y unmatched customers begin with a customer of type i2 followed by
y − 1 customers whose type is unspecified. The unspecified customers are of types i1 and i2
with independent probabilities α̃i1 = αi1/(αi1 + αi2) and α̃i2 = 1 − α̃i1 . We define Z+

i,(j1,j2)

similarly.
Now consider part of an incompatibility chain of length 5, (. . . , i1, j1, i2, j2, i3, . . .). To

avoid confusion, we will denote these types in that order as (. . . , c2, s2, c1, s3, c3, . . .). We will
examine the quadrant Z+

c1,(s2,s3)
. From Zn = (x, y) ∈ Z+

c1,(s2,s3)
, x, y ≥ 1, we can move in

one step to a state Zn+1 consisting of x + y or x + y − 1 customers of type c1 and servers of
type s2, on the boundary ray with the quadrant Z+

(c1,c2),s2
. This is exactly what happens in the

‘NN’-model, where the two quadrants are Z+
3,(3,2) and Z+

(3,2),3. However, in addition to this

the quadrant Z+
c1,(s2,s3)

borders on the quadrant Z+
c1,(s3,s2)

, and here there is the possibility of a

crossover. From Zn = (1, y) ∈ Z+
c1,(s2,s3)

, where Zs
n = s2, s3, ∗, . . . , ∗ and ‘∗, . . . , ∗’ denotes

servers of unspecified type s2 or s3, we can move to a state Zs
n+1 = s3, . . . , s3, s2, ∗, . . . , ∗,

which means that Zn+1 ∈ Z+
c1,(s3,s2)

.
The quadrants in which c1 is involved are then, in order,

Z+
(c3,c1),s3

⇔ Z+
(c1,c3),s3

|| Z+
c1,(s3,s2)

⇔ Z+
c1,(s2,s3)

|| Z+
(c1,c2),s2

⇔ Z+
(c2,c1),s2

,

where ‘||’ signifies a reflecting boundary and ‘⇔’ signifies a crossover boundary. The first and
last quadrants in turn have a reflecting boundary with quadrants involving the next members of
the incompatibility chain.

Fayolle et al. [10] also characterized the ergodicity and transience of homogeneous random
walks on complexes of two-dimensional quadrants. However, by assuming that all jumps
downwards are of size no more than one in each direction, they did not allow for reflections and
crossovers between neighboring quadrants. Thus, to show ergodicity for our complete minus
two bipartite graph systems will require some significant modification of their technique. We
do not pursue this any further in this paper.
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7. Further specification of the Markov chains for systems with general bipartite graphs

We defined the processes X, Y , and Z as Markov chains moving in the countable state space
of words in the alphabet of customer types for X, server types for Y , and pairs of words for Z.
Following our more streamlined description of X, Y , and Z for almost-complete and complete
minus two bipartite system graphs in Sections 5 and 6, we now give similar descriptions for
systems with general bipartite graphs.

Consider the ordered finite sequence of unmatched customers left over after servers s1, . . . , sn

have been matched. We describe this sequence by pairs of the form ((i1, x1), (i2, x2), . . . ,

(i�, x�), . . . ,(iL, xL)), where i1, . . . , iL are the types of the unmatched customers andx1, . . . ,xL

are positive integers. Let x+
0 = 0, let x+

� = ∑�
j=1 xj , and let α+

� = ∑�
j=1 αij . Then the earliest

appearance of a customer of type i� is in place x+
�−1 + 1. Following the first appearance of i�

there will be x� −1 unmatched customers of types i1, . . . , i�. We leave the actual types of these
unspecified in the definition of the state. Every customer of type i1, . . . , i� which has joined
the unmatched customers after the first customer of type i� has joined will not leave before
the first customer of type i1, . . . , i� leaves. Therefore, the x� − 1 customers following the first
appearance of i� will be of type ik with probability αik /α

+
� .

The transitions from Xn = ((i1, x1), . . . , (iL, xL)) to Xn+1 are as follows: if server sn+1

is incompatible with all of i1, . . . , iL, there will be a geometric number of added customers of
types incompatible with sn+1. Conditional on the type of sn+1, Xn+1 = ((i1, x1), . . . , (iL, xL+
y), (iL+1, xL+1), . . . , (iL+K, xL+K)). All the customer types iL+1, . . . , iL+K are different
from i1, . . . , iL, and incompatible with sn+1. Here y and xL+1 − 1, . . . , xL+K − 1 are all
geometric greater than or equal to 0 random variables with appropriate distributions. The
probability of this transition is

α(C(sn+1))(α+
L )y

L+k∏
j=L+1

αij (α
+
ij

)xj −1.

If sn+1 is compatible with some of i1, . . . , iL then it will be matched. Assume that i� is the first
customer type in the list (i1, . . . , iL) which is compatible with sn+1. Then the first customer
of type i�, in position x+

� in the sequence, will be matched with sn+1 and removed from the
sequence. To write the proper new state, the position of the first appearance of i� needs to be
updated. If the second customer of a type i� in Xn is in position x+

k−1 + y, where k ≥ � and
1 < y ≤ xk , then the new state will be Xn+1 = ((i1, x1), . . . , (i�−1, x�−1+x�−1), . . . , (ik, y−
1), (i�, xk − y + 1), . . .) (with an obvious modification if k = �), and if there are no more
type-i� customers in the sequence, the new state will be Xn+1 = ((i1, x1), . . . , (i�−1, x�−1 +
x� − 1), (i�+1, x�+1), . . .). Conditional on sn+1 being incompatible with i1, . . . , i�−1 and
compatible with i�, the probabilities of these transitions are

αi�

α+
k

(
1 − αi�

α+
k

)y−2 k−1∏
j=�

(
1 − αi�

α+
j

)xj −1

and
L∏

j=�

(
1 − αi�

α+
j

)xj −1

.

The process Y is of course defined analogously. In the process Z = (Zc, Zs), Zc has the
same state space as X and Zs has the same state space as Y , with the added restriction that all
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customer types in Zc are incompatible with all server types in Zs , and the lengths of the two
are equal. It is not clear that Z has any advantage over X or Y in the general case.

It is not currently clear how useful these Markov chains may be in answering our main
questions: how to calculate the ri,j and how to prove convergence. As we mentioned before
(Section 4), the work of Mairesse et al. [7], [8], [18], [19] may be relevant here.

8. Some attempts to calculate the matching rates

Equations (3) require joint probabilities when the marginals α and β are given. There are in
general many solutions to these equations. If we can obtain the stationary distributions of X,
Y , and Z, we can calculate the ri,j . However, finding these stationary probabilities is hard and
seems like overkill. It would be better to find a direct way of calculating the matching rates ri,j .
In this case we could prove the convergence by showing that X, Y , and Z are ergodic without
solving for the stationary distribution.

For completeness, we report here on two failed attempts: the algorithms are somewhat
plausible, and yield the correct results for some models, but not for all.

8.1. An algorithm of Caldentey and Kaplan

The following algorithm was suggested by Caldentey and Kaplan [6] and verified by simu-
lation for various models. Our presentation here is somewhat different from theirs.

Recall that for the complete bipartite system graph the matching rates are simply ri,j =
limn→∞ rn

i,j = αiβj , which corresponds to an independent joint distribution with the marginals
α and β. We let Fc

i,j denote these probabilities for the complete graph. Recall the definitions
of the matrices A, L, and M in Section 4.

We wish to construct a matrix Fi,j such that Fi,j = 0 wherever Ai,j = 0, and such that Fi,j

has the same marginals as Fc
i,j , namely

∑
j Fi,j = αi and

∑
i Fi,j = βj , i.e. Fi,j is a solution

to the equations in (3).
We start with an initial matrix F 0:

F 0
i,j = Fc

i,jAi,j .

This has the correct pattern of zeros, but the marginals are wrong by the amounts

f 0
i = αi −

∑
j

F 0
i,j , g0

j = βj −
∑

i

F 0
i,j .

We let
F =

∑
i,j

F 0
i,j =

∑
i

αiβ(S(i)) =
∑
j

βjα(C(j))

so that ∑
i

f 0
i =

∑
j

g0
j = 1 − F .

We now recursively define the sequence of row I -vectors f k , row J -vectors gk , and matrices
Fk as follows. For convenience, we define, with f −1 = 0,

f k+1 = gkL′, gk+1 = f kM, (31)

Fk+1
i,j = Fk

i,j + (−1)k−1f k−1
i Mi,j + (−1)kgk

jLi,j . (32)
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Analogously, we define, with G0 = F 0 and g−1 = 0, the sequence

Gk+1
i,j = Gk

i,j + (−1)k−1gk−1
j Li,j + (−1)kf k

i Mi,j .

The idea here is as follows. Consider F 0. If we look at the row conditional probabilities
F 0

i,j /
∑

j ′ F 0
i,j ′ , they equal Mij , the probability that a customer of type i searching a sequence of

new servers will be matched to server type j . If we look at the column conditional probabilities
F 0

i,j /
∑

i′ F
0
i′,j , they equal Lij , the probability that a server of type j searching a sequence of

new customers will be matched to customer type i.
Here F 0

i,j does not sum to 1, and has the shortfalls of f 0
i in row i and of g0

j in column j . If
we distribute the row shortfall f 0

i according to the row conditional probabilities Mi,j and add
this to row i, the row will be distributed like Mi,j and it will sum to αi , but the column sums
will not equal βj . This will give us F 1. If we distribute the column shortfall g0

j according to
Li,j and add this to column j , the column will be distributed like Li,j and it will sum βj , but
the row sums will not equal αi . This will give us G1. In either case the sum of all elements of
the matrices is now 1.

If we add both compensations, we will overcompensate. The amount of overcompensation
is f 1

i in row i and g1
j in column j . We again distribute these according to Mi,j and Li,j ,

respectively.
After k steps,

(−1)kf k
i = αi −

∑
j

(
F 0

i,j +
k−1∑
�=0

((−1)�f �
i Mi,j + (−1)�g�

jLi,j )

)
,

(−1)kgk
j = βj −

∑
i

(
F 0

i,j +
k−1∑
�=0

((−1)�f �
i Mi,j + (−1)�g�

jLi,j )

)
.

As k → ∞, the quantities f k
i Mi,j and gk

jLi,j converge to the same value of (1 − F )αiβj /F ,
and doing half the correction (adding just (−1)kgk

jLi,j to obtain Fk+1
i,j or (−1)kf k

i Mi,j to obtain
Gk+1

i,j ) gives almost the same result and converges to Fi,j . We now state this result without
proof.

Proposition 12. The sequences Fk
i,j and Gk

i,j converge as k → ∞ to the same limit Fi,j , which
is a solution of (3).

8.2. A quasi-independence model for the matching rates

Kaplan considered a pipeline analogy to the matching problem, with the pipeline topology
laid out as the bipartite graph G connecting feasible customer and server types. Fluid flow
through a pipe is a function of the pressure exerted at each end of the pipe, and using the
physical principles of fluid flow [15], Kaplan sought to develop a system of equations for
the I + J pressures that would produce the matched flow. For the limiting case of a non-
Newtonian ‘power-law’ fluid, Kaplan found that the flow system reduced to a model known as
quasi-independence.

The quasi-independence model appears in statistics in the analysis of two-dimensional
contingency tables. A natural assumption to test is that the row factors are independent of
the column factors, in other words, if αi, i = 1, . . . , I , and βj , j = 1, . . . , J , are the true row
and column probability distributions of the two factors, then independence would imply that
the true cell probabilities for the i, j cell would be αiβj , and this hypothesis is then tested from
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the observed cell frequencies in the sample. However, it is sometimes the case that some of the
cells are missing, either because they could not be observed, or because they are impossible.

The assumption of quasi-independence is then as follows: for the given αi, i = 1, . . . , I ,
and βj , j = 1, . . . , J , and for cells which are present in the table (i, j) ∈ G, we are looking
for xi, i = 1, . . . , I , and yj , j = 1, . . . , J , such that∑

{j : (i,j)∈G}
xiyj = αi, i = 1, . . . , I,

∑
{i : (i,j)∈G}

xiyj = βj , j = 1, . . . , J,

and xi, yj ≥ 0.

The concept of quasi-independence, the conditions for existence of such solutions, an algorithm
to calculate the values of the xi and yj , and the statistical implications are derived and discussed
in [4], [5], [11], and [14].

Quite clearly, the values of hi,j = xiyj , (i, j) ∈ G, are a solution to the equations in (3).
On the basis of the pipeline analogy, Kaplan hoped that these values would also prove to be the
correct matching frequencies for our FCFS infinite matching model. Unfortunately, this turned
out to be a false hope, as we will see in Section 8.3.

8.3. Counter examples to the algorithm of Caldentey and Kaplan and to the quasi-
independence model

We consider the following two examples. Oddly, while the first example contradicts the
quasi-independence model, it does agree with the Caldentey–Kaplan algorithm, and while the
second example seems to agree with the quasi-independence model, it does not seem to agree
with the Caldentey–Kaplan algorithm.

Example 1. We consider the network of the almost-complete graph of three customer and three
server types. Here

A =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠ , α = (

0.32 0.46 0.22
)
, β = (

0.29 0.24 0.47
)
.

The correct matching frequencies can be calculated from (16). They agree with the values
obtained from the Caldentey–Kaplan algorithm:

(ri,j ) = (Fi,j ) =
⎛
⎝ 0 0.1298 0.1902

0.1802 0 0.2798
0.1098 0.1102 0

⎞
⎠ ,

while the quasi-independence model gives the values

(hi,j ) =
⎛
⎝ 0 0.1285 0.1915

0.1815 0 0.2785
0.1085 0.1115 0

⎞
⎠ .

Example 2. We consider the network of the almost-complete graph of three customer and three
server types, and add another customer type which is served by only type-2 servers. Here

A =

⎛
⎜⎜⎝

0 1 0
0 1 1
1 0 1
1 1 0

⎞
⎟⎟⎠ , α = (

0.4 0.2 0.2 0.2
)
, β = (

0.3 0.6 0.1
)
.
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We do not know how to calculate the limiting matching rates for this case (nor have we proved
convergence). Instead, we have simulated this example, by generating 106 pseudo random
customer server pairs. The matching frequencies of the simulation were

(r̂i,j ) =

⎛
⎜⎜⎝

0 0.398 993 0
0.136 61 0.063 863 0

0 0.137 29 0.062 913
0.163 824 0 0.036 501

⎞
⎟⎟⎠ ,

which seems to agree with the values given by the quasi-independence model, i.e.

(hi,j ) =

⎛
⎜⎜⎝

0 0.4000 0
0.1361 0.0639 0

0 0.1361 0.0639
0.1639 0 0.0361

⎞
⎟⎟⎠ ,

but does not agree with the values from the Caldentey–Kaplan algorithm:

(Fi,j ) =

⎛
⎜⎜⎝

0 0.4000 0
0.1444 0.0556 0

0 0.1444 0.0556
0.1556 0 0.0444

⎞
⎟⎟⎠ .
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