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Abstract

Allergic asthma is characterized by airway eosinophilia, increased mucin production and allergen-specific IgE. Fc gamma
receptor IIb (FccRIIb), an inhibitory IgG receptor, has recently emerged as a negative regulator of allergic diseases like
anaphylaxis and allergic rhinitis. However, no studies to date have evaluated its role in allergic asthma. Our main objective
was to study the role of FccRIIb in allergic lung inflammation. We used a murine model of allergic airway inflammation.
Inflammation was quantified by BAL inflammatory cells and airway mucin production. FccRIIb expression was measured by
qPCR and flow cytometry and the cytokines were quantified by ELISA. Compared to wild type animals, FccRIIb deficient
mice mount a vigorous allergic lung inflammation characterized by increased bronchoalveolar lavage fluid cellularity,
eosinophilia and mucin content upon ragweed extract (RWE) challenge. RWE challenge in sensitized mice upregulated
FccRIIb in the lungs. Disruption of IFN-c gene abrogated this upregulation. Treatment of naı̈ve mice with the Th1-inducing
agent CpG DNA increased FccRIIb expression in the lungs. Furthermore, treatment of sensitized mice with CpG DNA prior to
RWE challenge induced greater upregulation of FccRIIb than RWE challenge alone. These observations indicated that RWE
challenge upregulated FccRIIb in the lungs by IFN-c- and Th1-dependent mechanisms. RWE challenge upregulated FccRIIb
on pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells. FccRIIb deficient mice also exhibited an exaggerated
RWE-specific IgE response upon sensitization when compared to wild type mice. We propose that FccRIIb physiologically
regulates allergic airway inflammation by two mechanisms: 1) allergen challenge mediates upregulation of FccRIIb on
pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells by an IFN-c dependent mechanism; and 2) by attenuating
the allergen specific IgE response during sensitization. Thus, stimulating FccRIIb may be a therapeutic strategy in allergic
airway disorders.

Citation: Dharajiya N, Vaidya SV, Murai H, Cardenas V, Kurosky A, et al. (2010) FccRIIb Inhibits Allergic Lung Inflammation in a Murine Model of Allergic
Asthma. PLoS ONE 5(2): e9337. doi:10.1371/journal.pone.0009337

Editor: Derya Unutmaz, New York University, United States of America

Received November 12, 2009; Accepted January 25, 2010; Published February 22, 2010

Copyright: � 2010 Dharajiya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from National Institutes of Health (NIH) RO1HL071163 (S.S.), National Institute of Allergy and Infectious Disease
(NIAID), PO1AI062885-01 (I.B., S.S.), National Heart, Lung, and Blood Institute (NHLBI) Proteomics Initiative, NO1HV-28184 (S.S.) and National Institute of
Environmental Health Sciences (NIEHS) Center Grant, EOS 006677 (I.B., S.S.). The funders had no role in study design, data collection and analysis, decision to
publish or preparation of manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sasur@utmb.edu

Introduction

Allergic asthma is an airway inflammatory disease that is

characterized by bronchial hyper-responsiveness, airway eosino-

philia, goblet cell hyperplasia and production of allergen specific

IgE. Cross-linking of the high affinity IgE receptor (FceRI) on mast

cells by IgE, in the presence of allergen activates Btk, PLC-gamma

and PI3K [1–4]. This ultimately leads to production and release of

pro-inflammatory substances like histamine, leukotrienes and

cytokines that promote allergic inflammation. In addition,

cytokines produced by allergen specific Th2 cells such as IL4,

IL5, IL9, IL13 and IL25 also promote allergen-specific IgE

production and allergic airway inflammation [5–14].

There is considerable amount of data on pro-inflammatory

mediators that contribute to the development of allergic

inflammation. However, relatively little is known about negative

regulatory mechanisms that attenuate allergic inflammation.

FccRIIb is an inhibitory low affinity IgG receptor expressed on

many inflammatory cells, including monocytes, macrophages,

dendritic cells, B cells, mast cells and basophils[15]. It negatively

regulates innate and adaptive immune responses, and has been

shown to inhibit activation of mast cells, basophils, B cells and T

cells [16–19]. It is composed of two Ig-like extra-cellular domains

that bind the Fc region of IgG, one trans-membrane domain and

an intra-cytoplasmic tail with an immuno-receptor phospho-

tyrosine based inhibitory (ITIM) motif [15,20]. Activation of

FccRIIb leads to recruitment of phosphatases to the ITIM motif

that inhibits signal transduction from other activating recep-

tors[21]. This block in the signaling cascade is the main reason for

its potent inhibitory effects on BCR-mediated B-cell activation,

TCR-mediated T-cell activation and FceRI-mediated mast cell

activation [17,22–24]. This inhibitory role is evident from studies

of FccRIIb deficient mice that are more susceptible to auto-

immune diseases and IgE mediated anaphylaxis [25–32]. Only a
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few studies have shown a regulatory role of this receptor in animal

models of allergic diseases. One study showed that IgG antibodies

can prevent IgE mediated anaphylaxis in vivo through both antigen

interception and FccRIIb cross-linking [33]. Another study

demonstrated a regulatory role of FccRIIb in a murine model of

allergic rhinitis[34]. However, the role of this receptor in allergic

lung inflammation has not been elucidated.

We recently showed in a gene micro-array analysis (GEO

accession number GSE18083) that allergen challenge upregulated

352 genes in the lungs four hours after the challenge [35]. Careful

review of that list revealed FccRIIb as one of the genes

upregulated. Based on this observation, we hypothesized that

FccRIIb may play a regulatory role in allergic airway inflamma-

tion. Here we show that mice lacking FccRIIb have exaggerated

allergic airway inflammation, suggesting its negative regulatory

role in asthma. We further show that allergen challenge

upregulates FccRIIb in the lungs in an IFN-c dependent

mechanism. Our results indicate that FccRIIb upregulation

physiologically reduces allergic airway inflammation.

Materials and Methods

Ethics Statement
All animal experiments were approved by the Institutional

Animal Care and Use Committee of the University of Texas

Medical Branch at Galveston.

Mice
Female BALB/c mice, 6–8 wk old, were purchased from the

Harlan Laboratories (Indianapolis, IN). BALB/c IFN-c KO,

C57Bl6 FccRIIb knock-out (KO) and C57Bl6 WT mice were

purchased from Jackson laboratories (Bar Harbor, Maine). BALB/

c FccRIIb knock-out (KO) mice were purchased from Taconics

(Albany, NY). All mice were maintained in a specific pathogen-

free environment throughout the experiment.

Model of Allergic Sensitization and Challenge
WT Balb/c, IFN-c KO or FccRIIb KO mice were sensitized by

two intraperitoneal (i.p.) injections of endotoxin-free RWE

(150 mg) and alum on days 0 and 4. On day 11, allergen challenge

was performed by intranasal (i.n.) instillation of RWE (200 mg) in

anesthetized mice. Mice were sacrificed at various time points as

indicated after the challenge and bronchoalveolar lavage (BAL)

fluid, blood, lung and spleen specimens were collected. Mice

sensitized but not challenged served as the zero time point. For the

Th1/CpG experiments, 35 mg CpG or GpC oligonucleotides were

administered intranasally in 50 ml of sterile PBS [36].

Ragweed Extract
We have previously shown that endotoxin contamination alters

the inflammatory cell recruitment following allergen challenge

[37]. To avoid this problem endotoxin-free ragweed (lot XP56-

D10-1320) was purchased from Greer Laboratories (Lenoir, NC).

Measurement of Allergic Airway Inflammation
For BAL fluid analyses, mice were anesthetized with an i.p.

injection of ketamine and xylazine, tracheotomy performed and

the trachea was cannulated. BAL of both lungs was performed

twice with 0.7 ml of sterile PBS (pH 7.3) through the tracheal

cannula with a syringe. Total cell counts were performed on BAL

samples and differential cell counts were done on cytocentrifuge

preparations (Cytospin 3; Thermo Shandon) stained with Wright-

Giemsa, counting 200 cells from each animal. Mucin was

quantified using mucin-binding lectin Jacalin (Calbiochem, La

jolla, CA) as described previously [38]. Aliquots of BAL fluid were

diluted 1:100, 1:1000 and 1:10000, added in triplicate to

individual wells of microtiter ELISA plates and incubated for

2 h at room temperature. Plates were washed and blocked with

5% BSA and 0.02% biotinylated jacalin was added. After 1 h

incubation at room temperature, plates were washed extensively,

then developed with alkaline phosphatase-conjugated avidin

(Sigma) and nitrophenylphosphate (Sigma) and quantified by

comparison with a mucin (Sigma) standard curve. The morpho-

metric method we described previously was used to quantify

mucin in lung epithelium[39]. Briefly, coronal sections of the 4%

paraformaldehyde-fixed lungs were stained with PAS stain.

Morphometirc analysis was done using MetamorphTM software

(Version 5, Universal Imaging, Downingtown, Pennsylvania).

Several images from five different levels per lung (three animals

per group) were obtained and reassembled using the montage

stage stitching algorithm of the MetamorphTM software. The

integrated morphometric analysis function was used to transform

total pixel area of the signal to mm2 per mm of peribronchial

diameter.

Measurement of Enhanced Pause Index (PENH Index)
PENH was assessed by a method previously described [40]

using a dual chamber whole body plethysmograph obtained from

Buxco (Troy, NY). Mice were exposed for 3 min to nebulized PBS

and subsequently to 37.5 mg/ml nebulized methacholine (Sigma

Chemicals) in PBS using the AeroSonic ultrasonic nebulizer. After

each nebulization, recordings were taken for 4 min. The PENH

values measured during each 4 min sequence were averaged and

expressed as the percentage of baseline PENH values after PBS

exposure.

Quantification of Serum RWE-Specific IgE
Serum was collected from RWE-sensitized WT and FccRIIb

KO mice 4 h after challenge with PBS (WT PBS and KO PBS) or

RWE (WT RWE and KO RWE). RWE-specific IgE was

quantified using standard sandwich ELISA technique and

comparison with an IgE standard curve as described previous-

ly[41].

Antigen Recall Assay
Splenocytes were obtained from sensitized WT and FccRIIb

KO mice after crushing the spleens and making single cell

suspensions. These were incubated with or without RWE for 3 d

and Th2 cytokines (IL-4, IL-5, IL-9 and IL-13) were quantified in

the supernatants using standard ELISA techniques as described

previously [36,41,42].

Quantitative RT-PCR
Balb/c mice sensitized with RWE were challenged with either

RWE or PBS. Mice were sacrificed and lungs collected at 1, 4, 24,

72 and 240 h post-challenge. RNA was extracted and quantitative

PCR analyses were performed using the SYBR green real time

PCR kit (Applied Biosystems) as described previously [35,43].

Transcript copy numbers for FccRIIb and beta-actin were

quantified by comparing to a standard curve generated from

serial log-dilutions of the target DNA [44,45]. FccRIIb signal was

normalized to beta-actin. Table 1 shows the primers used.

Flow Cytometry
Single cell suspensions of lung and spleen were analyzed by flow

cytometry [46]. Cells were washed 3X with PBS and resuspended

in FACS staining media containing 0.5% FBS in PBS. To study

FccRIIb Inhibits Asthma
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expression of FccRIIb on dendritic cells, 16106 cells were

incubated with anti-CD11c PE (Pharmingen, Clone HL3) and

anti-CD16/CD32-biotin (Pharmingen, Clone 2.4G2) for 30 min

on ice protected from light. After three washes, cells were

incubated with Streptavidin Cy-chrome (Pharmingen, #554062).

Species and isotype matched antibodies were used as controls.

FACS analysis was performed using analytical Flow cytometer

(FACS Scan, Beckton Dickinson) with CellQuest software (San

jose, CA). Further analyses were performed using FlowJo software

(Tree Star Inc., Ashland, OR). Similarly, FccRIIb expression on

macrophages (anti-CD14; Clone rmC5-3, Pharmingen and anti-

MHC class II-FITC; Miltenyi biotech, #130-081-601) and B cells

(anti-B220, Clone RA3-6B2, Pharmingen) was studied.

Statistical Methods
There were 4–6 animals in each group and results are

representative of at least two independent experiments. Statistical

significance between groups was determined using Student’s T

test.

Results

Disruption of the FccRIIb Gene Augments Allergic Airway
Inflammation

We assessed the biological role of FccRIIb in a murine model of

allergic asthma. C57Bl6 wild type (WT) and C57Bl6 FccRIIb

knock-out (KO) mice were sensitized and then challenged with

RWE. RWE challenge in WT mice recruited 3-fold more total

inflammatory cells, 10-fold more eosinophils, 2-fold more

lymphocytes and macrophages (Figure 1A, 1B, 1C and 1D).

Disrupting the FccRIIb gene further increased total inflammatory

cells (5-fold), eosinophils (12-fold), lymphocytes (5-fold) and

macrophages (3.6-fold) in the BAL (Figure 1A, 1B, 1C and
1D). To determine the reproducibility of this result in a different

strain of mouse, we repeated this experiment in Balb/c mice.

RWE challenge in WT Balb/c mice recruited 3-fold more total

inflammatory cells, 32-fold more eosinophils and 3-fold more

lymphocytes in BAL as compared to PBS challenge (Figure 2A,
2B and 2C) at 72 h post-challenge. Similar to our observations in

C57Bl6 mice, RWE challenge in Balb/c FccRIIb KO mice

further increased total cells (2.3-fold increase), eosinophils (5.2-fold

increase) and lymphocytes (2-fold increase) in BAL fluid as

compared to WT mice (Figure 2A, 2B and 2C). RWE challenge

in WT mice increased mucin-containing cells in the airway

(Figures 2D, 2E and 2G) and mucin levels in BAL fluid

(Figure 2H). RWE challenge in mice that lacked FccRIIb further

increased mucin-containing cells in the airway (Figures 2E, 2F
and 2G) and mucin levels in BAL fluid (Figure 2H) as compared

to WT mice. RWE challenge in mice that lacked FccRIIb induced

greater increase in enhanced pause (PENH) index as compared to

wild type mice (Figure 2I).

RWE Challenge Upregulates FccRIIb in the Lungs by an
IFN-c-Dependent Mechanism

Since allergen challenge recruits inflammatory cells that express

FccRIIb to the lungs, and lack of FccRIIb further increases this

inflammation, we hypothesized that allergen challenge upregulates

FccRIIb on pulmonary inflammatory cells. Quantitative PCR of

lung mRNA confirmed that RWE challenge upregulated FccRIIb

as early as 4 hours post-RWE challenge, and gene expression

peaked at 24 h (Figure 3A). This upregulation was sustained till

10 d after challenge (Figure 3A). Prior studies have shown

that IFN-c and Th1 response can inhibit allergic inflammation

[39,47–50]. Since our studies suggested that FccRIIb inhibited

allergic airway inflammation, we sought to determine whether

its upregulation was Th1 or IFN-c dependent. RWE challenge

upregulated FccRIIb in wild type mice but not in IFN-c KO mice

(Figure 3B). IFN-c KO mice also exhibited greater allergic

Table 1. Primers used for quantitative PCR analyses.

Gene Forwad Primer Reverse Primer

b-actin ACACCTTCTACAATGAGCTG GGATCTTCATGAGGTAGTCC

FccRIIb ATCTTGCTGCTGGGACTCAT TGACTGTGGCCTTAAACGTG

doi:10.1371/journal.pone.0009337.t001

Figure 1. Role of FccRIIb in allergic airway inflammation. (A, B, C and D) Total inflammatory cells (A), eosinophils (B), macrophages (C) and
lymphocytes (D) were quantified in BAL of C57Bl6 RWE-sensitized WT and FccRIIb KO mice challenged with either PBS (WT PBS and KO PBS) or RWE
(WT RWE and KO RWE). *, p,0.05.
doi:10.1371/journal.pone.0009337.g001

FccRIIb Inhibits Asthma
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airway inflammation when compared to WT mice (data not shown).

Treatment of naı̈ve wild type mice with the Th1-inducing CpG

DNA significantly upregulated FccRIIb; however, GpC control

DNA (which does not induce IFN-c) failed to do so (Figure 3C).

Furthermore, intra-nasal administration of CpG DNA, but not

GpC DNA, 48 h prior to RWE challenge in wild type mice

enhanced RWE-induced FccRIIb upregulation (Figure 3D).

These findings indicated that RWE-challenge upregulated FccRIIb

by an IFN-c and Th1-dependent mechanism.

RWE Challenge Upregulates FccRIIb in CD14+ MHC
II+ Mononuclear Cells and CD11c+ Cells in the Lungs

We verified the upregulation of FccRIIb in the lungs by

flow cytometry measurements of single cell suspensions of whole

lungs. RWE challenge upregulated FccRIIb on pulmonary

CD14+/MHC II+ cells (Figure 4A) and on CD11c+ cells

(Figure 4B), but not on B220+ cells (Figure 4C). Further-

more, intrapulmonary RWE challenge failed to upregulate

FccRIIb expression on these cells in the spleen (Figures 4D,
4E and 4F). This suggested that RWE challenge upregulated

FccRIIb expression on CD14+/MHC II+ and CD11c+ cells

in the challenged organ (lungs) with no detectable systemic

upregulation.

Disruption of the FccRIIb Gene Augments Serum
RWE-Specific IgE Levels after Antigen Sensitization,
but Does Not Affect Th2 Cytokine Production in
Antigen Recall Assay

Building on the observation that FccRIIb regulated RWE

challenge induced allergic lung inflammation, we examined its role

in the sensitization process and antigen-driven Th2 cytokine

production. As shown in Figure 5A, sensitized FccRIIb KO mice

had significantly higher RWE-specific IgE levels when compared

to WT mice. We hypothesized that this enhanced IgE response in

FccRIIb KO mice was due to an exaggerated Th2 response. To

test this hypothesis we performed an antigen recall assay using

splenocytes from sensitized WT and FccRIIb KO mice.

Importantly, IL-4, IL-5 and IL-13 production in response to

RWE was similar in WT and FccRIIb KO mice (Figures 5B, 5C
and 5D). Thus, disruption of FccRIIb increased antigen-specific

Figure 2. Role of FccRIIb in allergic airway inflammation. (A, B and C) Total inflammatory cells (A), eosinophils (B) and lymphocytes (C) were
quantified in BAL of Balb/c RWE-sensitized WT and FccRIIb KO mice challenged with either PBS (WT PBS) or RWE (WT RWE and KO RWE). (D, E and F)
Lung sections were obtained from RWE-sensitized WT and FccRIIb KO mice challenged with either PBS (WT PBS) or RWE (WT RWE & KO RWE). These
sections were stained with PAS to identify mucin containing cells. (G) Mucin containing cells in the lung sections were analyzed by morphometric
analyses of PAS staining area. (H) Mucin was quantified in BAL samples by ELISA using biotinylated mucin binding lectin. (I) WT and FccRIIb KO mice
were sensitized with RWE and challenged with either PBS (WT PBS) or RWE (WT & KO RWE). PENH was measured by Buxco whole body
plethysmography. *, p,0.05.
doi:10.1371/journal.pone.0009337.g002
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IgE levels in vivo without increasing antigen-induced Th2 cytokine

production.

Discussion

FccRIIb is an inhibitory IgG receptor that can prevent BCR-,

TCR- and FceRI-mediated activation of B-, T- and mast cells by

recruitment of SHIP to its ITIM motif [17,51–54]. Multiple

studies have looked at the role of FccRIIb in down regulating

specific allergic inflammatory cells in vitro. However, only a few

studies have demonstrated its regulatory role in animal models of

allergic disease. One study showed that disruption of FccRIIb

increased nasal eosinophilia in mice sensitized and challenged with

Schistosoma egg antigen (SEA)[34]. Another study suggested a

role of upregulated FccRIIb in the inhibition of anaphylaxis[55].

In this study we demonstrated the role of FccRIIb in regulating

allergen-induced eosinophilic inflammation in the lungs. We

further showed for the first time that allergen challenge

upregulated FccRIIb in the lungs.

The genes that regulate FccRIIb expression in the lungs have

not been described. Here we demonstrate that IFNc plays a

critical role in mediating allergen-induced FccRIIb upregulation.

We recently showed that IFNc plays an important role in

upregulating Th1-associated genes such as p47 and p65 GTPases,

Socs1, Cxcl9 and Cxcl10 after allergen challenge [35]. Our

observations in the current manuscript indicate that FccRIIb is

another allergen-induced IFNc-dependent, CpG DNA inducible

gene. Other reports have demonstrated upregulation of FccRIIb

on naı̈ve human blood-derived monocytes and dendritic cells by

IL-4[56,57]. This apparent disparity between mice and humans in

regulation of FccRIIb by Th1 and Th2 cytokines could be due to

tissue-specific differences in the regulation of FccRIIb, or may

reflect divergence in regulation of the gene in the two species.

RWE challenge upregulated FccRIIb on pulmonary CD14+/

MHC II+ macrophages in this study. Alveolar macrophages have

been shown to play a regulatory role in airway inflammation.

Monocytes/macrophages account for a large number of cells in

the airway in quiescent asthma. Removal of macrophages from the

airways of patients with asthma by BAL enhances eosinophilic

inflammation[58]. There could be several mechanisms by which

alveolar macrophages contribute to this regulatory function.

Macrophages express functional FceRI and cross-linking leads to

activation and secretion of pro-inflammatory cytokines[59,60]. It

is possible that the balance of expression of FccRIIb and FceRI by

alveolar macrophages determines a pro-inflammatory versus anti-

inflammatory role of these cells. In the present study, RWE

challenge also upregulated CXCL9 and CXCL10 (data not

shown), which are Th1-associated chemokines that have been

shown to inhibit allergic airway inflammation[61,62]. It is possible

that airway monocytes secrete these anti-inflammatory cytokines

upon FccRIIb ligation, and mediate attenuation of allergic

inflammation. Another possibility is that RWE challenge induces

the anti-inflammatory PGE2 by macrophages in an FccRIIb

dependent fashion[63].

Figure 3. Expression of FccRIIb in the lungs after RWE challenge. (A) Balb/c mice sensitized with RWE and challenged with either RWE (filled
squares) or PBS (open diamond). Mice were sacrificed 1, 4, 24, 72 and 240 h after challenge, lungs were collected and RNA was extracted. Quantitative
PCR (qPCR) analysis for FccRIIb was performed on these RNA samples using SYBR green Real time PCR kit (Applied biosystems). (B) Wild-type and INF-
c deficient BALB/c mice were sensitized with RWE, and challenged with PBS or RWE. 4 h later, the lungs were collected and qPCR for FccRIIb was
performed. (C) Naı̈ve wild-type mice were challenged with PBS, CpG DNA or GpC DNA. 4 hours post-challenge lungs were collected and FccRIIb
expression was quantified by qPCR. (D) Wild-type BALB/c mice were sensitized with RWE. The mice were pre-treated with PBS (PBS challenge or RWE
challenge group) or 35 mg CpG oligonucleotide intranasally (CpG R RWE) 48 h prior to RWE challenge. 4 h post-challenge, lungs were collected and
qPCR for FccRIIb was performed. * = p,0.05.
doi:10.1371/journal.pone.0009337.g003

FccRIIb Inhibits Asthma
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Allergen challenge also upregulated FccRIIb on pulmonary

CD11c+ cells, most likely dendritic cells. Myeloid dendritic cells

have been shown to regulate allergic airway inflammation by

inducing a Th2 immune response[64,65]. FccRIIb on DCs can

potentially inhibit the induction of the Th2 cytokine response.

However in the present study, the antigen recall assay failed to

Figure 4. Identification of cells in the lungs that upregulate FccRIIb after RWE challenge. Single cell lung and spleen suspensions were
prepared from RWE-sensitized BALB/c mice that were challenged with PBS or RWE. A multi-color FACS analysis for FccRIIb and cell specific markers
(CD14/MHC II for macrophages, CD11c for dendritic cells and B220 for B cells) was performed on these cells. FccRIIb expression is shown for PBS
challenged (grey histogram) and RWE challenged (black histogram) mice. FccRIIb expression is increased on CD14+/MHC II+ and CD11c+ gated cells.
Data from one representative animal in each group. MFI, Mean fluorescence intensity.
doi:10.1371/journal.pone.0009337.g004

Figure 5. Role of FccRIIb on serum IgE levels and antigen-induced Th2 cytokine production. (A) RWE-specific IgE levels in serum were
quantified in sensitized WT and FccRIIb KO mice. (B, C and D) Splenocytes from sensitized wild-type and FccRIIb KO mice were cultured with PBS or
RWE for four days, and the cell supernatants were analyzed for IL-4, IL-5 and IL-13 levels by ELISA. *, P,0.05; NS, not significant.
doi:10.1371/journal.pone.0009337.g005

FccRIIb Inhibits Asthma
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show an increase in IL-4 and IL-5 production in FccRIIb

knockout mice. These observations suggested that FccRIIb does

not affect the antigen presenting and Th2 skewing properties of

DCs.

A previous study showed a critical role of Fc receptor gamma

chain in the sensitization phase of allergic airway inflammation

[66]. In the present study, absence of FccRIIb increased levels of

allergen specific IgE after sensitization. This indicated that

FccRIIb can specifically attenuate IgE humoral responses,

suggesting its specific regulatory role in allergic lung inflammation.

IgE production by the differentiating B cell requires class switch

recombination (CSR) to Ce that is CD40 and IL-4 depen-

dent[67,68]. FccRIIb deficient splenocytes made similar amount

of IL-4 as wild type splenocytes in allergen recall assay. Thus, T

cell-secreted IL-4 might not be involved in the FccRIIb-mediated

suppression of Ce class switch. One possibility is that FccRIIb

suppresses CD40L expression on T cells thus reducing the stimulus

for IgE class switch. Another mechanism might involve regulation

of IgE production by DCs. CSR in B cells is regulated by the

expression of BAFF (BLyS) and APRIL on DCs[69–71]. One

report showed inhibition of B cell IgE production by DCs via

direct cell-cell interaction as well as by soluble factors including

TGF-b and IFN-c[72]. It is possible that FccRIIb expression

affects the ability of DCs to regulate IgE production by B cells. Yet

another possibility is that the enhanced IgE response in FccRIIb

deficient mice is independent of the Th2 T cell response.

Upregulation of FccRIIb on mast cells after exposure to

allergen can lead to co-ligation of FccRIIb and FceRI by allergen

and inhibit activation/degranulation of the mast cell. This concept

was exploited in recent studies using two novel bio-engineered

fusion proteins, one that consists of human Fc regions of IgG1 and

IgE linked together and another a fusion protein made by linking

an allergen to human IgG1 Fc region[73]. These proteins block

pro-inflammatory mediator and cytokine release from allergic cells

and prevent skin, lung and systemic allergic reactivity in a murine

model[16,73–77]. Our study demonstrates that FccRIIb-depen-

dent regulatory mechanism(s) control allergic airway inflamma-

tion, making this inhibitory receptor a physiologically relevant

therapeutic target in allergic asthma. FccRIIb appears to inhibit

both allergic sensitization (possibly by attenuating the IgE

response) as well as allergic inflammation from allergen exposure

(possibly by upregulating FccRIIb expression on inflammatory

cells in the target organ). Stimulating the inhibitory FccRIIb

receptor is an elegant strategy because it is naturally upregulated

by allergen exposure, and has the potential of controlling allergic

inflammation by inhibiting multiple cells and mediators. In this

manner it is likely to alter airway remodeling and disease

progression.
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