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ABSTRACT

We introduce the FCHL19 representation for atomic environments in molecules or condensed-phase systems. Machine learning models
based on FCHL19 are able to yield predictions of atomic forces and energies of query compounds with chemical accuracy on the scale of
milliseconds. FCHL19 is a revision of our previous work [F. A. Faber et al., J. Chem. Phys. 148, 241717 (2018)] where the representation is
discretized and the individual features are rigorously optimized using Monte Carlo optimization. Combined with a Gaussian kernel function
that incorporates elemental screening, chemical accuracy is reached for energy learning on the QM7b and QM9 datasets after training for
minutes and hours, respectively. The model also shows good performance for non-bonded interactions in the condensed phase for a set of
water clusters with a mean absolute error (MAE) binding energy error of less than 0.1 kcal/mol/molecule after training on 3200 samples.
For force learning on the MD17 dataset, our optimized model similarly displays state-of-the-art accuracy with a regressor based on Gaussian
process regression. When the revised FCHL19 representation is combined with the operator quantummachine learning regressor, forces and
energies can be predicted in only a few milliseconds per atom. The model presented herein is fast and lightweight enough for use in general
chemistry problems as well as molecular dynamics simulations.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5126701., s

I. INTRODUCTION

Approximate models have been used to make predictions in
chemistry since the beginning of theoretical chemistry. In recent
years, however, data-driven machine learning (ML) models which
can make predictions across chemical space with chemical accuracy
are becoming increasingly common in the literature.

Tasks such as molecular dynamics (MD) simulations and
geometry optimizations have been a standard tool in the tool-
box of the computational chemist for many years, and several
machine learning models now provide the gradients necessary to
carry out such tasks.2–21 We have previously published a machine
learning model based on the Faber–Christensen–Huang–Lilienfeld
(FCHL18) representation which performs very well on chemical
compounds across chemical space,1 as well as a proof-of-concept

implementation of learning and prediction of response properties
based on this model,22 such as atomic force, normal modes, dipole
moments, and even IR spectra.

While our FCHL18-based models yielded state-of-the-art accu-
racy on several benchmark sets,1,22 the applicability was, in some
cases, hindered by poor computational performance, and proper
hyperparameter optimization of the model has been computation-
ally unfeasible. Whereas FCHL18 solves an analytical integral to
compare atomic environments in order to learn properties of chem-
ical compounds, other ML models use discretized representations
that can be handled with far greater computational efficiency.6,23–32

In this work, we present a discretized representation for chem-
ical compounds based on our earlier work in Ref. 1, which allows
for a very fast evaluation of the L2-distance between two representa-
tions. A rigorousMonte Carlo optimization of themodel parameters
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is performed in order to find a set of universally transferable hyper-
parameters that yield ML models of high accuracy without any need
for re-optimization.We include a detailed review of different kernel-
based models with which the representation can be used and high-
light their strengths, differences, and shortcomings. Finally, we thor-
oughly benchmark the predictive accuracy of our models on several
established datasets of chemical compounds from the literature. In
addition to benchmarking the accuracy of energy and force predic-
tion, we also present timings of our model in order to demonstrate
the applicability.

II. THEORY

This section first introduces the representation used to describe
atomic environments throughout this work. Second, a number of
kernel-based machine learning methods (MOB) which can be used
with the representation are discussed. While the representation
could in principle also be used favorably with feed-forward neural
networks, this paper focuses solely on kernel-based methods.

A. Representation

We have previously compared ML models based on a num-
ber of different representations for the QM9 dataset.1,33 Based on
these studies, it is apparent that the currently best performing rep-
resentations contain certain similarities, although the exact imple-
mentations differ. Some of the best performing representations for
kernel-based machine learning for chemical compounds are the
smooth overlap of atomic densities (SOAP),34,35 spectrum of London
and Axilrod–Teller–Muto (SLATM),36 the many-body descriptor of
Pronobis et al.,37 and FCHL18 representations,1 while variants of
the atom-centered symmetry functions (ACSFs) of Behler6,30,31 have
been shown to perform well for feed-forward neural networks. In
brief, these methods contain some terms that are similar: (1) a two-
body term that relates to the radial distribution between a central
atom and other nearby atoms in its local environment and (2) a
three-body term that similarly relates to, for example, distribution
of angles and/or distances between atoms in the local environment
of the atom.

In this paper, we construct a new atom-centered represen-
tation termed FCHL19 that contains such two- and three-body
terms and demonstrate that this leads to similar performance. The
FCHL19 representation is based on the FCHL18 representation1 but
is discretized in a manner very similar to the well-known ACSF of
Behler.30

In order to enable faster and more memory efficient machine
learning models, it is key that the input representation is as small
as possible compared to the information it holds, as evaluation and
training times scale linearly/quadratically with representation size.

We show that when the parameters of our new representation
are optimized properly, the result is a representation that is compact
in size—ensuring faster machine learning algorithms—without loss
in predictive accuracy.

Briefly described, the representation is a vector that encodes the
atomic environment of an atom in a chemical compound. It consists
of a two-body term which encodes radial distributions between the
central atoms and neighboring atoms of a given element type. Addi-
tionally, the representation contains a three-body term that encodes

the mean distances and angles between the atom and neighboring
pairs of atoms of given element types.

The representation does not contain an explicit one-body term
and, for performance reasons, we do not consider terms of higher
order than three-body, but it is possible that the inclusion of such
terms could lead to even higher predictive accuracy.33

The two- and three-body components of the representation are
described in detail in the following text. The procedure to obtain
the hyperparameters of the representation is detailed in Sec. IV B,
while the optimized parameters are presented in Table III in
Appendix A.

1. Two-body function

For a given central atom, a set of radial basis functions is con-
structed for each unique type of element in the dataset. Each of
the nRs2

basis functions in this set is placed on an equidistant grid
from rcut

nRs2
to rcut , with rcut being the cut-off radius. We found it

advantageous to use log-normal distribution functions for the radial
functions, compared to Gaussian functions as used in our previous
work.1 We note that this is an empirical choice and it is possi-
ble that a better distribution function could be found, for example,
from using an optimization procedure. The log-normal radial basis
functions take the form

G
2-body ≙ ξ2(rIJ)fcut(rIJ) 1

Rsσ(rij)
√

2π
exp(−(lnRs − μ(rij))2

2σ(rij)2 ), (1)

where Rs is the distance location of the grid point and μ(rij) and
σ(rij) are parameters of the log-normal distribution, which in turn
depend on the interatomic distance, rIJ , and a hyperparameter, w,
given as follows:

μ(rij) ≙ ln⎛⎜⎝
rIJ√
1 + w

r2IJ

⎞⎟⎠ and σ(rij)2 ≙ ln(1 + w

r2IJ
). (2)

The two-body scaling function, ξ2(rIJ), serves the purpose of apply-
ing a higher regression weight to terms that are more likely to con-
tribute substantially to the total energy, thus increasing the accuracy
of the machine learning procedure for properties that relate to the
total energy. Similar to previous studies,1,38 we found the following
form to be suitable:

ξ2(rIJ) ≙ 1

rN2
IJ

, (3)

where the exponent N2 is a hyperparameter of the representation.
Finally, the soft cut-off function used here is

fcut(rIJ) ≙
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2(cos( π rIJ

rcut
) + 1) if rIJ ≤ rcut

0 if rIJ > rcut. (4)

Thus, the hyperparameters of the two-body term are the width
parameter of the log-normal distributions, w; the exponent of the
scaling function, N2; the cut-off distance, rcut; and the number of
radial basis functions, nRs2

. Optimized values of these parameters are
presented in Table III in Appendix A.

A graphical representation of the two-body function for an H
and an O atom in a water molecule is displayed in Fig. 1. For each
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FIG. 1. The values of four unique types of two-body radial basis functions in a
water molecule are displayed. The radial spectrum is divided into 24 bins, with
rcut = 8.0 Å, w = 0.32 Å, and N2 = 1.8. The top row contains the radial basis func-
tions for the first H atom and the bottom row for the oxygen atom. The distances
that are used to produce the basis functions in each spectrum are marked with
black arrows.

atomic environment in the water molecule, the minimal represen-
tation will contain two radial distributions, x-H and x-O. Thus, the
size of the two-body term scales linearly with the number of possible
elements in the atomic environment.

2. Three-body function

The three-body function encodes the distances from an atom to
neighboring pairs of atoms in the environment of the atom, as well as
the angle between the triplet, and the element types of the neighbors.
The resulting function is a product of the following terms:

G
3-body ≙ ξ3G3-body

Radial G
3-body
Angularfcut(rIJ)fcut(rJK)fcut(rKI). (5)

The radial part is similar to the radial part in the ACSFs used in the
ANI-1 neural network,7,30

G
3-body
Radial ≙

√
η3

π
exp(−η3( 12(rIJ + rIK) − Rs)2), (6)

where η3 is a parameter that controls the width of the radial distri-
bution functions and again Rs is the location of the radial gridpoints.
Finally, the three-body scaling function, ξ3, is the Axilrod–Teller–
Muto term39,40 with modified exponents,1,38

ξ3 ≙ c3 1 + 3 cos(θKIJ) cos(θIJK) cos(θJKI)(rIKrJKrKI)N3
. (7)

Here, θKIJ is the angle between the three atoms K, I, and J and c3 is a
weight term that balances the weight of the three-body part relative
to the two-body part.

The angular term is similar to the Fourier series expansion
previously introduced in Ref. 1,

G
cos
n ≙ exp(−(ζn)22

)(cos (nθKIJ) − cos(n(θKIJ + π))), (8)

G
sin
n ≙ exp(−(ζn)22

)(sin (nθKIJ) − sin(n(θKIJ + π))), (9)

where ζ is a hyperparameter describing the width of the angular
Gaussian function and n > 0 is the expansion order. With a suffi-
ciently large value of η3, the angular spectrum can in many cases be
almost completely recovered with only the first Fourier terms.1 This
is in part due to the fact that there is only room for a limited number
of atoms in the local environment at a certain distance, and the angu-
lar spectra are, therefore, rarely very crowded for short distances. In
the rest of this work, only the two n = 1 cosine and sine terms are
used, i.e., G3-body

Angular ∈ {Gcos
1 ,Gsin

1 }.
Since the number of three-body functions scales asO(N2)with

the number of possible different elements in the chemical com-
pounds, they comprise a much larger part of the representation
than the two-body part. A graphical representation of the three-body
terms for the atomic environments in a water molecule is displayed
in Fig. 2.

B. Machine learning

In Subsections II B 1–II B 5, we discuss four kernel-based
regressors that are also used in this study. First, the kernel ridge
regression (KRR) method to learn the energy of chemical com-
pounds is discussed. Next, three different regressors to learn forces
and energies of chemical compounds are reviewed, namely, “oper-
ator quantum machine learning” (OQML),22 Gaussian process
regression (GPR),41,42 and finally “gradient-domain machine learn-
ing” (GDML).28,29

In this section, lower-case indices denote the index of a chem-
ical compound, while upper-case indices denotes the index of the
atomic centers in the chemical compound, and finally, asterisks
are used to denote relation to a query compound or query atomic
center.

FIG. 2. The three-body basis functions are plotted for the two unique three-body
terms in the water molecule, corresponding to the O2-H1-H3 and H1-O2-H3 angles
displayed at the top. The atoms are numbered for clarity.
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1. Kernel ridge regression (KRR)

It is well-established that KRR—despite its simplicity—is one
of the most powerful methods to learn energies of chemical com-
pounds.1,24,25,33–36,43 In KRR, the energy, U∗, of a query compound,
c, can be decomposed into the sum of atomic energies. These are
calculated in a basis of kernel functions placed on the atoms of the
chemical compounds in the training set. That is,

U
∗
c ≙ ∑

I∈c
U
∗
local(q∗I ) ≙ ∑

I∈c
∑
j

∑
J∈j

K (qJ ,q∗I )αj, (10)

where I and J are atoms in the query and training compounds c
and j, respectively. q J , q∗I are their representation and αj is the jth
regression coefficient. This can be written in matrix notation,

U ≙ KKRR
α
KRR, (11)

where the elements of the KRR kernel matrix are given by the sums
over the pair-wise kernels between the atoms in two compounds,

K
KRR
ij ≙ ∑

I∈i
∑
J∈j

K (qJ ,q∗I ) (12)

and α
KRR is the regression coefficient vector.
These regression coefficients can be obtained by fitting Eq. (11)

to the energies of a training set in the basis of the same set of
compounds. In KRR, this is done by minimizing the cost function

J(αKRR) ≙ 1
2∥KKRR

α
KRR −U∥22 + λ

2(αKRR)TKKRR
α
KRR, (13)

which has the following closed-form solution:

α
KRR ≙ (KKRR + Iλ)−1U. (14)

λ is a typically small number which is added to the diagonal of the
kernel matrix in order to regularize and ensure numerical stability
when the kernel is inverted.44

We have previously shown how KRR with FCHL18 yields
systematically improving property predictions that reach state-of-
the art accuracy for many system classes including molecules and
materials.1

2. Operator quantum machine learning (OQML)

It is advantageous to also include forces in the training step
if available as these both improve energy and force prediction. In
the operator quantum machine learning (OQML) approach intro-
duced in Ref. 22, the model is trained on the energy and forces
simultaneously.

The kernel is expanded in a basis of kernel functions placed on
the atomic environments of each atom in the training set. Effectively,
this extends the number of regression coefficients to the total num-
ber of atoms in the training set rather than the number of chemical
compounds as for KRR. In the following, we refer to this non-square
kernel as KOQML.

In addition to the energies,U, it is possible to include the forces,
F, in the training step by applying the force operator to the kernel
and solving the regression coefficients for both the energy and forces
simultaneously. The equation that is solved during the training
step is

[U
F
] ≙ [ KOQML

− ∂

∂ r⃗∗
KOQML]αOQML, (15)

where KOQML is the matrix of kernel elements between the atoms in
the training set and the training or query molecules and − ∂

∂ r⃗∗
is the

force operator. The presence of an asterisk in the operator denotes
that the differentiation is with respect to a coordinate in the train-
ing/query compound, while the absence of an asterisk denotes that
the differentiation is carried out with respect to the coordinate of an
atom/molecule used to form the basis set. Thus, the dimension of
the OQML kernel is (3MN +N) ×MN, where N is the number of
molecules in the training set, andM is the average number of atoms
in each molecule.

A solution to Eq. (15) can be obtained by minimizing the
following cost function:

J(αOQML) ≙ ∥[U
F
] − [ KOQML

− ∂

∂ r⃗∗
KOQML]αOQML∥2

2

(16)

with respect to α
OQML. This least-squares approach leads to a solu-

tion that looks similar to the normal equation. However, we found
that this approach involves the product of kernel matrices that are
ill-conditioned and, therefore, suffers from numerical instability,
leading to large training and test errors.

A more numerically stable approach involves solving Eq. (15)
directly, using a singular-value decomposition (SVD), which is used
for OQML in this work. In similar spirit to the regularization used
in KRR, the smallest singular values (below a certain threshold) can
be ignored in the solution. This threshold, εmin, can be treated as a
hyperparameter in the model.

The elements of KOQML are given by

K
OQML
iJ ≙ ∑

I∈i
K (qJ ,q∗I ), (17)

where J is an atom in the training set and I is an atom in molecule
i. In contrast to the kernel matrix in KRR, KOQML is non-square and
has a column for each of the atoms in the training set and a row
corresponding to each of the molecules in the training or query set.

The kernel matrix elements that correspond to the atomic
forces are calculated by taking the negative derivative of the matrix
elements in Eq. (17) with respect to the coordinates of the query
molecules, that is,

− ∂

∂ r⃗∗K
K

OQML
iJ ≙ −∑

I∈i

∂K (qJ ,q∗I )
∂ r⃗∗K

, (18)

where r⃗∗K denotes the Kth coordinate of the query molecule. The
resulting derivative kernel, thus, has a column for each of the atoms
in the training set and a row corresponding to each of the gradient
components in the training or query set.

Energies are predicted from the set of α-coefficients,

U ≙ KOQML
α
OQML. (19)

The force prediction is simply the derivative of the above equation
with the same set of α-coefficients,

F ≙ − ∂

∂ r⃗∗
K

OQML
α
OQML. (20)
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See Appendix B for the derivation of all kernel derivativesmentioned
in this section.

In contrast to methods that learn forces directly as a vecto-
rial quantity,15,45 the use of the force operator guarantees that the
machine learned potential will describe a conservative force field.
This property is crucial for applications in molecular dynamics
where energy conservation is necessary to obtain correct sampling
without heavy use of thermostats.

3. Gaussian process regression including derivatives

It is also possible to define models that incorporate deriva-
tives in the training set within the framework of Gaussian process
regression.41 The relevant equations for training a model on ener-
gies and forces for chemical compounds are presented below. For
their derivation, we refer the reader to the work of Mathias42 and
the work of Bartók and Csányi.2 The Gaussian process regression
kernel matrix which simultaneously incorporates the energy,U, and
the forces, F, is written as

[U
F
] ≙ [ KKRR − ∂

∂ r⃗
KKRR

− ∂

∂ r⃗∗
KKRR ∂

2

∂ r⃗∂ r⃗∗
KKRR]αGPR, (21)

where KKRR is the same kernel matrix as used in KRR, as described
previously. In the following, we abbreviate the above methodology
of Gaussian process regression derivatives as “GPR.”

The first of the two off-diagonal blocks contain only one deriva-
tive given by

− ∂

∂ r⃗∗K
K

KRR
ij ≙ −∑

I∈i
∑
J∈j

∂K (qJ ,q∗I )
∂ r⃗∗K

, (22)

where r⃗∗K denotes the Kth coordinate of the query compound. The
other block is given analogously. The last block which comprises the
largest part of the GPR kernel matrix is the double derivative given
by

∂
2

∂ r⃗L∂ r⃗∗K
K

KRR
ij ≙ ∑

I∈i
∑
J∈j

∂K (qJ ,q∗I )
∂ r⃗L∂ r⃗∗K

(23)

where r⃗L and r⃗∗K denote the Lth and Kth coordinate of the basis and
query compounds, respectively.

Thus, the dimension of the GPR kernel is (3MN +N)×(3MN +N), whereN is the number of molecules in the training set
and M is the average number of atoms in each molecule. The rows
of the full GPR kernel matrix thus run over the same indices as the
OQML kernel matrix. However, where the indices of the columns
of the OQML kernel matrix run over the atoms in the training set,
the indices of the columns GPR kernel run first over the molecules
in the training set and second over the gradient components in each
molecule. Thus, the main difference is the choice of basis in which
the regression problem is expanded.

The regression coefficients αGPR can be obtained by minimiz-
ing a cost function similar to that in Eq. (13), only with the dif-
ference that the matrix KKRR is replaced by the GPR kernel matrix
in Eq. (21), and U is replaced by the vector that contains both the
energies and atomic forces.

Compared to OQML, the GPR kernel matrix contains deriva-
tive terms of up to second order, whereas OQML only contains
terms up to first order.

The second-order part of the GPR kernel matrix is the com-
putationally heaviest term, and the time to compute it scales as
O(36N2M4), where N is the number of molecules in the training
set and M is the average number of atoms in each molecule.22 In
comparison, the heaviest term of the OQML kernel is only of first
order and scales as O(6N2M3).22 Both methods scale as O(kN2)
with the number of training molecules, but GPR has a higher prefac-
tor and scales much less favorably with the number of atoms in the
individual molecules (quartic rather than cubic).

We also note the existence of sparsification procedures which
can be applied to the GPR model, such as those used within the
Gaussian approximation potential methods.2 The use of sparsifi-
cation makes it possible to treat the problem without any second
derivatives in the kernel matrix. The result here is then a kernel
matrix that is very similar to the OQML kernel and requires far less
time to compute compared to the full GPR kernel.

As the molecules used to benchmark force prediction methods
in this study contain between 9 and 21 atoms, it is expected that the
time to calculate the kernel for GPR is on the order of 50–200 times
slower than OQML. This is demonstrated numerically in Sec. III C.

Additionally, we note that evaluation of the second-derivative
matrix elements in GPR scales as O(N2) with regard to the size
of the representation, while evaluation of first derivative matrix
elements (such as in OQML and the off-diagonal blocks in GPR)
only scales as O(N) [see, for example, Eqs. (B5) and (B7) in
Appendix B].

In terms of memory usage, the GPR kernel is roughly three
times larger than the OQML kernel since it contains a column for
each molecule and gradient component in the training set, whereas
the OQML kernel only contains a column for each atom in the
training set. As a result, GPR scales computationally less favor-
ably compared to OQML, although the accuracy of the regression
may be slightly increased due to more regression coefficients being
fitted.

4. Gradient-domain machine learning (GDML)

Since we will be comparing numerical results from the GDML28

and the closely related sGDML29 methods, we also briefly review
these approaches for the sake of completeness. GDML can be seen
as equivalent to the GPR approach detailed above, with the differ-
ence that the energy is left out of the training data, such that only
forces are used in the training. In turn, the corresponding 0th and
1st derivative kernel blocks from the GPR kernel are not present
in the GDML kernel. Thus, the kernel in the GDML approach is
identical to the block in the GPR kernel which contains the second-
order derivative. Effectively, the equation solved in the GDML
approach is

−F ≙ ∂
2

∂ r⃗∂ r⃗∗
K

KRR
α
GDML. (24)

The GDML regression coefficients can be obtained, similar to those
in GPR and KRR, by minimizing a cost function similar to that in
Eq. (13) but only including the forces and second-derivative kernel
matrix in the above equations.

Force predictions are then calculated using Eq. (24), while
energy predictions in the GDML approach are done using a 1st
derivative kernel,
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U ≙ ∂

∂ r⃗
K

KRR
α
GDML. (25)

Note that this derivative is taken with respect to the basis and not the
query molecule. Since the energy is not used in the training step, all
predicted energies are only defined up an integration constant which
can be inferred from the mean deviation between predicted energies
for a training or validation set.

Compared to GPR, the computational cost of GDML is ever
so slightly reduced as the three smaller blocks are being ignored
in the kernel. However, the corresponding gain in computational
cost is negligible. Leaving out the energy in the training set makes
it difficult to regress any energy offset if a model is trained across
chemical composition and molecular size. For GDML models that
are only trained on one molecule, however, this seems to have very
little effect.28

In the formulation of GDML and sGDML by Chmiela et al.,28

one further performance enhancement is made, compared to the
equations mentioned for KRR and GPR herein. Instead of using a
representation for each atomic environment, GDML and sGDML
both use one “global” representation for the entire molecule. In
GDML, the inverse interatomic distance matrix is used, while
sGDML is a variant of GDML which takes atoms with sym-
metry into account. Other notable global representations are the
Coulomb matrix,24 BoB,25 SLATM,36 the Fourier series of atomic
radial distribution functions,27 and the constant size descriptor of
Collins et al.26

The use of such global representations reduces the double sum
over atomic contributions in Eq. (23) to the evaluation of just the
single “global” kernel derivative. The result is a massive reduction in
the evaluation speed on the order of M2, where M is the number of
atoms in each molecule.

While this speedup is desirable, we note that based on our
observation in Sec. III and our results for force and energy pre-
dictions, such global representations generally display lower pre-
dictive accuracy, especially for condensed-phase systems. There
is some evidence that global representations are not ideal for
learning size-extensive properties, such as energies, since the
resulting kernel elements do not scale with the size.38 This is
naturally taken into account by kernels that sum over atomic
contributions. For example, with a local representation, a system
with two of the same molecule infinitely apart will naturally have
twice the energy of a system containing the same molecule only
once, whereas the same will not necessarily be true for a global
kernel.

Future development of global representations could potentially
be fruitful due to their computational efficiency.

We note that the speedup obtained from using global represen-
tations is similar to the difference in scaling cost betweenOQML and
GPR, and the difference between our combined FCHL19/OQML
model and a GDML-type model based on a global representation
will likely be less than a factorM.

5. Kernel function

We introduce a variant of the Gaussian kernel function, aug-
mented with an elemental screening function that only compares
representations for atomic environments of atoms of the same
element type,

K (qI ,q∗J ) ≙ δZIZ
∗

J
exp
⎛⎝−
∥qI − q∗J ∥22

2σ2
⎞⎠, (26)

where δ is the Kronecker delta function and the subscripts ZI and
Z∗J are the nuclear charges of atoms I and J∗, respectively. The δZIZ

∗

J

term ensures that only relevant pairs of atoms are compared. For
example, it is likely to be of little relevance to compare the atomic
environment of a carbon atom to that of a hydrogen atom. Further-
more, the Kronecker delta function reduces the cost of a kernel eval-
uation since the calculation of many expensive combinations of ker-
nels and their derivatives can be skipped. If needed, the Kronecker
delta function could still be changed to a function that incorpo-
rates learning across alchemical space to increase the learning rate,
as shown in our previous work.1

In principle, any suitable kernel function could be used besides
a Gaussian function, and the choice could be treated as a hyper-
parameter of the model. For simplicity, however, only the Gaussian
kernel is used in this work.

III. RESULTS

A. Energy learning

In this section, the FCHL19 representation is used with the
“universal” set of hyper-parameters fitted to energies of non-
equilibrium structures (see Sec. IV B). As the geometries in the QM9
and QM7b datasets used in this section are minimized with respect
to energy, we expect a slight decrease in the predictive accuracy of
FCHL19 compared to if the hyper-parameters had been optimized
on similarly minimized structures. We compare KRR models with
FCHL19 to similar KRRmodels with FCHL18 and a number of other
models from the literature. We note that the model and data selec-
tion methodology used to obtain the various results found in the
literature might differ from the 5-fold cross-validation methodol-
ogy we used in this study. However, we assume that such differences
only give rise to negligible differences in the predictive accuracy of
the models.

1. Results for QM9

In Fig. 3, we compare the predictive accuracy of a number of
kernel-based models for the atomization energy of molecules in the
QM9 dataset.46 We compare FCHL19 to five other well-performing
representations: the SOAP multi-kernel model;34,35 SchNet17 and
PhysNet,21 which are the two best performing neural networks for
this dataset; SLATM and aSLATM,36 where the former uses one
global representation for the entire molecule and the latter uses
an atomic decomposition of the kernel; and finally the previous
FCHL181 representation.

For the QM9 dataset, we find models based on FCHL19 to
be among the models with the lowest out-of-sample mean abso-
lute error (MAE) atomization energy predictions. Compared to the
best performing model, FCHL18, the MAE at 20 000 training sam-
ples is 0.30 kcal/mol and 0.47 kcal/mol for FCHL18 and FCHL19,
respectively. For the largest training split (75 000 training samples),
the MAE for the FCHL19 model is 0.25 kcal/mol. Overall, we find
that our previous FCHL18 model has the lowest prediction MAE,
while SOAP, FCHL19, and aSLATM have virtually indistinguishable
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FIG. 3. Learning curves for the QM9 dataset: The mean absolute error (MAE)
of atomization energy prediction is plotted for 5 KRR models based on different
representations and one neural network vs the training set size (see text). Linear
fits are displayed for clarity, and shaded areas denote the 95% confidence intervals
for the fits as obtained via boot-strapping.47

MAE. Finally, the Global SLATM model and SchNet perform a bit
worse for QM9.

We reiterate again at this point that the hyperparameters of
FCHL19, in contrast to some other models, have not been optimized
on the QM9 dataset.

2. Results for QM7b

Similarly, Fig. 4 compares the predictive accuracy of a num-
ber of kernel-based models for the atomization energy of the QM7b
dataset.48 We compare our model to the following representa-
tions: FCHL18,1 SLATM,36 the Coulomb matrix,24 Bags-of-Bonds
(BoB),25 and finally SOAP.34,35 Data for these models are obtained
from Ref. 1.

As expected, the dataset is too small for the Coulomb matrix
and BoB to reach chemical accuracy. In contrast, all other models
(FCHL19, FCHL18, SLATM, and SOAP) reach chemical accuracy
when trained on between 800 and 1600 samples. Additionally, the
fitted learning curves (Fig. 4) display similar predictive accuracies.
For example, all these models are within an MAE of ±0.3 kcal/mol
of FCHL19 at 1000 training samples.

3. Results for QM7b-T and GDB13-T

While the QM7b and QM9 datasets contain energies for
the equilibrium geometry of small molecules, the QM7b-T49

and GDB13-T49 datasets contain non-equilibrium geometries of
molecules from QM7b48 and GDB-13.50 In addition to gauging the
accuracy of a model on unseen samples from the same dataset by
training and predicting on subsets of QM7b-T, we also benchmark
how well a model can extrapolate to prediction on samples from a
dataset containing larger molecules by predicting on GDB13-T with

FIG. 4. Learning curves for QM7b: The mean absolute error (MAE) is plotted for
KRR models with 6 different representations (see text) vs the training set size.
Linear fits are displayed for clarity, and shaded areas denote the 95% confidence
intervals for the fits as obtained via boot-strapping.47

models trained on QM7b-T. Learning curves for these tests can be
seen in Fig. 5.

First, we compare FCHL19 to FCHL18 and the Molecular-
Orbital-Based (MOB) machine learning method49,51 by training on
the QM7b-T dataset and predicting on unseen samples from the
same dataset. FCHL19 and FCHL18 both reach 1 kcal/mol accu-
racy for this dataset at between 400 and 800 training samples, and
above 1000, the difference is less that 0.1 kcal/mol, with FCHL18
being consistently slightly more accurate. The MOB method, which
requires a Hartree–Fock calculation for every query to calculate
the localized molecular orbitals used to generate the representa-
tion, reaches 1 kcal/mol at about 200 training samples and is con-
sistently more accurate with about a 2–3 times improvement in
accuracy.

Second, we test the extrapolative power of the three mod-
els by training models on the QM7b-T dataset and predicting on
the GDB13-T dataset. In this test, the differences observed previ-
ously seem to be magnified. Neither the FCHL19 nor the FCHL18
models reach chemical accuracy for the GDB13-T dataset with the
amount of training data available in the QM7b-T dataset. At 1000
training samples, the MAE for the two models is 2.7 kcal/mol and
2.2 kcal/mol, respectively. In comparison, MOB reaches this error
at around 100–200 samples; however, a larger MOB training set
is unavailable due to the difficulty of training large models for
MOB.49,51

4. Results for Water40

TheWater40 dataset consists of 10 000MD snapshots of a water
cluster with 40 water molecules for which a density functional the-
ory (DFT) single-point energy has been calculated.22 As such, this
dataset probes the performance of ML models on chemical systems
that approach the condensed-phase behavior. Here, we compare
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FIG. 5. The two figures display the out-of-training error for models trained on subsets of the QM7b-T dataset. In (a), the models predict the MP2 correlation energy of unseen
samples from the same QM7b-T dataset, while in (b), the same models predict the energy on unseen samples from a subset of GDB13-T dataset. Linear fits are displayed
for clarity, and shaded areas denote the 95% confidence intervals for the fits as obtained via boot-strapping.47 For FCHL18, the fit and boot strapping are performed without
including the first data point as the fit would otherwise appear unreasonably steep.

our model to the following representations: FCHL18,1 SLATM and
aSLATM,36 the Coulomb matrix,24 and BoB.25 The learning curves
for these models on the Water40 dataset are displayed in Fig. 6.

We find that the accuracy of machine learning models based
on the FCHL19 representation is far greater compared to any
other representation. For example, for models trained on 1000
training instances, the FCHL18-based model yields an MAE of

FIG. 6. Learning curves for the Water40 dataset: The mean absolute error (MAE)
binding energy per molecule is plotted for 6 different representations vs the training
set size. Linear fits are displayed for clarity, and shaded areas denote the 95%
confidence intervals for the fits as obtained via boot-strapping.47

0.22 kcal/mol/molecule, while the model trained using the FCHL19
representation yields an MAE test error of 0.12 kcal/mol/molecule.
The FCHL19 representation reduces the data required to reach a
given accuracy by roughly 5 times compared to FCHL18 and by
roughly 10 times compared to aSLATM.

Note that for Water40, and in contrast to molecular datasets,
the use of global representations (i.e., those that do not use a
decomposition of the kernel in local, atomic contributions), such
as the Coulomb matrix, BoB, and SLATM, results in models which
hardly display any learning at all, with a constant error of about
0.5 kcal/mol/molecule, regardless of training set size.

Although FCHL19 is parameterized for the atomization energy
of small molecules, it, nevertheless, yields superior accuracy for the
binding energy of water clusters where accurate handling of non-
covalent interactions is key to determining the energy. This suggests
that the parameters in the representation have a high degree of trans-
ferability and do not necessarily need to be re-parameterized for
every new dataset.

While the accuracy of models based on FCHL19 is better than
that of models based on other representations, we expect that models
based on, for example, FCHL18 and aSLATM are likely to reach a
similar accuracy if the model parameters of those representations
are obtained similar to those of FCHL19.

B. Force learning

In Sec. III B 1, the FCHL19 representation is used with param-
eters that are optimized for both force and energy prediction simul-
taneously (see Sec. IV B).

1. Results for MD17

Figure 7 reports theMAE force and energy prediction as a func-
tion of the number of training samples taken from 7 molecules from
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FIG. 7. Here, we present learning curves for force and energy learning for seven molecules from the MD17 dataset. Learning curves are presented for 6 different QML
models (see text). The top row contains learning curves for the out-of-sample MAE energy prediction (MAE E), and the bottom row contains corresponding learning curves
for out-of-sample MAE force component prediction (MAE Fx ), for the molecules (from left to right) ethanol, salicylic acid, aspirin, malonaldehyde, toluene, naphthalene, and
uracil.

the MD17 dataset.28 We note that the original MD17 dataset also
includes a dataset for benzene. However, due to low accuracy in
the reported energies for this dataset, we have chosen to exclude
this from our tests as the high noise level would be the dominat-
ing error and as such would not reflect differences in the machine
learning procedures. We compare OQML and GPR models based
on FCHL19 to OQML models based on FCHL18.1,22 In addition,
we compare to GDML28 and sGDML29 which are two state-of-the-
art kernel-based methods closely related to GPR. Furthermore, we
compare to one of the best performing neural networks for forces,
SchNet,17 which is based on a continuous-filter convolutional neural
network.

In general, we note that the reparameterized FCHL19 rep-
resentation leads to models that have improved accuracy com-
pared to the FCHL18 prediction errors reported in our pre-
vious paper.22 Learning curves for these models are presented
in Fig. 7.

For all molecules in the MD17 dataset, the FCHL19 repre-
sentation with both the GPR and OQML regressors display faster
learning compared to FCHL18 with the OQML regressor for both
energy and force learning. As a general trend, FCHL19/OQML
requires about half the samples to reach a given accuracy compared
to FCHL18/OQML. Changing to the GPR regressor, FCHL19/GPR
in turn requires about half the samples to reach the same accuracy
as FCHL19/OQML. For example, for ethanol, an MAE force error
of 0.4 kcal/mol/Å error is obtained at roughly 200, 400, and 800
samples for FCHL19/GPR, FCHL19/OQML, and FCHL18/OQML,
respectively.

Similar trends are observed for both force and energy learn-
ing for salicylic acid, aspirin, malonaldehyde, and uracil. For these
molecules, we find that FCHL19/GPR has the highest accuracy in all
cases, with the sGDMLmethod and FCHL19with theOQML regres-
sor also performing very well and at much reduced computational
costs.

We note that GDML and FCHL18/OQML overall have the low-
est accuracy of the kernel methods, and SchNet is slightly worse
on average, although the time-to-train for SchNet reportedly is
much more favorable for larger training sizes.18 For toluene, naph-
thalene, and uracil, we note very slow energy learning for all the
presented methods, with almost flat learning curves at around
0.1 kcal/mol error. However, this seems to be an inherent prop-
erty of the dataset and likely to be related to noise in the calculated
DFT energies, for example, from use of unconverged integration
grids.52,53

Furthermore, for the molecules toluene and naphthalene, we
observe that sGDML performs very well for force learning, com-
pared to the FCHL19 variants. We speculate that the comparably
poor performance of variants of FCHL is due to the high degree
of symmetry in the 6-membered rings of the molecules; when the
molecule has many atoms of the same element type at very close
radial distances, the Fourier transform of the angular histogram in
the three-body term becomes very crowded, and this might lead
to slower learning for molecules containing such moieties of high
symmetry. This might be improved upon by reoptimizing the hyper-
parameters specifically for this system. Nevertheless, FCHL19 with
both the OQML and GPR regressors is within 0.1 kcal/mol energy
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error and 0.1 kcal/mol/Å force component error of the best per-
forming method (sGDML) at 1000 training samples in both of these
cases.

C. Timings

In this section, we report timings for generating the training
kernel which is the most costly step for these kernel models. For
force predictions, we additionally report the prediction time per
atom of FCHL19-based models trained with the OQML regressor.
All timings in this section were carried out on a 24-core compute
node equipped with two Intel Xeon E5-2680v3 @ 2.50 GHz central
processing units (CPUs) and 128 GB RAM.

1. Timings for energy learning

Using the implementations in the QML software package,54

we compare timings for calculating kernels for three representa-
tions that all use a decomposition of the kernel into atomic con-
tributions, namely, FCHL19, FCHL18, and aSLATM. For FCHL18
and aSLATM, all parameters are set to the default values in QML,
and for FCHL19, the values in Appendix A are used. These tim-
ings are given in Table I. In all cases, the training times scale as
O(N2) with the training set size, while the prediction time scales
as O(N).

To illustrate the effects of elemental complexity, we com-
pare timings for both QM7 and QM7b. The two datasets con-
tain molecules with up to 7 non-hydrogen atoms, with the largest
molecule being 23 atoms total in both sets, and both datasets con-
tain about 7 K molecules. They differ, however, in the elements that
are present in the two datasets: QM7 contains HCNOS, while QM7b
additionally contains Cl. As the size of the three-body terms in
aSLATM and FCHL19 representations scale cubically and quadrati-
cally, respectively, with the number of elements in the dataset, the
result will be a substantial increase in kernel evaluation time for
models based on these representations.

For aSLATM, the two datasets take 4 s, 955 s and 7 s, 727 s
to compute, respectively, whereas for FCHL19, the same numbers
are 216 s and 310 s. In contrast, FCHL18 is largely unaffected by
chemical complexity, with kernel evaluation times of 3 s and 164 s,
and 3 s and 286 s for the two sets, respectively.

Additionally, we present timings for the QM9 dataset. These
timings are also presented in Table I. This dataset contains 133 855
molecules with the elements HCNOF and molecules with up to 9
non-hydrogen atoms, where the largest molecule contains 29 atoms.
Using the previous implementations of aSLATM and FCHL18,

calculating the kernel matrix for this dataset can only be done on
a reasonable time scale on a cluster with several nodes. For aSLATM
and FCHL18, the time to calculate the QM9 kernel is 728 h and 548 h
on our 24-core node, respectively. In contrast, for FCHL19, the time
to calculate the kernel is 27 h on the same node. The speedup com-
pared to aSLATM comes from the reduced size of the representation
and the element-wise kernel function which is not normally used
with aSLATM.36

Note that these timings only cover calculating the training ker-
nel, and not the representation generation or regression solver. Gen-
erating the representations scales asO(N)with the number of train-
ing or prediction samples and is insignificant in comparison. While
solvers to obtain the regression coefficients typically scale as O(N3)
with the number of training samples, this step is in practice insignif-
icant compared to generating the kernel, even for the largest kernels
due to a lower prefactor. For example, the QML software package uses
a Cholesky decomposition as implemented in libraries such as Intel
Math Kernel Library (MKL), and using this implementation for the
largest kernel studied in this section (QM9), this step takes less than
1 h, whereas the time to generate the kernel takes between 27 h and
728 h.

2. Timings for force learning

Next, we report timings for kernel evaluations for calculating
the training kernel for force and energies for a set of 1 K molecules
taken from the MD17 dataset. These timings are given in Table II.
Again, in all cases, the training times scale as O(N2) with the
training set size, while the prediction time scales as O(N). Com-
pared to the FCHL18 representation, the speedup using the same
regressor (OQML) is as low as 5 times for the smallest molecules,
ethanol and malonaldehyde, and up to almost 20 times for the
largest molecule, aspirin. For models based on FCHL19 with the
OQML regressor, the training times vary between around 51 s
for malonaldehyde and 527 s for aspirin. These numbers corre-
spond to force prediction times (also given in Table II, with a
graphical overview in Fig. 8) in the range of 5.7–25.3 ms/atom for
models trained on 1000 training samples, excluding generation of
the representation. The time to generate the representations and
Cartesian derivatives of the representation was found to be very
negligible in comparison: for one of the two smallest molecules
in MD17, namely, ethanol with 9 atoms, the time was found to
be 0.27 ms/atom, while for the largest molecule (aspirin with 21
atoms), the time to compute the representation was found to be
1.0 ms/atom.

TABLE I. Timings for kernel evaluation for the QM7b and QM9 datasets, with the three different atomic representations:
aSLATM, FCHL18, and FCHL19. To illustrate the effects of molecular size and elemental complexity on the kernel evaluation
time, data for the three datasets QM7, QM7b, and QM9 are presented. Timings are presented in seconds (s) or hours (h).
Additionally, the size of each dataset and the elements present in the datasets are listed. All calculations are done on a
24-core node equipped with two Intel Xeon E5-2680v3 @ 2.50 GHz CPUs.

Dataset Molecules Elements aSLATM FCHL18 FCHL19

QM7 7 165 H C N O S 4966 s 3164 s 216 s
QM7b 7 211 H C N O S Cl 7727 s 3286 s 310 s
QM9 133 885 H C N O F 728 h 548 h 27 h
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TABLE II. Training times for calculating the kernel matrix for 1000 molecules (forces and energies) of 7 molecules from the
MD17 dataset with FCHL18 and FCHL19 with the GPR and OQML are given in seconds. Additionally, the time to calculate
the prediction kernel for FCHL19/OQML is given in ms per atom. The numbers in this table are calculated as averages over
5 kernels using different random splits, run on a 24-core node equipped with two Intel Xeon E5-2680v3 @ 2.50 GHz CPUs.

FCHL18 OQML FCHL19 GPR FCHL19 OQML FCHL19 OQML
Molecule Atoms (s) (s) (s) (ms/atom)

Ethanol 9 387 2 252 66 7.3
Malonaldehyde 9 286 1 926 51 5.7
Naphthalene 18 7 886 11 782 455 25.3
Aspirin 21 10 067 101 451 527 25.1
Salicylic acid 16 3 940 6 836 249 15.6
Toluene 15 2 755 7 976 271 18.1
Uracil 12 N/A 2 576 87 7.3

Models based on FCHL19 with the GPR regressor are found
to be substantially slower than OQML models. For the smallest
molecules (ethanol, malonaldehyde, and uracil), the GPR kernel can
be calculated in less than 1 h (between 1926 s and 2576 s), about
30–38 times slower than the corresponding OQML kernel. For the
largest molecule, aspirin, the differences are even larger: the GPR
kernel takes 101 s and 451 s, 192 times slower than the correspond-
ing OQML kernel. Based on the observations in this section, a GPR
model requires about half the amount of training data to reach the
same accuracy as a model based on OQML. With the O(N2) scal-
ing of both GPR and OQML, this translates to a 4 times increase
in prediction speed, and consequently, OQML models will be about
10–50 times faster than a GPR model if the models are trained to
the same accuracy. This underlines how OQML is a favorable alter-
native to GPR, although the learning curve offsets are somewhat
larger.

FIG. 8. The time to calculate the training kernel for 1000 training samples with
three different methods is displayed for 7 molecules from the MD17 dataset,
namely, ethanol, malonaldehyde, uracil, toluene, salicylic acid, naphthalene, and
aspirin. Timings are displayed for the methods FCHL19/GPR, FCHL18/OQML, and
FCHL19/OQML, and are calculated as averages over 5 kernels using different ran-
dom splits, run on a 24-core node equipped with two Intel Xeon E5-2680v3 @
2.50 GHz CPUs.

IV. METHODOLOGY

A. Datasets

This section contains a brief description of the datasets used to
benchmark QMLmodels trained with the revised FCHL19 represen-
tation.

1. QM7b

The QM7b dataset48 is based on a subset of the GDB-13
database50 and consists of 7211 molecules with up to 7 atoms of
the elements CNOSCl, saturated with hydrogen atoms. For each
molecule, the Perdew-Burke-Ernzerhof (PBE) equilibrium geome-
try is available along with 13 different properties also calculated at
the DFT level.

2. QM9

The QM946 dataset is similar to QM7b, and it is only based on
a subset of the GDB-17 database.55 In contrast to QM7b, the QM9
dataset is much larger and contains 133 885 molecules with up to 9
atoms of the type CNOF saturated with hydrogen atoms. For each,
the B3LYP equilibrium geometry is available, and the atomization
energy is used to generate the learning curves in this study. Similar to
previous studies, we leave out the “uncharacterized” subset of 3054
molecules that did not pass a geometry consistency check when the
dataset was created.56

3. QM7b-T and GDB13-T

The QM7b-T and GDB13-T datasets49 consist of non-
equilibrium geometries sampled from ab initiomolecular dynamics
simulations at 350 K. QM7b-T contains non-equilibrium structures
of molecules fromQM7b, while GDB13-T contains non-equilibrium
structures of a subset of the GDB-13 database50 where eachmolecule
contains 13 atoms of the type CNOSCl and saturated with hydro-
gen. For each molecule in the two sets, the MP2 correlation energy is
given, i.e., the difference between the MP2 and the HF energy. This
set is used to test the extrapolative powers of QML models by train-
ing on the QM7b-T dataset and predicting on the GDB13-T dataset
which contains larger molecules.

4. Water40

The Water40 dataset1 consists of 10 000 MD snapshots from
a molecular dynamics simulation of a water cluster with 40 water
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molecules sampled at 300 K. For each sample, a dispersion-corrected
DFT single-point energy is calculated at the PBEh-3c level of the-
ory.57 In contrast to other datasets used in this study, reliable treat-
ment of non-bonded interactions in the machine learning model is
required to learn these energies accurately.

5. MD17

The MD17 dataset28 contains snapshots from ab inito molec-
ular dynamics on a number of small organic molecules for which
reference force and energies are calculated at the DFT level. Out
of the dataset, we benchmark our models on force and energy data
from the molecules ethanol, salicylic acid, aspirin, malonaldehyde,
toluene, naphthalene, and uracil.

B. Optimization of representation parameters

The optimal values of the parameters used to generate the
FCHL19 representation for a given atomic environment are in prin-
ciple hyperparameters of the model and must be re-fitted to each
individual dataset to ensure optimal learning. However, in our expe-
rience, the variances in these parameters are relatively small and
show substantial transferability from dataset to dataset. Since the
number of parameters is relatively big (nine parameters in total), the
amount of work required to ensure optimal learning for a specific
dataset can be substantial.

Instead, we propose the use of two sets of “universal” default
parameters that are fitted a priori. To fit these, we employed a ran-
dom subset of 576 distorted geometries of small molecules with up to
5 atoms of the type CNO, saturated with hydrogen atoms, for which
the forces and energies have been obtained fromDFT calculations.22

This dataset is publicly available (see Ref. 58).
The set was randomly divided into a training set (384 geome-

tries) and a test set (192 geometries). A model was fitted on
the training set, and predictions on the test set were used to
minimize the following cost function with respect to the model
parameters:

L ≙ 0.01∑
i

(Ui − Ûi)2 +∑
i

1
ni
∥Fi − F̂i∥2, (27)

where U i is the energy of molecule i in the test set and Fi and ni are
the forces and number of atoms of the same molecule, respectively.
The minimization was performed via Monte Carlo greedy optimiza-
tion, where real-type parameters are optimized by multiplying by a
factor randomly chosen from a normal distribution centered on 1
with the variance 0.05, and integer-type parameters are optimized
by randomly adding +1 or −1.

Note that in order to reduce the number of free parameters, the
hyperparameters are not fitted as element-specific parameters, but
rather the same value of a hyperparameter is used to generate the
representation for an atomic environment, regardless of the element
type. The width of the Gaussian angular function, ζ, was fixed to π
as this has shown to reduce the error from the Fourier expansion
to be negligible. The distance cut-off for these “default” values was
conservatively set to 8 Å.

In the end, we fit two different sets of model parameters: one for
energies + forces and one for energies. For the latter parameter set,
the term in Eq. (27) that includes forces was set to zero. The optimal
values of all parameters can be found in Appendix A.

C. Hyperparameter selection

For all learning results in Sec. III, the hyperparameters of
the model (not including the representation) were optimized using
nested 5-fold cross validation (CV). First, the dataset was random-
ized and split into 5 “outer” folds using the KFold class implemented
in scikit-Learn.59 Second, for each of the five folds, the training set
was again randomized and split into 4 “inner” folds. Cross valida-
tion was performed on the inner folds to select optimal values for
the kernel width and regularization. To select optimal kernel width
and regularizer, a grid search was performed for σ ∈ {1, 2, 4, 8, 16,
32} and λ ∈ {10−10, 10−9, 10−8, 10−7, 10−6}. For OQML runs, instead
of screening the parameter λ, the value of the lowest accepted sin-
gular value (in terms of the largest singular value) was screened in
the range εmin ∈ {0, 10−12, 10−11, 10−10, 10−9, 10−8, 10−7, 10−6}.
For datasets with energy labels, the set of {λ/εmin, σ} with the low-
est average MAE energy within the inner CV folds was selected
to predict energies on the test set from the outer CV folds. Sim-
ilarly, for datasets with both force and energy labels, the set with
the lowest average L [see Eq. (27)] within the inner CV folds was
selected.

D. Learning curves

Learning curves for models based on FCHL19 are presented
as the average out-of-sample mean absolute error (MAE) over the
five outer CV folds of the datasets. The leading term in this out-
of-sample error is predicted to decay as a

Nb . To illustrate this effect,
all learning curves are displayed on a log-log scale where this decay
becomes linear, and all plotted learning curves thus contain a linear
fit and the 95% confidence interval for the fit.60–62 The 95% con-
fidence interval is obtained using boot-strapping as implemented
in the Python library Seaborn,47 which is also used to generate the
plots.

E. Timings

All timings were performed on a compute node equipped with
two Intel Xeon E5-2680v3 @ 2.50 GHz CPUs (24 CPU cores in total)
and 128 GB RAM. The OMP parallel kernel routines in the QML
code were compiled with the GNU Fortran compiler version 4.8 and
linked to IntelMKL. QMLwas installed using only the default settings,
similar to those of a user installing QML directly from the Python
Package Index (PyPI).

F. Software and software availability

All machine learning calculations were performed using the
open source quantum machine learning package QML.54 The code
to reproduce the FCHL19 representation and several of the other
models used in this paper as well as the relevant kernel and kernel
derivative matrices can be found in the GitHub repository for QML at
https://github.com/qmlcode/qml.

V. CONCLUSION AND OUTLOOK

We have presented a revised representation for chemical com-
pounds which enables machine learning models that have state-of-
the-art accuracy and much reduced computational cost in order
to easily run on hardware that is accessible to most chemists.
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The representation is built on a discretization of the previously pub-
lished FCHL18 model.1 Two sets of universal parameters for the
representations were fitted to an initial training set and demon-
strated to have a high degree of transferability.

Machine learning models trained with the revised FCHL19
representation show state-of-the-art prediction accuracy on several
datasets. For models trained on atomization energies, such as QM7b
and QM9, the accuracy is better than 0.5 kcal/mol and 0.25 kcal/mol
at the largest training sizes, while the training times are reduced by
10–20 times compared to FCHL18. For QM7, it is possible to train
a model on 7 K molecules in little over 3 min, while for the full set
of 133 885 molecules in QM9, a model can be trained in roughly one
day on a single node, compared to three weeks with our previous
models. In general, we note that some other kernel-based models
also perform very well on these datasets, namely, the SLATM- and
SOAP-based models.

For the Water40 data, the revised FCHL19 model reduces the
predicted binding energy error to below 0.1 kcal/mol/molecule, even
with the representation being optimized solely for small molecules,
demonstrating the transferability of the model.

Models trained on the MD17 dataset with the revised FCHL19
representation and the OQML or GPR regressors were found to
yield models that reach state-of-the-art accuracy in force predic-
tion while requiring 2–4 times less data compared to FCHL18 with
the OQML regressor. The computational cost of these force pre-
dictions was found to be on the scale of milliseconds per atom.
For energy prediction on the MD17 dataset, the predictive accu-
racy seems to be limited by noise in the dataset, but models based
on FCHL19 were found to have low energy prediction errors,
nevertheless.

Our efforts are a substantial step toward both practical and
transferable models that will allow the chemist to routinely train
models and run molecular dynamics simulations with machine
learned potentials throughout chemical space. These developments
should be valuable for computational materials and molecular
design campaigns, as well as for more interactive and immersive
virtual reality simulation environments, which have recently been
extended to enable users to manipulate real-time simulations of
drug-ligand binding,63 small molecule quantum chemistry,64,65 and
next generation digital education.66,67 Future work will also deal with
condensed-phase systems.
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TABLE III. Optimized representation parameters for FCHL19 for energy (E), and
energy and forces (E + F). nRs2 and nRs3 are the number of bins for a pair or triplet of
element types in the two- and three-body spectra, respectively. w and η3 determine
the width of the radial two- and three-body distribution functions, respectively. N2 and
N3 determine the decay of the two- and three-body scaling functions, respectively.
c3 is a weight factor that determines the weight of the three-body part relative to the
two-body part. ζ is the width of the Gaussian functions used in the Fourier series and
fixed to π. rcut is the distance cut-off, here fixed to 8.0 Å.

Parameter E E + F

nRs2 22 24
nRs3 17 20
w (Å2) 0.41 0.32
η3 (Å

−2) 0.97 2.7
N2 2.4 1.8
N3 2.4 0.57
c3 (Å

N3 ) 45.8 13.4
ζ π π
rcut (Å) 8.0 8.0

APPENDIX A: OPTIMIZED REPRESENTATION
PARAMETERS

The optimal representation parameters obtained through the
Monte Carlo optimization are presented in Table III.

APPENDIX B: KERNEL DERIVATIVES

This section derives the first and second derivates of the kernel
with respect to the coordinates. First, we define the signed difference
between two representations,

d ≙ q − q∗. (B1)

The derivative of representation with respect to a specific coordinate,
r, typically the x-, y-, or z-coordinate of an atom in the chemical
compound, is

∂q

∂r
≙ [∂q1

∂r

∂q2
∂r

∂q3
∂r
⋯∂qn

∂r
]⊺. (B2)

Defining a Gaussian kernel,

K (q,q∗) ≙ exp(−∥d∥22
2σ2
). (B3)

Defining a vector, g, as the first derivative of the kernel with respect
to q∗i ,

gi ≜ ∂

∂q∗i
K (q,q∗) ≙ di

σ2
exp(−∥d∥22

2σ2
). (B4)

The kernel derivative with respect to coordinate r is

∂

∂r
K (q,q∗) ≙ g ⋅ (∂q∗

∂r
). (B5)

Defining a matrix, H, as the second derivative with respect to qi
and q∗j ,
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Hij ≜ ∂
2

∂qi∂q∗j
K (q,q∗) ≙ (δij 1

σ2
− didj

σ4
) exp(−∥d∥22

2σ2
). (B6)

The kernel derivative with respect to coordinates ra and rb is

∂
2

∂ra∂r∗b
K (q,q∗) ≙ ( ∂q

∂ra
)⊺H (∂q∗

∂r∗
b

). (B7)

Analytical implementations of these derivatives with the kernel
function defined in Eq. (26) are implemented in our QML code.54
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