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Abstract— We present a new collision and proximity library
that integrates several techniques for fast and accurate collision
checking and proximity computation. Our library is based on
hierarchical representations and designed to perform multiple
proximity queries on different model representations. The set of
queries includes discrete collision detection, continuous collision
detection, separation distance computation and penetration
depth estimation. The input models may correspond to tri-
angulated rigid or deformable models and articulated models.
Moreover, FCL can perform probabilistic collision checking
between noisy point clouds that are captured using cameras or
LIDAR sensors. The main benefit of FCL lies in the fact that
it provides a unified interface that can be used by various
applications. Furthermore, its flexible architecture makes it
easier to implement new algorithms within this framework. The
runtime performance of the library is comparable to state of
the art collision and proximity algorithms. We demonstrate its
performance on synthetic datasets as well as motion planning
and grasping computations performed using a two-armed
mobile manipulation robot.

I. INTRODUCTION

The problems of collision and proximity computation are

widely studied in various fields including robotics, simulated

environments, haptics, computer games and computational

geometry. The set of queries includes discrete collision

checking, separation distance computation between two non-

overlapping objects, first point of contact computation be-

tween continuous moving objects, and penetration depth

computation between overlapping objects. Furthermore, the

underlying geometric representations may correspond to

rigid objects (e.g., computer games), articulated models (e.g.,

mobile manipulators), deformable models (e.g., surgical or

cloth simulators) or point-cloud datasets (e.g., captured using

camera or LIDAR sensors on a robot).

Many efficient algorithms have been proposed to perform

collision and proximity queries on various types of models.

At a broad level, they can be classified based on the un-

derlying query or the model representation [16], [6]. Some

of the commonly-used techniques for polygonal models are

based on bounding volume hierarchies, which can be used

for collision and separation distance queries, and can be

extended to deformable models. Moreover, many of these

algorithms have been used to design widely used libraries

such as I-COLLIDE, Bullet, ODE, RAPID, PQP, SOLID,

OPCODE, V-Clip, Self-CCD, etc. However, these libraries
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Fig. 1: The PR2 is a mobile manipulation system with integrated stereo
and laser sensors. Left: A pick and place task with the PR2 was among
the experimental tasks used to validate FCL. Right: A visualization of the
environment that the PR2 is working with.

have two main restrictions: 1) They are limited to specific

queries (e.g., discrete collision checking or separation dis-

tance computation) on certain types of models (e.g., convex

polytopes or rigid objects); and 2) it is hard to modify or

extend these libraries in terms of using a different algorithm

or representation. For example, SOLID [3] is designed to

perform collision checking using axis-aligned bounding box

(AABB) trees; RAPID is designed for collision detection

using oriented bounding box (OBB) trees [9], and PQP

performs separation distance queries using rectangular swept

sphere (RSS) trees [13]. It is hard to use a different bound-

ing volume with each of these libraries or use a different

hierarchy computation or traversal scheme.

Many applications need to perform different collision and

proximity queries. Figure 1 shows an example task where the

PR2 mobile manipulation robot is executing a pick and place

task using a combination of grasping, motion planning and

control algorithms. Continuous collision detection queries

are useful for grasp planning executed by the robot to

generate grasps for the objects. The robot uses sample-based

motion planners to compute collision-free paths. It is well

known that a high fraction of running time for sample-based

planning is spent in collision/proximity queries, underlining

the need for fast efficient proximity and collision queries.

The local planning algorithms that form the underlying

basis of sampling-based planners usually perform multiple

discretized collision queries or may use continuous collision

checking algorithms. Many sampling schemes either use

separation distance computation [15] or penetration-depth

estimation (e.g. retraction planners) to compute samples in

narrow passages. Proximity information can also be used to

plan paths that are further away from obstacles, allowing the

robot to execute the plans at higher speeds.

Contributions: We present a new collision checking library,

labeled FCL (Flexible Collision Library), which provides

a unified interface to perform different proximity queries.

Furthermore, it is able to handle a wide class of models,



including rigid and deformable objects, articulated models

and noisy point clouds. We propose a system architecture

that is flexible in terms of performing different sets of queries

and can be extended in terms of adding new algorithms

and representations. These include proximity computations

between convex polytopes, general polygonal models, artic-

ulated models, deformable models and noisy point clouds.

In order to perform different queries, FCL models query

computation as a traversal process along a bounding volume

hierarchy. Different queries use the same traversal frame-

work, but differ in terms of intermediate data structures and

traversal strategies. The overall performance of the FCL is

comparable to state-of-the-art algorithms.

We validate our techniques on a real-world system through

integration with a pick and place manipulation task per-

formed on the PR2 robot (Figure 1). The PR2 robot has

both stereo and laser range finders that provide point cloud

data at a high rate. The robot needs to calculate feasible

motion (i.e., collision-free motion that satisfies some dy-

namics constraints), quickly through cluttered environments.

We integrate our collision checking methods with the open

source OMPL motion planning library [2] and demonstrate

fast and accurate motion planning that allows the robot

to complete its task. FCL is available as an independent

library at https://kforge.ros.org/projects/fcl/. A

ROS interface to FCL is also provided so that users can

use FCL to perform collision and proximity queries with

different robots.

The rest of the paper is organized as follows. We survey

related work on collision and proximity queries in Section II.

Section III gives an overview of the library and the detailed

architecture is described in Section IV. We highlight a few

applications and performance in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we first give a brief overview of prior

work on collision and proximity queries. Furthermore, we

highlight the underlying algorithms that are used in FCL to

perform different queries.

A. Collision and Proximity Computation Algorithms

The problems of collision detection and distance compu-

tations are well studied [6], [7], [16]. At a broad level, they

can be classified based on algorithms for convex polytopes,

bounding volume hierarchies, continuous collision detection,

broad-phase collision detection and point-cloud collisions.

Table I shows all the queries currently supported by FCL.

1) Convex Polytope based Collision: Many methods have

been proposed to compute the Euclidean distance between

two convex polytopes, such as the Gilbert–Johnson–Keerthi

(GJK) algorithm [8] and the Lin-Canny algorithm [17]. The

optimization technique based on the Minkowski formulation

in the GJK algorithm can also be used to compute trans-

lational penetration depth. The convex polytope collision

in FCL is based on GJK and EPA (Expanding Polytope

Algorithm) [24].

2) Bounding Volume Hierarchy based Collision: Some

of the most widely used algorithms for triangulated or

polygonal models are based on bounding volume hierarchies.

Typical examples of bounding volumes include axis-aligned

bounding box (AABB) [3], spheres, oriented bounding box

(OBB) [9], discrete oriented polytope (k-DOP) [12] and

swept sphere volume (SSV) [13], and they have been mainly

used to perform discrete collision detection and separa-

tion distance queries. Furthermore, they can be extended

to deformable models by updating the hierarchies during

each step of the simulation [22]. Spatial decomposition

techniques, such as kd-trees and octrees, have also been used

for collision checking, though techniques based on BVHs

are considered faster. FCL can support different bounding

volume hierarchies to perform various queries on rigid and

deformable models.

3) Continuous Collision Detection: In many applications

(e.g., local planning in motion planning [15]), we need to

check the objects for collision moving along a continuous

path. One solution is to sample along the path and then

perform collision checking at discrete time steps. Such

discrete collision checking methods may miss collisions

between the sampled time steps. While adaptive sampling

strategies and predictive methods can be used to alleviate

this problem [15], resulting algorithms can be relatively slow.

In order to provide rigorous guarantees, continuous collision

detection (CCD) techniques have been proposed [21], which

compute the first time of contact between two moving objects

along a path. CCD is typically performed by using bounding

volume hierarchies. The BVH used for CCD computations

provides a conservative bound for the swept volume of an

object generated during the given time interval. The BVH

is usually generated by refitting the static object BVH in

a bottom-up manner and is based on the trajectory of the

object. These include algorithms for linearly interpolating

motion between two static configurations [10] and arbitrary

in-between rigid motions [21]. Another popular approach for

CCD is based on conservative advancement (CA), which

incrementally advances objects by a time step while avoiding

collisions. In order to determine the conservative time step,

it needs to compute the minimal separation distance between

the objects and uses it to estimate conservative motion

bounds. Tang et al. [23] present algorithms to compute

motion bound for screw motion. Conservative advancement

algorithms can be applied to non-convex models based on

BVHs. FCL uses these CCD and CA algorithms.

4) Broad-Phase Collision Detection: Many applications

need to perform collisions between a large number of ob-

jects, including different links of articulate models and self-

collisions in deformable models. In order to avoid O(n2)
collision checkings between the objects or primitives, broad-

phase collision detection algorithms are used to cull away

object pairs that are far-away from each other. Widely

used N-body collision algorithms include sweep and prune

(SaP) [5] and spatial subdivision [7]. FCL currently uses

SaP, which works well when the moving objects have high

spatial coherence. In the ROS interface of FCL, the broad-



Rigid Objects Point Cloud Deformable Objects Articulated Objects

Collision Detection
√ √ √ √

Continuous Collision Detection
√ √∗ √ √

Self Collision Detection
√ √ √ √

Penetration Estimation
√

X X X

Distance Computation
√

X
√ √#

Broad-phase Collision
√ √ √ √#

TABLE I: The design of FCL makes it possible to perform different proximity queries on various models. Current capabilities of FCL are shown with√
symbol. Symbol X are capabilities that are currently not supported and may be added in the future. The symbol

√#
refers to queries that can be

implemented by existing capabilities of FCL. The continuous collision detection between point clouds (
√∗

) is not completely implemented, and the current
version only supports CCD queries between a point cloud and a triangulated (mesh) representation.

phase collision algorithm is combined with the kinematic

model implementation in ROS to perform robot self-collision

as well as collision detection with the environment.

5) Point Cloud Collision Detection: There has been rel-

atively little work in terms of handling collisions between

point clouds or between point clouds and unstructured

meshes. With the recent advances in RGB-D cameras and

LIDAR sensors, there is increased interest in performing

various queries on noisy point-cloud datasets. FCL supports

collision checking between triangle meshes/soups and point

clouds as well as collision checking between point clouds.

The former is useful for collision checking between robot

parts and the environment, while the latter is used for

collision checking between scanned objects (e.g. held by a

robot gripper) and the environment. The point cloud collision

checking algorithms in FCL also take into account noise in

the point cloud data arising from various sensors as well

as the inherent shape uncertainty in point cloud data arising

from discretization [19].

6) Parallel Collision and Proximity Computation: The

advent of multi-core CPUs and many-core GPUs makes it

necessary to design parallel collision and proximity compu-

tation algorithms that can exploit the capabilities of multi-

core processors [22]. Many GPU-based parallel collision

and proximity computation algorithms have been proposed,

especially for a single collision query [14], multiple collision

queries [20] or N-body collision [18]. In practice, GPU-based

algorithms can offer considerable increase in speed over

CPU-based algorithms and are good candidates for future

extensions to FCL.

III. OVERVIEW

In this section, we introduce different proximity queries

that are supported in FCL and give an overview of the library.

A. Definitions

Given two objects A and B as well as their configurations

qA and qB, the discrete collision query (DCD query) returns a

yes/no answer about whether the two objects are in collision

or not, i.e., whether

A(qA)∩B(qB) 6= /0

is true. Optionally, collision query can also compute the

contact points where the object boundary overlaps and the

corresponding contact normals.

Given two objects A and B as well as their motions qA(t)
and qB(t), where t ∈ [0,1], the continuous collision query

(CCD query) returns the a yes/no answer about whether the

two objects are in collision within interval [0,1], i.e., whether

∃t ∈ [0,1],A(qA(t))∩B(qB(t)) 6= /0.

If a collision occurs, it also returns the first time of contact:

toc = inf{t : A(qA(t))∩B(qB(t)) 6= /0}.

Given two non-overlapping objects A and B, as well as

their configurations qA and qB, the separation distance query

(SD query) returns the distance between them:

dis = inf{‖x−y‖2 : x ∈ A(qA),y ∈ B(qB)}.

Optionally, distance query can also return the closest pair of

points:

argmin
x∈A(qA),y∈B(qB)

‖x−y‖2.

Given two objects A and B as well as their configurations

qA and qB, the penetration depth query (PD query) returns

the translational penetration depth between the objects when

they are in collision:

pd = inf{‖d‖2 : (A(qA)+d)∩B(qB) = /0}.

The exact computation of translational penetration depth

between non-convex or deformable models has a high com-

plexity (O(n6)) [11]. As a result, FCL only provides the

capability to approximate penetration depth between two

mesh-based models or a mesh-polytope pair by computing

the penetration between two colliding triangles or triangle-

polytope pairs. FCL can also compute penetration depth

between two convex polytopes using EPA algorithm [24].

Given a set of objects {Ai}n
i=1 with their configurations qi,

broad-phase collision query returns a yes/no answer about

whether any two of the objects are in collision or not : i.e.,

whether

∃i 6= j ∈ {1,2, ...,n},R(Ai(qi))∩R(A j(q j)) 6= /0,

where R() computes the AABB of each object. Optionally,

it also returns all the pairs of in-collision objects.

B. FCL Overview

FCL is a fully templated C++ library that can perform

various collision and proximity queries highlighted above.

From an application perspective, FCL is designed to pro-

vide unified and extendable interfaces for collision and

proximity computation algorithms. Moreover, it is designed

to support different data representations, including triangle



meshes/soups and well-known shape primitives (e.g., sphere,

cylinder). To achieve these goals, FCL models all collision

and proximity queries between two objects as a traversal

process along a hierarchical structure. Different queries can

share the same traversal framework but may use different in-

termediate data structures and traversal strategies. As shown

in Figure 2, the traversal process is performed in three steps

in FCL:

1) Object representation: The objects in a query are

represented by a hierarchical structure suitable for that

specific query. For example, basic geometric shapes

(e.g., cones, cylinders, spheres) are represented using a

single-level hierarchy with the corresponding bounding

volume as the unique node. Arbitrary geometric objects

are represented using a bounding volume hierarchy.

The hierarchical structure along with the object’s con-

figuration information is stored in a structure called

CollisionObject, which also contains the object’s

shape representation from the previous time step for

deformable models.

2) Traversal node initialization: The traversal node is the

structure that stores the complete information required

to perform the traversal for a specific query. Such

information may be different among various types of

queries on different object representations. For ex-

ample, for a continuous collision query, we need to

store the object configuration and shape representation

for the previous time frame. The traversal node also

decides the traversal strategy for a given query. For

example, if only a yes/no answer is required for

collision query, the traversal can stop once the collision

is found. Such an early termination strategy may not

be applicable for seperation distance queries.

3) Hierarchy traversal: After the traversal node initial-

ization step, we traverse the hierarchical structure to

perform a specific collision or proximity query.

Collision queries for articulated bodies or environments

with multiple moving/deformable objects need to be per-

formed efficiently. In FCL, this is handled by Collision

Manager, which uses the N-body collision detection SaP

algorithm to handle such scenarios for different queries.
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Fig. 2: Flow chart for FCL architecture: The black arrows represent the
data flow, including construction of the hierarchical structure for each object
and the collision manager for multiple objects. The red arrows represent the
algorithm flow, including traversal node preparation and hierarchal traversal.

IV. FCL ARCHITECTURE

FCL consists of three main components: (a) object repre-

sentation, (b) traversal node initialization, and (c) hierarchy

traversal.

A. Object Representation

The object representation component in FCL deals with

representing the objects in a hierarchical data structure so that

collision and proximity queries can be performed efficiently.

FCL supports objects in the form of unstructured triangle

meshes/soups and basic geometric shapes, such as spheres

and cylinders, which are widely used in many robotics appli-

cations. FCL can also handle deformable models. It doesn’t

make any assumptions about the deformation and assumes

that the object boundary is represented as a triangulated mesh

during each time step.

FCL supports seven types of basic geometric shapes,

including sphere, box, cone, cylinder, capsule, convex mesh

and plane, which are represented as a hierarchy with a

single node. All these shape representations consist of two

interfaces: 1) overlap, which checks for overlap between

the bounding volume of the geometric shape with a bounding

volume corresponding to a node in the hierarchy of some

other object. It can also be used to perform culling oper-

ations. 2) intersect, which checks for exact intersection

between the geometric objects or the triangle/point primitives

of the other object. This is mainly used to perform exact

proximity queries between the low level primitives.

The unstructured mesh/soup is represented as a bounding

volume hierarchy and the specific type of bounding volume

is specified as a template parameter. In FCL, four BV types

are currently supported: AABB, OBB, RSS and kDOP. FCL

includes the routines to perform overlap and distance queries

using each of these BVs. Each BV is suitable for differ-

ent kinds of objects, queries or applications. For example,

OBB is regarded as a tight fitting bounding volume to the

underlying shape or primitives, but performing an overlap

test using OBB is more expensive as compared to AABB

or kDOPs [9]. RSS is regarded as an efficient primitive to

perform separation distance computation [13]. OBB and RSS

are considered as more efficient BVs in terms of performing

CCD between rigid models, because the BVH structure is

unchanged during the motion or simulation, and only the

transformation matrix associated with each BV needs to

be updated. kDOP and AABB are more suitable for CCD

between deformable models, because the cost of refitting

these BVHs is relatively low compared to OBB or RSS. The

refitting step is typically performed in a bottom-up manner,

where each BV is updated.

The BVH data structure in FCL stores both the vertices

and triangles of the underlying object, though the triangle

information is not used for point cloud models. In order to

perform CCD computations, the BVH data structure also

keeps track of the position of the vertices from the last

time step. As a result, the BVH structure can handle triangle

meshes/soups and point clouds in a consistent manner.



FCL provides functions to compute the hierarchical rep-

resentation for a given object. Furthermore, it uses a state

machine to guarantee that the output of the construction

process is a valid BVH structure. The usage of a state

machine can help user to avoid generating invalid BVH

structures. As shown in Figure 3, the state machine consists

of three parts. The first is the standard way to construct a

BVH: we start from an empty BVH and construct a valid

BVH structure by adding vertices/triangles into it (empty

→ building → built in Figure 3). However, in many

applications (e.g., the local planning in motion planning),

there is high spatial coherence between adjacent queries. In

this case, we keep the structure of a BVH unchanged and

only update the positions of the triangles associated with the

leaf nodes and the intermediate BVs (i.e. refitting the BVH).

Therefore, we provide a second method to replace the BVH:

we start from a valid BVH, replace the object geometric

representation by a new geometric representation and finally

compute a updated BVH (built→ replacing→ built in

Figure 3). In order to perform CCD queries, the BVH is used

to compute a conservative bound of the swept volume of an

object during a given time interval. Therefore, we update the

BVH in order to consider the motion information and obtain

a valid BVH for CCD (built → updating → updated in

Figure 3). When the underlying topology of the object (i.e.,

the triangle information) changes, we empty the BVH state

and build it from scratch (built → empty or updated →
empty in Figure 3).

The BVH construction or refitting recursively splits the

underlying geometry primitives into two parts and fits a tight

bounding box to each part. There are different approaches

to perform split and fit operations and it is useful to pro-

vide flexibility so that users can choose or implement the

appropriate operations based on the underlying application.

Therefore, our BVH data structure is composed of base

classes for split and fit operations, and we also provide a

default implementation for these operations.

Note that object representation may influence the results

of a collision query. For example, assuming that A is a

small box within a large cylinder B, a collision query

will report a collision if both A and B are represented as

polytopes, because each polytope corresponds to a solid

shape. However, if both A and B are represented as triangle

meshes, a collision query will report no collision because a

triangle mesh only represents the object boundary, and not

the interior.

B. Traversal Node Initialization

Given two bounding volume hierarchies, the collision or

proximity computation between them is usually performed

by traversing the bounding volume test tree (BVTT) gen-

erated from the two BVHs [9]. Different collision or prox-

imity computation algorithms tend to use different traversal

schemes though the traversal framework is the same among

different algorithms. In FCL, we separate the actual traversal

framework from the traversal data and traversal strategies.

The advantage of such a design is in terms of implementing

a new collision or proximity algorithm: the users only need

to implement the new traversal hierarchy and traversal strate-

gies, instead of implementing the entire collision framework

from scratch.

In FCL, we use a traversal node to provide all the

necessary information to access BVH hierarchy struc-

ture and determine the traversal order. As shown in Fig-

ure 4, all traversal node types are derived from one base

class TraversalNode. Among the routines provided by

TraversalNode, getFirstOverSecond is used to deter-

mine the traversal orders, i.e., which subtree of BVTT to

traverse. All other routines provide the necessary informa-

tion to traverse BVTT’s tree hierarchy. Notice that these

interfaces are also applicable to convex polytopes as they

are recognized as special BVH with a single BV node.

For example, if the collision query is performed between a

mesh and a cylinder, we need to ensure that the routines

isSecondNodeLeaf and firstOverSecond return true

values.

We use two subclasses CollisionTraversalNode and

DistanceTraversalNode that correspond to the routines

used to perform collision and distance queries, respectively.

BVTesting checks the intersection between two bounding

volumes and leafTesting checks the intersection between

primitives (e.g., triangles or point clouds). The function

canStop determines whether there is a collision or the

shortest distance is computed, and we can terminate the

recursion.

CollisionTraversalNode has three subclasses to han-

dle collision between two BVHs, collision between a BVH

and a basic shape and collision between two basic shapes, re-

spectively. The leaf classes are traversal node types for differ-

ent collision algorithms, such as continuous collision, point

cloud collision, etc. When the bounding volume corresponds

to an OBB or a RSS, we provide efficient implementation

of overlap tests or separation distance computation between

these BVs via template specialization.

C. Hierarchy Traversal

The recursive traversal framework is used to perform all

the queries. We provide recursive traversal schemes for vari-

ous queries. The first is the recursive algorithm for collision

queries, as shown in Algorithm 1, whose input could be any

traversal node derived from CollisionTraversalNode.

The second is the recursive algorithm for separation distance

computation, as shown in Algorithm 2, whose input traversal

nodes are derived from DistanceTraversalNode. We also

provide a self-collision recursive traversal scheme, which is

mainly used for deformable models.

The traversal recursive framework in FCL also provides

support to maintain a front list, which can accelerate collision

and proximity queries, if there is high spatial coherence

between two subsequent queries. Intuitively, the front list is a

set of internal and leaf nodes in the BVTT hierarchy, where

the traversal terminates while performing a query during a

given time instance. The front list reflects the subset of a

BVTT that is traversed for that particular proximity query.



Algorithm 1: collisionRecurse(node,b1,b2, f ront list), node

derived from CollisionTraversalNode.

begin1

ll ← node.isFirstNodeLeaf(b1)2

l2← node.isSecondNodeLeaf(b2)3

if l1 and l2 then4

updateFrontList( f ront list,b1,b2)5

if node.BVTesting(b1,b2) then6

return7

node.leafTesting(b1,b2)8

return9

if node.BVTesting(b1,b2) then10

updateFrontList( f ront list,b1,b2)11

return12

if node.firstOverSecond(b1,b2) then13

c1← node.getFirstLeftChild(b1)14

c2← node.getFirstRightChild(b1)15

collisionRecurse(node,c1,b2, f ront list)16

if node.canStop() and ! f ront list then17

return18

collisionRecurse(node,c2,b2, f ront list)19

else20

c1← node.getSecondLeftChild(b2)21

c2← node.getSecondRightChild(b2)22

collisionRecurse(node,b1,c1, f ront list)23

if node.canStop() and ! f ront list then24

return25

collisionRecurse(node,b1,c2, f ront list)26

end27

For collision queries with high spatial coherence, the front

lists would be almost similar for two successive queries.

Therefore, instead of starting the traversal from the BVTT

root node, we perform the first query by starting from the

BVTT root node and then start the subsequent query from

the previous query’s front list.

empty

building
beginModel() built

changeModel()

updating
beginUpdateModel()

replacing

beginReplaceModel()

updated

changeModel()

endModel()

addSubModel() endUpdateModel()

updateSubModel()

endReplaceModel()

replaceSubModel()

Fig. 3: State machine for BVH model construction, update and replace.

V. PERFORMANCE

In this section we highlight the performance of FCL

on simulated models as well as on a two-armed mobile

manipulation robot.

A. Basic Queries

The timing of different queries for a moving piano in a

room are shown in Table II. In the results, we observe that

the distance query and CCD query are both slower than the

DCD query.

B. Collision Checking between Moving Objects

We check for collisions between moving objects by per-

forming a single CCD or multiple DCDs on interpolated

configurations. As shown in Table III, CCD query is faster

than multiple DCD queries when checking the collision

Algorithm 2: distanceRecurse(node,b1,b2, f ront list), node

derived from DistanceTraversalNode.

begin1

ll ← node.isFirstNodeLeaf(b1)2

l2← node.isSecondNodeLeaf(b2)3

if l1 and l2 then4

updateFrontList( f ront list,b1,b2)5

node.leafTesting(b1,b2)6

return7

if node.firstOverSecond(b1,b2) then8

a1← node.getFirstLeftChild(b1); a2← b29

c1← node.getFirstRightChild(b1); c2← b210

else11

a1← b1;a2← node.getSecondLeftChild(b2)12

c1← b1;c2← node.getSecondRightChild(b2)13

d1← node.BVTesting(a1,a2)14

d2← node.BVTesting(c1,c2)15

if d2 < d1 then16

if node.canStop(d2) then17

updateFrontList( f ront list,c1,c2)18

else distanceRecurse(node,c1,c2, f ront list) if19

node.canStop(d1) then

updateFrontList( f ront list,a1,a2)20

else distanceRecurse(node,a1,a2, f ront list)21

else22

if node.canStop(d1) then23

updateFrontList( f ront list,a1,a2)24

else distanceRecurse(node,a1,a2, f ront list) if25

node.canStop(d2) then

updateFrontList( f ront list,c1,c2)26

else distanceRecurse(node,c1,c2, f ront list)27

end28

DCD query PD query CCD query

Timing 4 8 5.5

TABLE II: Average collision/proximity query timing (in milliseconds) for
the piano benchmark (in milliseconds) on 100 random configurations. The
penetration depth estimation (PD) is more expensive than other queries.

status for a moving object, though a single DCD query is

cheaper than a single CCD query.

CCD query Multiple DCD queries Ave. DCD query

Timing 5.5 42.4 3.86

TABLE III: Timing for collision checking between moving objects on the
piano benchmark (in milliseconds): Each collision query is performed 100
times with random initial and goal settings and the average time is shown
for CCD query and DCD queries (performed on 11 sampled positions along
the trajectory).

C. Collision Checking between Deformable Objects

We also tested FCL’s performance on two widely used

non-rigid deformable benchmarks (Figure 5) and the query

times are shown in Table IV. We also highlight the relative

performance of DCD and CCD queries on these benchmarks.

D. Collision Checking between Point Clouds

FCL supports an experimental algorithm to perform col-

lision detection between point clouds or a point cloud and

meshes [19]. We tested its performance on the piano in a

room benchmark, where both piano and room are represented

as point clouds. The average collision query timing is 43 ms.



TraversalNode

isFirstNodeLeaf(int)
isSecondNodeLeaf(int)
firstOverSecond(int, int)
getFirstLeftChild(int)
getFirstRightChild(int)
getSecondLeftChild(int)
getSecondRightChild(int)

CollisionTraversalNode

BVTesting(int, int)
leafTesting(int, int)
canStop()

DistanceTraversalNode

BVTesting(int, int)
leafTesting(int, int)
canStop(real)

BVHCollision

BVHModel<BV>* model1
BVHModel<BV>* model2

isFirstNodeLeaf(int)
isSecondNodeLeaf(int)
firstOverSecond(int, int)
getFirstLeftChild(int)
getFirstRightChild(int)
getSecondLeftChild(int)
getSecondRightChild(int)
BVTesting(int, int)

MeshCollision

leafTesting(int, int)
canStop()

MeshCollisionOBB

Transform t

BVTesting(int, int)
leafTesting(int, int)

MeshCollisionRSS

Transform t

BVTesting(int, int)
leafTesting(int, int)

BV

BV

BV = OBB BV = RSS

PointCloudCollision

leafTesting(int, int)
canStop()

PointMeshCollision

leafTesting(int, int)
canStop()

BV BV

BVHShapeCollision

BVHModel<BV>* model1
Shape* model2

isFirstNodeLeaf(int)
firstOverSecond(int, int)
getFirstLeftChild(int)
getFirstRightChild(int)
BVTesting(int, int)

BV, Shape

MeshShapeCollision

leafTesting(int, int)
canStop()

BV, Shape

ShapeCollision

Shape1* model1
Shape2* model2

BVTesting(int, int)
leafTesting(int, int)

Shape1, Shape2
BVHDistance

BVHModel<BV>* model1
BVHModel<BV>* model2

isFirstNodeLeaf(int)
isSecondNodeLeaf(int)
firstOverSecond(int, int)
getFirstLeftChild(int)
getFirstRightChild(int)
getSecondLeftChild(int)
getSecondRightChild(int)
BVTesting(int, int)

BV

MeshDistance

leafTesting(int, int)
canStop(real)

BV
MeshConservativeAdvancement

real w
real toc
real delta_t
MotionBase<BV>* motion1
MotionBase<BV>* motion2

BVTesting(int, int)
leafTesting(int, int)
canStop(real)

BV
MeshCCD

leafTesting(int, int)
canStop()

BV

PointMeshCCD

leafTesting(int, int)
canStop()

BV
PointShapeCollision

leafTesting(int, int)
canStop()

BV, Shape

Fig. 4: Class hierarchy for traversal node: TraversalNode is the base class for traversal nodes of all collision/proximity algorithms. It includes interfaces
that are needed to perform hierarchical traversal and implemented on all inherited node classes. CollisionTraversalNode and DistanceTraversalNode,
both inherited from TraversalNode, define the API for collision query and distance query, respectively. The nodes at the next level of the class hierarchy
specify the data elements needed for different types of object representations, e.g., BVHCollision is for collision query between unstructured data (mesh
or point cloud), while BVHShapeCollision is used to perform collision query between convex polytopes. The leaf level of the class hierarchy includes
nodes for specific types of queries. The red nodes correspond to the queries that are currently supported in FCL while the green nodes are the APIs to
support other queries in the future.

CCD query Multiple DCD queries Average DCD query

breaking lion 55.13 181.35 18.35

deforming balls 8.58 22.54 2.25

TABLE IV: Collision timing (in seconds) on deformable benchmarks shown
in Figure 5. The DCD query uses 11 interpolants along the trajectories.

Fig. 5: Non-rigid benchmarks used for performing CCD and self-collision
queries in FCL. In the left benchmark, a stone falls on top of a Chinese lion
model and the lion gradually breaks into a high number of colliding pieces.
The benchmark has 1.6M triangles with 45 frames. The right benchmark
consists of multiple moving objects. Each object undergoes deformable
motion, and the objects collide with each other and the ground. It contains
146K triangles with 94 frames.

E. Comparison with ODE

FCL was integrated with the collision checking testing

infrastructure in ROS. The infrastructure generates a series

of random environments with a hundred objects in random

locations. Each environment consists of objects of one type

from among the following: box, cylinder, sphere and mesh

primitives. The PR2 robot was used as the robot model in this

test and 1000 random configurations were chosen for each

arm of the robot in these environments. FCL was compared

against prior collision checking capabilities in ROS, which

are based on ODE [1]. Table V presents the aggregate

collision checking times (in seconds) for these 1000 queries

for FCL and ODE.

F. Motion Planning for a Physical Robot

FCL was further evaluated by using it for a range of

applications on the PR2 mobile manipulator robot. The first

ODE FCL

Boxes 0.780889 0.700815

Spheres 0.487176 0.570329

Cylinders 0.236988 0.264515

Triangle Meshes 2.340178 0.240228

TABLE V: Collision checking timing (in seconds) for PR2 robot model
corresponding to 1000 random configurations in environments with 100
obstacles of a single primitives type (e.g. boxes, spheres, cylinders or
triangle meshes).

set of experiments involved motion planning in a simple

environment. FCL was integrated as the collision checking

library for the motion planners used in this experiment.

Figure 6 shows a series of snapshots corresponding to the

motion of the robot, as it moves one arm around a pole in

the environment.

(a) (b)

(c) (d)

Fig. 6: The PR2 robot moves its arm around a pole. FCL was integrated
as the collision checking library to perform this task.

G. Grasping and Manipulation

FCL is also used as the collision checking library

for grasping and manipulation pipeline implemented on a

PR2 [4]. Figure 7 shows a series of snapshots of a task

performed by the PR2 robot. The task being executed by



the robot involves moving a set of objects from one side of

the table to the other. In the course of the task, the overall

algorithm makes multiple calls to inverse kinematics and

motion planning modules that use FCL as the underlying

collision checking library. The task involves gathering live

sensor data from the stereo cameras and laser scanning sen-

sors on the PR2 robot. The environment is represented using

a combination of pre-generated mesh models for objects on

the table recognized using object detection algorithms and a

voxel map (labeled the collision map) for other parts of the

environment.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7: The PR2 robot picks up a bowl and moves it to the side before
placing it back on a table while avoiding all other objects in the environment.
FCL is used as the collision library and integrated with motion planning
and kinematics modules used in this task.

VI. CONCLUSION AND FUTURE WORK

We present FCL, a new library to perform collision and

proximity queries on different types of models. It provides a

unified interface for various queries and is flexible in terms

of implementing new algorithms or supporting other model

representations. We demonstrate its performance in terms

of performing discrete and continuous collision queries,

separation distance queries, and penetration depth estimation

among synthetic models and physical robots (e.g. a PR2). A

ROS interface to FCL is also provided and it can be used with

other robots. The current implementation of FCL has a few

limitations. The penetration depth estimation only computes

local penetration depth as opposed to global penetration

depth, the performance of queries on point-cloud data can

be relatively slow and needs to be tested with other sensor

data, and the performance of proximity algorithms used for

articulated models can be considerably improved.

There are many avenues for future work. These include

overcoming the current limitations and testing its perfor-

mance on complex planning scenarios and grasping opera-

tions. We can improve the performance of many underlying

algorithms. Finally, we would like to develop a flexible and

efficient architecture for multi-core CPUs and many-core

GPUs.
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