
Research Article
FCM Clustering Approach Optimization Using Parallel
High-Speed Intel FPGA Technology

Abedalmuhdi Almomany ,1 Amin Jarrah ,1 and Anwar Al Assaf2

1Department of Computer Engineering, Yarmouk University, Irbid, Jordan
2Aviation Sciences Dean/AMMAN Arab University, Amman, Jordan

Correspondence should be addressed to Abedalmuhdi Almomany; emomani@yu.edu.jo

Received 3 February 2022; Accepted 19 April 2022; Published 11 May 2022

Academic Editor: Jose R. C. Piqueira

Copyright © 2022 Abedalmuhdi Almomany et al. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Fuzzy C-Means (FCM) is a widely used clustering algorithm that performs well in various scienti�c applications. Implementing
FCM involves a massive number of computations, and many parallelization techniques based on GPUs and multicore systems
have been suggested. In this study, we present a method for optimizing the FCM algorithm for high-speed �eld-programmable
gate technology (FPGA) using a high-level C-like programming language called open computing language (OpenCL).�emethod
was designed to enable the high-level compiler/synthesis tool to manipulate a task-parallelism model and create an e�cient
design. Our experimental results (based on several datasets) show that the proposed method makes the FCM execution time more
than 186 times faster than the conventional design running on a single-core CPU platform. Also, its processing power reached 89
giga �oating points operations per second (GFLOPs).

1. Introduction

Clustering is a topic of great interest in machine learning
�elds dealing with the process of partitioning sets of data
into homogeneous groups or clusters based on the simi-
larities between data points. Clustering techniques are useful
because they allow the exploration of labeled and unlabeled
data to �nd similarities and assign observations to corre-
sponding clusters. �e distance measure between elements
in a dataset is commonly used in cases where points that are
close to each other are assigned to the same cluster. Clus-
tering algorithms are widely used in many �elds such as
medical applications [1], computer vision [2], data seg-
mentation [3], marketing [4], networking [5], and security
[6]. Some of the most commonly used clustering algorithms
are K-means clustering [7], fuzzy clustering [8], hierarchical
clustering [9], two-step clustering [10], and k-harmonic
clustering [11]. While the overall goals of di£erent clustering
algorithms tend to be similar, diverse starting points and
rules usually result in diverse taxonomies of clustering al-
gorithms [12].

�ey are various kinds of clustering methods in which
objects can be arranged into distinct groups based on a set of
strategies and rules. In hierarchical clustering, the data
objects are organized into a tree of clusters using top-down
or bottom-up approaches by splitting clusters recursively
until there are no more clusters. While it is easy to generate
the tree without determining the number of clusters in
advance, most of the hierarchical algorithms have high time
complexity (could be O(n3)) with a challenge that once the
process of clusters combining or splitting is done, it cannot
be undone [13, 14]. Centroid clustering algorithms are based
on the distance calculation between the dataset objects and
the proposed centroids; generally, these approaches give a
reasonable performance, but they are very sensitive to noise
and outliers [15]. Density-based clustering approaches are
less e£ective to noise and outliers but it is not easy to work
with large datasets; they group objects into separate regions
based on their density; in grid-based clustering, the data
space of the objects is mapped to a grid space with a limited
number of cells and the clustering approach is performed on
the whole cells which make this clustering model a fast

Hindawi
Journal of Electrical and Computer Engineering
Volume 2022, Article ID 8260283, 11 pages
https://doi.org/10.1155/2022/8260283

mailto:emomani@yu.edu.jo
https://orcid.org/0000-0002-5922-6106
https://orcid.org/0000-0001-8039-190X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8260283

approach but with a challenge of the inability to find clusters
in a low dimensional subspace [16, 17]. Model-based al-
gorithms use statistical or neural learning strategies to
choose a certain model for each cluster; they provide flexible
implementation but with a low prediction quality relatively
[16].

Several studies provided comparative analyses between
many clustering algorithms by considering various pa-
rameters [18–21]. In [20], Abaas introduced a comparative
analysis where the most popular clustering approaches are
compared in terms of the ability to handle large datasets,
type of dataset, and the number of clusters to classify. Results
indicated that these algorithms vary in their performance
and their classification accuracy degree. In [19], the authors
presented a performance comparison study between nine of
the most well-known clustering approaches to provide
guidance on how to choose the clustering approach based on
dataset characteristics, where the data have a normal dis-
tribution. In [21], authors investigated the effect of choosing
clustering algorithms that may employ within pattern rec-
ognition applications on the overall recognition accuracy
and clustering quality, the validity of the clustering ap-
proach, and the execution time of the clustering method; the
outcome of the results showed that the effect of choosing
clustering algorithm is essential in the case of small models’
size. In general, there are many challenges associated with
using most of the clustering approaches such as the noise
problem and the process of initializing several parameters
[22]; however, the FCM clustering approach is among the
popular clustering approaches that has a reasonable per-
formance and accuracy attributes [23].

'e K-means clustering algorithm is probably the most
common procedure, and several research studies have
proposed different techniques for enhancing the traditional
algorithm’s performance [24–29]. Given a dataset X with n-
points, each of which is a vector of d-dimensions, the
K-means algorithm divides these points into k clusters via
several steps. In the first step, the initial centers are chosen
randomly. In the following steps, each point in the dataset is
assigned to a single cluster (hard clustering) according to
which center each data point is closest to. New centers are
then determined for each cluster. 'ese steps are repeated r
times, and the overall complexity of this algorithm is cal-
culated as O(nkdr).

However, there are many limitations associated with
using the K-means algorithm. Among these are the sensi-
tivity of choosing the initial centroids, the weak ability to
deal with noise and outlier data points, and the challenges
that arise when dealing with a large data size [30]. 'e
selection of initial centroids is poor in that there are many
outliers. Also, applying this algorithm to a large dataset
increases the number of iterations and the overall execution
time, thus making it difficult to meet the desired level of
performance.

Another common clustering technique is the fuzzy
c-means (FCM) algorithm, by which computations are
accelerated using high-speed FPGA technology. 'e FCM
algorithm differs from the K-means in that the data points

could belong to more than one cluster with varying prob-
abilities (soft clustering).

Several studies that have used clustering approaches for
diverse purposes have concluded that the FCM produced
better results than the K-means algorithm based on its se-
lection of a set of predefined parameters such as dealing with
outliers and stability. However, the FCM algorithm’s
computation time is higher [31–38]. 'e longer computa-
tional time is linked to the complexity of the FCM algorithm,
which is O(nk2dr), whereas that of the K-means algorithm is
O(nkdr).

'erefore, the use of parallel algorithms and high-speed
computation platforms is suggested to overcome the rela-
tively high computation time. 'e concept of fuzzy data was
introduced in 1965 [39], which provides a mechanism for
manipulating and interpreting complex multifeature data
objects [40]. 'e fuzzy c-means algorithm [41] starts by
determining the number of clusters k, whose initial centroids
are chosen randomly. 'ose centroids are updated with
every iteration of the algorithm, as is the membership
function of each data point in the dataset. 'is updating
process continues until the centroid values change. 'ese
changes, known as centroids movements, are minimal and
must be less than a predefined threshold value. 'e degree of
member function for each observation is equal to a value that
belongs to the interval [0, 1]. A greater value toward a
specific cluster means a stronger relationship with the center
of that cluster. FCM algorithm determines whether the
object belongs to a particular class based on its membership
function [36]. 'e member function vector depends mainly
on the Euclidian distance between the corresponding target
object and the current centroid in each class; however, the
object could belong to more than one class with a different
possibility [42, 43]. 'e FCM algorithm is an iterative ap-
proach where centroids and member functions are updated
in every iteration as described in equations (5) and (6); the
member function degree of each object is estimated such that
the value is bounded between 0 and 1. Finally, when almost
there are no changes in the centroids list, objects are clas-
sified into a set of K classes according to the principle of
highest membership.

'e steps of the FCM algorithm can be summarized as
below:

A dataset X contains n vectors of observations such that
X� {x1, x2, . . ., xn} and K clusters with initial centroids C,
where C� {c1, . . ., cK}. Also, we can define the 2D array
member function F, where F is an array of n rows and K
columns based on equation

F �

f1,1 · · · f1,k

⋮ ⋮ ⋮

fn,1 . . . fn,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where 0≤fi,j ≤ 1, ∀ i ∈ [1, N], j ∈ [1, k].

(1)

At first, all elements in the F array are filled randomly;
however, the conditions in equations (2) and (3) should still
be satisfied.

2 Journal of Electrical and Computer Engineering

j�k

j�1
fi,j � 1, ∀ i � 1, . . . , N, (2)

0≤
i�N

i�1
fi,j ≤N, ∀j � 1, . . . , k. (3)

'e FCM objective function is applied to minimize the
equation as follows:

Jmin �
i�N

i�1

j�K

j�1
f

m
ij xi − cj

�����

�����
2
, (4)

wherem is the fuzzier exponent. It is generally hard to select
the optimal value ofm, though since it could be in the ranges
of 1.5 to 4 [44, 45] in this study, we chose m� 3. 'e term
‖xi − cj‖

2 refers to the Euclidian distance between data point
xi and center cj ∀i � 1, . . . , N, j � 1, . . . , k.

We can summarize the steps of the FCM algorithm as
below:

Step 1: Initialize F(iter) � [fij], where iter� 0.
Step 2: Calculate the new centers vector C(iter) � [cij]

c
(iter)
ij �

i�N
i�1 f

m
ij · xi

i�N
i�1 f

m
ij

. (5)

Step 3: Update the new F or F(iter+1)

f
(iter+1)
ij �

1

a�K
a�1 xi − cj

�����

�����
2
/ xi − ca

����
����
2

(1/m− 1)

.
(6)

Increase the number of iterations (iter� iter + 1).
Step 4: If the stop condition is not satisfied, return to
step 2; otherwise, STOP.

In this study, the stop condition is met when there are
almost no changes in the centroids or when the average
changes of all centroids are less than the threshold value ε,
where ε � 10− 7.

'e remainder of this paper is organized as follows:
Section 2 introduces the FPGA computing platform and its
characteristics. 'e OpenCL is presented in Section 3. In
Section 4, we discuss related work and literature reviews.'e
proposed approach for the performance is discussed in
Section 5. Experimental results are presented in Section 6.
Section 7 provides a conclusion of the proposed study.

2. FPGA Computing Platform

High-speed computing platforms such as FPGAs have be-
come popular in many applications, including image and
signal processing, machine learning, security, pattern rec-
ognition, and scientific problems [46–51]. FPGA technology
creates a customized hardware design that reflects desired
objectives. FPGA technology also has software flexibility. At
the same time, it is still possible for the platform to be
reconfigured many times with many possible configurations,

thus making the process of optimizing the proposed design
more comfortable.

In Intel FPGA devices, the structure usually incorporates
adaptive logic modules (ALMs), RAM blocks, and extensive
digital signal processing (DSP) blocks. FPGAs can also carry
other kinds of blocks, such as phase-lock loops (PLLs),
which can adjust the internal clock frequency. ALMs contain
at least one lookup table (LUT), each of which is made of one
or more flip-flops (FFs). 'ese ALMs are diffused
throughout the FPGA fabric, making the FPGAs very
amenable for temporally parallel (systolic or pipelined)
computations that can be applied to monopolize loop-level
concurrency in several applications.

In such cases, the body of the loop is divided into ex-
ecutable pieces, with each piece targeted for execution on a
different stage of computational logic generated within the
FPGA. 'e data passed along pipelined stages are stored in
discrete and accessible ALM flip-flop resources. Generally,
when it is completely pipelined, it takes one clock cycle to
pass an item of data from one stage to another in a mere
temporal pipeline.

All stages concurrently perform their computations with
different data. In such cases, the expected number of clock
cycles required to handle any single item (usually referred to
as pipeline latency) equals the number of stages in the system
carried out to treat the body of the loop.

However, if there are a substantial number of elements in
the loop, then the most important metric is the initiation
interval (II). 'is metric reflects how many clock cycles the
system should wait for, on average, before permitting the
next item to enter the pipeline. A custom-created pipeline
within an FPGA effectively reveals the low-level structure of
an application. 'e device used—namely, Intel De5a-Net
Arria-10—has 427,200 ALMs, which are used to implement
several hardware circuits functions, 1518 DSP blocks to
ensure the efficient implementation of several floating points
operators, and 2713 RAM blocks to store data for the
synthesized design.

2.1. OpenCL. Open Computing Language (OpenCL) is a
programming framework that simplifies the distribution of
works among multiple and different/similar kinds of
computation platforms [52]. For the FPGA-based platform,
the most influential benefits come from abstracting most of
the hardware details and significantly reducing the devel-
opment time [46, 52]. 'e OpenCL framework also enables
various number of threads to be created such that the
number of created threads can be set by the programmer
according to the platform’s architecture. A single thread
could be applied, such as when using a task-parallel model in
FPGA, or several threads can be created for each core in
multicore systems. In some cases, such as when a graphical
processing units (GPUs) computation model is used, mil-
lions of threads might be created.

'e OpenCL programming model has two main parts:
the host and device programs. 'e host code is usually
written in a C/C++ programming language, and it manages
all communication with the device. 'is part of the code is

Journal of Electrical and Computer Engineering 3

compiled using the GNU g++ compiler. 'e device code is
an OpenCL-based program that implements the segment of
code that should be accelerated using a high-speed com-
putation device (in this study, the De5a-Net FPGA device).
'e device code is compiled using the Intel FPGA compiler.
As this process could take hours to complete, it should be
carried out before compiling the host code. Figure 1 depicts
the programming model flow.

2.2. Related Work. 'e FCM yields good clustering results
but requires a long computation time. 'erefore, many
studies have attempted to improve the speed of the FCM
algorithm. High-speed computation platforms such as GPUs
[54–58], multicores [53], and FPGAs are utilized to run these
complex computations by which the FCM algorithm is
modified to tolerate the hardware features and achieve
reasonable improvements.

Among these platforms, the FPGA provides an especially
high-speed hardware solution that can be customized
according to the algorithm’s specifications. Afshin intro-
duced a hardware solution approach allowing the FCM to be
utilized for brain MR image segmentation [59]. In this case,
the Xilinx FPGA Virtex7 was used with the Modelsim tool to
obtain the simulation results. MATLAB is used to run the
FCM algorithm on an Intel Core i5machine to compare with
the software. Although the speed improved approximately
100 times, the design was not implemented on a real
hardware device.

In the field of image processing, an improved FCM
algorithm was introduced that uses a pulse mode hardware
structure to save resource usage and offers a reasonable
speed improvement. 'e proposed design was tested and
verified on the Virtex-6 FPGA platform [60].

Another study discussed the development of an im-
proved FCM algorithm applicable to real-time applications
such as video processing [61]. Specifically, the study dis-
cussed two hardware approaches to tune the performance of
two different hardware structure devices from Xilinx and
Altera.

In other work, Hwang et al. [62] discussed a hardware
approach to optimize the FCM algorithm by creating a well-
pipelined hardware circuit designed to perform the overall
FCM computation steps. 'e proposed circuit design was
implemented on a Stratix III device, with the results indi-
cating the favorable performance of the proposed design. It
also consumed a relatively small percentage of the available
resources.

'is study introduces the ability of a parallel high-level
computing language (OpenCL) to tune the performance of a
common heavy computation clustering algorithm to run on
high-speed Intel FPGA technology. In addition to reducing
latency, FPGAs are also widely utilized to reduce the overall
energy consumption as proofed in [46].

2.3. Methods of Optimization and the Proposed Approach
Performance Tuning. 'e continuously improving perfor-
mance and effectiveness of the FPGAs platform have pro-
moted their extensive use to accelerate diverse heavy

computation applications. Several optimization techniques
can be used for performance tuning and to maximize the
possible benefits of different high-speed processing plat-
forms. 'e Intel FPGA compiler generates a pipelined
datapath hardware circuit in which several operations of
different loops’ iterations are executed concurrently (as
shown in Figure 2).

'is model of parallelism is called a task-parallel model
(single work-item), by which processing is sped up by
overlapping the loop iterations’ execution in a given piece of
code. 'e execution of each loop iteration is divided into
multiple steps, each of which involves one or more in-
structions. Also, each step is executed in a one clock cycle
time. In an ideal case, the next loop iteration starts the
execution of the first step by shifting one clock cycle (one
step) from the previous iteration. 'is is commonly referred
to as an II and should be equal to 1 if the pipelined circuit is
created perfectly.

As indicated in Figure 1, the execution of the proposed
loop iterations overlaps, meaning the total execution time
for the whole loop iterations is approximately equal to M
clock cycles, where M>>N.

An effective pipelined datapath is created when the Intel
compiler generates multiple files. Among these files is the
optimization report file, which can be interpreted to modify
the design so that the best possible pipelined circuit is
created. 'e loop unrolling technique can also be utilized to
improve the performance of the created design by increasing
the amount of work performed per clock cycle. 'is reduces
the total number of clock cycles by a factor of X when the
main loop is unrolled X times. As shown in Figure 3, the
number of iterations is reduced by half as the loop is
unrolled by a factor of two.

However, the loop unrolling technique increases re-
source usage and may also increase the clock cycle time. If
the clock cycle time for a given design is C, then the new
clock cycle time after loop unrolling is α. C, where α≥ 1.
Loop unrolling (where U is the unrolling factor) is feasible if
it reduces the overall time (T), given that

Tno_loop_unroll � C.M andTloop unroll U �
α.C.M

U
. (7)

'en, Tno_loop_unroll should be greater than Tloo-

p_unrolled_U, given that
α.C.M

U
≤C.M, U≥ α. (8)

If the condition in equation (8) is satisfied, the appli-
cation of the loop unrolling technique is feasible.

Data dependencies between consecutive operations
prevent the creation of effective pipeline circuits with an
II that is close to one. A possible solution to this problem
is to use the shift register concept, as it eliminates de-
pendencies and allows the compiler to create a robust
design with a better II value [52]. For example, if II is
equal to four because there is a dependency between the
output and at least one of the inputs, the next iteration
waits four clock cycles before starting its execution (see
Figure 4).

4 Journal of Electrical and Computer Engineering

Other techniques might also resolve this problem, such
as using local memory, which reduces a signi�cant part of
executions by reducing data transfer time and moving the
dependencies from global memory to local memory.

Using the mentioned optimization techniques together
with the Intel compiler, we created an e£ective hardware
design to run the fuzzy K-means algorithm much more
quickly than a similar algorithm based on a general-purpose
CPU-based computation platform.�e characteristics of the
FPGA device used in this study which has a substantial
amount of local memory and the ability to create an e£ective
pipeline circuit with a potentially large number of pipeline
stages make the FPGA platform a favorable choice for ac-
celerating complex computation-based algorithms.

Figure 5 shows the optimization process of a signi�cant
part of the code. In Figure 5(a), the loop runs without per-
forming any optimization technique other than the Intel FPGA
compiler’s optimization of the hardware design to maximize
performance. �e II equals 9 because of the data’s dependency

on the variable that accumulates the sum of weights (sumW).
Using loop unrolling (Figure 5(b)) reduces the execution time.
However, the II increases to approximately 51, as more de-
pendencies are generated in each iteration, and there is still an
area of optimization. By combining local memory and shift
register with loop unrolling (Figure 5(c)), we can create a more
powerful pipeline design that solves the data dependencies
obstacle with an II of one. �e size of the shift register is set so
that the number of pipeline stages is increased to hide the
latency and eliminate pipeline stalls. As a result, the speed is
increased by more than two times, as will be discussed further
in the results and discussion section.

�e primary challenge associated with optimization is
the amount of resource usage in the �rst useable FPGA
device (De5-Net Stratix V GX FPGA). Unrolling the loop
�ve times increases the number of ALUTs from 169 k (36%
of the total ALUTs) to 495 k (105%) and the number of DSPs
from 200 blocks (78% of the total DSP blocks) to 584 blocks
(228% of the total DSP blocks). �is challenge motivates the

Intel FPGA
Compiler

Executable File
(.aocx)

Host Code (C/C++)GNU g++
compiler

Final
Executable File

Device Code
(OpenCL)

Offline Compilation

Called inside

Compilation

Figure 1: OpenCL project compilation process.

Loop
iteration 1

Loop
iteration 2

Loop
iteration 3

Loop
iteration 4

Loop
iteration M

Step-1 Step-2 Step-3 Step-4

Step-1 Step-2 Step-3 Step-4

Step-1 Step-2 Step-3

Step-1 Step-2

Step-N

Step-N

Step-N

Step-N

Step-4

Step-3 Step-4

Step-l

Time

Step-2 Step-3 Step-4 Step-N

Figure 2: �e pipelined data created by the Intel FPGA compiler.

Journal of Electrical and Computer Engineering 5

Iteration 1

Iteration 2

After loop unrolling
(unroll factor =2)

Iteration 3

Iteration 4

Iteration M

Iteration 1

Iteration 2

Iteration M/2

Step-1 Step-2 Step-3 Step-4 step-N

Step-1 Step-2 Step-3 Step-4 step-N

Step-1 Step-2 Step-3 Step-4 step-N

Step-1 Step-2 Step-3 Step-4 step-N

Step-1 Step-2 Step-3 Step-4 step-N

Step-N

Step-N

Step-1 Step-2 Step-3 Step-4

Step-1 Step-2 Step-3 Step-4

Step-N

Step-N

Step-N

Step-1 Step-2 Step-3 Step-4

Step-1 Step-2 Step-3 Step-4

Step-N

Time

Step-1 Step-2 Step-3 Step-4

Step-1 Step-2 Step-3 Step-4

Figure 3: Reducing the number of iterations using the loop unrolling technique.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

M

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

M

Time (clock cycles)

Without Using Shift
Register

l0, l1,.......lN
Are the loop iterations

l0

l1

l2

l3

lN

lN

Time (clock cycles)

Using Shift Register

l0, l1,.......lN
Are the loop iterations l0

l1
l2 l3

Figure 4: Enhancing the initiation interval (II) by using the shift register technique.

6 Journal of Electrical and Computer Engineering

use of the De5a-Net Arria-10 FPGA device, which has more
ALUTs and DSP blocks. Specifically, the optimized code
resource usage demands are 379 k of ALUs (49%), 623 RAM
blocks (25%), and 682 DSP blocks (47% of total DSP blocks).

3. Experimental Results

Several datasets are considered in this study to compare the
performance comparison of the FPGA with that of single-
core CPU-based platforms. 'e first dataset is the balanced
iterative reducing and clustering using hierarchies (BIRCH),
which is a two-dimensional dataset containing 100 clusters
and 100,000 vectors in a regular grid structure [63]. 'e A1
and A3 datasets are two-dimensional datasets with circular
clusters. A1 has 20 clusters and 3000 vectors of elements,
whereas A3 contains 7500 vectors with 50 clusters [64]. 'e

last dataset is the unbalanced dataset, which is a two-di-
mensional dataset with eight clusters and 6500 vectors [65].
A sample output that presents the FCM clustering approach
for one of the used datasets is shown in Figure 6.

'e traditional serial-based code [66] is modified,
compiled, and run on a CPU with an Intel Core i7-6700@
3.4GHZ with 16GB of memory. 'e code is compiled using
the GNU Compiler Collection (GCC/G++) with an “O3”
standard level of optimization.'e second code is optimized
to run on the FPGA platform using a high-capability Intel
FPGA device, namely, a De5a-Net Arria-10 powerful device.

Table 1 shows that the speedup factor is increased from 25
(for a smaller number of computations) to 39 (for a larger
number of computations) when the optimized version of
sequential code is compared. Speed is increased by up to 186-
fold when FPGA is used to accelerate the computations

(a)

(b)

(c)

Figure 5: Using optimization techniques in a significant part of code. (a) Unoptimized loop. (b) Using loop unrolling. (c) Using Loop
unrolling, shift register, and local memory.

FCM clustering sample output for A1 dataset with K=20, and
Centers are labeled in blue colour

6.5 ×104

×104

6

5.5

5

4.5

4

3.5

3
0 1 2 3 4

Dim-1

D
im

-2

5 6 7

Figure 6: Sample clustering output for the A1 dataset.

Journal of Electrical and Computer Engineering 7

instead of the sequential code compiled using the gnu
compiler g++ with a default level of optimization.

'e other measurement that can be used to compare
performance is the number of floating-point operations
(addition or multiplication) per second (FLOPs) performed.
All high-order functions, such as square-root and expo-
nential functions, can be constructed using basic adder and
multiplier components. For the DE5a-Net board used in this
research, the maximum theoretical FLOPs can be calculated
by multiplying the total number of DSP blocks (each of
which can perform two FLOPs per clock cycle) by the
maximum clock cycle frequency (which is approximately
400MHz). 'us, the maximum theoretical GFLOPs is 1248.

It is hard to achieve the maximum possible number of
FLOPs in practice because it is not probable that all compu-
tational units will work at the same time [67]. 'e commu-
nication overheads between the utilized components and the
data transfer, which generates more timing constraints, also
prevent the maximum number of FLOPs from being achieved.

Using the performance application program interface
(PAPI) [68], we can measure the number of FLOPs and
other performance parameters such as the number of cache
hits and misses. Table 2 shows the frequency of each
arithmetic function used inside the proposed FCM algo-
rithm for every iteration in the unit of MFLOP. From Ta-
ble 2, we can see that the processing speed is increased by up
to 89 GFLOPs when the FPGA accelerator device is used. All
basic operations (add, sub, mul, and div) are considered as
one floating-point operation. Furthermore, the square-root

function is three floating-point operations, and the power
function is eight floating-point operations.

'e total number of floating-point operations carried
out during all iterations is shown in Table 3. Table 3 also
shows the GFLOPs performance of the PAPI tool.

4. Conclusion

'e study introduced a hardware solution approach that
utilizes a high-level abstraction language (namely, OpenCL)
to accelerate the computation heavy FCM algorithm. 'e
study also provides a simple way to create an efficient design
that can be synthesized on the FPGA acceleration platform.
'e results demonstrate the effectiveness of the acceleration
device and the optimization, indicated by speed improve-
ments of up to 187 times when compared to a regular single-
core CPU platform.

Data Availability

Datasets are derived from public resources and made
available with the article through providing the required
references.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Table 1: Benchmarks execution times for both the CPU and FPGA computation platforms.

Benchmark Number of
clusters (K)

Number of
iterations

Data size
(number of
vectors)

Execution time (seconds)
FPGA speedup

Serial code (CPU)
Parallel code
(FPGA)

Optimized
compiled with

O3

Default level of
optimization Optimized Default

BIRCH (DS-
1) 100 735 100,000 20,526 99488 534 38.44 186.3

A3 50 374 7,500 202 970 5.31 38.04 182.7
A1 20 287 3,000 10.6 42.7 0.345 30.72 123.8
Unbalanced 8 442 6,500 6.24 29.2 0.247 25.26 118.2

Table 2: (Number of arithmetic operations ×106) per each iteration.

Benchmark Add Sub Mul Div Sqrt Power
BIRCH (DS-1) 5551 5520 20 2211 2210 5540
A3 105 103.8 0.75 41.6 41.6 104.6
A1 6.9 6.7 0.12 2.7 2.7 6.8
Unbalance 2.5 2.4 0.1 .97 0.96 2.5

Table 3: GFLOPs performance comparison.

Benchmark Number of clusters (K) Number of iterations GFLOP GFLOPs (CPU) (FPGA)
BIRCH (DS-1) 100 735 47225.2 2.3 88.44
A3 50 374 453.57 2.24 85.4
A1 20 287 22.65 2.14 65.65
Unbalance 8 442 12.75 2.04 51.62

8 Journal of Electrical and Computer Engineering

Acknowledgments

'is study was supported by the Intel FPGA University
Program Ticket nos. LR4043 and BR 11211.

References

[1] H. Alashwal, M. El Halaby, J. J. Crouse, A. Abdalla, and
A. A. Moustafa, “'e application of unsupervised clustering
methods to Alzheimer’s disease,” Frontiers in Computational
Neuroscience, vol. 13, p. 31, 2019.

[2] D. K. Iakovidis, N. Pelekis, E. Kotsifakos, and I. Kopanakis,
“Intuitionistic fuzzy clustering with applications in computer
vision,” in Advanced Concepts for Intelligent Vision Systems.
ACIVS 2008. Lecture Notes in Computer Science, J. Blanc-
Talon, S. Bourennane, W. Philips, D. Popescu, and
P. Scheunders, Eds., vol. 5259, Berlin, Heidelberg, Springer,
2008.

[3] F. Yoseph, N. H. Ahamed Hassain Malim, M. Heikkilä,
A. Brezulianu, O. Geman, and N. A. Paskhal Rostam, “'e
impact of big data market segmentation using data mining
and clustering techniques,” Journal of Intelligent & Fuzzy
Systems, vol. 38, no. 5, pp. 6159–6173, 2020.

[4] M. Pondel and J. Korczak, “Collective clustering of marketing
data-recommendation system upsaily,” in Proceedings of the
2018 Federated Conference on Computer Science and Infor-
mation Systems (FedCSIS), pp. 801–810, Poznań, Poland,
September 2018.

[5] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu,
“RankClus: integrating clustering with ranking for hetero-
geneous information network analysis,” in Proceedings of the
12th International Conference on Extending Database Tech-
nology: Advances in Database Technology (EDBT ‘09),
pp. 565–576, Association for Computing Machinery, New
York, NY, USA, March 2009.

[6] G. Mohler, “Modeling and estimation of multi-source clus-
tering in crime and security data,” De Annals of Applied
Statistics, vol. 7, no. 3, pp. 1525–1539, 2013.

[7] A. Likas, N. Vlassis, and J. Verbeek, “'e global k-means
clustering algorithm,” Pattern Recognition, vol. 36, no. 2,
pp. 451–461, 2003.

[8] A. Gosain and S. Dahiya, “Performance analysis of various
fuzzy clustering algorithms: a review,” Procedia Computer
Science, vol. 79, pp. 100–111, 2016, ISSN 1877-0509.

[9] F. Nielsen, “Hierarchical clustering,” in Introduction to HPC
with MPI for Data Science. Undergraduate Topics in Computer
ScienceSpringer, Cham, 2016.

[10] M. Benassi, S. Garofalo, F. Ambrosini et al., “Using two-step
cluster Analysis and latent class cluster Analysis to classify the
cognitive heterogeneity of cross-diagnostic psychiatric inpa-
tients,” Frontiers in Psychology, vol. 11, Article ID 1085, 2020.

[11] B. Zhang, M. Hsu, and U. Dayal, K-harmonic Means—A Data
Clustering Algorithm, Technical Report HPL-124, Hewlett-
Packard Labs, Palo Alto, CA, USA, 1999.

[12] R. Xu and D. WunschII, “Survey of clustering algorithms,”
IEEE Transactions on Neural Networks, vol. 16, no. 3,
pp. 645–678, May 2005.

[13] D. P. Dabhi andM. R. Patel, “Extensive survey onHierarchical
Clustering methods in data mining,” International Research
Journal of Engineering and Technology (IRJET), vol. 3, no. 11,
pp. 659–665, Nov. 2016.

[14] S. Patel, S. Sihmar, and A. Jatain, “A study of hierarchical
clustering algorithms,” in Proceedings of the 2015 2nd Inter-
national Conference on Computing for Sustainable Global

Development (INDIACom), pp. 537–541, New Delhi, India,
March 2015.

[15] S. K. Uppada, “Centroid based clustering algorithms- A
clarion study,” International Journal of Computer Science and
Information Technologies, vol. 5, no. 6, pp. 7309–7313, 2014.

[16] A. C. Benabdellah, A. Benghabrit, and I. Bouhaddou, “A
survey of clustering algorithms for an industrial context,”
Procedia Computer Science, vol. 148, pp. 291–302, 2019.

[17] D. Brown, A. Japa, and Y. Shi, “A fast density-grid based
clustering method,” in Proceedings of the 2019 IEEE 9th
Annual Computing and Communication Workshop and
Conference (CCWC), pp. 0048–0054, Las Vegas, NV, USA,
January 2019.

[18] H. G. Garima and P. K. Singh, “Clustering techniques in data
mining: a comparison,” in Proceedings of the 2015 2nd In-
ternational Conference on Computing for Sustainable Global
Development (INDIACom), pp. 410–415, New Delhi, India,
March 2015.

[19] M. Z. Rodriguez, C. H. Comin, D. Casanova et al., “Clustering
algorithms: a comparative approach,” PLoS One, vol. 14, no. 1,
Article ID e0210236, 2019.

[20] O. A. Abbas, “Comparisons between data clustering algo-
rithms,” International Arab Journal of Information Technol-
ogy, vol. 5, no. 3, pp. 320–325, May 2008.

[21] T. Kinnunen, I. Sidoroff, M. Tuononen, and P. Fränti,
“Comparison of clustering methods: a case study of text-
independent speaker modeling,” Pattern Recognition Letters,
vol. 32, no. 13, pp. 1604–1617, 2011.

[22] S. Deng, “Clustering with Fuzzy C-means and common
challenges,” Journal of Physics: Conference Series, vol. 1453,
no. 1, Article ID 012137, 2020.

[23] M. S. Choudhry and R. Kapoor, “Performance analysis of
fuzzy C-means clustering methods for MRI image segmen-
tation,” Procedia Computer Science, vol. 89, pp. 749–758, 2016.

[24] M. S. Mahmud, M. M. Rahman, and M. N. Akhtar, “Im-
provement of K-means clustering algorithm with better initial
centroids based on weighted average,” in Proceedings of the
2012 7th International Conference on Electrical and Computer
Engineering, pp. 647–650, Dhaka, Bangladesh, December
2012.

[25] L. Zhang, J. Qu, M. Gao, and M. Zhao, “Improvement of
K-means algorithm based on density,” in Proceedings of the
2019 IEEE 8th Joint International Information Technology and
Artificial Intelligence Conference (ITAIC), pp. 1070–1073,
Chongqing, China, May 2019.

[26] H. Zhang, Yu Hong, Y. Li, and B. Hu, “Improved K-means
algorithm based on the clustering reliability analysis,” in
Proceedings of the 2015 International Symposium on Com-
puters & Informatics, January 2015.

[27] K. Mumtaz and Dr. K. Duraiswamy, “A novel density based
improved k-means clustering algorithm dbkmeans,” Inter-
national Journal on Computer Science and Engineering, vol. 2,
2010.

[28] O. Sangita and J. Dhanamma, “An improved K-means
clustering approach for teaching evaluation,” in Advances in
Computing, Communication and Control. ICAC3 2011,
S. Unnikrishnan, S. Surve, and D. Bhoir, Eds., vol. 125, Berlin,
Heidelberg, Springer, 2011.

[29] X. B. Liu, B. B. Deng, and L. N. Shen, “'e improved K-means
cluster Analysis on diagnosis data fusion of the aero-engine,”
Applied Mechanics and Materials, Trans Tech Publications,
Ltd.vol. 328, pp. 463–467, June 2013.

[30] A. Ashabi, S. B. Sahibuddin, and M. Salkhordeh Haghighi,
“'e systematic review of K-means clustering algorithm,” in

Journal of Electrical and Computer Engineering 9

Proceedings of the 2020 De 9th International Conference on
Networks, Communication and Computing (ICNCC 2020),
vol. 13–18, 2020.

[31] U. Baid, S. Talbar, and S. Talbar, “Comparative study of
K-means, Gaussianmixturemodel, fuzzy C-means algorithms
for brain tumor segmentation,” in Proceedings of the Inter-
national Conference on Communication and Signal Processing
2016 (ICCASP 2016), 2017.

[32] T. C. Hakyemez, A. Bozanta, and M. Coşkun, “K-means vs.
Fuzzy C-means: a comparative analysis of two popular
clustering techniques on the featured mobile applications
benchmark,” IMISC. Journal Contribution, 2019.

[33] A. K. Dubey, U. Gupta, and S. Jain, “Comparative study of
K-means and fuzzy C-means algorithms on the breast cancer
data,” International Journal on Advanced Science, Engineering
and Information Technology, vol. 8, no. 1, p. 18, 2018.

[34] S. A. Mingoti and J. O. Lima, “Comparing SOM neural
network with Fuzzy c-means, K-means and traditional hi-
erarchical clustering algorithms,” European Journal of Op-
erational Research, vol. 174, no. 3, pp. 1742–1759, 2006.

[35] Y. Zhang and J. Han, “Differential privacy fuzzy C-means
clustering algorithm based on Gaussian kernel function,”
PLoS One, vol. 16, no. 3, Article ID e0248737, 23 Mar. 2021.

[36] H. R.M, F. Abbas, and A. Abdulkarem, “Performance eval-
uation of K-mean and fuzzy C-mean image segmentation
based clustering classifier,” International Journal of Advanced
Computer Science and Applications, vol. 6, no. 12, 2015.

[37] H. Purnawansyah, A. F. O. Gafar, and I. Tahyudin, “Com-
parison between K-means and fuzzy C-means clustering in
network traffic activities,” in Lecture Notes on Multidisci-
plinary Industrial Engineering, J. Xu, M. Gen, A. Hajiyev, and
F. Cooke, Eds., , 2018.

[38] W. Wiharto and E. Suryani, “'e comparison of clustering
algorithms K-means and fuzzy C-means for segmentation
retinal blood vessels,” Acta Informatica Medica, vol. 28, no. 1,
pp. 42–47, 2020.

[39] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, June 1965.

[40] C. Bai, D. Dhavale, and J. Sarkis, “Complex investment de-
cisions using rough set and fuzzy c-means: an example of
investment in green supply chains,” European Journal of
Operational Research, vol. 248, no. 2, pp. 507–521, 2016.

[41] J. C. Bezdek, Pattern Recognition with Fuzzy Objective
Function Algorithms, Springer US, Boston, MA, USA, 1981.

[42] P. Liu, L. Duan, X. Chi, and Z. Zhu, “An improved fuzzy
C-means clustering algorithm based on simulated annealing,”
in Proceedings of the 2013 10th International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD), pp. 39–43,
Shenyang, China, July 2013.

[43] S. Askari, “Fuzzy C-Means clustering algorithm for data with
unequal cluster sizes and contaminated with noise and out-
liers: review and development,” Expert Systems with Appli-
cations, vol. 165, Article ID 113856, 2021.

[44] J. Pei, X. Yang, X. Gao, andW. Xie, “Weighting exponent m in
fuzzy C-means (FCM) clustering algorithm,” Proceedings of
the SPIE 4554, Object Detection, Classification, and Tracking
Technologies, vol. 4554, pp. 246–251, 24 September 2001.

[45] K.-L. Wu, “Analysis of parameter selections for fuzzy
c-means,” Pattern Recognition, vol. 45, no. 1, pp. 407–415,
2012.

[46] A. Almomany, A. Al-Omari, A. Jarrah, M. Tawalbeh,
A. Alqudah, and A. Alqudah, “An OpenCL-based parallel
acceleration of aSobel edge detection algorithm Using

IntelFPGA technology,” South African Computer Journal,
vol. 32, no. 1, pp. 3–26, 2020.

[47] A. Jarrah, A. Almomany, A. M. R. Alsobeh, and E. Alqudah,
“High-performance implementation of wideband coherent
signal-subspace (CSS)-Based DOA algorithm on FPGA,”
Journal of Circuits Systems and Computers, vol. 30, Article ID
2150196, 2021.

[48] A. Abedalmuhdi, B. E. Wells, and K. I. Nishikawa, “Efficient
particle-grid space interpolation of an FPGA-accelerated
particle-in-cell plasma simulation,” in Proceedings of the 2017
IEEE 25th Annual International Symposium on Field-Pro-
grammable Custom Computing Machines (FCCM), pp. 76–79,
Napa, CA, USA, April 2017.

[49] S. M. Trimberger and J. J. Moore, “FPGA security: motiva-
tions, features, and applications,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1248–1265, Aug. 2014.

[50] T. Wang, C. Wang, X. Zhou, and H. Chen, “An overview of
FPGA based deep learning accelerators: challenges and op-
portunities,” in Proceedings of the 2019 IEEE 21st International
Conference on High Performance Computing and Commu-
nications; IEEE 17th International Conference on Smart City;
IEEE 5th International Conference on Data Science and Sys-
tems (HPCC/SmartCity/DSS), pp. 1674–1681, Zhangjiajie,
China, August 2019.

[51] X. Yang, T. Levi, and T. Kohno, “Real-time pattern recog-
nition implementation on FPGA in multi-SNNs,” in Pro-
ceedings of the International Conference on Artificial Life and
Robotics, vol. 25, pp. 151–154, Beppu, Japan, Jan 2020.

[52] H. M. Waidyasooriya, M. Hariyama, and K. Uchiyama,
“Design of FPGA-based computing systems with OpenCL,”
Design of FPGA-Based Computing Systems with openCL,
Springer International Publishing, New York, NY, USA, 2018.

[53] A. M. Jamel and B. Akay, “A survey and systematic catego-
rization of parallel K-means and fuzzy-c-means algorithms,”
Computer Systems Science and Engineering, vol. 34, no. 5,
pp. 259–281, 2019.

[54] M. Alandoli, M. Shehab, M. Al-Ayyoub, Y. Jararweh, and
M. Al-Smadi, “Using GPUs to speed-up FCM-based com-
munity detection in Social Networks,” in Proceedings of the
2016 7th International Conference on Computer Science and
Information Technology (CSIT), pp. 1–6, Amman, Jordan, July
2016.

[55] M. Al-Ayyoub, Q. Yaseen, M. A. Shehab, Y. Jararweh,
F. Albalas, and E. Benkhelifa, “Exploiting GPUs to accelerate
clustering algorithms,” in Proceedings of the 2016 IEEE/ACS
13th International Conference of Computer Systems and Ap-
plications (AICCSA), pp. 1–6, Agadir, Morocco, 2016.

[56] S. A. A. Shalom, M. Dash, and M. Tue, “Graphics hardware
based efficient and scalable fuzzy C-means clustering,” in
Proceedings of the Seventh Australasian Data Mining Con-
ference (AusDM 2008), J. F. Roddick,, J. Li,, P. Christen,, and
P. J. Kennedy,, Eds., ACS, Glenelg, South Australia,
pp. 179–186, 2008.

[57] N. Ait Ali, B. Cherradi, A. El Abbassi, O. Bouattane, and
M. Youssfi, “GPU fuzzy c-means algorithm implementations:
performance analysis on medical image segmentation,”
Multimedia Tools and Applications, vol. 77, no. 16,
pp. 21221–21243, 2018.

[58] T. Kalaiselvi and P. Sriramakrishnan, “Rapid brain tissue
segmentation process by modified FCM algorithm with
CUDA enabled GPU machine,” International Journal of
Imaging Systems and Technology, vol. 28, no. 3, pp. 163–174,
2018.

10 Journal of Electrical and Computer Engineering

[59] A. Shoeibi, N. Ghassemi, H. Hosseini-Nejad, andM. Rouhani,
“An efficient brain MR images segmentation hardware using
kernel fuzzy C-means,” in Proceedings of the 2019 26th Na-
tional and 4th International Iranian Conference on Biomedical
Engineering (ICBME), pp. 93–99, Tehran, Iran, November
2019.

[60] M. Krid, M. Karray, and D. S. Masmoudi, “FPGA pulse mode
implementation of a Gaussian Fuzzy C-Means algorithm,” in
Proceedings of the 2015 IEEE 12th International Multi-Con-
ference on Systems, Signals & Devices (SSD15), pp. 1–6,
Mahdia, Tunisia, March 2015.

[61] J. Lázaro, J. Arias, J. L. Mart́ın, C. Cuadrado, and A. Astarloa,
“Implementation of a modified Fuzzy C-Means clustering
algorithm for real-time applications,” Microprocessors and
Microsystems, vol. 29, no. 8-9, pp. 375–380, 2005.

[62] W. J. Hwang, Z.-C. Fan, and T.-M. Shen, “Unsupervised
image segmentation circuit based on fuzzy C-means clus-
tering,” in Proceedings of the Fifth International Conference on
Advances in Circuits, Electronics and Micro-electronics,
Venice, Italy, October 2012.

[63] T. Zhang, R. Ramakrishnan, and M. Livny, “A new data
clustering algorithm and its applications,” Data Mining and
Knowledge Discovery, vol. 1, no. 2, pp. 141–182, 1997.

[64] I. Kärkkäinen and P. Fränti, A Dynamic Local Search Algo-
rithm for the Clustering Problem, Joensuu, Finland, University
of Joensuu, 2002.

[65] M. Rezaei and P. Franti, “Set matching measures for external
cluster validity,” IEEE Transactions on Knowledge and Data
Engineering, vol. 28, no. 8, pp. 2173–2186, 1 Aug. 2016.

[66] R. Brandao, Fuzzy-k-Means: C++ Implementation of Fuzzy
K-Means Clustering Algorithm, 2016, https://github.com/
programonauta/fuzzy-k-means.

[67] M. Parker, Understanding peak floating-point performance
claims, intel programmable solutions group, 2017.

[68] D. Terpstra, H. Jagode, H. You, and J. Dongarra, Collecting
Performance Data with PAPI-C”, Tools for High-Performance
Computing 2009, pp. 157–173, Springer Berlin/Heidelberg,
3rd Parallel Tools Workshop, Dresden, Germany, 2010.

Journal of Electrical and Computer Engineering 11

https://github.com/programonauta/fuzzy-k-means
https://github.com/programonauta/fuzzy-k-means

