
FCOS: Fully Convolutional One-Stage Object Detection

Zhi Tian Chunhua Shen∗ Hao Chen Tong He

The University of Adelaide, Australia

Abstract

We propose a fully convolutional one-stage object detec-

tor (FCOS) to solve object detection in a per-pixel predic-

tion fashion, analogue to semantic segmentation. Almost

all state-of-the-art object detectors such as RetinaNet, SSD,

YOLOv3, and Faster R-CNN rely on pre-defined anchor

boxes. In contrast, our proposed detector FCOS is anchor

box free, as well as proposal free. By eliminating the pre-

defined set of anchor boxes, FCOS completely avoids the

complicated computation related to anchor boxes such as

calculating overlapping during training. More importantly,

we also avoid all hyper-parameters related to anchor boxes,

which are often very sensitive to the final detection perfor-

mance. With the only post-processing non-maximum sup-

pression (NMS), FCOS with ResNeXt-64x4d-101 achieves

44.7% in AP with single-model and single-scale testing,

surpassing previous one-stage detectors with the advantage

of being much simpler. For the first time, we demonstrate

a much simpler and flexible detection framework achieving

improved detection accuracy. We hope that the proposed

FCOS framework can serve as a simple and strong alterna-

tive for many other instance-level tasks. Code is available

at: tinyurl.com/FCOSv1

1. Introduction

Object detection is a fundamental yet challenging task in

computer vision, which requires the algorithm to predict a

bounding box with a category label for each instance of in-

terest in an image. All current mainstream detectors such

as Faster R-CNN [24], SSD [18] and YOLOv2, v3 [23] rely

on a set of pre-defined anchor boxes and it has long been

believed that the use of anchor boxes is the key to detectors’

success. Despite their great success, it is important to note

that anchor-based detectors suffer some drawbacks: 1) As

shown in [15, 24], detection performance is sensitive to the

sizes, aspect ratios and number of anchor boxes. For exam-

ple, in RetinaNet [15], varying these hyper-parameters af-

fects the performance up to 4% in AP on the COCO bench-

mark [16]. As a result, these hyper-parameters need to be
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Figure 1 – As shown in the left image, FCOS works by predicting a

4D vector (l, t, r, b) encoding the location of a bounding box at each

foreground pixel (supervised by ground-truth bounding box information

during training). The right plot shows that when a location residing in

multiple bounding boxes, it can be ambiguous in terms of which bound-

ing box this location should regress.

carefully tuned in anchor-based detectors. 2) Even with

careful design, because the scales and aspect ratios of an-

chor boxes are kept fixed, detectors encounter difficulties to

deal with object candidates with large shape variations, par-

ticularly for small objects. The pre-defined anchor boxes

also hamper the generalization ability of detectors, as they

need to be re-designed on new detection tasks with differ-

ent object sizes or aspect ratios. 3) In order to achieve

a high recall rate, an anchor-based detector is required to

densely place anchor boxes on the input image (e.g., more

than 180K anchor boxes in feature pyramid networks (FPN)

[14] for an image with its shorter side being 800). Most

of these anchor boxes are labelled as negative samples dur-

ing training. The excessive number of negative samples ag-

gravates the imbalance between positive and negative sam-

ples in training. 4) Anchor boxes also involve complicated

computation such as calculating the intersection-over-union

(IoU) scores with ground-truth bounding boxes.

Recently, fully convolutional networks (FCNs) [20] have

achieved tremendous success in dense prediction tasks such

as semantic segmentation [20, 28, 9, 19], depth estimation

[17, 31], keypoint detection [3] and counting [2]. As one

of high-level vision tasks, object detection might be the

only one deviating from the neat fully convolutional per-
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pixel prediction framework mainly due to the use of anchor

boxes. It is nature to ask a question: Can we solve object

detection in the neat per-pixel prediction fashion, analogue

to FCN for semantic segmentation, for example? Thus

those fundamental vision tasks can be unified in (almost)

one single framework. We show that the answer is affir-

mative. Moreover, we demonstrate that, for the first time,

the much simpler FCN-based detector achieves even better

performance than its anchor-based counterparts.

In the literature, some works attempted to leverage the

FCNs-based framework for object detection such as Dense-

Box [12]. Specifically, these FCN-based frameworks di-

rectly predict a 4D vector plus a class category at each spa-

tial location on a level of feature maps. As shown in Fig. 1

(left), the 4D vector depicts the relative offsets from the four

sides of a bounding box to the location. These frameworks

are similar to the FCNs for semantic segmentation, except

that each location is required to regress a 4D continuous

vector. However, to handle the bounding boxes with dif-

ferent sizes, DenseBox [12] crops and resizes training im-

ages to a fixed scale. Thus DenseBox has to perform detec-

tion on image pyramids, which is against FCN’s philosophy

of computing all convolutions once. Besides, more signif-

icantly, these methods are mainly used in special domain

objection detection such as scene text detection [33, 10] or

face detection [32, 12], since it is believed that these meth-

ods do not work well when applied to generic object de-

tection with highly overlapped bounding boxes. As shown

in Fig. 1 (right), the highly overlapped bounding boxes re-

sult in an intractable ambiguity: it is not clear w.r.t. which

bounding box to regress for the pixels in the overlapped re-

gions.

In the sequel, we take a closer look at the issue and show

that with FPN this ambiguity can be largely eliminated. As

a result, our method can already obtain comparable detec-

tion accuracy with those traditional anchor based detectors.

Furthermore, we observe that our method may produce a

number of low-quality predicted bounding boxes at the lo-

cations that are far from the center of an target object. In

order to suppress these low-quality detections, we intro-

duce a novel “center-ness” branch (only one layer) to pre-

dict the deviation of a pixel to the center of its correspond-

ing bounding box, as defined in Eq. (3). This score is then

used to down-weight low-quality detected bounding boxes

and merge the detection results in NMS. The simple yet ef-

fective center-ness branch allows the FCN-based detector

to outperform anchor-based counterparts under exactly the

same training and testing settings.

This new detection framework enjoys the following ad-

vantages.

• Detection is now unified with many other FCN-

solvable tasks such as semantic segmentation, making

it easier to re-use ideas from those tasks.

• Detection becomes proposal free and anchor free,

which significantly reduces the number of design pa-

rameters. The design parameters typically need heuris-

tic tuning and many tricks are involved in order to

achieve good performance. Therefore, our new de-

tection framework makes the detector, particularly its

training, considerably simpler.

• By eliminating the anchor boxes, our new detector

completely avoids the complicated computation re-

lated to anchor boxes such as the IOU computation and

matching between the anchor boxes and ground-truth

boxes during training, resulting in faster training and

testing as well as less training memory footprint than

its anchor-based counterpart.

• Without bells and whistles, we achieve state-of-the-

art results among one-stage detectors. We also show

that the proposed FCOS can be used as a Region

Proposal Networks (RPNs) in two-stage detectors and

can achieve significantly better performance than its

anchor-based RPN counterparts. Given the even better

performance of the much simpler anchor-free detector,

we encourage the community to rethink the necessity of

anchor boxes in object detection, which are currently

considered as the de facto standard for detection.

• The proposed detector can be immediately extended

to solve other vision tasks with minimal modification,

including instance segmentation and key-point detec-

tion. We believe that this new method can be the new

baseline for many instance-wise prediction problems.

2. Related Work

Anchor-based Detectors. Anchor-based detectors in-

herit the ideas from traditional sliding-window and proposal

based detectors such as Fast R-CNN [6]. In anchor-based

detectors, the anchor boxes can be viewed as pre-defined

sliding windows or proposals, which are classified as pos-

itive or negative patches, with an extra offsets regression

to refine the prediction of bounding box locations. There-

fore, the anchor boxes in these detectors may be viewed

as training samples. Unlike previous detectors like Fast

RCNN, which compute image features for each sliding win-

dow/proposal repeatedly, anchor boxes make use of the fea-

ture maps of CNNs and avoid repeated feature computation,

speeding up detection process dramatically. The design of

anchor boxes are popularized by Faster R-CNN in its RPNs

[24], SSD [18] and YOLOv2 [22], and has become the con-

vention in a modern detector.

However, as described above, anchor boxes result in

excessively many hyper-parameters, which typically need

to be carefully tuned in order to achieve good perfor-

mance. Besides the above hyper-parameters describing an-

chor shapes, the anchor-based detectors also need other
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Figure 2 – The network architecture of FCOS, where C3, C4, and C5 denote the feature maps of the backbone network and P3 to P7 are the feature levels

used for the final prediction. H ×W is the height and width of feature maps. ‘/s’ (s = 8, 16, ..., 128) is the down-sampling ratio of the feature maps at

the level to the input image. As an example, all the numbers are computed with an 800× 1024 input.

hyper-parameters to label each anchor box as a positive,

ignored or negative sample. In previous works, they of-

ten employ intersection over union (IOU) between anchor

boxes and ground-truth boxes to determine the label of an

anchor box (e.g., a positive anchor if its IOU is in [0.5, 1]).
These hyper-parameters have shown a great impact on the

final accuracy, and require heuristic tuning. Meanwhile,

these hyper-parameters are specific to detection tasks, mak-

ing detection tasks deviate from a neat fully convolutional

network architectures used in other dense prediction tasks

such as semantic segmentation.

Anchor-free Detectors. The most popular anchor-free

detector might be YOLOv1 [21]. Instead of using anchor

boxes, YOLOv1 predicts bounding boxes at points near

the center of objects. Only the points near the center are

used since they are considered to be able to produce higher-

quality detection. However, since only points near the cen-

ter are used to predict bounding boxes, YOLOv1 suffers

from low recall as mentioned in YOLOv2 [22]. As a result,

YOLOv2 [22] employs anchor boxes as well. Compared to

YOLOv1, FCOS takes advantages of all points in a ground

truth bounding box to predict the bounding boxes and the

low-quality detected bounding boxes are suppressed by the

proposed “center-ness” branch. As a result, FCOS is able to

provide comparable recall with anchor-based detectors as

shown in our experiments.

CornerNet [13] is a recently proposed one-stage anchor-

free detector, which detects a pair of corners of a bound-

ing box and groups them to form the final detected bound-

ing box. CornerNet requires much more complicated post-

processing to group the pairs of corners belonging to the

same instance. An extra distance metric is learned for the

purpose of grouping.

Another family of anchor-free detectors such as [32] are

based on DenseBox [12]. The family of detectors have been

considered unsuitable for generic object detection due to

difficulty in handling overlapping bounding boxes and the

recall being relatively low. In this work, we show that both

problems can be largely alleviated with multi-level FPN

prediction. Moreover, we also show together with our pro-

posed center-ness branch, the much simpler detector can

achieve even better detection performance than its anchor-

based counterparts.

3. Our Approach

In this section, we first reformulate object detection in

a per-pixel prediction fashion. Next, we show that how

we make use of multi-level prediction to improve the re-

call and resolve the ambiguity resulted from overlapped

bounding boxes. Finally, we present our proposed “center-

ness” branch, which helps suppress the low-quality detected

bounding boxes and improves the overall performance by a

large margin.

3.1. Fully Convolutional One­Stage Object Detector

Let Fi ∈ R
H×W×C be the feature maps at layer i of

a backbone CNN and s be the total stride until the layer.

The ground-truth bounding boxes for an input image are

defined as {Bi}, where Bi = (x
(i)
0 , y

(i)
0 , x

(i)
1 y

(i)
1 , c(i)) ∈

R
4 × {1, 2 ... C}. Here (x

(i)
0 , y

(i)
0 ) and (x

(i)
1 y

(i)
1 ) denote

the coordinates of the left-top and right-bottom corners of

the bounding box. c(i) is the class that the object in the

bounding box belongs to. C is the number of classes, which

is 80 for MS-COCO dataset.

For each location (x, y) on the feature map Fi, we can
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map it back onto the input image as (⌊ s
2⌋+ xs,

⌊

s
2

⌋

+ ys),
which is near the center of the receptive field of the location

(x, y). Different from anchor-based detectors, which con-

sider the location on the input image as the center of (multi-

ple) anchor boxes and regress the target bounding box with

these anchor boxes as references, we directly regress the tar-

get bounding box at the location. In other words, our detec-

tor directly views locations as training samples instead of

anchor boxes in anchor-based detectors, which is the same

as FCNs for semantic segmentation [20].

Specifically, location (x, y) is considered as a positive

sample if it falls into any ground-truth box and the class la-

bel c∗ of the location is the class label of the ground-truth

box. Otherwise it is a negative sample and c∗ = 0 (back-

ground class). Besides the label for classification, we also

have a 4D real vector ttt∗ = (l∗, t∗, r∗, b∗) being the regres-

sion targets for the location. Here l∗, t∗, r∗ and b∗ are the

distances from the location to the four sides of the bound-

ing box, as shown in Fig. 1 (left). If a location falls into

multiple bounding boxes, it is considered as an ambiguous

sample. We simply choose the bounding box with minimal

area as its regression target. In the next section, we will

show that with multi-level prediction, the number of am-

biguous samples can be reduced significantly and thus they

hardly affect the detection performance. Formally, if loca-

tion (x, y) is associated to a bounding box Bi, the training

regression targets for the location can be formulated as,

l∗ = x− x
(i)
0 , t∗ = y − y

(i)
0 ,

r∗ = x
(i)
1 − x, b∗ = y

(i)
1 − y.

(1)

It is worth noting that FCOS can leverage as many fore-

ground samples as possible to train the regressor. It is dif-

ferent from anchor-based detectors, which only consider the

anchor boxes with a highly enough IOU with ground-truth

boxes as positive samples. We argue that it may be one of

the reasons that FCOS outperforms its anchor-based coun-

terparts.

Network Outputs. Corresponding to the training tar-

gets, the final layer of our networks predicts an 80D vector ppp
of classification labels and a 4D vector ttt = (l, t, r, b) bound-

ing box coordinates. Following [15], instead of training a

multi-class classifier, we train C binary classifiers. Simi-

lar to [15], we add four convolutional layers after the fea-

ture maps of the backbone networks respectively for clas-

sification and regression branches. Moreover, since the re-

gression targets are always positive, we employ exp(x) to

map any real number to (0,∞) on the top of the regression

branch. It is worth noting that FCOS has 9× fewer network

output variables than the popular anchor-based detectors

[15, 24] with 9 anchor boxes per location.

Loss Function. We define our training loss function as

follows:

L({pppx,y}, {tttx,y}) =
1

Npos

∑

x,y

Lcls(pppx,y, c
∗
x,y)

+
λ

Npos

∑

x,y

✶{c∗x,y>0}Lreg(tttx,y, ttt
∗
x,y),

(2)

where Lcls is focal loss as in [15] and Lreg is the IOU loss

as in UnitBox [32]. Npos denotes the number of positive

samples and λ being 1 in this paper is the balance weight

for Lreg. The summation is calculated over all locations

on the feature maps Fi. ✶{c∗
i
>0} is the indicator function,

being 1 if c∗i > 0 and 0 otherwise.

Inference. The inference of FCOS is straightforward.

Given an input images, we forward it through the network

and obtain the classification scores pppx,y and the regression

prediction tttx,y for each location on the feature maps Fi.

Following [15], we choose the location with px,y > 0.05 as

positive samples and invert Eq. (1) to obtain the predicted

bounding boxes.

3.2. Multi­level Prediction with FPN for FCOS

Here we show that how two possible issues of the pro-

posed FCOS can be resolved with multi-level prediction

with FPN [14]. 1) The large stride (e.g., 16×) of the final

feature maps in a CNN can result in a relatively low best

possible recall (BPR)1. For anchor based detectors, low re-

call rates due to the large stride can be compensated to some

extent by lowering the required IOU scores for positive an-

chor boxes. For FCOS, at the first glance one may think that

the BPR can be much lower than anchor-based detectors

because it is impossible to recall an object which no loca-

tion on the final feature maps encodes due to a large stride.

Here, we empirically show that even with a large stride,

FCN-based FCOS is still able to produce a good BPR, and

it can even better than the BPR of the anchor-based detec-

tor RetinaNet [15] in the official implementation Detectron

[7] (refer to Table 1). Therefore, the BPR is actually not

a problem of FCOS. Moreover, with multi-level FPN pre-

diction [14], the BPR can be improved further to match the

best BPR the anchor-based RetinaNet can achieve. 2) Over-

laps in ground-truth boxes can cause intractable ambiguity

, i.e., which bounding box should a location in the overlap

regress? This ambiguity results in degraded performance of

FCN-based detectors. In this work, we show that the am-

biguity can be greatly resolved with multi-level prediction,

and the FCN-based detector can obtain on par, sometimes

even better, performance compared with anchor-based ones.

Following FPN [14], we detect different sizes of ob-

jects on different levels of feature maps. Specifically,

we make use of five levels of feature maps defined as

1Upper bound of the recall rate that a detector can achieve.
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{P3, P4, P5, P6, P7}. P3, P4 and P5 are produced by the

backbone CNNs’ feature maps C3, C4 and C5 followed by

a 1 × 1 convolutional layer with the top-down connections

in [14], as shown in Fig. 2. P6 and P7 are produced by ap-

plying one convolutional layer with the stride being 2 on P5

and P6, respectively. As a result, the feature levels P3, P4,

P5, P6 and P7 have strides 8, 16, 32, 64 and 128, respec-

tively.

Unlike anchor-based detectors, which assign anchor

boxes with different sizes to different feature levels, we di-

rectly limit the range of bounding box regression for each

level. More specifically, we firstly compute the regression

targets l∗, t∗, r∗ and b∗ for each location on all feature lev-

els. Next, if a location satisfies max(l∗, t∗, r∗, b∗) > mi

or max(l∗, t∗, r∗, b∗) < mi−1, it is set as a negative sam-

ple and is thus not required to regress a bounding box any-

more. Here mi is the maximum distance that feature level

i needs to regress. In this work, m2, m3, m4, m5, m6 and

m7 are set as 0, 64, 128, 256, 512 and ∞, respectively.

Since objects with different sizes are assigned to different

feature levels and most overlapping happens between ob-

jects with considerably different sizes. If a location, even

with multi-level prediction used, is still assigned to more

than one ground-truth boxes, we simply choose the ground-

truth box with minimal area as its target. As shown in our

experiments, the multi-level prediction can largely alleviate

the aforementioned ambiguity and improve the FCN-based

detector to the same level of anchor-based ones.

Finally, following [14, 15], we share the heads be-

tween different feature levels, not only making the detector

parameter-efficient but also improving the detection perfor-

mance. However, we observe that different feature levels

are required to regress different size range (e.g., the size

range is [0, 64] for P3 and [64, 128] for P4), and therefore it

is not reasonable to make use of identical heads for differ-

ent feature levels. As a result, instead of using the standard

exp(x), we make use of exp(six) with a trainable scalar si
to automatically adjust the base of the exponential function

for feature level Pi, which slightly improves the detection

performance.

3.3. Center­ness for FCOS

After using multi-level prediction in FCOS, there is still

a performance gap between FCOS and anchor-based detec-

tors. We observed that it is due to a lot of low-quality pre-

dicted bounding boxes produced by locations far away from

the center of an object.

We propose a simple yet effective strategy to suppress

these low-quality detected bounding boxes without intro-

ducing any hyper-parameters. Specifically, we add a single-

layer branch, in parallel with the classification branch (as

shown in Fig. 2) to predict the “center-ness” of a location2.

2After the initial submission, it has been shown that the AP on MS-

t*

r*l*

b*

Figure 3 – Center-ness. Red, blue, and other

colors denote 1, 0 and the values between them,

respectively. Center-ness is computed by Eq.

(3) and decays from 1 to 0 as the location de-

viates from the center of the object. When test-

ing, the center-ness predicted by the network is

multiplied with the classification score thus can

down-weight the low-quality bounding boxes

predicted by a location far from the center of

an object.

The center-ness depicts the normalized distance from the

location to the center of the object that the location is re-

sponsible for, as shown Fig. 3. Given the regression targets

l∗, t∗, r∗ and b∗ for a location, the center-ness target is de-

fined as,

centerness∗ =

√

min(l∗, r∗)

max(l∗, r∗)
×

min(t∗, b∗)

max(t∗, b∗)
. (3)

We employ sqrt here to slow down the decay of the center-

ness. The center-ness ranges from 0 to 1 and is thus trained

with binary cross entropy (BCE) loss. The loss is added to

the loss function Eq. (2). When testing, the final score (used

for ranking the detected bounding boxes) is computed by

multiplying the predicted center-ness with the correspond-

ing classification score. Thus the center-ness can down-

weight the scores of bounding boxes far from the center

of an object. As a result, with high probability, these low-

quality bounding boxes might be filtered out by the final

non-maximum suppression (NMS) process, improving the

detection performance remarkably.

An alternative of the center-ness is to make use of only

the central portion of ground-truth bounding box as posi-

tive samples with the price of one extra hyper-parameter,

as shown in works [12, 33]. After our submission, it has

been shown in [1] that the combination of both methods

can achieve a much better performance. The experimental

results can be found in Table 3.

4. Experiments

Our experiments are conducted on the large-scale detec-

tion benchmark COCO [16]. Following the common prac-

tice [15, 14, 24], we use the COCO trainval35k split

(115K images) for training and minival split (5K images)

as validation for our ablation study. We report our main re-

sults on the test dev split (20K images) by uploading our

detection results to the evaluation server.

Training Details. Unless specified, ResNet-50 [8]

is used as our backbone networks and the same hyper-

parameters with RetinaNet [15] are used. Specifically, our

COCO can be improved if the center-ness is parallel with the regression

branch instead of the classification branch. However, unless specified, we

still use the configuration in Fig. 2.
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Method w/ FPN Low-quality matches BPR (%)

RetinaNet X None 86.82

RetinaNet X ≥ 0.4 90.92

RetinaNet X All 99.23

FCOS - 95.55

FCOS X - 98.40

Table 1 – The BPR for anchor-based RetinaNet under a variety of

matching rules and the BPR for FCN-based FCOS. FCN-based FCOS

has very similar recall to the best anchor-based one and has much higher

recall than the official implementation in Detectron [7], where only low-

quality matches with IOU ≥ 0.4 are considered.

w/ FPN Amb. samples (%) Amb. samples (diff.) (%)

23.16 17.84

X 7.14 3.75

Table 2 – Amb. samples denotes the ratio of the ambiguous samples to

all positive samples. Amb. samples (diff.) is similar but excludes those

ambiguous samples in the overlapped regions but belonging to the same

category as the kind of ambiguity does not matter when inferring. We

can see that with FPN, this percentage of ambiguous samples is small

(3.75%).

network is trained with stochastic gradient descent (SGD)

for 90K iterations with the initial learning rate being 0.01

and a mini-batch of 16 images. The learning rate is reduced

by a factor of 10 at iteration 60K and 80K, respectively.

Weight decay and momentum are set as 0.0001 and 0.9, re-

spectively. We initialize our backbone networks with the

weights pre-trained on ImageNet [4]. For the newly added

layers, we initialize them as in [15]. Unless specified, the

input images are resized to have their shorter side being 800

and their longer side less or equal to 1333.

Inference Details. We firstly forward the input im-

age through the network and obtain the predicted bounding

boxes with a predicted class. Unless specified, the following

post-processing is exactly the same with RetinaNet [15] and

we directly make use of the same post-processing hyper-

parameters of RetinaNet. We use the same sizes of input

images as in training. We hypothesize that the performance

of our detector may be improved further if we carefully tune

the hyper-parameters.

4.1. Ablation Study

4.1.1 Multi-level Prediction with FPN

As mentioned before, the major concerns of an FCN-based

detector are low recall rates and ambiguous samples re-

sulted from overlapping in ground-truth bounding boxes. In

the section, we show that both issues can be largely resolved

with multi-level prediction.

Best Possible Recalls. The first concern about the FCN-

based detector is that it might not provide a good best pos-

sible recall (BPR). In the section, we show that the con-

cern is not necessary. Here BPR is defined as the ratio of

the number of ground-truth boxes a detector can recall at

the most divided by all ground-truth boxes. A ground-truth

box is considered being recalled if the box is assigned to

at least one sample (i.e., a location in FCOS or an anchor

box in anchor-based detectors) during training. As shown

in Table 1, only with feature level P4 with stride being 16

(i.e., no FPN), FCOS can already obtain a BPR of 95.55%.

The BPR is much higher than the BPR of 90.92% of the

anchor-based detector RetinaNet in the official implemen-

tation Detectron, where only the low-quality matches with

IOU ≥ 0.4 are used. With the help of FPN, FCOS can

achieve a BPR of 98.40%, which is very close to the best

BPR that the anchor-based detector can achieve by using all

low-quality matches. Due to the fact that the best recall of

current detectors are much lower than 90%, the small BPR

gap (less than 1%) between FCOS and the anchor-based de-

tector will not actually affect the performance of detector.

It is also confirmed in Table 3, where FCOS achieves even

better AR than its anchor-based counterparts under the same

training and testing settings. Therefore, the concern about

low BPR may not be necessary.

Ambiguous Samples. Another concern about the FCN-

based detector is that it may have a large number of ambigu-

ous samples due to the overlapping in ground-truth bound-

ing boxes, as shown in Fig. 1 (right). In Table 2, we show

the ratios of the ambiguous samples to all positive samples

on minival split. As shown in the table, there are indeed a

large amount of ambiguous samples (23.16%) if FPN is not

used and only feature level P4 is used. However, with FPN,

the ratio can be significantly reduced to only 7.14% since

most of overlapped objects are assigned to different feature

levels. Moreover, we argue that the ambiguous samples re-

sulted from overlapping between objects of the same cate-

gory do not matter. For instance, if object A and B with the

same class have overlap, no matter which object the loca-

tions in the overlap predict, the prediction is correct because

it is always matched with the same category. The missed ob-

ject can be predicted by the locations only belonging to it.

Therefore, we only count the ambiguous samples in over-

lap between bounding boxes with different categories. As

shown in Table 2, the multi-level prediction reduces the ra-

tio of ambiguous samples from 17.84% to 3.75%. In order

to further show that the overlapping in ground truth boxes is

not a problem of our FCN-based FCOS, we count that when

inferring how many detected bounding boxes come from

the ambiguous locations. We found that only 2.3% detected

bounding boxes are produced by the ambiguous locations.

By further only considering the overlap between different

categories, the ratio is reduced to 1.5%. Note that it does

not imply that there are 1.5% locations where FCOS cannot

work. As mentioned before, these locations are associated

with the ground-truth boxes with minimal area. Therefore,

these locations only take the risk of missing some larger ob-

jects. As shown in the following experiments, they do not
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Method C5/P5 w/ GN nms thr. AP AP50 AP75 APS APM APL AR1 AR10 AR100

RetinaNet C5 .50 35.9 56.0 38.2 20.0 39.8 47.4 31.0 49.4 52.5

FCOS C5 .50 36.3 54.8 38.7 20.5 39.8 47.8 31.5 50.6 53.5

FCOS P5 .50 36.4 54.9 38.8 19.7 39.7 48.8 31.4 50.6 53.4

FCOS P5 .60 36.5 54.5 39.2 19.8 40.0 48.9 31.3 51.2 54.5

FCOS P5 X .60 37.1 55.9 39.8 21.3 41.0 47.8 31.4 51.4 54.9

Improvements

+ ctr. on reg. P5 X .60 37.4 56.1 40.3 21.8 41.2 48.8 31.5 51.7 55.2

+ ctr. sampling [1] P5 X .60 38.1 56.7 41.4 22.6 41.6 50.4 32.1 52.8 56.3

+ GIoU [1] P5 X .60 38.3 57.1 41.0 21.9 42.4 49.5 32.0 52.9 56.5

+ Normalization P5 X .60 38.6 57.4 41.4 22.3 42.5 49.8 32.3 53.4 57.1

Table 3 – FCOS vs. RetinaNet on the minival split with ResNet-50-FPN as the backbone. Directly using the training and testing settings of RetinaNet,

our anchor-free FCOS achieves even better performance than anchor-based RetinaNet both in AP and AR. With Group Normalization (GN) in heads and

NMS threshold being 0.6, FCOS can achieve 37.1 in AP. After our submission, some almost cost-free improvements have been made for FCOS and the

performance has been improved by a large margin, as shown by the rows below “Improvements”. “ctr. on reg.”: moving the center-ness branch to the

regression branch. “ctr. sampling”: only sampling the central portion of ground-truth boxes as positive samples. “GIoU”: penalizing the union area over

the circumscribed rectangle’s area in IoU Loss. “Normalization”: normalizing the regression targets in Eq. (1) with the strides of FPN levels. Refer to our

code for details.

AP AP50 AP75 APS APM APL

None 33.5 52.6 35.2 20.8 38.5 42.6

center-ness† 33.5 52.4 35.1 20.8 37.8 42.8

center-ness 37.1 55.9 39.8 21.3 41.0 47.8

Table 4 – Ablation study for the proposed center-ness branch on

minival split. “None” denotes that no center-ness is used. “center-

ness†” denotes that using the center-ness computed from the predicted

regression vector. “center-ness” is that using center-ness predicted from

the proposed center-ness branch. The center-ness branch improves the

detection performance under all metrics.

make our FCOS inferior to anchor-based detectors.

4.1.2 With or Without Center-ness

As mentioned before, we propose “center-ness” to suppress

the low-quality detected bounding boxes produced by the

locations far from the center of an object. As shown in

Table 4, the center-ness branch can boost AP from 33.5%
to 37.1%, making anchor-free FCOS outperform anchor-

based RetinaNet (35.9%). Note that anchor-based Reti-

naNet employs two IoU thresholds to label anchor boxes as

positive/negative samples, which can also help to suppress

the low-quality predictions. The proposed center-ness can

eliminate the two hyper-parameters. However, after our ini-

tial submission, it has shown that using both center-ness and

the thresholds can result in a better performance, as shown

by the row “+ ctr. sampling” in Table 3. One may note

that center-ness can also be computed with the predicted

regression vector without introducing the extra center-ness

branch. However, as shown in Table 4, the center-ness com-

puted from the regression vector cannot improve the perfor-

mance and thus the separate center-ness is necessary.

4.1.3 FCOS vs. Anchor-based Detectors

The aforementioned FCOS has two minor differences from

the standard RetinaNet. 1) We use Group Normalization

(GN) [29] in the newly added convolutional layers except

for the last prediction layers, which makes our training more

stable. 2) We use P5 to produce the P6 and P7 instead of

C5 in the standard RetinaNet. We observe that using P5 can

improve the performance slightly.

To show that our FCOS can serve as an simple and strong

alternative of anchor-based detectors, and for a fair compar-

ison, we remove GN (the gradients are clipped to prevent

them from exploding) and use C5 in our detector. As shown

in Table 3, with exactly the same settings, our FCOS still

compares favorably with the anchor-based detector (36.3%
vs 35.9%). Moreover, it is worth to note that we directly use

all hyper-parameters (e.g., learning rate, the NMS threshold

and etc.) from RetinaNet, which have been optimized for

the anchor-based detector. We argue that the performance

of FCOS can be improved further if the hyper-parameters

are tuned for it.

It is worth noting that with some almost cost-free im-

provements, as shown in Table 3, the performance of

our anchor-free detector can be improved by a large mar-

gin. Given the superior performance and the merits of the

anchor-free detector (e.g., much simpler and fewer hyper-

parameters than anchor-based detectors), we encourage the

community to rethink the necessity of anchor boxes in ob-

ject detection.

4.2. Comparison with State­of­the­art Detectors

We compare FCOS with other state-of-the-art object de-

tectors on test− dev split of MS-COCO benchmark. For

these experiments, we randomly scale the shorter side of

images in the range from 640 to 800 during the training and

double the number of iterations to 180K (with the learn-

ing rate change points scaled proportionally). Other set-

tings are exactly the same as the model with AP 37.1% in

Table 3. As shown in Table 5, with ResNet-101-FPN, our

FCOS outperforms the RetinaNet with the same backbone

ResNet-101-FPN by 2.4% in AP. To our knowledge, it is
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Method Backbone AP AP50 AP75 APS APM APL

Two-stage methods:

Faster R-CNN w/ FPN [14] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI [11] Inception-ResNet-v2 [27] 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN w/ TDM [25] Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods:

YOLOv2 [22] DarkNet-19 [22] 21.6 44.0 19.2 5.0 22.4 35.5

SSD513 [18] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [5] ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet [15] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

CornerNet [13] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

FSAF [34] ResNeXt-64x4d-101-FPN 42.9 63.8 46.3 26.6 46.2 52.7

FCOS ResNet-101-FPN 41.5 60.7 45.0 24.4 44.8 51.6

FCOS HRNet-W32-5l [26] 42.0 60.4 45.3 25.4 45.0 51.0

FCOS ResNeXt-32x8d-101-FPN 42.7 62.2 46.1 26.0 45.6 52.6

FCOS ResNeXt-64x4d-101-FPN 43.2 62.8 46.6 26.5 46.2 53.3

FCOS w/ improvements ResNeXt-64x4d-101-FPN 44.7 64.1 48.4 27.6 47.5 55.6

Table 5 – FCOS vs. other state-of-the-art two-stage or one-stage detectors (single-model and single-scale results). FCOS outperforms the anchor-based

counterpart RetinaNet by 2.4% in AP with the same backbone. FCOS also outperforms the recent anchor-free one-stage detector CornerNet with much

less design complexity. Refer to Table 3 for details of “improvements”.

Method # samples AR100 AR1k

RPN w/ FPN & GN (ReImpl.) ∼200K 44.7 56.9

FCOS w/ GN w/o center-ness ∼66K 48.0 59.3

FCOS w/ GN ∼66K 52.8 60.3

Table 6 – FCOS as Region Proposal Networks vs. RPNs with FPN.

ResNet-50 is used as the backbone. FCOS improves AR100 and AR1k

by 8.1% and 3.4%, respectively. GN: Group Normalization.

the first time that an anchor-free detector, without any bells

and whistles outperforms anchor-based detectors by a large

margin. FCOS also outperforms other classical two-stage

anchor-based detectors such as Faster R-CNN by a large

margin. With ResNeXt-64x4d-101-FPN [30] as the back-

bone, FCOS achieves 43.2% in AP. It outperforms the re-

cent state-of-the-art anchor-free detector CornerNet [13] by

a large margin while being much simpler. Note that Cor-

nerNet requires to group corners with embedding vectors,

which needs special design for the detector. Thus, we ar-

gue that FCOS is more likely to serve as a strong and sim-

ple alternative to current mainstream anchor-based detec-

tors. Moreover, FCOS with the improvements in Table 3

achieves 44.7% in AP with single-model and single scale

testing, which surpasses previous detectors by a large mar-

gin.

5. Extensions on Region Proposal Networks

So far we have shown that in a one-stage detector, our

FCOS can achieve even better performance than anchor-

based counterparts. Intuitively, FCOS should be also able

to replace the anchor boxes in Region Proposal Networks

(RPNs) with FPN [14] in the two-stage detector Faster R-

CNN. Here, we confirm that by experiments.

Compared to RPNs with FPN [14], we replace anchor

boxes with the method in FCOS. Moreover, we add GN into

the layers in FPN heads, which can make our training more

stable. All other settings are exactly the same with RPNs

with FPN in the official code [7]. As shown in Table 6, even

without the proposed center-ness branch, our FCOS already

improves both AR100 and AR1k significantly. With the pro-

posed center-ness branch, FCOS further boosts AR100 and

AR1k respectively to 52.8% and 60.3%, which are 18% rel-

ative improvement for AR100 and 3.4% absolute improve-

ment for AR1k over the RPNs with FPN.

6. Conclusion

We have proposed an anchor-free and proposal-free one-

stage detector FCOS. As shown in experiments, FCOS

compares favourably against the popular anchor-based one-

stage detectors, including RetinaNet, YOLO and SSD,

but with much less design complexity. FCOS completely

avoids all computation and hyper-parameters related to an-

chor boxes and solves the object detection in a per-pixel pre-

diction fashion, similar to other dense prediction tasks such

as semantic segmentation. FCOS also achieves state-of-the-

art performance among one-stage detectors. We also show

that FCOS can be used as RPNs in the two-stage detector

Faster R-CNN and outperforms the its RPNs by a large mar-

gin. Given its effectiveness and efficiency, we hope that

FCOS can serve as a strong and simple alternative of cur-

rent mainstream anchor-based detectors. We also believe

that FCOS can be extended to solve many other instance-

level recognition tasks.
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