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RESEARCH ARTICLE
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Abstract

Exposure to Plasmodium falciparum is associated with circulating “atypical”memory B cells

(atMBCs), which appear similar to dysfunctional B cells found in HIV-infected individuals.

Functional analysis of atMBCs has been limited, with one report suggesting these cells are

not dysfunctional but produce protective antibodies. To better understand the function of

malaria-associated atMBCs, we performed global transcriptome analysis of these cells, ob-

tained from individuals living in an area of high malaria endemicity in Uganda. Comparison

of gene expression data suggested down-modulation of B cell receptor signaling and apo-

ptosis in atMBCs compared to classical MBCs. Additionally, in contrast to previous reports,

we found upregulation of Fc receptor-like 5 (FCRL5), but not FCRL4, on atMBCs. Atypical

MBCs were poor spontaneous producers of antibody ex vivo, and higher surface expression

of FCRL5 defined a distinct subset of atMBCs compromised in its ability to produce antibody

upon stimulation. Moreover, higher levels of P. falciparum exposure were associated with

increased frequencies of FCRL5+ atMBCs. Together, our findings suggest that FCLR5+

identifies a functionally distinct, and perhaps dysfunctional, subset of MBCs in individuals

exposed to P. falciparum.

Author Summary

A subset of “atypical”memory B cells found in individuals with high exposure to P. falcip-

arum has been hypothesized to be dysfunctional, based on phenotypic similarities to anal-

ogous cells found in HIV-infected individuals. However, the functional capabilities of
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these cells have been poorly characterized in the setting of malaria exposure, and previous

reports have been controversial regarding whether these cells produce antibody. In our

study, we analyze the molecular programming of atypical memory B cells, find that they

are dysfunctional in a manner similar to that observed in B cells from HIV-infected indi-

viduals, and present data that may reconcile previously conflicting studies. By delineating

the transcriptional landscape of atMBCs and identifying expression of FCRL5 as a key

marker of dysfunction, we provide a foundation for improving our understanding of the

role of these cells in immunity to malaria.

Introduction

Naturally acquired immunity is vital in reducing morbidity and mortality from Plasmodium

falciparummalaria in endemic areas, where some individuals receive hundreds of infectious

mosquito bites per year. Humoral responses to P. falciparummay be a critical component of

this immunity, and P. falciparum-specific memory B cells (MBCs) are likely important in the

development and maintenance of an effective response [1–3]. Unfortunately, protection from

symptomatic disease takes many years to develop, during which time children living in endem-

ic areas experience multiple episodes of symptomatic malaria, resulting in over half a million

deaths annually [4–8].

One possible explanation for the slow and incomplete development of immunity to malaria

is that chronic exposure to P. falciparum alters the immune response in ways that interfere

with the development of protective B cell responses [9]. In particular, P. falciparum exposure

has been associated with higher frequencies of circulating CD21-CD27- “atypical”memory B

cells (atMBCs) [10–17]. These cells are distinct in their surface phenotype, and possibly func-

tion, from CD21+CD27+ classical memory B cells (MBCs), which are capable of undergoing a

recall response that includes proliferation and differentiation into antibody-secreting cells. The

surface phenotype of atMBCs exhibits commonalities with a subset of dysfunctional B cells

found in viremic HIV patients. These cells express inhibitory receptors, such as FCRL4 and

SIGLEC6, that block their ability to undergo recall in response to mitogenic stimuli [18–20]. In

addition to malaria and HIV, nonclassical MBC phenotypes have been identified in the context

of other chronic diseases such as common variable immunodeficiency (CVID), systemic lupus

erythematosus (SLE), and HCV [21–26], and they bear similarities to B cells found in the ton-

sils of healthy individuals [27,28]. This has led to the notion that atMBCs might represent a

functionally inhibited state that results from chronic antigen exposure [11,12], in analogy to

the induction of exhaustion in T cells [29,30].

Malaria-associated atMBCs were originally reported in individuals living in Mali [11], and

their association with increasing exposure to P. falciparum has been corroborated in several

studies using distinct cohorts from different geographical locations [10–17]. Although this as-

sociation is increasingly well established, there are limited available data on the function of

atMBCs in the context of malaria [11]. A recent study of atMBCs concluded that they are capa-

ble of producing P. falciparum-specific antibodies found in the serum [31], suggesting that

these cells are not dysfunctional but rather may play an important role in host protection.

However, this study did not define atMBCs with markers to specifically exclude antibody-pro-

ducing plasmablasts, which may confound findings of antibody production. Importantly, the

conclusion of antibody production was also based on indirect evidence correlating circulating

antibody fragments with atMBC-encoded repertoires, which does not exclude the alternative
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possibility that circulating antibodies were produced by other B cell subsets. Thus, whether

atMBCs are capable of producing antibody remains unclear.

A more global investigation of the functional programs expressed in malaria-associated

atMBCs would help to define their role in immunity. To this end, we performed microarray-

based transcriptome analysis of highly purified atMBCs from Ugandan children. Using paired

comparisons to classical MBC transcriptomic profiles from the same individuals, we present a

detailed examination of the functional programming of these cells. We demonstrate that

atMBCs express FCRL5, but not FCRL4 as reported in other studies, and that expression of

FCRL5 is associated with a poor capacity for antibody production. Our findings provide unique

insights into the functional programming of these nonclassical MBCs and the nature of B cells

in immunity to malaria.

Results

Transcriptional programming of atMBCs suggests decreased B cell
receptor (BCR) signaling and apoptosis

A number of studies have established an association between higher frequencies of atMBCs

and increasing exposure to P. falciparum [10–17], but the functional programming of these

cells remains poorly characterized. Consistent with prior reports, we found that the frequencies

of circulating atMBCs in individuals from our cohort living in a high P. falciparum transmis-

sion region in Uganda were higher than in malaria-naïve controls, and increased with age (S1

Fig). To better understand differences between atMBCs and classical MBCs, we performed mi-

croarray-based whole transcriptome comparisons of atMBCs to classical MBCs within asymp-

tomatic parasitemic individuals living in areas of intense P. falciparum transmission. Sort-

purified class-switched atMBCs (CD3-CD14-CD19+CD10-CD27-CD21-IgD-IgG+) and classical

MBCs (CD3-CD14-CD19+CD10-CD27+CD21+IgD-IgG+) were processed for whole human

transcriptome microarray analysis using previously described methods [32,33]. Differential

gene expression analysis demonstrated that atMBCs express a transcriptional repertoire dis-

tinct from that of classical MBCs. Using a false discovery rate of 3% and a 1.5-fold change

threshold, we identified 2226 differentially expressed probes representing 1479 unique genes

(S1 Table). Approximately 60% of these genes were more highly expressed in atMBCs than

classical MBCs. Functional enrichment analysis demonstrated significant differences in catego-

ries related to multiple B cell functions (Fig 1). For example, atMBCs exhibited lower expres-

sion of genes associated with co-stimulation of BCR signaling, such as CD79b, CD70, CD24,

and CD44. This was accompanied by higher expression of regulators of BCR signaling

(LILRB2, ITGAX), Fc receptor family inhibitory receptors (FCRLA, FCRL3, FCRL5), and genes

known to promote B cell anergy and exhaustion (SIGLEC6, PDCD1, LGALS1). Together, the

differences in regulation of these genes are suggestive of cell-intrinsic down-modulation of

BCR signaling in atMBCs.

Genes involved in apoptosis, particularly those related to p53 signaling, were expressed at

lower levels in atMBCs than classical MBCs. For example, HIPK2, a pro-apoptotic protein that

phosphorylates p53 in response to DNA damage [34–36], exhibited lower expression in

atMBCs. Other pro-apoptotic genes with lower relative expression in atMBCs included

TP53INP1, which promotes cell cycle arrest and apoptosis [37]; TNFSF10 (TRAIL), a gene tar-

get in the p53 cell death pathway [38]; PERP, a mediator of p53-dependent apoptosis [39]; and

TNFRSF25 (Death Receptor 3), which functions similarly to CD95 (Fas), with over-expression

leading to NF-κB induction and apoptosis [40]. We concomitantly detected higher expression

of TNFRSF1B and IL21R, both of which can promote B cell survival [41–44]. Together,
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suppressed expression of these pro-apoptotic factors could promote the survival of atMBCs,

suggesting one mechanism by which they might accumulate with increasing parasite exposure.

To better understand the relationship of atMBCs to nonclassical memory B cell subsets

found in other disease contexts, we collated data from diverse studies characterizing the

mRNA and protein expression levels of signature genes in these cells [11,18,20–28,31,45,46]

(Fig 1). The direction of gene expression in malaria-associated atMBCs relative to classical

MBCs corresponded well with gene expression patterns of other nonclassical memory B cell

subsets; specifically, 88% of the changes occurred in the same direction, with the highest pro-

portion of overlap occurring with CD27-CD21- cells in HIV (89%, 21 of 23 genes) and CD21lo

cells in CVID (97%, 32 of 33 genes). Functional overlap extended to most categories, with the

notable exception of apoptosis. Together, these data suggest that in addition to similarity in

Fig 1. Whole-transcriptome analysis of atypical and classical MBCs from parasitemic, but asymptomatic, subjects.Heat map rows represent
individual genes, and columns within each MBC grouping represent distinct individuals. Representative genes are depicted based on gene ontology
associations with specific functional categories. Average fold difference in expression between atMBCs and classical MBCs pairs is shown, with values in
parentheses representing lower expression in atMBCs and all other values representing higher expression in atMBCs. The red and blue heat map is a
graphical depiction of the significant differential regulation of each gene in nonclassical memory B cell subsets in the context of HIV infection [18,19,45], CVID
[22,23], SLE [21,24,25], HCV infection [26,46], and the tonsil [27,28], as well as previously reported expression in atMBCs in the context of malaria [11,31].
Direction of expression change was assigned based on previously published transcriptome and protein expression profiles as described in the methods, with
red representing higher expression in nonclassical subsets, blue representing lower expression, and white representing the lack of any reported change.

doi:10.1371/journal.ppat.1004894.g001
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surface phenotypes, atMBCs may exhibit functional similarity to nonclassical memory B cells

associated with other chronic diseases.

Notably, we detected a decrease in expression of CXCR3 in atMBCs, despite reports that this

marker is increased on malaria-associated atMBCs and similar cells in the tonsil and in individ-

uals with HIV, SLE, and CVID [11,20–22,27,45]. We did not detect a relative increase in ex-

pression of FAS (CD95), though this has been reported for cells in the tonsil and in individuals

with HIV, SLE, and CVID [21–23,28,45]. Other genes previously described to be differentially

expressed in similar B cells from other contexts, but not detected in our microarray analysis, in-

cluded LAIR1, CXCR4, and the genes encoding caspase-1 (CASP1) and caspase-9 (CASP9),

which further distinguishes malaria-associated atMBCs with reports from HIV, SLE, and

CVID [18,22,23,25,26,28]. Thus, although there are abundant commonalities between malaria-

associated atMBCs and cells of similar surface phenotype associated with other diseases, there

are also unique aspects that differentiate malaria-associated atMBCs from other exhausted and

nonclassical memory B cell subsets (S2 Table).

Heterogeneity in surface phenotype and function of CD21-CD27-IgG+ B
cells

A key functional phenotype of exhausted MBCs found in HIV-viremic individuals is their de-

creased ability to differentiate into antibody-secreting cells [19,20], leading early reports to

propose that malaria-associated atMBCs might be similarly dysfunctional [11]. Consistent

with this, we observed that atMBCs expressed higher levels of SIGLEC6 and BCL6, which

negatively regulate B cell proliferation and differentiation [19,47,48]. Similarly, PDCD1,

which encodes the signaling regulator PD-1 [49], was more highly expressed in atMBCs than

in classical MBCs. Surprisingly, we also observed that atMBCs express higher levels of PRDM1

(the gene encoding BLIMP-1), a regulator of plasmablast differentiation which acts in op-

position to BCL6. This raised the possibility that plasmablasts comprised a subset of these

CD21-CD27-IgG+ cells, a phenotype previously used to define atMBCs [11,31]. To test this hy-

pothesis, we examined spontaneous antibody production from CD20+ and CD20- subsets in

the absence of stimulation, which is a property of antibody-secreting cells such as CD20- plas-

mablasts. We found that among CD20+ atMBCs (CD19+IgG+CD10-CD27-CD21-CD20+), only

1.6% of cells spontaneously secreted IgG ex vivo (Fig 2A). In contrast, 18% of cells with a simi-

lar surface phenotype but lacking expression of CD20 spontaneously secreted IgG. These

CD19+IgG+CD10-CD27-CD21-CD20- cells also expressed high levels of CD38, which is consis-

tent with the surface phenotype of plasmablasts/plasma cells (Fig 2B). We found that on aver-

age, 2.6% of the cells within the CD19+IgG+CD10-CD27-CD21- gate were CD20- and CD38hi.

Therefore, to distinguish atMBC from this minor population of likely plasmablasts, we incor-

porated CD20 and CD38 into all analyses below, defining atMBCs as CD19+ CD20+ CD21-

CD27- CD38int/lo IgG+. Among the genes we identified as relatively enriched in atMBCs, only 6

(0.5%) were identified as being enriched in plasmablasts in a previous study [50]. Thus, the

likely inclusion of a small number of plasmablasts along with atMBCs was unlikely to have sig-

nificantly affected our microarray results.

Differential surface phenotypes of classical and atypical MBCs

The surface phenotype of atMBCs is most commonly defined by the absence of expression of

CD21 and CD27. In accord with protein levels, transcripts of both CR2 (the gene encoding

CD21) and CD27 were significantly lower in atMBCs than classical MBCs, indicating that

down-regulation of the expression of these markers occurs, at least in part, at the level of tran-

scription. Previous studies also described differential expression of protein levels of CD85j,
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CD11c, CXCR5, CD24, CD84, and CD319 [11,13,31], which we corroborated at the transcript

level as differential expression of LILRB1, ITGAX, CXCR5, CD24, CD84, and SLAMF7, respec-

tively (Fig 1). Notably, these markers represent high confidence signatures, given that they

have been identified as markers of atMBCs at both the mRNA and protein levels in studies of

distinct cohorts performed by different laboratories. In addition to the above, we detected sig-

nificantly increased expression of LILRB2 (CD85d), TNFRSF1B (CD120b), and IL21R

(CD360) in atMBCs relative to classical MBCs. Expression of LILRB2 and TNFRSF1B was pre-

viously reported to be increased in exhausted B cells during HIV infection [18], and LILRB2

and its encoded protein, CD85d, were expressed in CD21lo B cells from patients with combined

variable immunodeficiency (CVID) [23].

We corroborated the expression of CD85d, CD120b, and CD360 at the protein level on

samples from our highly P. falciparum-exposed individuals by surface staining of atMBCs (Fig

3A). As in previous studies, we also found CD11c protein to be significantly increased on the

surface of atMBCs relative to classical MBCs. The Ig-beta chain of the BCR, encoded by

CD79B, is required for proper trafficking of the BCR; diminished expression of CD79B in

atMBCs would be predicted to result in lower levels of surface-localized BCR. As previously re-

ported by others [31,51], we found surface IgG levels to be significantly lower on atMBCs than

classical MBCs from the same individuals (Fig 3A), consistent with down-modulation of sur-

face BCR.

FCRL5, but not FCRL4, is expressed by a subset of atMBCs

FCRL4 protein was previously reported to be expressed on malaria-associated atMBCs [13,31],

and elevated gene and/or protein expression has been reported for HIV-associated exhausted

MBCs [18,20], tonsillar B cells [27,28], and nonclassical memory B cells associated with CVID

and hepatitis C infection [22,26,46]. Surprisingly, we did not detect significantly increased ex-

pression of FCRL4 by atMBCs in our microarray analysis. Quantitative RT-PCR analysis of

FCRL3, FCRL4, and FCRL5 corroborated the microarray data, demonstrating that FCRL3 and

FCRL5, but not FCRL4, transcripts were present at higher levels in atMBCs than classical

MBCs (S2 Fig). FCRL3 and FCRL5 share 28–60% extracellular amino acid sequence identity

Fig 2. Spontaneous IgG secretion by different B cell subsets. (A) Sorted transitional cells (CD19+CD10+), CD20+ atMBCs (IgG+CD21-CD27-CD19+),
classical MBCs (IgG+CD21+CD27+CD19+), and CD27- plasmablasts (CD20-IgG+CD21-CD27-CD19+) were cultured on anti-IgG ELISpot plates for 18 h
without additional stimulation. (B) Gating strategy and frequencies of CD38hi cells in the above plasmablast gating strategy.

doi:10.1371/journal.ppat.1004894.g002
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with FCRL4 [52], suggesting that antibodies used to detect surface-localized FCRL4 in other

studies might have cross-reacted with other FCRL family members. To test this possibility, we

assessed the specificity of various anti-FCRL antibodies using cell lines constitutively express-

ing FCRL4 or FCRL5 [53]. Consistent with the original study that produced these antibodies

[53], the anti-FCRL4 antibody clone 1A3 and the anti-FCRL5 antibody clone 7D11 bound spe-

cifically to the expected cell lines (Fig 3B). In contrast, the widely used anti-FCRL4 antibody

clone 2A6 [27], which was employed in previous malaria-associated atMBCs studies [11,31],

bound strongly to both FCRL4- and FCRL5-expressing cell lines. Thus, the 2A6 antibody binds

to both FCRL4 and FCRL5, whereas the 1A3 and 7D11 antibodies are specific for FCRL4 and

FCRL5, respectively.

Having determined the specificity of these antibodies, we measured the surface expression

of FCRL4 and FCRL5 on MBCs from 8–10 year old children and adults from our high exposure

Ugandan cohort; all selected subjects were smear positive for P. falciparum but lacked fever.

Consistent with previous reports [11,31], the nonspecific 2A6 clone labeled atMBCs more

Fig 3. Phenotypic characterization of surface proteins on IgG+ atypical MBCs. (A) Surface expression, expressed as median fluorescence intensity
(MFI), of CD85d, CD120b, CD360, CD11c, and IgG (BCR) on IgG+ atMBCs and IgG+ classical MBCs. Lines between symbols denote MBC subsets from the
same subject. Wedges represent means. (B) Labeling of SVT2 mouse fibroblast cell lines that express full-length human FCRL4 or FCRL5 protein by
monoclonal antibodies 2A6, 1A3, and 7D11. (C) Labeling of human atMBCs with monoclonal antibodies 2A6, 1A3, and 7D11. (D) Isotype-subtracted MFI of
FCRL family member expression (“Net MFI”) on atypical and classical MBCs from highly P. falciparum-exposed individuals. Statistical significance was
determined using the Wilcoxon signed-rank test. *, p < 0.05; **, p < 0.01

doi:10.1371/journal.ppat.1004894.g003
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strongly than classical MBCs (Fig 3C). Similar results were seen with the anti-FCRL5 antibody

7D11. In contrast, the anti-FCRL4 antibody 1A3 failed to exhibit binding above an isotype con-

trol background to either atMBCs or classical MBCs. Given that these protein level data are

consistent with our microarray and qRT-PCR observations that FCRL5, but not FCRL4, is

more highly expressed by malaria-associated atMBCs than classical MBCs, it is likely that

FCRL5 is the actual target recognized on these cells by previous malaria studies that used clone

2A6 [11,31].

FCRL5 defines a subset of atMBCs with a distinct surface phenotype

FCRL5 expression followed a heterogeneous distribution on atMBCs (Fig 4A). The proportion

of atMBCs that were FCRL5+ between individuals was variable (mean 53%, range 18–74%),

but was consistently higher than the proportion of classical MBCs that were FCRL5+ in the

same individual (mean 23%, range 10–52%; p< 0.001) (Fig 4B). Given the non-uniformity in

FCRL5 expression on atMBCs, we considered the possibility that FCRL5+ atMBCs might rep-

resent a distinct subset from FCRL5- atMBCs. To assess this possibility, we compared the sur-

face phenotypes of FCRL5- and FCRL5+ atMBCs and classical MBCs. Compared to FCRL5-

atMBCs, the FCRL5+ subset expressed significantly higher levels of FCRL3, CD19, and CD20,

but lower levels of CD21, with no significant difference in either CD27 or IgG expression (Fig

4C). Similar trends were observed for classical MBCs, with the exception that CD21 was un-

changed. These findings are consistent with FCRL5- and FCRL5+ cells being distinct, though

perhaps developmentally and/or functionally related, subsets of memory B cells.

FCRL5+ atMBCs increase with P. falciparum exposure

A number of studies have reported that the frequency of atMBCs increases with age and P. fal-

ciparum exposure [11–13,15,16]. If exposure induces phenotypic changes in atMBCs consis-

tent with reduced responsiveness, we predicted that the FCRL5+ subpopulation of atMBCs

would similarly increase with P. falciparum transmission intensity. To test this hypothesis, we

compared expression of FCRL5 on atMBCs from study participants living in Nagongera,

Uganda, where transmission is very high, to those fromWalukuba, a periurban area of Uganda

where transmission is ~30 fold lower [54,55]. Subjects living in the area of higher malaria trans-

mission had a significantly higher proportion of FCRL5+ atMBCs than subjects living in the

area with lower transmission (Fig 5; mean difference of 25%, p = 0.004 by Wilcoxon rank-sum

test and in multivariate regression including age).

FCRL5+ classical and atypical MBCs exhibit inhibition of antibody
production upon stimulation

Having shown that CD20+ atMBCs are poor spontaneous producers of antibody ex vivo, we

evaluated their capacity to differentiate into antibody-secreting cells following stimulation (i.e.,

recall). Given the heterogeneity in FCRL5 expression in atMBCs and the potential inhibitory

role of this surface receptor [56], we also evaluated whether this surface marker distinguished

subsets with different capacities to undergo recall. FCRL5- and FCRL5+ subsets of atMBCs and

classical MBCs were isolated by flow cytometry and stimulated for 4 d in vitro with an activat-

ing anti-BCR antibody and CpG to induce a recall response. Following stimulation, FCRL5-

classical MBCs exhibited robust production of antibody as expected, with a mean of 6.3% of

these cells capable of secreting IgG (Fig 6). In comparison, FCRL5- atMBCs exhibited reduced

capacity to produce antibody (3.4% IgG-secreting cells), though this difference did not reach

statistical significance. More strikingly, FCRL5 expression defined strongly inhibited subsets of

both classical and atMBCs, with only 1.1% of FCRL5+ classical MBCs and 0.2% of FCRL5+

FCRL5 Functionally Defines Atypical MBCs
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atMBCs capable of a recall response. Of note, FCRL5- atMBCs produced a higher proportion

of IgG-secreting cells than FCRL5+ classical MBCs. Thus, expression of FCRL5, more so than

the traditional subset-defining markers, strongly delineates functionally distinct groups of

memory B cells and is correlated with inhibition of antibody production.

Discussion

We have performed a detailed molecular characterization of malaria-associated atMBCs, be-

ginning with an unbiased transcriptome-wide comparison with classical MBCs and leading to

Fig 4. FCRL5 expression defines a phenotypically distinct subset of IgG+ atMBCs. (A) Representative plot showing heterogeneous expression of
FCRL5 on IgG+ atypical MBCs. Individual FCRL5+ atypical and classical MBC frequencies were determined using gates set with a “fluorescence minus one”
control with IgG2b isotype control antibody. (B) Proportion of atypical and classical IgG+ MBCs expressing FCRL5. Reported frequencies have been
subtracted for isotype-labeled background. (C) Median fluorescence intensity (MFI) of surface markers on FCRL5+ vs. FCRL5- atMBCs and FCRL5+ vs.
FCRL5- classical MBCs. Statistical significance was determined using the Wilcoxon signed-rank test. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

doi:10.1371/journal.ppat.1004894.g004
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functional characterization of atMBC subsets defined by differential expression of FCRL5. We

show that in comparison to classical MBCs, atMBCs obtained from individuals living in an

Fig 5. Higher exposure to P. falciparum is associated with a higher proportion of atMBCs that express
FCRL5. The proportion of FCRL5+ atypical MBCs from individuals living in high exposure (n = 16;
Nagongera, Uganda; annual entomologic inoculation rate = 310) vs. moderate exposure (n = 9; Walukuba,
Uganda; annual entomologic inoculation rate = 2.8) is shown, p = 0.004. Statistical significance was
determined using theWilcoxon rank-sum test. Multivariate linear regression, including age of subject, yielded
similar results.

doi:10.1371/journal.ppat.1004894.g005

Fig 6. Recall antibody secretion by different B cell subsets. Sorted FCRL5+ and FCRL5-, atypical
(CD20+CD21-CD27-IgG+) and classical (CD20+CD21+CD27+IgG+) MBCs were stimulated for 4 days with
CpG, F(ab’)2 anti-IgG, and autologous T cells. IgG-secreting cells were detected by IgG ELISpot and are
reported as the number of IgG secreting cells per 1000 cells sorted on day 0. ASC, antibody-secreting cells.
Statistical significance was determined using the Wilcoxon signed-rank test. *, p < 0.05.

doi:10.1371/journal.ppat.1004894.g006
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area of intense malaria transmission in Uganda have a distinct transcriptional program, with

down-modulated BCR signaling that may contribute to reduced function, and changed apopto-

sis programs which may contribute to accumulation. This analysis reveals new surface markers

that identify atMBCs, particularly FCRL5, which we show is a specific correlate of poor

recall capacity.

Based on the surprising finding that FCRL5, but not FCRL4, was enriched for expression in

atMBCs, we confirmed that an anti-FCRL4 antibody used in many prior studies cross-reacts

with FCRL5. The extent to which these molecules have been confused in the literature is un-

clear, and it is certainly possible that FCRL4 is expressed by some analogous B cell subsets

given that increased gene expression and functional studies of FCRL4 perturbation have been

reported [19,22,28,46,57]. A re-examination of antibody specificity is warranted to determine

if in some studies, the functional consequences of FCRL5 expression might have been missed

and/or ascribed to FCRL4 as a result of non-specific recognition or perturbation. Interestingly,

some evidence suggests that FCRL5 is a receptor for IgG, which circulates at high levels during

malaria [58,59]. Thus, FCRL5 expression on B cells could participate in a feedback mechanism

for IgG homeostasis during hypergammaglobulinemia, thereby impacting memory B

cell responses.

In accord with studies of an analogous subset in HIV-viremic individuals [19,20], we find

that atMBCs in malaria-exposed individuals are comparatively ineffective at producing anti-

body ex vivo, either spontaneously or following re-stimulation. These findings contrast with

those of a recent study which concluded that atMBCs actively produce protective antibodies in

vivo [31]. However, the authors reached this conclusion based on the indirect observations that

transcripts of secretory IgG, along with membrane IgG, were detected in atMBCs, and that

BCR sequences from some atMBCs matched those of serum IgG fragments in a single subject.

In light of our findings, two alternative possibilities that could explain the detection of secretory

transcripts are that: a) these transcripts were derived from a minority population of CD20-

plasmablasts and not atMBCs; or b) transcripts were derived from CD20+ atMBCs but these

cells were not actively producing antibody, possibly due to transient or permanent arrest of dif-

ferentiation by inhibitory molecules such as FCRL5. To additionally explain the detection of

overlapping repertoires in serum IgG and atMBCs [31], we suggest the possibilities that: a)

atMBCs do not themselves produce antibody, but at some frequency can eventually differenti-

ate into antibody secreting cells; or b) atMBCs do not produce antibody nor do they differenti-

ate into antibody secreting cells, but antibody secreting cells and atMBCs share antibody

repertoires [60] due to derivation from a common progenitor such as classical MBCs. In any

case, CD20+ atMBCs have a relative decrease in the capacity to secrete antibody in response to

stimulation versus classical MBCs. However, this difference is modest compared with the

marked decrease seen in the FCRL5+ subsets of either MBC population. Based on the magni-

tude of the effect, the traditional subset markers that distinguish atMBCs from classical MBCs

(CD21 and CD27) are less effective than FCRL5 in defining a functionally distinct subset. This

raises the question of how best to consider the relationships of the various sub-populations,

and suggests the possibility that up-regulation of FCRL5 expression precedes down-regulation

of CD21 and/or CD27, in a progression through which MBCs adopt a state of reduced anti-

body production. This model is also in accord with a very recent report that BCR variable re-

gion sequences in atMBCs are largely indistinguishable from those found in classical MBCs

[60]. Further experimentation to better define the relationships between these subsets is ur-

gently needed, as this will have an important influence on our thinking about the ontogeny and

function of these populations.

Consistent with down-modulation of B cell functions, increasing evidence suggests that

higher levels of exposure to P. falciparum induce immunoregulatory processes that dampen
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infection-associated immune activation [10,32,61]. This development of immunological toler-

ance might underlie the decreasing severity of malaria disease with increasing exposure and

age, but may come at the expense of inhibiting sterilizing immunity. Similar to upregulation of

expression of immunoregulatory receptors on γδ T cells [32], we show here that FCRL5 expres-

sion on B cells is associated with higher levels of exposure to P. falciparum. In turn, FCRL5 is

associated with poor antibody production, suggesting that upregulation of this receptor may be

a mechanism of cell-intrinsic immunoregulation. We note, however, that atMBCs are associat-

ed with increasing age and exposure to P. falciparum, the same factors which are associated

with acquired immunity [11–13,15,16,62]. Acquired immunity allows individuals, like those

studied here, to remain asymptomatic while parasitemic, not to receive antimalarial therapy,

and therefore to remain infected. It is possible that immune activation associated with this

state of asymptomatic parasitemia in part drives the accumulation of atMBCs and affects as-

pects of their phenotype, such as the expression of FCRL5. Frequencies of atMBC appear to de-

crease following elimination of P. falciparum exposure [10,16], but further studies will be

required to assess the dynamics of atMBC frequency and phenotype in response to acute and

chronic P. falciparum infection. It remains to be determined whether atMBCs are truly dys-

functional, with immunity being acquired despite their accumulation; play an immunoregula-

tory role, aiding in the development of tolerance to P. falciparum infection; or have an as yet

undefined role in anti-parasite immunity, e.g., antigen presentation. Further functional studies

will also be required to elucidate the roles of FCRL5 and other similarly expressed immunoreg-

ulatory molecules in this process.

Given the similarities between atMBCs and similar B cell subsets found in other contexts of

chronic antigen exposure, such as HIV infection, HCV infection, SLE, and CVID [11,18–

26,31,45,46], it may be that these cells are not so “atypical” at all. These subsets all share a simi-

lar biomarker phenotype (CD19+CD21lo/-CD27-) and are all hypothesized or demonstrated to

have refractory responses to B cell mitogens. In addition to functional and biomarker similari-

ties, we found that many of their gene expression signatures were also shared, including simi-

larities in expression of immunoregulatory receptors, proteins involved in migration, and BCR

co-stimulatory transcripts, which were down-regulated. However, key differences from other

studies were also observed, especially with regard to B cell trafficking and survival [11,19,21–

23,27,45]. It is possible that the differential expression of these markers is rooted in ontogeny;

however, these markers could also reflect contextual differences, such as those driven by tissue

localization, kinetics, or differences in the antigenic and/or inflammatory environment. Fur-

ther studies will be needed to better define the relationships of these populations to one another

through detailed functional and global transcriptomic analyses.

In summary, comparison of the gene expression of malaria-associated atMBCs vs. classical

MBCs highlights key differences in these subsets and provides a foundation for comparison

with analogous subsets seen in other conditions of chronic antigen exposure. High expression

of FCRL5 defines distinct subsets of MBCs and appears to be a key marker of functional defi-

ciency, at least with respect to the ability to secrete antibody in response to stimulation. Further

studies of the function of these cells will be required to define their relevance to disease

and immunity.

Materials and Methods

Ethics statement

Ethical approval was obtained from the Makerere University School of Medicine Research and

Ethics Committee, the Uganda National Council for Science and Technology, the London

School of Hygiene & Tropical Medicine Ethics Committee, and the University of California,
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San Francisco Committee on Human Research. All adult study participants provided written

informed consent, and a parent or guardian of all child participants provided written informed

consent on their behalf.

Study population

Samples were obtained from participants enrolled in cohort studies as part of the East African

International Center for Excellence in Malaria Research in Uganda. These cohorts of children

aged 6 months—10 years of age and their adult primary caregivers were followed for all their

health care needs in dedicated study clinics as previously described [55]. Samples for the major-

ity of experiments came from parasitemic, but non-symptomatic, children 8–10 years old and

adult caregivers from the Nagongera cohort in Tororo District, where malaria transmission is

very high (annual entomological inoculation rate ~ 310 infectious bites per person per year)

[54,55]. To compare phenotypes in different malaria transmission settings, samples were also

analyzed from the Walukuba cohort in Jinja District where transmission is lower (annual ento-

mological inoculation rate ~ 2.8 infectious bites per person per year). Older children and adults

were selected since individuals in these age ranges have previously been shown to have the

highest frequencies of atMBCs [11,13]. Subjects without fever were selected to avoid transient

effects on B cell function associated with inflammation from symptomatic malaria or other

acute illness. Subjects with documented parasitemia by microscopy were selected to keep sub-

jects as similar to each other as possible; asymptomatic parasitemia is common in older chil-

dren and adults in high transmission settings and those without documented parasitemia may

or may not have had submicroscopic parasitemia.

Microarrays

For transcriptomic analysis of atMBCs, samples were selected from children aged 8–10. Ap-

proximately ten million cryopreserved PBMCs from each child were stained with antibodies

specific for CD3 (clone UCHT1), CD14 (clone M5E2), CD19 (clone HIB19), CD10 (clone

HI10a), CD38 (clone HIT2), CD27 (clone O323), CD21 (clone B-ly4), IgG (clone G18-145)

(all BioLegend); and IgD (clone IA6-2) (BD Biosciences) (see S3 Fig for gating strategy). Classi-

cal and atMBCs were processed for microarray analysis as previously described [32,33]. In

brief, cell subsets were isolated to>99.8% purity using two successive rounds of purity-opti-

mized sorting on a FACSAria, with 5,000 total cells on the second round sorted directly into

100 μl RNAqueous Micro lysis buffer. RNA was isolated with the RNAqueous Micro kit (Life

Technologies), and was amplified in two rounds with the Amino Allyl MessageAmp II kit (Life

Technologies). Amplified RNA was covalently labeled with Cy3 and hybridized to SurePrint

G3 Unrestricted GE 8x60K human V2 gene expression microarrays (Agilent Technologies).

Microarrays were scanned on an Agilent microarray scanner at 3 μm resolution into a 20-bit

TIFF, and raw intensities were extracted with Agilent Feature Extraction. Raw intensities were

log2-transformed and quantile-normalized using the R package limma [63]. Probes not ex-

pressed above background (normalized intensity of 128) in either sample group were removed

from the data set. Significantly differentially expressed genes were identified using Significance

Analysis for Microarrays in a paired comparison using a false discovery rate of 3% and 1.5-fold

change threshold [64], and expression values were median centered across samples for visuali-

zation as heat maps. Functional enrichment analysis was performed using DAVID [65], using

a Benjamini-corrected p value of 0.05 to determine significance. All microarray data are avail-

able in the NCBI Gene Expression Omnibus under accession number GSE64493.
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Comparison to published studies of nonclassical B cell subset gene and
protein expression

We evaluated data from 14 studies that reported transcriptional or protein differences in non-

classical MBCs compared to controls in the contexts of malaria, HIV, CVID, SLE, and HCV, as

well as data for tonsillar B cells, where FCRL4+ B cells were first described [11,19,21–28,31,45].

Studies for comparison were identified by searching PubMed for “FCRL4 B cells” or “FCRL5 B

cells” [11,18,20,22,23,31]. We then searched on the diseases identified from “FCRL4 B cells”

and “FCRL5 B cells” search terms to include studies with relevant transcript and protein infor-

mation in B cells that did not specifically identify FCRL4 or FCRL5 [21,25,45]. Nonclassical

MBCs were defined differently between studies as follows: CD21lo/-CD27- in the context of P.

falciparum exposure, HIV, CVID, and HCV cirrhosis [11,20,22,23,31,46]; HIV-specific

CD21lo/-CD27- [18]; IgD-CD27- in SLE [21,24]; CD21loCD27+ in HCV with mixed cryoglobu-

linemia [26]; FCRL4+ (CD21lo/-CD27-) in the tonsil [27,28]; and bulk B cells from subjects

with HIV or SLE [25,45]. Transcriptional or protein differences in nonclassical MBCs were

measured in comparison to either classical MBCs (CD21+CD27+) [11,31,46], HIV-specific

classical MBCs [18], activated/classical MBCs (CD27+CD21+/-) [20,21], CD27+IgD+/- B cells

[24], FCRL4- B cells in the tonsil [27,28], CD21loCD27+ cells in HCV without mixed cryoglo-

bulinemia [26], or bulk B cells from healthy donors [22,25,45]. Our comparison includes genes

and proteins that were determined to be significantly differentially regulated in at least one of

the studies above as well as in our own analysis, and reports the direction of the change.

qPCR analysis

Reverse transcription was performed on 600 ng aminoallyl-incorporated amplified RNA using

SuperScript III Reverse Transcriptase (Life Technologies) and poly dT20V oligonucleotide

primer in a 20 μl reaction. Samples were incubated with primer for 10 min at 70°C prior to ad-

dition of RT to allow primers to anneal. After addition of RT, tubes were incubated for 10 min

at 25°C, then 50 min at 42°C, then 15 min at 70°C to inactivate RT, following previously pub-

lished methods [66]. One μl RNase H was added and samples were incubated at 37°C for 20

min to degrade the input RNA. Samples were diluted 1:5 in nuclease-free water and 5 μl of di-

luted sample was used in a 25 μl quantitative PCR reaction using PerfecTa 2x qPCR Mix

(Quanta). Primers used in the qPCR reactions were biased toward the 3' end of mRNA tran-

scripts, and annealed no further than 500 bp upstream from the polyA tail, to account for prod-

uct shortening during amplification. Specific sequences used in this study were ACTB-F: 5’-AG

TTCACAATGTGGCCGAGGA-3’; ACTB-R: 5’-TGTGTGGACTTGGGAGAGGA-3’; FCRL3-

F: 5’-GAGGGCCCTCAGCTCCTA-3’; FCRL3-R: 5’-AAAGGGAAACAAAATATTTGGAG

CA-3’; FCRL4-F: 5’-AAAACTTAAGTACCAACTCTCCAAA-3’; FCRL4-R: 5’-AATAAAACC

TCTCTGCAAGGAGT-3’; FCRL5-F: 5’-AGAACAAACTCCACCCTAATGTG-3’; and

FCRL5-R: 5’-CCAAGAAGAGCCATTTTTCAGTTTG-3’. FCRL transcript levels were normal-

ized to levels of actin mRNA.

Flow cytometry

Samples were selected from children and adults over 8 years old, unless specifically noted oth-

erwise. All had concurrent asymptomatic parasitemia as identified by microscopy (blood

smear positive, in the absence of fever). B cell subsets were defined using the antibodies de-

scribed above, with the addition of CD20 (clone B9E9) (Beckman Coulter), as follows, unless

otherwise specified: atypical MBCs (CD19+CD20+CD21-CD27-IgG+IgD-), classical MBCs

(CD19+CD20+CD21+CD27+IgG+IgD-), transitional B cell (CD19+CD20+CD10+), and
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plasmablast/plasma cell (CD19+CD20-CD38++CD27+/-). For some experiments, we also

stained B cells to detect expression of CD120b (clone hTNFR-M1) (BD Biosciences); CD85d

(clone 42D1) and CD360 (clone 17A12) (BioLegend); FCRL3 (clone 546828) (R&D Systems);

FCRL4 and FCRL5 (clone 2A6) (generously provided by M. Cooper); FCRL5 (clone 7D11) and

FCRL4 (clone 1A3) (generously provided by A. Polson and Genentech Inc.). Isotype controls

included mouse IgG1 (clone MOPC-21) (Tonbo Biosciences), and IgG2a (clone MOPC-173)

and IgG2b (clone MPC-11) (BioLegend). Detection of mAb clones 2A6 and 1A3 was per-

formed with rat anti-mouse IgG2a PE (clone RMG2a-62) (BioLegend), and 7D11 was detected

with polyclonal goat anti-mouse IgG2b PE (Life Technologies). Confirmation of the FCRL

specificities of mAb 2A6, 7D11, and 1A3 was performed using cell lines expressing recombi-

nant FCRL genes (generously provided by A. Polson and Genentech Inc.) [53]. Cell lines were

cultured as previously described [53], stained with mAb 2A6, 7D11, or 1A3 in the presence of

Fc Block (eBioscience), and stained with the secondary antibodies described above. Human B

cell FCRL staining was similar, except that cells were first stained with mAb 2A6, 7D11, 1A3,

IgG2a isotype control, or mouse IgG2b isotype control in the presence of Fc block, followed by

secondary antibody staining and subsequent staining for lineage markers.

IgG ELISpot

PBMCs were stained as above and flow cytometrically sorted into the following subsets:

atMBCs (CD19+CD20+CD21-CD27-IgG+IgD-), classical MBCs (CD19+CD20+CD21+CD27+

IgG+IgD-), transitional (CD19+CD20+CD10+), and plasmablast/plasma cell (CD19+CD20-

CD38++). To measure spontaneous antibody secretion, sorted cells were placed in 200 μl of

RPMI media supplemented with 5% FBS for 18 h in ELISpot plates (Millipore) that had been

coated overnight at 4°C with 10 μg/ml of goat anti-human IgG (Life Technologies). IgG-secret-

ing cells were detected using alkaline phosphatase-conjugated goat anti-human IgG (Life Tech-

nologies) and a blue alkaline phosphatase substrate kit (Vector Laboratories). Spots were

enumerated using an AID ELISpot Reader and software (AID ELISpots). To measure antibody

production after stimulation, B cells were sorted based on FCRL5 expression in the atMBC and

classical MBC subsets, and autologous CD3+ T cells were added at a 20:1 T cell to B cell ratio.

Sorted cells were then stimulated with 2.5 μg/ml of CpG ODN 2006 (InvivoGen) and 2.5 μg/ml

of F(ab’)2 goat anti-human IgG H+L chain (Jackson ImmunoResearch) for 4 d. After 4 d, cells

were washed and incubated for 12 h on an ELISpot plate coated with goat anti-human IgG

(Life Technologies). ELISpot plates were developed and enumerated as described above.

Statistical analysis

Statistics for microarray analysis are described above. All other comparisons between groups

utilized nonparametric Wilcoxon rank-sum or signed-rank tests for unpaired and paired com-

parisons, respectively. Comparisons of the percentage of atMBCs expressing FCRL5 between

Nagongera and Walukuba were also evaluated using multivariate linear regression to account

for potential confounding by age. A p-value of< 0.05 was considered significant.

Supporting Information

S1 Fig. Atypical memory B cell frequencies increase with age in an area of Uganda with

high P. falciparum transmission. PBMCs from individuals of different age groups were la-

beled with antibodies to atMBCs (IgG+CD21-CD27-CD19+CD20+) and are reported as a

percentage of total B cells excluding plasmablasts (CD19+CD20+). PBMCs from non-P. falcipa-

rum exposed US adults were also labeled with antibodies to atMBCs to establish baseline
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frequencies of atMBCs in the absence of P. falciparum exposure.

(EPS)

S2 Fig. qPCR analysis of FCRL family expression in classical and atypical memory B cells.

Gene expression analysis was performed by qRT-PCR as described in the methods. Relative ex-

pression of each FCRL gene is shown normalized to expression of ACTB. Statistical significance

was determined using the Wilcoxon signed-rank test. �, p< 0.05.

(EPS)

S3 Fig. Gating strategy for identifying memory B cell subsets. PBMCs were labeled with

CD3/14, CD19, CD10, CD21, CD27, IgG and IgD to define atypical and classical MBCs to be

sorted for microarray analysis. B cells were progressively gated and defined by being CD3/14-

(non-monocyte and T cells), CD19+, CD10- (non-transitional B cells), with atypical and classi-

cal MBC subsets being CD21-CD27- and CD21+CD27+, respectively, and with both memory

subsets being surface IgG+.

(EPS)

S1 Table. Genes differentially expressed between classical and atypical memory B cells.

(XLSX)

S2 Table. Genes identified in other contexts as being differentially expressed in nonclassical

memory B cell subsets.

(XLSX)

Acknowledgments

We are grateful to all the parents and guardians for giving their consent and to the study partic-

ipants for their cooperation. We thank all the members of the study team for their tireless effort

and excellent work. We thank Andrew Polson, Max Cooper, Jeffrey Milush, Josh Craft, and

Pheroze Joshi for technical assistance.

Author Contributions

Conceived and designed the experiments: RTS CCKMFF MEF PJ MJB CJD IS FN HMK GD

BG. Performed the experiments: RTS MFF CCKMJB. Analyzed the data: CCK BG RTS MFF.

Contributed reagents/materials/analysis tools: CCK BGMEF CJD HMK IS FN GD. Wrote the

paper: CCK RTS BG.

References
1. Cohen S, McGregor IA, Carrington S. Gamma-globulin and acquired immunity to human malaria. Na-

ture. 1961; 192: 733–737. PMID: 13880318

2. Bejon P, Warimwe G, Mackintosh CL, MackinnonMJ, Kinyanjui SM, Musyoki JN, et al. Analysis of im-
munity to febrile malaria in children that distinguishes immunity from lack of exposure. Infect Immun.
2009; 77: 1917–1923. doi: 10.1128/IAI.01358-08 PMID: 19223480

3. Sabchareon A, Burnouf T, Ouattara D, Attanath P, Bouharoun-Tayoun H, Chantavanich P, et al. Para-
sitologic and clinical human response to immunoglobulin administration in falciparummalaria. Am J
Trop Med Hyg. 1991; 45: 297–308. PMID: 1928564

4. WHO |World Malaria Report 2013. In: WHO [Internet]. [cited 5 Jan 2015]. http://www.who.int/malaria/
publications/world_malaria_report_2013/en/

5. Beadle C, McElroy PD, Oster CN, Beier JC, Oloo AJ, Onyango FK, et al. Impact of transmission intensi-
ty and age on Plasmodium falciparum density and associated fever: implications for malaria vaccine
trial design. J Infect Dis. 1995; 172: 1047–1054. PMID: 7561179

6. Doolan DL, Dobaño C, Baird JK. Acquired Immunity to Malaria. Clin Microbiol Rev. 2009; 22: 13–36.
doi: 10.1128/CMR.00025-08 PMID: 19136431

FCRL5 Functionally Defines Atypical MBCs

PLOS Pathogens | DOI:10.1371/journal.ppat.1004894 May 19, 2015 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004894.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004894.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004894.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004894.s005
http://www.ncbi.nlm.nih.gov/pubmed/13880318
http://dx.doi.org/10.1128/IAI.01358-08
http://www.ncbi.nlm.nih.gov/pubmed/19223480
http://www.ncbi.nlm.nih.gov/pubmed/1928564
http://www.who.int/malaria/publications/world_malaria_report_2013/en/
http://www.who.int/malaria/publications/world_malaria_report_2013/en/
http://www.ncbi.nlm.nih.gov/pubmed/7561179
http://dx.doi.org/10.1128/CMR.00025-08
http://www.ncbi.nlm.nih.gov/pubmed/19136431


7. Murray CJL, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality
between 1980 and 2010: a systematic analysis. Lancet. 2012; 379: 413–431. doi: 10.1016/S0140-6736
(12)60034-8 PMID: 22305225

8. Struik SS, Riley EM. Does malaria suffer from lack of memory? Immunol Rev. 2004; 201: 268–290.
PMID: 15361247

9. Langhorne J, Ndungu FM, Sponaas A-M, Marsh K. Immunity to malaria: more questions than answers.
Nat Immunol. 2008; 9: 725–732. doi: 10.1038/ni.f.205 PMID: 18563083

10. Illingworth J, Butler NS, Roetynck S, Mwacharo J, Pierce SK, Bejon P, et al. Chronic Exposure to Plas-
modium falciparum Is Associated with Phenotypic Evidence of B and T Cell Exhaustion. J Immunol.
2013; 190: 1038–1047. doi: 10.4049/jimmunol.1202438 PMID: 23264654

11. Weiss GE, Crompton PD, Li S, Walsh LA, Moir S, Traore B, et al. Atypical memory B cells are greatly
expanded in individuals living in a malaria-endemic area. J Immunol Baltim Md 1950. 2009; 183: 2176–
2182. doi: 10.4049/jimmunol.0901297 PMID: 19592645

12. Weiss GE, Clark EH, Li S, Traore B, Kayentao K, Ongoiba A, et al. A Positive Correlation between Atyp-
ical Memory B Cells and Plasmodium falciparum Transmission Intensity in Cross-Sectional Studies in
Peru and Mali. PLoS ONE. 2011; 6: e15983. doi: 10.1371/journal.pone.0015983 PMID: 21264245

13. Weiss GE, Traore B, Kayentao K, Ongoiba A, Doumbo S, Doumtabe D, et al. The Plasmodium falcipa-
rum-Specific Human Memory B Cell Compartment Expands Gradually with Repeated Malaria Infec-
tions. PLoS Pathog. 2010; 6: e1000912. doi: 10.1371/journal.ppat.1000912 PMID: 20502681

14. Kano FS, Lima BA, Tang ML, Costa PA, Fontes CJ, Sanchez BM, et al. Plasmodium vivax infection:
atypical memory B cells are expanded and associated with the persistence of Duffy binding protein II
(DBPII) antibody response. Malar J. 2014; 13: P52.

15. Nogaro SI, Hafalla JC, Walther B, Remarque EJ, Tetteh KKA, Conway DJ, et al. The Breadth, but Not
the Magnitude, of Circulating Memory B Cell Responses to P. falciparum Increases with Age/Exposure
in an Area of Low Transmission. PLoS ONE. 2011; 6: e25582. doi: 10.1371/journal.pone.0025582
PMID: 21991321

16. Ayieko C, Maue AC, Jura WGZO, Noland GS, Ayodo G, Rochford R, et al. Changes in B Cell Popula-
tions and Merozoite Surface Protein-1-Specific Memory B Cell Responses after Prolonged Absence of
Detectable P. falciparum Infection. PLoS ONE. 2013; 8: e67230. PMID: 23826242

17. Ampomah P, Stevenson L, Ofori MF, Barfod L, Hviid L. Kinetics of B Cell Responses to Plasmodium fal-
ciparum Erythrocyte Membrane Protein 1 in Ghanaian Women Naturally Exposed to Malaria Parasites.
J Immunol Author Choice. 2014; 192: 5236–5244. doi: 10.4049/jimmunol.1400325 PMID: 24760153

18. Kardava L, Moir S, Shah N, WangW, Wilson R, Buckner CM, et al. Abnormal B cell memory subsets
dominate HIV-specific responses in infected individuals. J Clin Invest. 2014; 124: 3252–3262. doi: 10.
1172/JCI74351 PMID: 24892810

19. Kardava L, Moir S, WangW, Ho J, Buckner CM, Posada JG, et al. Attenuation of HIV-associated
human B cell exhaustion by siRNA downregulation of inhibitory receptors. J Clin Invest. 2011; 121:
2614–2624. doi: 10.1172/JCI45685 PMID: 21633172

20. Moir S, Ho J, Malaspina A, WangW, DiPoto AC, O’Shea MA, et al. Evidence for HIV-associated B cell
exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp
Med. 2008; 205: 1797–1805. doi: 10.1084/jem.20072683 PMID: 18625747

21. Jacobi AM, Reiter K, Mackay M, Aranow C, Hiepe F, Radbruch A, et al. Activated memory B cell sub-
sets correlate with disease activity in systemic lupus erythematosus: delineation by expression of
CD27, IgD, and CD95. Arthritis Rheum. 2008; 58: 1762–1773. doi: 10.1002/art.23498 PMID: 18512812

22. Rakhmanov M, Keller B, Gutenberger S, Foerster C, Hoenig M, Driessen G, et al. Circulating CD21low
B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. Proc Natl
Acad Sci U S A. 2009; 106: 13451–13456. doi: 10.1073/pnas.0901984106 PMID: 19666505

23. Isnardi I, Ng Y-S, Menard L, Meyers G, Saadoun D, Srdanovic I, et al. Complement receptor 2/CD21-
human naive B cells contain mostly autoreactive unresponsive clones. Blood. 2010; 115: 5026–5036.
doi: 10.1182/blood-2009-09-243071 PMID: 20231422

24. Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, et al. A new population of cells lack-
ing expression of CD27 represents a notable component of the B cell memory compartment in systemic
lupus erythematosus. J Immunol Baltim Md 1950. 2007; 178: 6624–6633. PMID: 17475894

25. Becker AM, Dao KH, Han BK, Kornu R, Lakhanpal S, Mobley AB, et al. SLE peripheral blood B cell, T
cell and myeloid cell transcriptomes display unique profiles and each subset contributes to the interfer-
on signature. PloS One. 2013; 8: e67003. doi: 10.1371/journal.pone.0067003 PMID: 23826184

26. Charles ED, Brunetti C, Marukian S, Ritola KD, Talal AH, Marks K, et al. Clonal B cells in patients with
hepatitis C virus-associated mixed cryoglobulinemia contain an expanded anergic CD21low B-cell sub-
set. Blood. 2011; 117: 5425–5437. doi: 10.1182/blood-2010-10-312942 PMID: 21421840

FCRL5 Functionally Defines Atypical MBCs

PLOS Pathogens | DOI:10.1371/journal.ppat.1004894 May 19, 2015 17 / 19

http://dx.doi.org/10.1016/S0140-6736(12)60034-8
http://dx.doi.org/10.1016/S0140-6736(12)60034-8
http://www.ncbi.nlm.nih.gov/pubmed/22305225
http://www.ncbi.nlm.nih.gov/pubmed/15361247
http://dx.doi.org/10.1038/ni.f.205
http://www.ncbi.nlm.nih.gov/pubmed/18563083
http://dx.doi.org/10.4049/jimmunol.1202438
http://www.ncbi.nlm.nih.gov/pubmed/23264654
http://dx.doi.org/10.4049/jimmunol.0901297
http://www.ncbi.nlm.nih.gov/pubmed/19592645
http://dx.doi.org/10.1371/journal.pone.0015983
http://www.ncbi.nlm.nih.gov/pubmed/21264245
http://dx.doi.org/10.1371/journal.ppat.1000912
http://www.ncbi.nlm.nih.gov/pubmed/20502681
http://dx.doi.org/10.1371/journal.pone.0025582
http://www.ncbi.nlm.nih.gov/pubmed/21991321
http://www.ncbi.nlm.nih.gov/pubmed/23826242
http://dx.doi.org/10.4049/jimmunol.1400325
http://www.ncbi.nlm.nih.gov/pubmed/24760153
http://dx.doi.org/10.1172/JCI74351
http://dx.doi.org/10.1172/JCI74351
http://www.ncbi.nlm.nih.gov/pubmed/24892810
http://dx.doi.org/10.1172/JCI45685
http://www.ncbi.nlm.nih.gov/pubmed/21633172
http://dx.doi.org/10.1084/jem.20072683
http://www.ncbi.nlm.nih.gov/pubmed/18625747
http://dx.doi.org/10.1002/art.23498
http://www.ncbi.nlm.nih.gov/pubmed/18512812
http://dx.doi.org/10.1073/pnas.0901984106
http://www.ncbi.nlm.nih.gov/pubmed/19666505
http://dx.doi.org/10.1182/blood-2009-09-243071
http://www.ncbi.nlm.nih.gov/pubmed/20231422
http://www.ncbi.nlm.nih.gov/pubmed/17475894
http://dx.doi.org/10.1371/journal.pone.0067003
http://www.ncbi.nlm.nih.gov/pubmed/23826184
http://dx.doi.org/10.1182/blood-2010-10-312942
http://www.ncbi.nlm.nih.gov/pubmed/21421840


27. Ehrhardt GRA, Hsu JT, Gartland L, Leu C-M, Zhang S, Davis RS, et al. Expression of the immunoregu-
latory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J Exp Med.
2005; 202: 783–791. PMID: 16157685

28. Ehrhardt GRA, Hijikata A, Kitamura H, Ohara O, Wang J-Y, Cooper MD. Discriminating gene expres-
sion profiles of memory B cell subpopulations. J Exp Med. 2008; 205: 1807–1817. doi: 10.1084/jem.
20072682 PMID: 18625746

29. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, et al. PD-1 expression on HIV-
specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006; 443: 350–
354. PMID: 16921384

30. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in ex-
hausted CD8 T cells during chronic viral infection. Nature. 2006; 439: 682–687. PMID: 16382236

31. Muellenbeck MF, Ueberheide B, Amulic B, Epp A, Fenyo D, Busse CE, et al. Atypical and classical
memory B cells produce Plasmodium falciparum neutralizing antibodies. J Exp Med. 2013; 210: 389–
399. doi: 10.1084/jem.20121970 PMID: 23319701

32. Jagannathan P, Kim CC, Greenhouse B, Nankya F, Bowen K, Eccles-James I, et al. Loss and dysfunc-
tion of Vδ2+ γδ T cells are associated with clinical tolerance to malaria. Sci Transl Med. 2014; 6:
251ra117. doi: 10.1126/scitranslmed.3009793 PMID: 25163477

33. Kim CC, Nelson CS, Wilson EB, Hou B, DeFranco AL, DeRisi JL. Splenic red pulp macrophages pro-
duce type I interferons as early sentinels of malaria infection but are dispensable for control. PloS One.
2012; 7: e48126. doi: 10.1371/journal.pone.0048126 PMID: 23144737

34. De Nicola F, Catena V, Rinaldo C, Bruno T, Iezzi S, Sorino C, et al. HIPK2 sustains apoptotic response
by phosphorylating Che-1/AATF and promoting its degradation. Cell Death Dis. 2014; 5: e1414. doi:
10.1038/cddis.2014.381 PMID: 25210797

35. D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, et al. Homeodomain-interacting
protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol. 2002; 4: 11–19.
PMID: 11780126

36. Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, DrögeW, et al. Regulation of p53 activity by its in-
teraction with homeodomain-interacting protein kinase-2. Nat Cell Biol. 2002; 4: 1–10. PMID:
11740489

37. Shahbazi J, Lock R, Liu T. Tumor protein 53-induced nuclear protein 1 enhances p53 function and re-
presses tumorigenesis. Cancer Genet. 2013; 4: 80.

38. Kuribayashi K, Krigsfeld G, WangW, Xu J, Mayes PA, Dicker DT, et al. TNFSF10 (TRAIL), a p53 target
gene that mediates p53-dependent cell death. Cancer Biol Ther. 2008; 7: 2034–2038. PMID: 19106633

39. Ihrie RA, Reczek E, Horner JS, Khachatrian L, Sage J, Jacks T, et al. Perp is a mediator of p53-depen-
dent apoptosis in diverse cell types. Curr Biol CB. 2003; 13: 1985–1990. PMID: 14614825

40. Bodmer JL, Burns K, Schneider P, Hofmann K, Steiner V, ThomeM, et al. TRAMP, a novel apoptosis-
mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95).
Immunity. 1997; 6: 79–88. PMID: 9052839

41. Munroe ME, Bishop GA. Role of Tumor Necrosis Factor (TNF) Receptor-associated Factor 2 (TRAF2)
in Distinct and Overlapping CD40 and TNF Receptor 2/CD120b-mediated B Lymphocyte Activation. J
Biol Chem. 2004; 279: 53222–53231. PMID: 15485859

42. Miscia S, Marchisio M, Grilli A, Di Valerio V, Centurione L, Sabatino G, et al. Tumor necrosis factor
alpha (TNF-alpha) activates Jak1/Stat3-Stat5B signaling through TNFR-1 in human B cells. Cell
Growth Differ Mol Biol J Am Assoc Cancer Res. 2002; 13: 13–18.

43. Ettinger R, Sims GP, Fairhurst A-M, Robbins R, da Silva YS, Spolski R, et al. IL-21 induces differentia-
tion of human naive and memory B cells into antibody-secreting plasma cells. J Immunol Baltim Md
1950. 2005; 175: 7867–7879. PMID: 16339522

44. Ozaki K, Spolski R, Ettinger R, Kim H-P, Wang G, Qi C-F, et al. Regulation of B cell differentiation and
plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol Baltim Md 1950.
2004; 173: 5361–5371. PMID: 15494482

45. Moir S, Malaspina A, Pickeral OK, Donoghue ET, Vasquez J, Miller NJ, et al. Decreased survival of B
cells of HIV-viremic patients mediated by altered expression of receptors of the TNF superfamily. J Exp
Med. 2004; 200: 587–599. PMID: 15508184

46. Doi H, Tanoue S, Kaplan DE. Peripheral CD27-CD21- B-cells represent an exhausted lymphocyte pop-
ulation in hepatitis C cirrhosis. Clin Immunol Orlando Fla. 2014; 150: 184–191. doi: 10.1016/j.clim.
2013.12.001 PMID: 24434272

47. Patel N, Brinkman-Van der Linden EC, Altmann SW, Gish K, Balasubramanian S, Timans JC, et al.
OB-BP1/Siglec-6. a leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J Biol
Chem. 1999; 274: 22729–22738. PMID: 10428856

FCRL5 Functionally Defines Atypical MBCs

PLOS Pathogens | DOI:10.1371/journal.ppat.1004894 May 19, 2015 18 / 19

http://www.ncbi.nlm.nih.gov/pubmed/16157685
http://dx.doi.org/10.1084/jem.20072682
http://dx.doi.org/10.1084/jem.20072682
http://www.ncbi.nlm.nih.gov/pubmed/18625746
http://www.ncbi.nlm.nih.gov/pubmed/16921384
http://www.ncbi.nlm.nih.gov/pubmed/16382236
http://dx.doi.org/10.1084/jem.20121970
http://www.ncbi.nlm.nih.gov/pubmed/23319701
http://dx.doi.org/10.1126/scitranslmed.3009793
http://www.ncbi.nlm.nih.gov/pubmed/25163477
http://dx.doi.org/10.1371/journal.pone.0048126
http://www.ncbi.nlm.nih.gov/pubmed/23144737
http://dx.doi.org/10.1038/cddis.2014.381
http://www.ncbi.nlm.nih.gov/pubmed/25210797
http://www.ncbi.nlm.nih.gov/pubmed/11780126
http://www.ncbi.nlm.nih.gov/pubmed/11740489
http://www.ncbi.nlm.nih.gov/pubmed/19106633
http://www.ncbi.nlm.nih.gov/pubmed/14614825
http://www.ncbi.nlm.nih.gov/pubmed/9052839
http://www.ncbi.nlm.nih.gov/pubmed/15485859
http://www.ncbi.nlm.nih.gov/pubmed/16339522
http://www.ncbi.nlm.nih.gov/pubmed/15494482
http://www.ncbi.nlm.nih.gov/pubmed/15508184
http://dx.doi.org/10.1016/j.clim.2013.12.001
http://dx.doi.org/10.1016/j.clim.2013.12.001
http://www.ncbi.nlm.nih.gov/pubmed/24434272
http://www.ncbi.nlm.nih.gov/pubmed/10428856


48. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM. BCL-6 represses genes that function in lym-
phocyte differentiation, inflammation, and cell cycle control. Immunity. 2000; 13: 199–212. PMID:
10981963

49. Nicholas KJ, Zern EK, Barnett L, Smith RM, Lorey SL, Copeland CA, et al. B cell responses to HIV anti-
gen are a potent correlate of viremia in HIV-1 infection and improve with PD-1 blockade. PloS One.
2013; 8: e84185. doi: 10.1371/journal.pone.0084185 PMID: 24358343

50. Tarte K, Zhan F, De Vos J, Klein B, Shaughnessy J. Gene expression profiling of plasma cells and plas-
mablasts: toward a better understanding of the late stages of B-cell differentiation. Blood. 2003; 102:
592–600. PMID: 12663452

51. Requena P, Campo JJ, Umbers AJ, OmeM, Wangnapi R, Barrios D, et al. Pregnancy and malaria ex-
posure are associated with changes in the B cell pool and in plasma eotaxin levels. J Immunol Baltim
Md 1950. 2014; 193: 2971–2983. doi: 10.4049/jimmunol.1401037 PMID: 25135831

52. Davis RS, Wang YH, Kubagawa H, Cooper MD. Identification of a family of Fc receptor homologs with
preferential B cell expression. Proc Natl Acad Sci U S A. 2001; 98: 9772–9777. PMID: 11493702

53. Polson AG, Zheng B, Elkins K, ChangW, Du C, Dowd P, et al. Expression pattern of the human FcRH/
IRTA receptors in normal tissue and in B-chronic lymphocytic leukemia. Int Immunol. 2006; 18: 1363–
1373. PMID: 16849395

54. Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, et al. Estimating the annual entomologi-
cal inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sam-
pling methods in three sites in Uganda. Malar J. 2014; 13: 111. doi: 10.1186/1475-2875-13-111 PMID:
24656206

55. Kamya, Moses, Arinaitwe, Emmanuel, Wanzira, Humphrey, Katureebe, Agaba, Barusya, Chris, Kiqozi,
Simon, et al. Malaria Transmission, Infection and Disease at Three Sites with Varied Transmission In-
tensity in Uganda: Implications for Malaria Control. Am J Trop Med Hyg. In Press.

56. Haga CL, Ehrhardt GRA, Boohaker RJ, Davis RS, Cooper MD. Fc receptor-like 5 inhibits B cell activa-
tion via SHP-1 tyrosine phosphatase recruitment. Proc Natl Acad Sci. 2007; 104: 9770–9775. PMID:
17522256

57. Jelicic K, Cimbro R, Nawaz F, Huang DW, Zheng X, Yang J, et al. HIV-1 gp120 impairs B cell prolifera-
tion by inducing TGF-β1 production and FcRL4 expression. Nat Immunol. 2013;14. doi: 10.1038/ni.
2489 PMID: 23238752

58. Franco A, Damdinsuren B, Ise T, Dement-Brown J, Li H, Nagata S, et al. Human Fc receptor-like 5
binds intact IgG via mechanisms distinct from those of Fc receptors. J Immunol Baltim Md 1950. 2013;
190: 5739–5746. doi: 10.4049/jimmunol.1202860 PMID: 23616577

59. Wilson TJ, Fuchs A, Colonna M. Cutting edge: human FcRL4 and FcRL5 are receptors for IgA and IgG.
J Immunol Baltim Md 1950. 2012; 188: 4741–4745. doi: 10.4049/jimmunol.1102651 PMID: 22491254

60. Zinöcker S, Schindler CE, Skinner J, Rogosch T, Waisberg M, Schickel J- N, et al. The V Gene Reper-
toires of Classical and Atypical Memory B Cells in Malaria-Susceptible West African Children. J Immu-
nol. 2015; 194: 929–939. doi: 10.4049/jimmunol.1402168 PMID: 25556245

61. Portugal S, Moebius J, Skinner J, Doumbo S, Doumtabe D, Kone Y, et al. Exposure-dependent control
of malaria-induced inflammation in children. PLoS Pathog. 2014; 10: e1004079. doi: 10.1371/journal.
ppat.1004079 PMID: 24743880

62. Ladeia-Andrade S, Ferreira MU, de Carvalho ME, Curado I, Coura JR. Age-dependent acquisition of
protective immunity to malaria in riverine populations of the Amazon Basin of Brazil. Am J Trop Med
Hyg. 2009; 80: 452–459. PMID: 19270298

63. Smyth GK, Speed T. Normalization of cDNAmicroarray data. Methods San Diego Calif. 2003; 31: 265–
273. PMID: 14597310

64. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation
response. Proc Natl Acad Sci U S A. 2001; 98: 5116–5121. PMID: 11309499

65. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using
DAVID bioinformatics resources. Nat Protoc. 2009; 4: 44–57. doi: 10.1038/nprot.2008.211 PMID:
19131956

66. Jeanty C, Longrois D, Mertes P-M, Wagner DR, Devaux Y. An optimized protocol for microarray valida-
tion by quantitative PCR using amplified amino allyl labeled RNA. BMCGenomics. 2010; 11: 542. doi:
10.1186/1471-2164-11-542 PMID: 20929564

FCRL5 Functionally Defines Atypical MBCs

PLOS Pathogens | DOI:10.1371/journal.ppat.1004894 May 19, 2015 19 / 19

http://www.ncbi.nlm.nih.gov/pubmed/10981963
http://dx.doi.org/10.1371/journal.pone.0084185
http://www.ncbi.nlm.nih.gov/pubmed/24358343
http://www.ncbi.nlm.nih.gov/pubmed/12663452
http://dx.doi.org/10.4049/jimmunol.1401037
http://www.ncbi.nlm.nih.gov/pubmed/25135831
http://www.ncbi.nlm.nih.gov/pubmed/11493702
http://www.ncbi.nlm.nih.gov/pubmed/16849395
http://dx.doi.org/10.1186/1475-2875-13-111
http://www.ncbi.nlm.nih.gov/pubmed/24656206
http://www.ncbi.nlm.nih.gov/pubmed/17522256
http://dx.doi.org/10.1038/ni.2489
http://dx.doi.org/10.1038/ni.2489
http://www.ncbi.nlm.nih.gov/pubmed/23238752
http://dx.doi.org/10.4049/jimmunol.1202860
http://www.ncbi.nlm.nih.gov/pubmed/23616577
http://dx.doi.org/10.4049/jimmunol.1102651
http://www.ncbi.nlm.nih.gov/pubmed/22491254
http://dx.doi.org/10.4049/jimmunol.1402168
http://www.ncbi.nlm.nih.gov/pubmed/25556245
http://dx.doi.org/10.1371/journal.ppat.1004079
http://dx.doi.org/10.1371/journal.ppat.1004079
http://www.ncbi.nlm.nih.gov/pubmed/24743880
http://www.ncbi.nlm.nih.gov/pubmed/19270298
http://www.ncbi.nlm.nih.gov/pubmed/14597310
http://www.ncbi.nlm.nih.gov/pubmed/11309499
http://dx.doi.org/10.1038/nprot.2008.211
http://www.ncbi.nlm.nih.gov/pubmed/19131956
http://dx.doi.org/10.1186/1471-2164-11-542
http://www.ncbi.nlm.nih.gov/pubmed/20929564

