
fCube: An Efficient Prover for Intuitionistic

Propositional Logic

Mauro Ferrari1, Camillo Fiorentini2, and Guido Fiorino3

1 DICOM, Univ. degli Studi dell’Insubria, Via Mazzini 5, 21100, Varese, Italy
2 DSI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy

3 DIMEQUANT, Univ. degli Studi di Milano-Bicocca
P.zza dell’Ateneo Nuovo 1, 20126 Milano, Italy

Abstract. We present fCube, a theorem prover for Intuitionistic propo-
sitional logic based on a tableau calculus. The main novelty of fCube is
that it implements several optimization techniques that allow to prune
the search space acting on different aspects of proof-search. We tested
the efficiency of our techniques by comparing fCube with other theo-
rem provers. We found that our prover outperforms the other provers on
several interesting families of formulas.

1 Introduction

fCube1 is a theorem prover for Intuitionistic propositional logic based on a
tableau calculus. The main topic of this paper is the description of the strategy
and the main optimizations on which fCube relies. Here, speaking of optimiza-
tion we mean a family of techniques that allow us to reduce the search space
acting on different aspects of proof search. In particular fCube implements sim-
plification techniques, which reduce the size of the formulas treated by the prover
so to avoid inessential branching and backtracking.

Unlike what happened for classical logic, where optimization techniques of
the above kind have been investigated from the very beginning (see, e.g., [3,6]),
in the case of tableau calculi for Intuitionistic and non classical logics very little
work has been done in this direction. As far as we know, the only works that
address these issues in the context of tableau calculi are [5,7] that essentially
refer to classical and modal logics, and [4] which addresses the case of Intuition-
istic tableau calculi. The optimization rules implemented in fCube are those
presented in [4]. We remark that fCube is a prototype Prolog implementation
of the above techniques and we did very little work to “optimize the implemen-
tation”; e.g., fCube is based on a very rough implementation of the relevant
data structures. In spite of this, as discussed in Section 5, fCube outperforms
other provers on several interesting families of formulas. The above considera-
tions suggest that the study of optimization techniques is a promising line of
research to improve the performances of Intuitionistic theorem provers.

1 Available at http://web-nuovo.dimequant.unimib.it/~guidofiorino/fcube.jsp

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 294–301, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

fCube: An Efficient Prover for Intuitionistic Propositional Logic 295

2 Preliminaries and Tableau Calculus

We consider the languageL based on a denumerable set of propositional variables
PV, the logical connectives ¬, ∧, ∨, → and the logical constants � and ⊥.

We recall the main definitions about Kripke semantics (see, e.g., [2] for more
details). A Kripke model for L is a structure K = 〈P,≤, ρ, V 〉, where 〈P,≤, ρ〉 is
a poset with minimum ρ and V is a monotone function (the valuation function)
mapping every α ∈ P to a subset of PV. The forcing relation �⊆ P × L is
defined as follows:

– α � �, α � ⊥ and, for p ∈ PV , α � p iff p ∈ V (α);
– α � A ∧ B iff α � A and α � B;
– α � A ∨ B iff α � A or α � B;
– α � A → B iff, for every β ∈ P such that α ≤ β, β � A implies β � B;
– α � ¬A iff, for every α ≤ β, β � A (i.e., β � A does not hold).

Monotonicity property holds for arbitrary formulas, i.e., α � A and α ≤ β imply
β � A. A formula A is valid in K iff ρ � A. Intuitionistic propositional logic Int
coincides with the set of formulas valid in all Kripke models [2].

The calculus implemented in fCube treats signed formulas of the kind TA
or FA, where A ∈ L The semantics of formulas extends to signed formulas as
follows. Given a Kripke model K = 〈P,≤, ρ, V 〉, α ∈ P and a signed formula H ,
α realizes H in K (K, α � H) iff:

– H ≡ TA and α � A;
– H ≡ FA and α � A.

We say that K realizes H (K � H) iff K, ρ � H ; H is realizable iff K � H for
some Kripke model K. The above definitions extend in the obvious way to sets
Δ of signed formulas; for instance, K, α � Δ means that K, α � H , for every
H ∈ Δ. By definition, A ∈ Int iff FA is not realizable. We remark that, by
the monotonicity property, T-signed formulas are upward persistent (K, α�TA
and α ≤ β imply K, β � TA), while F-signed formulas are downward persistent
(K, α � FA and β ≤ α imply K, β � FA).

fCube is based on the tableau calculus Tab of Fig.12. In the formulation of
the rules we use the notation Δ, H as a shorthand for Δ ∪ {H}. In the premise
of a rule, writing Δ, H we assume that H �∈ Δ. Every rule applies to a set of
signed formulas, but only acts on the signed formula H explicitly indicated in
the premise; we call H the major premise of the rule, whereas we call all the
other signed formulas minor premises of the rule. A rule r is invertible iff r
is sound and, for every set Δ in the consequent, the realizability of Δ implies
the realizability of the premise. A set Δ is contradictory iff either T⊥ ∈ Δ or
F� ∈ Δ or, for some A ∈ L, {FA,TA} ⊆ Δ. A proof-table τ for Δ is defined as
usual; when all the leaves of τ are contradictory, we say that τ is closed and Δ
is provable.

As proved in [1], Tab is a complete for Int, that is A ∈ Int iff FA is provable
in Tab. The decision procedure described in Section 4 is inspired by [1].
2 Tab essentially corresponds to the calculus of [1], the only difference is the absence

of the sign Fc. Here FcA is replaced by the equivalent signed formula T¬A.

296 M. Ferrari, C. Fiorentini, and G. Fiorino

Δ,T(A ∧ B)

Δ, TA,TB
T∧

Δ,F(A ∧ B)

Δ,FA | Δ,FB
F∧

Δ, T¬(A ∧ B)

ΔT,T¬A | ΔT,T¬B
T¬∧

Δ,T(A ∨ B)

Δ,TA | Δ,TB
T∨

Δ,F(A ∨ B)

Δ,FA,FB
F∨

Δ, T¬(A ∨ B)

Δ,T¬A,T¬B
T¬∨

Δ,TA,T(A → B)

Δ,TA,TB
MP

ΔT,T(A → B)

ΔT,T¬A | ΔT,TB
T→-special

Δ,F(A → B)

ΔT,TA,FB
F→

Δ,T¬(A → B)

ΔT,TA,T¬B
T¬→

Δ,F¬A

ΔT,TA
F¬

Δ,T¬¬A

ΔT, TA
T¬¬

Δ,T((A ∧ B) → C)

Δ,T(A → (B → C))
T→∧

Δ,T(¬A → B)

ΔT,TA |Δ,TB
T→¬

Δ,T((A ∨ B) → C)

Δ,T(A → p),T(B → p),T(p → C)
T→∨ with p a new atom

Δ,T((A → B) → C)

ΔT,TA,Fp,T(p → C),T(B → p) |Δ, TC
T→→ with p a new atom

where ΔT = {TA | TA ∈ Δ}

Fig. 1. The Tab calculus

3 Simplification Rules

In this section we describe the simplification rules implemented in fCube. The
aim of these rules is to reduce the size of the formulas to be analyzed as much
as possible before applying a rule of Fig. 1.

The first kind of simplification implemented in fCube exploits the well-known
boolean simplification rules [4,7]. These rules simplify formulas containing the
constants � and ⊥ using Intuitionistic equivalences; e.g., (A ∨�) ∧B simplifies
to B, by the equivalences A ∨ � ≡ � and B ∧ � ≡ B.

The other simplification rules used by fCube have been introduced in [4] and
are described in Fig. 2. Given a signed formula H , H [B/A] denotes the signed
formula obtained by replacing every occurrence of A with B in H . Now, let
Z, A and B be formulas; Z{B/A} denotes the partial substitution of A with
B in Z defined as follows: if Z = A then Z{B/A} = B; if Z = (X � Y) and
� ∈ {∧,∨} then Z{B/A} = X{B/A} � Y {B/A}; if Z = X → Y , Z = ¬X
or Z ∈ PV and Z �= A, then Z{B/A} = Z. Note that partial substitutions
do not act on subformulas under the scope of → or ¬. Given a signed formula
H = SZ, H{B/A} = S(Z{B/A}). For a set of signed formulas Δ, Δ[B/A]
(resp. Δ{B/A}) is the set of signed formulas H [B/A] (resp. H{B/A}) such that

fCube: An Efficient Prover for Intuitionistic Propositional Logic 297

Δ, TA

Δ[�/A], TA
Replace-T

Δ,T¬A

Δ[⊥/A],T¬A
Replace-T¬ Δ,FA

Δ{⊥/A}, FA
Replace-F

Δ

Δ[�/p]
T-perm if p�+ Δ

Δ

Δ[⊥/p]
T¬-perm if p�− Δ

Δ

Δ{⊥/p} F-perm if p�−
w Δ

– p�− Fp and p�+ Tp
– p�l S� and p�l S⊥
– p�l Sq, where q ∈ PV and q 	= p
– p�l S(A
 B) iff p�l SA and p�l SB,

where
 ∈ {∧,∨}
– p�l F(A → B) iff p�l TA and p�l FB
– p�l T(A → B) iff p�l FA and p�l TB
– p�l F¬A iff p�l TA
– p�l T¬A iff p�l FA.

– p�−
w S� and p�−

w S⊥
– p�−

w FA and p�−
w T¬A for every

A
– p�−

w Tq, where q ∈ PV and q 	= p
– p�−

w T(A
 B) iff p�−
w TA and

p�−
w TB, where
 ∈ {∧,∨}

– p�−
w T(A → B) iff p�−

w TB.

where S ∈ {T,F} and l ∈ {+,−}
Given a set of signed formulas Δ and �∈ {�+ ,�− ,�−

w }, p � Δ iff, for every
H ∈ Δ, p � H .

Fig. 2. Simplification rules and polarities

H ∈ Δ. The rules in the second line of Fig. 2 enable the substitution of p ∈ PV
occurring with constant polarity in a set Δ (see the definition of p�+ H , p�− H
and p�−

w H) with � or ⊥. In [4] it is proved that:

Theorem 1. The rules of Fig.2 are invertible. ��
Thus, simplification rules do not require backtracking.

4 fCube Strategy

Here we describe the main function f of fCube which implements the proof-
search strategy (see Fig. 3). Let Δ be a set of signed formulas; f(Δ) returns
either a proof for Δ or a countermodel K for Δ, namely a Kripke model K such
that K �Δ. We introduce some notations. Given H ∈ Δ, RH(Δ) is the instance
of the rule of Tab having H as major premise and Δ \ {H} as minor premises.
By ΔF we denote the set of F-signed formulas of Δ. A local formula is a signed
formula FL such that:

L ::= p | L ∨ L | L ∧ A | A ∧ L where p ∈ PV and A is any formula

LF is the set of local formulas. An important property of LF is stated by the
following theorem:

Theorem 2. Let K = 〈P,≤, ρ, V 〉 be a Kripke model, α ∈ P and FL ∈ LF . If
α � p for every p occurring in L, then α � L. ��

298 M. Ferrari, C. Fiorentini, and G. Fiorino

Function f(Δ)

1. Apply to Δ the rules of Fig. 2 and boolean simplification rules as long as possible.
2. If Δ is a contradictory set, then return the proof π = Δ.
3. If there exists H ∈ Δ such that H 	∈ LF and one of the rules T∧, T¬¬, MP ,

T → ∧, T → ∨ and F∨ applies to H , let RH(Δ) =
Δ

Δ′ r and π′ = f(Δ′).

If π′ is a proof, then return the proof
Δ

π′ r, else return the model π′.

4. If there exists H ∈ Δ such that H 	∈ LF and one of the rules T∨, F∧, T → −special

applies to H , let RH(Δ) =
Δ

Δ′ | Δ′′ r, π′ = f(Δ′) and π′′ = f(Δ′′).

If there is a model τ ∈ {π′, π′′} then return τ , else return the proof
Δ

π′|π′′ r.

5. Let Γ1 = {H ∈ Δ | H = F(A → B) or H = F¬A }.
Let Γ2 = {K ∈ Δ | K = T((A → B) → C) or K = T(¬A → B) }.
If Γ1 ∪ Γ2 	= ∅ then

Let M = ∅ (M is a set of Kripke models)
For each H ∈ Γ1 do

Let RH(Δ) =
Δ

Δ′ r and π′ = f(Δ′).

If π′ is a proof then return the proof
Δ

π′ r

else if Real(π′, ΔF) then return π′ else M = M∪ {π′}.
For each K ∈ Γ2 do

Let RK(Δ) =
Δ

Δ′ | Δ′′ r, π′ = f(Δ′) and π′′ = f(Δ′′).

If π′′ is a model then return π′′

else if both π′ and π′′ are proofs, then return the proof
Δ

π′|π′′ r

else if Real(π′, ΔF) then return π′, else M = M∪ {π′}.
Return the model Cm(Δ,M).

6. If there exists H ∈ Δ such that one of the rules T¬ →, T¬¬ applies to H ,

let RH(Δ) =
Δ

Δ′ r and π′ = f(Δ′).

If π′ is a proof then return the proof
Δ

π′ r, else return Cm(Δ, {π}).

7. If H = T¬(A ∧ B) ∈ Δ, let RH(Δ) =
Δ

Δ′ | Δ′′ T¬∧, π′ = f(Δ′) and π′′ = f(Δ′′).

If there is a model τ ∈ {π′, π′′} then return Cm(Δ, {τ}), else return
Δ

π′|π′′ T¬∧.

8. Return Cm(Δ, ∅).
Function Cm(Δ,M)

Let M = {K1, . . . , Kn}, with Ki = 〈Pi,≤i, ρi, Vi〉.
Let ρ 	∈ ⋃

1≤i≤n Pi.

Return K = 〈P,≤, ρ, V 〉 where:
P = {ρ} ∪ ⋃

1≤i≤n Pi

≤ = { (ρ, α) | α ∈ P } ∪ ⋃
1≤i≤n ≤i

V = { (ρ, p) | Tp ∈ Δ } ∪ ⋃
1≤i≤n Vi

...................

...................

Kn

ρn

K1

ρ

ρ1

The model Cm(Δ,M)

Fig. 3. The functions f(Δ) and Cm(Δ,M)

fCube: An Efficient Prover for Intuitionistic Propositional Logic 299

We also exploit the functions Cm and Real defined as follows:

– The function Cm (see Fig. 3) takes as input a set of signed formulas Δ and
a (possibly empty) set of Kripke models M and builds a countermodel K for
Δ using a standard technique to glue the models in M (see, e.g,. [2]).

– The function Real takes as input a Kripke model K = 〈P,≤, ρ, V 〉 and a set
of signed formulas Δ and returns true only if ρ realizes Δ, i.e. if K, ρ � Δ. In
our strategy Real is applied when the realizability of Δ can be decided only
considering the valuation V (ρ) (that is, without considering elements α > ρ).
In this case the test requires time linear in the size of Δ.

A high-level definition of f is given in Fig. 3. In the computation of f(Δ), we
firstly try to reduce Δ by applying the simplification rules described in Section 3.
Note that this step can reduce the search space; for instance in Step 4, if the set
Δ∪ {T(A∨B)} simplifies to Δ∪ {TB}, we avoid the call f(Δ∪ {TA}). Apply-
ing Tab rules, f gives precedence to invertible rules and, among them, single-
conclusion rules are applied first. We point out that LF-formulas are treated as
atomic formulas since they are never decomposed by the Tab rules (they can
be treated only by simplification rules), and this avoids useless computation.
Finally, we remark that if one of the tests Real(π′, ΔF) in Step 5 successes, the
iteration terminates and f returns the model π′.

We briefly account on the correctness of f. It is easy to check, by induction
on Δ, that whenever f(Δ) returns a proof π, π is actually a proof of Δ. Let us
assume that f(Δ) returns a Kripke model K = 〈P,≤, ρ, V 〉; we have to prove
that (*) K, ρ � Δ. If K is returned in Step 3 or 4, (*) immediately follows. Let
us consider Step 5. Suppose that K = π′ is returned inside one of the for-each
loops. By induction hypothesis K, ρ � Δ′, which implies K, ρ � ΔT. Moreover,
being Real(K ′, ΔF) true, we also have K, ρ � ΔF, hence (*) holds. Suppose
now that K = Cm(Δ,M). Then, (*) follows by construction of K and the
induction hypothesis. We only show that K, ρ � FA, for every FA ∈ Δ. Let
FA = F(B → C). Since FA ∈ Γ1, there is K ′ = 〈P ′,≤′, ρ′, V ′〉 ∈ M such that
K′, ρ′ � TB and K ′, ρ′ � FC. Since ρ < ρ′ in K, we have K, ρ � F(B → C). If
A ∈ PV , then TA �∈ Δ (Step 2 guarantees that Δ is not contradictory), hence
K, ρ � FA. It only remains to consider the case FA ∈ LF . Note that in Step 1
all the p ∈ PV such that Tp ∈ Δ have been replaced by �, hence for every
p occurring in A, we have K, ρ � Fp. By Theorem 2 we get K, ρ � FA. This
concludes the proof of (*). The discussion about steps 6–8 is similar. Note that
in Step 8 the set Δ only contains formulas of the kind T�, F⊥, Tp, Fp, with
p ∈ PV, T(p → A), with Tp �∈ Δ, and LF-formulas; in this case the returned
model Cm(Δ, ∅) is a classical model for Δ.

The termination of f follows from the fact that at each recursive call the size
of Δ strictly decreases.

5 Evaluation and Conclusions

We have performed some experiments to compare fCube to Imogen [8], which is
the fastest among the provers tested on the formulas of the ILTP Library [9], and

300 M. Ferrari, C. Fiorentini, and G. Fiorino

Formula Imogen fCube Basic +BackT +Branch

SYJ201+1.018 11.32 14.46 timeout timeout 16.16
SYJ201+1.019 16.28 17.84 timeout timeout 20.72
SYJ201+1.020 17.00 22.34 timeout timeout 26.00

SYJ202+1.006 timeout 6.18 timeout timeout 7.08
SYJ202+1.007 timeout 52.98 timeout timeout 61.18
SYJ202+1.008 timeout 529.36 timeout timeout 570.88

SYJ206+1.018 2.26 0.00 0.00 0.00 0.00
SYJ206+1.019 2.12 0.00 0.00 0.00 0.01
SYJ206+1.020 2.14 0.00 0.01 0.01 0.01

SYJ207+1.018 77.02 4.72 timeout 5.53 timeout
SYJ207+1.019 104.38 6.08 timeout 7.15 timeout
SYJ207+1.020 143.32 7.44 timeout 8.94 timeout

SYJ208+1.015 timeout 174.22 220.71 209.98 187.78
SYJ208+1.016 timeout 286.56 351.73 349.72 312.99
SYJ208+1.017 timeout 472.07 570.48 569.66 541.81

SYJ209+1.018 0.20 0.08 timeout 0.07 timeout
SYJ209+1.019 0.024 0.09 timeout 0.09 timeout
SYJ209+1.020 0.028 0.09 timeout 0.10 timeout

Nishimura.011 8.2 0.02 0.02 0.02 0.02
Nishimura.012 132 0.04 0.03 0.04 0.04
Nishimura.013 timeout 0.07 0.06 0.07 0.07

Fig. 4. Timings on ILTP library

to check how our optimizations affect the performances of fCube itself. In the ex-
periments we considered formulas of the ILTP Library and some axiom-formulas
characterizing intermediate logics. In Fig. 4, the second and third column de-
scribe the timings of Imogen and fCube, respectively. Times are expressed in
seconds and the timeout is 600s3. We notice that fCube outperforms Imogen on
the families SYJ202, SYJ206, SYJ207, SYJ208 and Nishimura. Imogen is slightly
faster than fCube on the families SYJ201 and SYJ209. As regards the perfor-
mances of fCube on the SYJ201 family, we emphasize that fCube strategy relies
on PITP strategy [1] and PITP decides the formula SYJ201.20 in 0.01s. In this
case the timings of fCube essentially depend on its rough data structures that
do not handle efficiently multiple occurrences of the same formula. This highly
affects the performances on formulas like SYJ201.20 ((∧40

i=0

(
pi ≡ p(i+1) mod 41 →

∧40
j=0pj

)
) → ∧40

j=0pj) where ∧40
j=0pj occurs 42-times. Indeed rewriting SYJ201.20

as ((q ≡ ∧40
j=0pj ∧ ∧40

i=0

(
pi ≡ p(i+1) mod 41 → q

)
) → q) fCube solves it in

2.23s while Imogen requires 33s. We also remark that the proof table for the
latter formula contains 250 nodes, whereas the proof table for the original for-
mula contains 246 nodes. This is a further clue that the lack of advanced data
structures penalizes the strategy. According to these considerations we expect
that the above techniques can highly improve the performances of provers using
advanced data structures.

3 Experiments performed on a Intel(R) Xeon(TM) CPU 3.00GHz, Linux OS.

fCube: An Efficient Prover for Intuitionistic Propositional Logic 301

The last three columns of Fig. 4 analyze how the various optimizations affect
fCube performances. Here we denote with Basic the version of fCube in which
the only optimizations applied are those performed in Step 1; hence in steps 3
and 4 LF-formulas are decomposed according to tableau rules and in Step 5
the test Real is omitted. +Branch is Basic with the special treatment of LF
formulas and +BackT is Basic with the Real test. Note that the decomposition
of LF-formulas according to tableau rules increase the branch degree of a proof
and the lack of the Real-test increases the backtrack degree of proof-search. The
timings show that Basic cannot decide the families SYJ201, SYJ202, SYJ207,
SYJ209. +Branch decides the families SYJ201, SYJ202. +BackT decides the
families SYJ207, SYJ209. The simplification rules of Fig. 2 also have a deep
impact on the proof strategy as we showed in [4].

To conclude, fCube is a Prolog theorem prover for Intuitionistic proposi-
tional logic implementing some optimization techniques. In this paper we have
briefly discussed the optimization techniques and we have shown how such op-
timizations can highly improve the performances of a tableau-based prover for
Intuitionistic propositional logic. As a future work we aim to study further opti-
mization techniques, their application to modal logics and the extension to the
first-order case.

References

1. Avellone, A., Fiorino, G., Moscato, U.: Optimization techniques for propositional
intuitionistic logic and their implementation. Theoretical Computer Science 409(1),
41–58 (2008)

2. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford
(1997)

3. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5, 394–397 (1962)

4. Ferrari, M., Fiorentini, C., Fiorino, G.: Towards the use of simplification rules in
intuitionistic tableaux. In: Gavanelli, M., Riguzzi, F. (eds.) CILC 2009: 24-esimo
Convegno Italiano di Logica Computazionale (2009)

5. Hustadt, U., Schmidt, R.A.: Simplification and backjumping in modal tableau. In: de
Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 187–201. Springer,
Heidelberg (1998)

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7, 201–215 (1960)

7. Massacci, F.: Simplification: A general constraint propagation technique for proposi-
tional and modal tableaux. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI),
vol. 1397, pp. 217–231. Springer, Heidelberg (1998)

8. McLaughlin, S., Pfenning, F.: Imogen: Focusing the polarized inverse method for
intuitionistic propositional logic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg (2008)

9. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic.
Journal of Automated Reasoning 31, 261–271 (2007)

	fCube: An Efficient Prover for Intuitionistic Propositional Logic
	Introduction
	Preliminaries and Tableau Calculus
	Simplification Rules
	fCube Strategy
	Evaluation and Conclusions
	References

