
FCUDA: Enabling Efficient Compilation of CUDA
Kernels onto FPGAs*

Alexandros Papakonstantinou1, Karthik Gururaj2, John A. Stratton1, Deming Chen1, Jason Cong2, Wen-Mei W. Hwu1

1Electrical & Computer Eng. Dept., University of Illinois, Urbana-Champaign, IL, USA
2Computer Science Dept., University of California, Los-Angeles, CA, USA

1{apapako2, stratton, dchen, w-hwu}@illinois.edu, 2{karthikg, cong}@cs.ucla.edu

Abstract— As growing power dissipation and thermal effects
disrupted the rising clock frequency trend and threatened to
annul Moore’s law, the computing industry has switched its route
to higher performance through parallel processing. The rise of
multi-core systems in all domains of computing has opened the
door to heterogeneous multi-processors, where processors of
different compute characteristics can be combined to effectively
boost the performance per watt of different application kernels.
GPUs and FPGAs are becoming very popular in PC-based
heterogeneous systems for speeding up compute intensive kernels
of scientific, imaging and simulation applications. GPUs can
execute hundreds of concurrent threads, while FPGAs provide
customized concurrency for highly parallel kernels. However,
exploiting the parallelism available in these applications is
currently not a push-button task. Often the programmer has to
expose the application’s fine and coarse grained parallelism by
using special APIs. CUDA is such a parallel-computing API that
is driven by the GPU industry and is gaining significant
popularity. In this work, we adapt the CUDA programming
model into a new FPGA design flow called FCUDA, which
efficiently maps the coarse and fine grained parallelism exposed
in CUDA onto the reconfigurable fabric. Our CUDA-to-FPGA
flow employs AutoPilot, an advanced high-level synthesis tool
which enables high-abstraction FPGA programming. FCUDA is
based on a source-to-source compilation that transforms the
SPMD CUDA thread blocks into parallel C code for AutoPilot.
We describe the details of our CUDA-to-FPGA flow and
demonstrate the highly competitive performance of the resulting
customized FPGA multi-core accelerators. To the best of our
knowledge, this is the first CUDA-to-FPGA flow to demonstrate
the applicability and potential advantage of using the CUDA
programming model for high-performance computing in FPGAs.

I. INTRODUCTION
Even though parallel processing has been a major

contributor to application speedups achieved by the high
performance computing community, its adoption in mainstream
computing domains has lagged due to the relative simplicity of
enhancing application speed through frequency scaling and
transistor shrinking. However, the power wall encountered by
traditional single-core processors has forced a global industry
shift to the multi-core paradigm. As a consequence of the
rapidly growing interest for parallelism in a wider and coarser
level than feasible in traditional processors, the potential of
GPUs and FPGAs has been realized. GPUs consist of hundreds
of processing cores clustered within streaming multiprocessors
(SMs) that can handle intensive compute loads with high-
degree of data-level parallelism. FPGAs on the other hand,

offer efficient application-specific parallelism extraction
through the flexibility of their reconfigurable fabric. Besides,
heterogeneity in high performance computing (HPC) has been
gaining great momentum as can be inferred by the proliferation
of heterogeneous multiprocessors ranging from Multi-
Processor Systems on Chip (MPSoC) like the IBM Cell [21], to
HPC clusters with GPU/FPGA accelerated nodes such as the
NCSA AC Cluster [20]. The diverse characteristics of these
compute cores/platforms render them optimal for different
types of application kernels. Currently, the performance and
power advantages of the heterogeneous multi-processors are
offset by the difficulty involved in their programming.
Moreover, the use of different parallel programming models in
these heterogeneous compute systems often complicates the
development process. In the case of kernel acceleration on
FPGAs, the programming effort is further inflated by the need
to interface with hardware at the RTL level.

A significant milestone towards the use of the massively
parallel computing power of GPUs in non-graphics
applications has been the release of CUDA by NVIDIA.
CUDA enables general purpose computing on the GPU
(GPGPU) through a C-like API which is gaining considerable
popularity. In this work we explore the use of CUDA as the
programming interface for a new FPGA programming flow
(Fig. 1), which is designed to efficiently map the coarse and
fine grained parallelism expressed in CUDA kernels onto the
reconfigurable fabric. Our CUDA-to-FPGA flow employs the
state of the art high-level synthesis tool, AutoPilot [5], which
enables high-abstraction FPGA programming. The flow is
enabled by a source-to-source compilation phase, FCUDA,
which transforms the SPMD (Single-Program-Multiple-Data)
CUDA code into C code for AutoPilot with annotated coarse-
grained parallelism. AutoPilot maps the annotated parallelism
onto parallel cores ("core" in this context is an application-
specific processing engine) and generates a corresponding RTL
description which is subsequently synthesized and downloaded
onto the FPGA.

The selection of CUDA as the programming interface for
our FPGA programming flow offers three main advantages.

CUDA
code Annotation

FCUDA
annotated

code
FCUDA

compilation
AutoPilot

C code
AutoPilot
synthesis

RTL
Design

FPGA

implementation

guidelines Coarse-grained

parallelism

extraction Fine-grained

parallelism

extraction

Fig. 1. CUDA-to-FPGA Flow

* This work is partially supported by MARCO/DARPA GSRC and NSF CCF
07-46608. The authors would like to acknowledge the equipment donation
from Intel and software donation from AutoESL.

First, it provides a high-level API for expressing coarse grained
parallelism in a concise fashion within application kernels that
are going to be executed on a massively parallel acceleration
device. Even though CUDA is driven by the GPU computing
domain, we show that CUDA kernels can indeed be translated
with FCUDA into efficient, customized multi-core compute
engines on the FPGA. Second, it bridges the programmability
gap between homogeneous and heterogeneous platforms by
providing a common programming model for clusters with
nodes that include GPUs and FPGAs. This simplifies
application development and enables efficient evaluation of
alternative kernel mappings onto the heterogeneous
acceleration devices without time-consuming kernel code re-
writing. Third, the wide adoption of the CUDA programming
model and its popularity render a large body of existing
applications available to FPGA acceleration.

In the next section we discuss important characteristics of
the FPGA and GPU platforms along with previous related
work. Section III explains the characteristics of the CUDA and
AutoPilot programming models and provides insight to the
suitability of the CUDA API for programming FPGAs. The
FCUDA translation details are presented in section IV, while
section V displays experimental results and shows that our
high-level synthesis based flow can efficiently exploit the
computational resources of top-tier FPGAs in a customized
fashion. Finally, section VI concludes the paper and discusses
future work.

II. THE FPGA PLATFORM
With increasing transistor densities, the computational

capabilities of commercial FPGAs provided by Xilinx [16] and
Altera [17] have greatly increased. Modern FPGAs are
technologically in sync with the rest of the IC industry by
employing the latest manufacturing process technologies and
supporting high-bandwidth IO interfaces such as PCIe, Intel’s
FSB [6] and AMD’s HyperTransport [8]. By embedding fast
DSP macros, memory blocks and 32-bit microprocessor cores
into the reconfigurable fabric, a complete SoC platform is
available for applications which require high-throughput
computation at a low power footprint.

The flexibility of the reconfigurable fabric provides a
versatile platform for leveraging different types of application-
specific parallelism: i) coarse- and fine-grained, ii) data- and
task-level and iii) different pipelined configurations. Re-
configurability, though, has an impact in the clock frequency
achievable on the FPGA platform. Synthesis-generated wire-
based communication between parallel modules may limit the
throughput of designs with wider parallelism compared to
smaller but faster clocked architectures. In our flow we
leverage the CUDA programming model to build multi-core
acceleration designs with low count of inter-core
communication interconnect.

FPGA devices reportedly offer a significant advantage (4X-
12X) in power consumption over GPUs. J. Williams et al. [1]
showed that the computational density per Watt in FPGAs is
much higher than in GPUs. This is even true for 32-bit integer
and floating-point arithmetic (6X and 2X respectively), for
which the raw computational density of GPUs is higher.

A. Application Domains
FPGAs have been employed in the implementation of

different projects for the acceleration of compute intensive
applications. Examples range from data parallel kernels [11,
13] to entire applications such as face detection [9]. Although
they allow flexible customization of the architecture to the
application, the physical constraints of their configurable fabric
favor certain kernels over others, in terms of performance. In
particular, J. Williams [1] describes that FPGAs offer higher
computational densities for bit operations and 16-bit integer
arithmetic (up to 16X and 2.7X respectively) over GPUs but
may not compete as well in wider bidwidths, such as 32-bit
integer and single-precision floating-point operations (0.98X
and 0.34X respectively). The performance degradation at large
bitwidths comes from the utilization of extra DSP units per
operation which results in limited parallelism. Floating-point
arithmetic implementation on FPGA is inefficient for the same
reason [12]. Often, a careful decision among alternative
algorithms is necessary for optimal performance [7].

B. Programmability
Programming FPGAs often requires hardware design

expertise, as it involves interfacing with the hardware at the
RTL level. However, the advent of several academic and
commercial Electronic System Level (ESL) design tools [2-5,
22-23] for High-Level Synthesis (HLS) has raised the level of
abstraction in FPGA design. Most of these tools use high-level
languages (HLLs) as their programming interface. Some of the
earlier HLS tools [2, 3] can only extract fine grained
parallelism at the operation level by using data dependence
analysis techniques. Extraction of coarse grained parallelism is
usually much harder in traditional HLLs that are designed to
express sequential execution. To overcome this obstacle, some
HLS tools [4, 5, 22] have resorted to employing language
extensions for allowing the programmers to explicitly annotate
coarse grained parallelism in the form of parallel streams [4],
tasks [5] or object-oriented structures [22]. In a different
approach, special high-level languages that model parallelism
with streaming dataflows have been employed in HLS tools
[23]. In this work we use the popular CUDA programming
model to concisely express the coarse level parallelism of
compute intensive kernels. CUDA kernels are then efficiently
translated into AutoPilot input code with annotated coarse
grained parallelism, as discussed in the following sections.

III. DETAILS OF PROGRAMMING MODELS
A. CUDA

The CUDA programming model exposes parallelism
through a data-parallel SPMD kernel function. Each kernel
implicitly describes multiple CUDA threads that are organized
in groups called thread-blocks. Thread-blocks are further
organized into a grid structure (Fig 2). Threads within a thread-
block are executed by the streaming processors (SPs) of a
single GPU streaming multiprocessor (SM) and are allowed to
synchronize and share data through the SM shared memory. On
the other hand, synchronization of thread-blocks is not
supported. Thread-block threads are launched in SIMD bundles
called warps. Warps consisting of threads with highly diverse
control flow will result in low performance execution. Thus,

for successful GPU acceleration it is critical that threads are
organized in warps based on their control flow characteristics.

The CUDA memory model leverages separate memory
spaces with diverse characteristics. Shared memory refers to
on-chip SRAM blocks, with each block being accessible by a
single SM (Fig. 2). Global memory, on the other hand, is the
off-chip DRAM that is accessible by all SMs. Shared memory
is fast but small, whereas global memory is long-latency but
abundant. There are also two read-only off-chip memory
spaces, constant and texture, which are cached and provide
special features for kernels executed on the GPU. More details
on the CUDA memory spaces are provided in section IV.

B. AutoPilot C
AutoPilot’s programming model conforms to a subset of C

which may be annotated with pragmas that convey information
on different implementation details. Synthesis is performed at
the function level producing corresponding RTL descriptions
for each function. The RTL description of each function
corresponds to an FPGA core (Fig. 3) which consists of private
datapath and FSM-based control logic. Attached to each core’s
FSM are start and done signals that enable cross-function
synchronization (including function calls and returns).

The front-end engine of AutoPilot (based on the LLVM
compiler [18]) uses dependence analysis techniques to extract
instruction-level parallelism (ILP) within basic blocks. Coarser
parallelism, such as loop iteration parallelism, can also be
exploited by injecting AUTOPILOT UNROLL pragmas in the
code (assuming there are no loop-carried dependencies). Note
that unrolling and executing loop iterations in parallel, impacts
FPGA resource allocation proportionally to the unroll factor.
Concurrency at the function level is specified by the
AUTOPILOT PARALLEL pragma within a code region (Fig 3).
The affected functions are launched concurrently by the parent
function, which stalls executing until every child function has
returned. Thus it is possible to implement an MPMD (Multi
Program Multi Data) execution model with a configuration of
heterogeneous FPGA cores (i.e. parallel cores corresponding to
different functions). Note that AutoPilot will schedule two
functions (cores) to execute in parallel only when they cause no
hazards. A hazard arises when two functions access the same
memory block (resource hazard) or pass data from one function
to another (data hazard).

With regards to memory spaces, AutoPilot may map
variables onto local (on-chip) or external (off-chip) memories.
By default all arrays get mapped onto local BRAMs while
scalar variables are mapped on configurable fabric logic. C

pointers may also be used (with some limitations) in the input
code and combined with the AUTOPILOT INTERFACE
pragma they can infer off-chip memory accesses.

C. CUDA-to-FPGA Flow Advantages
The advantages offered by the CUDA programming model

in our FPGA design flow are multifold. First, both CUDA and
AutoPilot’s programming model are based on the C language.
CUDA extends the language with some GPU specific
constructs while AutoPilot uses a subset of C, augmented with
synthesis pragma annotations (ignored during gcc compilation).
Thus, FCUDA source-to-source compilation does not require
translation between fundamentally different languages. Second,
even though CUDA incorporates more memory spaces than
AutoPilot, they both distinguish between on-chip and off-chip
memory spaces, and leverage programmer-specified data
transfers between off- and on-chip memory storage.

Coarse-grained parallelism in CUDA is expressed in the
form of thread-blocks that execute independently on the SMs.
Moreover, the number of thread-blocks in CUDA kernels is
typically in the order of hundreds or thousands. Thus, thread-
blocks constitute an excellent candidate in terms of lack of
synchronization requirements and workload granularity for
FPGA core implementation. Mapping thread-blocks onto
parallel cores on the FPGA minimizes inter-core
communication without limiting parallelism extraction. Low
inter-core communication helps achieve higher execution
frequencies and eliminate synchronization overhead. As a final
point, CUDA provides a very concise programming model for
expressing coarse-grained parallelism through the single-thread
kernel model. AutoPilot (as most existing HLS tools), on the
other hand, employs a programming model that expresses
coarse grained parallelism explicitly in the form of multiple
function calls annotated with appropriate pragmas (Fig. 3).
FCUDA automates the extraction of the inferred parallelism in
CUDA code into explicit parallelism in AutoPilot input code
while handling data partitioning and FPGA core
synchronization. Thus, it eliminates the tedious and error-prone
task of directly expressing the coarse grained parallelism in C
for AutoPilot. Our FPGA design flow allows the programmer
to describe the parallelism in a more compact and efficient way
through the CUDA programming model regardless of the
implemented number of FPGA cores.

IV. FCUDA: CUDA-TO-FPGA FLOW
Our CUDA-to-FPGA flow (Fig. 1) is based on a code

transformation process, FCUDA (currently targeting the
AutoPilot HLS tool), which is guided by preprocessor

Fig. 2. CUDA Programming Model

Fig. 3. AutoPilot C Programming Model

directives (FCUDA pragmas) inserted by the FPGA
programmer into the CUDA kernel. These directives control
the FCUDA translation of the expressed parallelism in CUDA
code into explicitly-expressed coarse-grained parallelism in the
generated AutoPilot code. The FCUDA pragmas describe
various FPGA implementation dimensions which include the
number, type and granularity of tasks, the type of task
synchronization and scheduling, and the data storage within on-
and off-chip memories. AutoPilot subsequently maps the
FCUDA specified tasks onto concurrent cores and generates
the corresponding RTL description. Moreover, AutoPilot uses
LLVM’s [18] dependence analysis techniques and its own
SDC-based scheduling engine [5] to extract fine grained
instruction-level parallelism within each task. Finally Xilinx
FPGA synthesis tools are leveraged to map the generated RTL
onto reconfigurable fabric. We demonstrate that the FPGA
accelerators generated by our FPGA design flow can efficiently
exploit the computational resources of top-tier FPGAs in a
customized fashion and provide better performance compared
to the GPU implementation for a range of applications.

A. FCUDA Philosophy
Concurrency in CUDA is inferred through a single-thread

kernel with built-in variables that are used to distinguish the
tasks of each thread. Application parallelism is expressed in the
form of fine-granularity threads that are further bunched into
coarse-granularity thread-blocks (Fig. 2). Even though thread-
level parallelism can improve performance, thread-blocks offer
higher potential for an efficient multi-core implementation on
FPGA. As discussed previously, CUDA thread-blocks
comprise autonomous tasks that operate on independent data
sets and do not need synchronization. Conversely, CUDA
threads within a thread-block usually reference shared data
which often results in synchronization overhead and/or shared
memory access conflicts.

Parallelism in C code for FPGA synthesis by AutoPilot is
explicitly expressed through parallel function calls (Fig. 3). A
single callee function with a different set of arguments in each
call may be used to infer a homogeneous multi-core
configuration similar to the GPU organization, whereas
different callee functions may model a heterogeneous multi-
core configuration on FPGA. Therefore, the core task of the
FCUDA source-to-source translation can be simply described
as converting thread-blocks into C functions and invoking
parallel calls of the generated functions with appropriate
argument sets. Having extracted the coarse-granularity
parallelism at the thread-block level, fine-granularity
parallelism at the thread level may also be extracted, provided
that non-allocated resources exist on the FPGA. This disparity
in the thread parallelism extraction scheme between GPU and
FCUDA may lead to different combinations of concurrently
executing threads in the two devices. Nevertheless, the degree
of parallelism will not differ in typical CUDA kernels that
comprise hundreds of threads per thread-block and thousands
thread-blocks per grid.

Another important feature of the FCUDA philosophy
consists of decoupling off-chip data transfers from the rest of
the thread-block operations. The main goal is to prevent long
latency references from impacting the efficiency of the multi-
core execution. This is particularly important in the absence of
GPU-like fine-grained multi-threading support in FPGAs.

Moreover, by aggregating all of the off-chip accesses into
DMA burst transfers from/to on-chip BRAMs, the off-chip
memory bandwidth can be utilized more efficiently.

FCUDA also leverages synchronization of data transfer and
computation tasks based on the FCUDA annotation injected by
the FPGA programmer. The selection of the synchronization
scheme often incurs a tradeoff between performance and
resource requirements. The FPGA programmer needs to
consider the characteristics of the accelerated kernel in order to
make an educated decision. A simple and resource efficient
scheme is the simple DMA synchronization (Fig. 4a) which
serializes data communication and computation tasks. This
scheme is memory overhead free and it can also be a good fit
for kernels that are compute intensive and incur low data
communication traffic. At the opposite end, the ping-pong
synchronization scheme overlaps data communication with
computation by doubling the number of BRAM blocks (Fig.
4b). The interconnection logic interchangeably connects each
BRAM block to the compute logic and the DMA controller,
ensuring that each BRAM block is actively connected to only
one of the two modules in each cycle. However, this scheme
may result in BRAM utilization overhead, impacting the
number of cores that can be instantiated on the FPGA.

B. FCUDA Pragma Directives
Fig. 5a depicts the FCUDA pragma annotation of the

coulombic potential (CP) kernel. The kernel function is
wrapped within GRID pragmas that define the sub-array of
thread-blocks that can be computed by the available FPGA
cores within one iteration (in Fig. 5a two thread-blocks with
sequential x coordinates and same y coordinates). The BLOCK
pragma determines the sub-grid of all thread-blocks that this
kernel is assigned to compute. By splitting the original CUDA
grid of thread-blocks into sub-grids, FPGA cores can be split
into clusters with each cluster being assigned a sub-grid of
thread-blocks. This can help further eliminate long wire
interconnections between compute and synchronization cores
and could enable asynchronous operation of different clusters.
The SYNC pragma sets the type of synchronization scheme
(currently a choice between simple or pingpong) to be
implemented by the cluster synchronization core. COMPUTE
and TRANSFER pragmas are used to wrap the computation and
the data communication tasks of the kernel, respectively. In
Fig. 5a, two TRANSFER sections are used: one for fetching
off-chip data into the atominfo array and one for storing results
to the energygrid off-chip storage. The following section
describes how FCUDA leverages the translation of the CUDA
code into properly crafted C code for AutoPilot. FCUDA
compilation is based on the Cetus source-to-source compiler
framework [19] and it consists of two major stages.

Interconnect
Logic

Interconnect
Logic

BRAM
Block

DMA
Controller

Compute
Logic

BRAM
Block A

DMA
Controller

Compute
Logic

BRAM
Block B

a) Simple Scheme b) Ping-pong Scheme

Active connection

Idle connection

Fig. 4. Scheduling Schemes

C. FCUDA Front-End Transformation
The front-end engine of FCUDA aims to transform the

single-thread kernel into semantically equivalent C code which
explicitly expresses the execution of all the kernel threads in a
serialized fashion. This is achieved by converting the CUDA
built-in variables that hold the thread (and thread-block) IDs
into regular C variables which are used as induction variables
in thread-loops (and block-loops). Fig. 6, illustrates the
transformation of the CUDA kernel threads into thread-loops
by the FCUDA front-end engine (Serialization of thread-
blocks, though not depicted for space and clarity reasons, also
takes place during this FCUDA phase).

As shown in Fig. 6, synchronization directives within the
CUDA kernel need to be considered during the front-end
transformation phase of FCUDA in order to maintain the
ordering semantics of thread execution within the serialized
thread-blocks. Synchronization points are indicated by CUDA
sync directives, FCUDA COMPUTE and TRANSFER pragmas
and irregular control flow statements (i.e. break, continue and
return). A loop-fission technique proposed in [10] is used to
break the initially generated kernel-wide thread-loop into
localized thread-loops which do not cross any of the
synchronization directives encountered in the code. Fig. 6
depicts the result of loop fission in a kernel with a single
synchronization point. The initial kernel thread loop is split into
two thread-loops: the first thread-loop implements the thread
operations preceding the sync point, while the second thread-

loop implements the thread operations following the sync
point. This way serialized execution of threads maintains the
thread-block synchronization semantics. FCUDA extends the
MCUDA [10] implementation of loop-fission by adding
COMPUTE and TRANSFER pragmas to the list of
synchronization directives. COMPUTE and TRANSFER
pragmas are used by the FPGA programmer to annotate
computation and off-chip data communication tasks. Thus,
synchronization of threads between tasks is required.
Synchronization primitives can be removed after loop-fission,
except for FCUDA pragmas which carry implementation
information used by the back-end engine of FCUDA.

Thread serialization creates the opportunity for variable
sharing among threads. However, there are cases in which each
thread must have its private copy of a kernel variable. This
happens usually for variables that are accessed across
synchronization points (e.g. energyval in Fig. 5a). Scalar
variable expansion [10] is applied for such variables in order to
create thread-private copies of the variable. Fig. 7 depicts how
the computation task of CP (Fig. 5a) is transformed after the
front-end processing of FCUDA. Loop-fission forms a thread-
loop within COMPUTE pragmas whereas selective scalar
expansion results in vectorization of energyval which is
referenced across thread loops.

D. FCUDA Back-End Transformation
The back-end engine of FCUDA leverages the

implementation information annotated in the FCUDA pragma

compute
task

write
tas

k

Fig. 5. Coulombic Potential (CP) kernel transformation through FCUDA

#pragma FCUDA COMPUTE cores=2 begin name="cp_block"
 int energyval[];
 for(tIdx.y=0;tIdx.y<blockDim;tIdx.y++) // thread loop
 for(tIdx.x=0;tIdx.x<blockDim;tIdx.x++) {
 . . .
 energyval[tIdx]=0.0f;
 /* For each atom, compute and accumulate its contribution to energyval for this thread's grid point */
 for (atomid=0; atomid<numatoms; atomid++) {
 . . .
 energyval[tIdx] += atominfo[atomid].w * r_1;
 }
 }
#pragma FCUDA COMPUTE end name="cp_block"

Fig. 7. FCUDA front-end processed CP compute task Fig. 6. Extracting the CUDA coarse-grained parallelism in FCUDA

directives to guide the translation of the kernel coarse grained
parallelism into the function-level type of parallelism supported
by AutoPilot (Fig. 6). Tasks annotated through FCUDA
COMPUTE and TRANSFER pragmas are transformed into
newly generated task functions which are called from the
original kernel function, referred hereafter as parent function.
Multiple calls of the task functions wrapped within
AUTOPILOT REGION and PARALLEL directives in the parent
function (Fig. 5b) drive the synthesis tool to instantiate parallel
processing cores on the configurable fabric. The degree of
parallelism is specified by the parameter information included
in the COMPUTE and TRANSFER pragmas (Fig. 5a) and it is
used to adjust the stride length of the block-loop in the parent
function (Fig. 5b). One of the critical tasks of this
transformation is the facilitation of data communication
between the different task functions and the parent function.
Variable analysis is performed to determine which variables are
private to the task and which ones need to be communicated
to/from the task function. Communication of both scalar and
array variables is implemented through the task function
parameters. Apart from the type and number of cores, the
FPGA programmer can also extract thread parallelism
(provided available resources exist) by injecting AUTOPILOT
UNROLL and PIPELINE pragmas within the FCUDA
COMPUTE annotated tasks, to specify thread-loop unrolling
and pipelining, respectively.

As discussed previously, FCUDA TRANSFER pragmas are
used to annotate data communication tasks to off-chip
addresses. According to the FCUDA philosophy, off-chip data
communication usually infers DMA burst transfers of data
between off-chip memory storage and on-chip BRAM arrays.
The FCUDA back-end engine is also responsible for
instantiating array variables which will infer BRAM block
allocation during synthesis by AutoPilot. BRAM associated
arrays are instantiated at the parent function and their number is
determined by the degree of parallelism annotated in the
compute tasks that reference them (Fig. 5b). BRAM associated
arrays may be passed as arguments to compute and transfer
functions similarly to the rest of the variables. A challenging
task of the BRAM array instantiation is the determination of
their dimensions. There are two ways that this is accomplished:
i) through variable access analysis and consideration of the
containing thread-loop induction variable range space (“write”
TRANSFER in Fig. 5a) ii) through FCUDA DATA parameter
information (“fetch” TRANSFER in Fig. 5a). More details on
the leveraging of different CUDA memory spaces within
FCUDA are discussed in the following section.

Finally, synchronization of the FCUDA annotated tasks is
performed by the back-end engine according to the FCUDA
SYNC parameter information (Fig. 5a). In the current
implementation the available SYNC options are simple and
pingpong. The former corresponds to the simple-DMA scheme
and does not require any further code massaging before feeding
it to AutoPilot. It essentially results in the serialization of all
the COMPUTE and TRANSFER tasks of the kernel. The
pingpong option selects the ping-pong DMA scheme in which
two copies of each local array are declared, doubling the
amount of inferred BRAM blocks on the FPGA. Moreover, the
parent function is altered based on a double-buffering coding
template. Fig. 8 displays how the CP parent function is

transformed for a ping-pong synchronization scheme. An if-
else structure is used to implement the switching of the
accessed BRAM block in each iteration of the block-loop.

E. CUDA Memory Spaces
The different memory spaces leveraged in the CUDA

programming model have to ultimately be mapped onto local
BRAM memories, as described in the previous sections. The
most simple memory space to handle is shared memory due to
its common semantics with BRAM memories. Both of them
refer to local memory blocks that are private to threads within a
thread-block. Thus direct mapping of shared memory arrays
into BRAM memory is feasible. A distinguishing characteristic
of shared memory is its 16-bank organization which allows 16
concurrent accesses by equal threads. BRAM memories, on the
other hand, only support dual access concurrency. However,
the serialization of block threads in the FCUDA flow
eliminates the potential latency overhead of increased BRAM
access conflicts in kernels that are engineered to take advantage
of the multi-bank organization of shared memory. Besides,
FPGA configurability offers the flexibility of organizing
BRAM blocks in a multi-bank scheme if necessary (though this
is not supported by our current implementation). Moreover, the
BRAM block size customizability enables flexible tuning of
kernels without the constraining restrictions imposed by the
small size of shared memory on GPUs.

The constant memory space is shared by all the thread-
blocks running on the GPU, but it is read-only and it is used for
references that exhibit locality, since it is cached. These
attributes make it a good match for the different DMA bursts
schemes described earlier. A portion of the off-chip DRAM
will serve as constant memory and the BRAMs will be used as
read-only buffers that will be filled with the corresponding
block of data before the thread-block execution. It may be
possible to share BRAM blocks that contain constant memory
data among a few compute cores on the FPGA, to reduce
BRAM resource requirements per core, if it does not severely
impact execution frequency.

Global memory corresponds to the off-chip memory of the
GPU which is globally accessible at a high latency, but with

void cenergy(int numatoms, int gridspacing, int * energygrid,
 dim3 blockDim, dim3 gridDim) {
 . . .
 int c11_atominfo[],c12_atominfo[],c21_atominfo[], c22_atominfo[];
 int c11_energyval[],c12_energyval[],c21_energyval[], c22_energyval[];
 int pingpong=0;
 for(bIdx.y=0;bIdx.y<blockDim;bIdx.y++) // block loop

 for(bIdx.x=0;bIdx.x<blockDim;bIdx.x+=2) {
 if(!pingpong) {

#pragma AUTOPILOT REGION begin name="R1"
#pragma AUTOPILOT PARALLEL
 fetch(bIdx, blockDim, atominfo, c11_atominfo[], c21_atominfo[]) ;
 cp_block(blockIdx, blockDim, c12_energyval[], c12_atominfo[]) ;
 cp_block(blockIdx+1, blockDim, c22_energyval[], c22_atominfo[]) ;
 write (blockIdx, blockDim, c11_energyval[],c21_energyval[], energygrid);
 pingpong = 1;
#pragma AUTOPILOT REGION end name="R1"

 } else {
#pragma AUTOPILOT REGION begin name="R2"
#pragma AUTOPILOT PARALLEL
 fetch(bIdx, blockDim, atominfo, c12_atominfo[], c22_atominfo[]) ;
 cp_block(blockIdx, blockDim, c11_energyval[], c11_atominfo[]) ;
 cp_block(blockIdx+1, blockDim, c21_energyval[], c21_atominfo[]) ;
 write (blockIdx, blockDim, c12_energyval[],c22_energyval[], energygrid);
 pingpong = 0;
#pragma AUTOPILOT REGION end name="R2"
} }

Fig. 8. CP kernel function with ping-pong scheduling

high bandwidth. Taking advantage of the high bandwidth
requires access coalescing, which infers spatial locality among
threads. Thus, data in global memory space can potentially be
handled similarly with constant memory, by pre-fetching
blocks of off-chip memory data through DMA bursts onto local
BRAMS. The data block address range may be explicitly
specified in the code in the case of global to shared-memory
transfers, or it may be necessary to specify it through insertion
of FCUDA DATA pragma directives (Fig. 5a).

Finally, textured memory is a cached read-only memory
with the addition of filtering and special addressing
capabilities. It could potentially be handled similarly to
constant memory but it is not supported currently by our
CUDA-to-FPGA flow.

V. EXPERIMENTAL RESULTS
As mentioned earlier, the CUDA programming model fits

well in our FPGA design flow and offers the advantage of
high-abstraction. Nevertheless achieving optimal performance
requires some knob tuning from the programmer as well. One
of the critical issues in achieving good application acceleration
is the memory organization and the data access patterns to/from
memory. The next subsection discusses the impact on memory
from different implementation options. Subsequently we
evaluate our FPGA programming flow by comparing the
performance of CUDA kernels when executed on the GPU and
FPGA (using FCUDA) platforms.

A. Memory Design Decisions
Table 1 lists BRAM experimental results from different

multi-core implementations of the matrix-multiplication
(matmul) kernel on the Xilinx FPGA. The first column lists the
BRAM size, dimensions and element type (4, 2 or 1byte).
Although Block RAMs can be flexibly combined into different
size configurations and accessed through independent ports
they have to obey the granularity of their architecture: 18Kbits
for Xilinx devices. Thus, using them to store arrays of arbitrary
sizes may result in waste of local memory space (column 2 in
Table I) as the remaining space can not be used by other
variables. This can be detrimental to parallelism extraction.
Moreover, small sparsely populated BRAM blocks may affect
the off-chip data transfers bandwidth.

TABLE I. BRAM DESIGN CHARACTERISTICS

BRAM (depth x bytes)
elem type

BRAM
waste

Burst
Bandwidth

Total Bandwidth
(#cores)

8Kb (16x64)
4-byte elem 55.5% 91.55MB/s 3.5GB/s

(128)
4Kb (16x32)
2-byte elem 58.3% 52.45 MB/s 3.07GB/s

(172)
4Kb (16x16)
1-byte elem. 59.7% 28.61MB/s 1.54GB/s

(172)
16Kb (32x64)
2-byte elem. 11.1% 80.1MB/s 1.6GB/s

(172)
8Kb (32x32)
1-byte elem. 55.5% 42.9MB/s 0.8GB/s

(172)

The third column of Table I displays the achievable

bandwidth with regards to the BRAM dimensions and the
access type. Since BRAMs are often used for storing tiles of
larger arrays (like in matmul) bursts are done in BRAM row
granularity. The bandwidth of DMA bursts is therefore affected

by the horizontal dimension of the BRAM memories (e.g row 3
vs row 5). The DMA burst efficiency depends also on the type
of the array elements. Smaller elements may result in low bus
utilization and more BRAM accesses. Both of these
implementation details can impact the burst speed. Finally, the
size of BRAM blocks affects the amount of computation
involved in between DMA transfers and consequently the
required off-chip bandwidth in a ping-pong synchronization
scheme, where full overlap of data communication and
computation is desired (4th column of Table I). For example, a
configuration of 172 cores with 8Kbit arrays per core (row 6 in
Table I) requires almost half the off-chip bandwidth compared
to a similar configuration that only allocates 4Kbits of BRAM
to each core (row4). This is due to the fact that in matrix
multiplication the amount of computing is quadrupled for every
doubling of the array data size. Thus, the window of time for
transferring two times the data is increased by four, cutting the
required bandwidth by half.

B. FPGA – GPU Comparison
For the evaluation of our FPGA design flow we targeted

Xilinx Virtex5 FPGA devices. Virtex5 FPGAs are fabricated in
65nm CMOS technology and can be clocked at frequencies of
up to 550MHz. These features render them good candidates for
making meaningful comparisons with most of the currently
used GPU devices. Moreover, the Virtex5 family includes
some of the biggest and most advanced FPGAs available today
that have the capacity to efficiently host high-concurrency
multi-core accelerators. For our comparison experiments we
chose the XC5VFX200T Virtex5 device, which has more than
100K LUTs, 16Mbits of on-chip BlockRAM memory and 384
DSP units. The GPU device used for the comparisons was
Nvidia’s G80 (90nm fabrication technology) with 16 SM units
and 128 cores [14].

TABLE II. CUDA KERNELS

Kernel Configuration Description

Matrix Multiply
(matmul) 1024x1024

Common kernel in many
imaging, simulation, and

scientific application

Coulombic Potential
(cp)

4000 atoms,
512x512 grid

Computation of electric
potential in a volume

containing charged atoms
RSA Encryption

(rc5-72) 4 Billion Keys Brute force encryption key
generation and matching

The CUDA kernels we used in these experiments are

described in Table II. Two of them (matmul and cp) were
based on GPU-optimized versions that were tailored into
different integer bitwidth versions. The third kernel was
implemented without any device-specific optimizations. In
these experiments we focused on integer performance. Fig. 9
compares the FPGA and GPU performance for all versions of
the 3 kernels. The rc5-72 kernel is intrinsically based on
modulo-shift operations within 32-bit integers, and thus it was
not transformed into smaller integer bitwidth implementation.
The FPGA performance results are based on the assumption
that the off-chip transfers are implemented by means of a high-
bandwidth bus, such as the FSB (8.5GB/s) [19]. The
computation task latencies are measured on the FPGA. Ping-
pong synchronization is used between compute and data
communication tasks and the latency of a single invocation is

measured for all kernels. The GPU latencies do not include the
data communication from/to the CPU.

Table III lists the implementation details of the multi-core
accelerators for all the benchmark versions. The implemented
number of cores and the required off-chip memory bandwidth
are shown in columns 2 and 3 respectively. Column 4 lists the
resource type that constrained the number of implemented
cores.

TABLE III. KERNEL IMPLEMENTATION CHARACTERISTICS

As can be seen, the generated multi-core accelerators can

outperform the GPU, especially in the case of smaller
bitwidths, where application specific customization can adapt
the datapath of the cores and use the freed resources for
instantiating more cores. Moreover, the narrower datapaths
allow faster operation execution. For example the FSMs of the
16bit matmul has fewer states and also uses less DSP resources
than the 32-bit one. In the case of 32bit CP, the compute
intensive nature of the kernel results in high DSP utilization per
core and low number of cores.

As mentioned above, the number of implemented cores was
determined by the resource (LUTs, BRAMs and DSPs) that
was most restrictive. However, in the case that BRAM or DSP
blocks are the limiting resource it may be possible to extract
more parallelism without increasing the number of cores. For
example, in the case of 16bit and 8bit matmul kernels where
BRAM constrains the number of cores, a 2X performance
increase was achieved by exploiting thread-level parallelism
within threadblocks. This is enabled by using AUTOPILOT
UNROLL pragmas in the generated thread-loops.

VI. CONCLUSIONS
In this paper, we present a new FPGA design flow that

takes annotated CUDA code as input and generates C code for
AutoPilot with task level parallelism that is synthesized into
customized multi-core accelerators on FPGA. We demonstrate
that the user can indeed use a single starting point for an
efficient acceleration, irrespective of whether the target
platform is GPU or FPGA. CUDA allows the user to express

application parallelism which our compiler can transform into
explicitly parallel C suitable for advanced High Level
Synthesis (HLS) tools such as AutoPilot. To our knowledge,
this is the first such flow from CUDA to C code that leverages
the potential of HLS tools for efficient FPGA design with high-
abstraction. Initial results are very promising – even with
limited optimization in our translation process, we have
observed competitive speedup for 32-bit versions of the kernel
and superior speedups for smaller bitwidth versions of the
kernel. We expect to see even better performance from the
FPGA accelerators as we optimize the FCUDA flow to make
more efficient use of the memory resources and to better
exploit the benefits that reconfigurable devices provide such as
custom data paths, bitwidth optimized functional units,
pipelining and multi-rate designs, when compared to GPUs.
Future work also includes extending the interaction between
compiler and synthesis techniques involved in FCUDA to new
domain-independent parallel programming models, such as
OpenCL.

REFERENCES
[1] J. Williams et. al. “Computational density of fixed and reconfigurable

multi-core devices for application acceleration”, RSSI, 2008.
[2] D. Gajski, “NISC: The Ultimate Reconfigurable Component”, Center for

Embedded Computer Systems, UCI, TR 03-28, 2003.
[3] D. Chen et. al. “xPilot: A Platform-Based Behavioral Synthesis System”.

SRC TechCon'05, 2005.
[4] http://www.impulsec.com/
[5] Z. Zhang et al. “AutoPilot: A Platform-Based ESL Synthesis System”,

High-Level Synthesis, Springer Netherlands, 2008, www.autoesl.com.
[6] L. Ling et al. “High-performance, energy-efficient platforms using in-

socket FPGA accelerators”, Int. Symposium on FPGAs, 2009
[7] D. Thomas, L. Howes, and W. Luk, “A comparison of CPUs, GPUs,

FPGAs, and massively parallel processor arrays for random number
generation”, Int. Symposium on FPGAs, 2009.

[8] XtremeData Inc., http://www.xtremedata.com
[9] J. Cho, S. Mirzaei, J. Oberg and R. Kastner, “FPGA-based face detection

system using haar classifiers”, Int. Symposium on FPGAs, 2009.
[10] J. Stratton et. al. “MCUDA: An Efficient Implementation of CUDA

Kernels for Multi-Core CPUs”. Int. Workshop on Languages and
Compilers for Parallel Computing, 2008.

[11] S. Che, J. Li, J. Sheaffer, K. Skadron, and J. Lach, "Accelerating
Compute-Intensive Applications with GPUs and FPGAs," Symposium
on Application Specific Processors, 2008.

[12] M. Beauchamp, S. Hauck, K. Underwood, and K. Hemmert, “Embedded
floating-point units in FPGAs,” Int. Symposium on FPGAs, 2006.

[13] J. Cong and Y. Zou, "Lithographic Aerial Image Simulation with FPGA-
Based Hardware Acceleration", Int. Symposium on FPGAs, 2008.

[14] http://www.nvidia.com/page/geforce_8800.html
[15] EJ Kelmelis, J. Durbano, J. Humphrey, F. Ortiz, “Modeling and

simulation of nanoscale devices with a desktop supercomputer,“ Int.
Society for Optical Engineering, 2006.

[16] Xilinx Inc., http://www.xilinx.com
[17] Altera Inc., http://www.altera.com
[18] LLVM compiler, http://www.llvm.org
[19] S. Lee, T. Johnson, and R. Eigenmann. “Cetus - An extensible compiler

infrastructure for source-to-source transformation,” Languages and
Compilers for Parallel Computing, 2003.

[20] M. Showerman, W.W. Hwu, J. Enos, A. Pant, V. Kindratenko, C.
Steffen, R. Pennington, “QP: A Heterogeneous Multi-Accelerator
Cluster,” Int. Conf. on High-Performance Cluster Computing, 2009.

[21] IBM Cell Processor, http://www.research.ibm.com/cell/
[22] S. Huang, A. Hormati, D. F. Bacon, and R. M. Rabbah, “Liquid Metal:

Object-Oriented Programming Across the Hardware/Software
Boundary”, ECOOP, 2008.

[23] A. Hormati, M. Kudlur, S. A. Mahlke, D. F. Bacon, and R. M. Rabbah,
“Optimus: efficient realization of streaming applications on FPGAs”,
CASES, 2008.

Benchmark Core # DRAM
Bandwidth

Limiting
Resource

matmul 32bit 128 3,5GB/s DSP
matmul 16bit 172 1.6GB/s BRAM
matmul 8bit 172 0.8GB/s BRAM
cp 32bit 25 0.128GB/s DSP
cp 16bit 96 0.19GB/sec DSP
cp 8bit 96 0.1GB/sec DSP
rc5-72 32bit 80 ≈ 0GB/sec LUT

0

0.5

1

1.5

2

2.5

32bit 16bit 8bit 32bit 16bit 8bit 32bit

matmul cp rc5-72

sp
ee

du
p

GPU
FPGA

Fig. 9. GPU – FPGA Performance comparison

