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Abstract— As growing power dissipation and thermal effects 
disrupted the rising clock frequency trend and threatened to 
annul Moore’s law, the computing industry has switched its route 
to higher performance through parallel processing. The rise of 
multi-core systems in all domains of computing has opened the 
door to heterogeneous multi-processors, where processors of 
different compute characteristics can be combined to effectively 
boost the performance per watt of different application kernels. 
GPUs and FPGAs are becoming very popular in PC-based 
heterogeneous systems for speeding up compute intensive kernels 
of scientific, imaging and simulation applications. GPUs can 
execute hundreds of concurrent threads, while FPGAs provide 
customized concurrency for highly parallel kernels. However, 
exploiting the parallelism available in these applications is 
currently not a push-button task. Often the programmer has to 
expose the application’s fine and coarse grained parallelism by 
using special APIs. CUDA is such a parallel-computing API that 
is driven by the GPU industry and is gaining significant 
popularity. In this work, we adapt the CUDA programming 
model into a new FPGA design flow called FCUDA, which 
efficiently maps the coarse and fine grained parallelism exposed 
in CUDA onto the reconfigurable fabric. Our CUDA-to-FPGA 
flow employs AutoPilot, an advanced high-level synthesis tool 
which enables high-abstraction FPGA programming. FCUDA is 
based on a source-to-source compilation that transforms the 
SPMD CUDA thread blocks into parallel C code for AutoPilot. 
We describe the details of our CUDA-to-FPGA flow and 
demonstrate the highly competitive performance of the resulting 
customized FPGA multi-core accelerators. To the best of our 
knowledge, this is the first CUDA-to-FPGA flow to demonstrate 
the applicability and potential advantage of using the CUDA 
programming model for high-performance computing in FPGAs. 

I. INTRODUCTION 
Even though parallel processing has been a major 

contributor to application speedups achieved by the high 
performance computing community, its adoption in mainstream 
computing domains has lagged due to the relative simplicity of 
enhancing application speed through frequency scaling and 
transistor shrinking. However, the power wall encountered by 
traditional single-core processors has forced a global industry 
shift to the multi-core paradigm. As a consequence of the 
rapidly growing interest for parallelism in a wider and coarser 
level than feasible in traditional processors, the potential of 
GPUs and FPGAs has been realized. GPUs consist of hundreds 
of processing cores clustered within streaming multiprocessors 
(SMs) that can handle intensive compute loads with high-
degree of data-level parallelism. FPGAs on the other hand, 

offer efficient application-specific parallelism extraction 
through the flexibility of their reconfigurable fabric. Besides, 
heterogeneity in high performance computing (HPC) has been 
gaining great momentum as can be inferred by the proliferation 
of heterogeneous multiprocessors ranging from Multi-
Processor Systems on Chip (MPSoC) like the IBM Cell [21], to 
HPC clusters with GPU/FPGA accelerated nodes such as the 
NCSA AC Cluster [20]. The diverse characteristics of these 
compute cores/platforms render them optimal for different 
types of application kernels. Currently, the performance and 
power advantages of the heterogeneous multi-processors are 
offset by the difficulty involved in their programming. 
Moreover, the use of different parallel programming models in 
these heterogeneous compute systems often complicates the 
development process. In the case of kernel acceleration on 
FPGAs, the programming effort is further inflated by the need 
to interface with hardware at the RTL level.  

A significant milestone towards the use of the massively 
parallel computing power of GPUs in non-graphics 
applications has been the release of CUDA by NVIDIA. 
CUDA enables general purpose computing on the GPU 
(GPGPU) through a C-like API which is gaining considerable 
popularity. In this work we explore the use of CUDA as the 
programming interface for a new FPGA programming flow 
(Fig. 1), which is designed to efficiently map the coarse and 
fine grained parallelism expressed in CUDA kernels onto the 
reconfigurable fabric. Our CUDA-to-FPGA flow employs the 
state of the art high-level synthesis tool, AutoPilot [5], which 
enables high-abstraction FPGA programming. The flow is 
enabled by a source-to-source compilation phase, FCUDA, 
which transforms the SPMD (Single-Program-Multiple-Data) 
CUDA code into C code for AutoPilot with annotated coarse-
grained parallelism. AutoPilot maps the annotated parallelism 
onto parallel cores ("core" in this context is an application-
specific processing engine) and generates a corresponding RTL 
description which is subsequently synthesized and downloaded 
onto the FPGA.  

The selection of CUDA as the programming interface for 
our FPGA programming flow offers three main advantages. 
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Fig. 1.  CUDA-to-FPGA Flow 
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First, it provides a high-level API for expressing coarse grained 
parallelism in a concise fashion within application kernels that 
are going to be executed on a massively parallel acceleration 
device. Even though CUDA is driven by the GPU computing 
domain, we show that CUDA kernels can indeed be translated 
with FCUDA into efficient, customized multi-core compute 
engines on the FPGA. Second, it bridges the programmability 
gap between homogeneous and heterogeneous platforms by 
providing a common programming model for clusters with 
nodes that include GPUs and FPGAs. This simplifies 
application development and enables efficient evaluation of 
alternative kernel mappings onto the heterogeneous 
acceleration devices without time-consuming kernel code re-
writing. Third, the wide adoption of the CUDA programming 
model and its popularity render a large body of existing 
applications available to FPGA acceleration.  

In the next section we discuss important characteristics of 
the FPGA and GPU platforms along with previous related 
work. Section III explains the characteristics of the CUDA and 
AutoPilot programming models and provides insight to the 
suitability of the CUDA API for programming FPGAs. The 
FCUDA translation details are presented in section IV, while 
section V displays experimental results and shows that our 
high-level synthesis based flow can efficiently exploit the 
computational resources of top-tier FPGAs in a customized 
fashion. Finally, section VI concludes the paper and discusses 
future work. 

II. THE FPGA PLATFORM 
With increasing transistor densities, the computational 

capabilities of commercial FPGAs provided by Xilinx [16] and 
Altera [17] have greatly increased. Modern FPGAs are 
technologically in sync with the rest of the IC industry by 
employing the latest manufacturing process technologies and 
supporting high-bandwidth IO interfaces such as PCIe, Intel’s 
FSB [6] and AMD’s HyperTransport [8]. By embedding fast 
DSP macros, memory blocks and 32-bit microprocessor cores 
into the reconfigurable fabric, a complete SoC platform is 
available for applications which require high-throughput 
computation at a low power footprint.  

The flexibility of the reconfigurable fabric provides a 
versatile platform for leveraging different types of application-
specific parallelism: i) coarse- and fine-grained, ii) data- and 
task-level and iii) different pipelined configurations. Re-
configurability, though, has an impact in the clock frequency 
achievable on the FPGA platform. Synthesis-generated wire-
based communication between parallel modules may limit the 
throughput of designs with wider parallelism compared to 
smaller but faster clocked architectures. In our flow we 
leverage the CUDA programming model to build multi-core 
acceleration designs with low count of inter-core 
communication interconnect.  

FPGA devices reportedly offer a significant advantage (4X-
12X) in power consumption over GPUs. J. Williams et al. [1] 
showed that the computational density per Watt in FPGAs is 
much higher than in GPUs. This is even true for 32-bit integer 
and floating-point arithmetic (6X and 2X respectively), for 
which the raw computational density of GPUs is higher. 

A. Application Domains 
FPGAs have been employed in the implementation of 

different projects for the acceleration of compute intensive 
applications. Examples range from data parallel kernels [11, 
13] to entire applications such as face detection [9]. Although 
they allow flexible customization of the architecture to the 
application, the physical constraints of their configurable fabric 
favor certain kernels over others, in terms of performance. In 
particular, J. Williams [1] describes that FPGAs offer higher 
computational densities for bit operations and 16-bit integer 
arithmetic (up to 16X and 2.7X respectively) over GPUs but 
may not compete as well in wider bidwidths, such as 32-bit 
integer and single-precision floating-point operations (0.98X 
and 0.34X respectively). The performance degradation at large 
bitwidths comes from the utilization of extra DSP units per 
operation which results in limited parallelism. Floating-point 
arithmetic implementation on FPGA is inefficient for the same 
reason [12]. Often, a careful decision among alternative 
algorithms is necessary for optimal performance [7].  

B. Programmability 
Programming FPGAs often requires hardware design 

expertise, as it involves interfacing with the hardware at the 
RTL level. However, the advent of several academic and 
commercial Electronic System Level (ESL) design tools [2-5, 
22-23] for High-Level Synthesis (HLS) has raised the level of 
abstraction in FPGA design. Most of these tools use high-level 
languages (HLLs) as their programming interface. Some of the 
earlier HLS tools [2, 3] can only extract fine grained 
parallelism at the operation level by using data dependence 
analysis techniques. Extraction of coarse grained parallelism is 
usually much harder in traditional HLLs that are designed to 
express sequential execution. To overcome this obstacle, some 
HLS tools [4, 5, 22] have resorted to employing language 
extensions for allowing the programmers to explicitly annotate 
coarse grained parallelism in the form of parallel streams [4], 
tasks [5] or object-oriented structures [22]. In a different 
approach, special high-level languages that model parallelism 
with streaming dataflows have been employed in HLS tools 
[23]. In this work we use the popular CUDA programming 
model to concisely express the coarse level parallelism of 
compute intensive kernels. CUDA kernels are then efficiently 
translated into AutoPilot input code with annotated coarse 
grained parallelism, as discussed in the following sections. 

III. DETAILS OF PROGRAMMING MODELS 
A. CUDA 

The CUDA programming model exposes parallelism 
through a data-parallel SPMD kernel function. Each kernel 
implicitly describes multiple CUDA threads that are organized 
in groups called thread-blocks. Thread-blocks are further 
organized into a grid structure (Fig 2). Threads within a thread-
block are executed by the streaming processors (SPs) of a 
single GPU streaming multiprocessor (SM) and are allowed to 
synchronize and share data through the SM shared memory. On 
the other hand, synchronization of thread-blocks is not 
supported. Thread-block threads are launched in SIMD bundles 
called warps. Warps consisting of threads with highly diverse 
control flow will result in low performance execution. Thus, 



for successful GPU acceleration it is critical that threads are 
organized in warps based on their control flow characteristics.  

The CUDA memory model leverages separate memory 
spaces with diverse characteristics. Shared memory refers to 
on-chip SRAM blocks, with each block being accessible by a 
single SM (Fig. 2). Global memory, on the other hand, is the 
off-chip DRAM that is accessible by all SMs. Shared memory 
is fast but small, whereas global memory is long-latency but 
abundant. There are also two read-only off-chip memory 
spaces, constant and texture, which are cached and provide 
special features for kernels executed on the GPU. More details 
on the CUDA memory spaces are provided in section IV.  

B. AutoPilot C 
AutoPilot’s programming model conforms to a subset of C 

which may be annotated with pragmas that convey information 
on different implementation details. Synthesis is performed at 
the function level producing corresponding RTL descriptions 
for each function. The RTL description of each function 
corresponds to an FPGA core (Fig. 3) which consists of private 
datapath and FSM-based control logic. Attached to each core’s 
FSM are start and done signals that enable cross-function 
synchronization (including function calls and returns).  

The front-end engine of AutoPilot (based on the LLVM 
compiler [18]) uses dependence analysis techniques to extract 
instruction-level parallelism (ILP) within basic blocks. Coarser 
parallelism, such as loop iteration parallelism, can also be 
exploited by injecting AUTOPILOT UNROLL pragmas in the 
code (assuming there are no loop-carried dependencies). Note 
that unrolling and executing loop iterations in parallel, impacts 
FPGA resource allocation proportionally to the unroll factor. 
Concurrency at the function level is specified by the 
AUTOPILOT PARALLEL pragma within a code region (Fig 3). 
The affected functions are launched concurrently by the parent 
function, which stalls executing until every child function has 
returned. Thus it is possible to implement an MPMD (Multi 
Program Multi Data) execution model with a configuration of 
heterogeneous FPGA cores (i.e. parallel cores corresponding to 
different functions). Note that AutoPilot will schedule two 
functions (cores) to execute in parallel only when they cause no 
hazards. A hazard arises when two functions access the same 
memory block (resource hazard) or pass data from one function 
to another (data hazard).  

With regards to memory spaces, AutoPilot may map 
variables onto local (on-chip) or external (off-chip) memories. 
By default all arrays get mapped onto local BRAMs while 
scalar variables are mapped on configurable fabric logic. C 

pointers may also be used (with some limitations) in the input 
code and combined with the AUTOPILOT INTERFACE 
pragma they can infer off-chip memory accesses. 

C. CUDA-to-FPGA Flow Advantages 
The advantages offered by the CUDA programming model 

in our FPGA design flow are multifold. First, both CUDA and 
AutoPilot’s programming model are based on the C language. 
CUDA extends the language with some GPU specific 
constructs while AutoPilot uses a subset of C, augmented with 
synthesis pragma annotations (ignored during gcc compilation). 
Thus, FCUDA source-to-source compilation does not require 
translation between fundamentally different languages. Second, 
even though CUDA incorporates more memory spaces than 
AutoPilot, they both distinguish between on-chip and off-chip 
memory spaces, and leverage programmer-specified data 
transfers between off- and on-chip memory storage.  

Coarse-grained parallelism in CUDA is expressed in the 
form of thread-blocks that execute independently on the SMs. 
Moreover, the number of thread-blocks in CUDA kernels is 
typically in the order of hundreds or thousands. Thus, thread-
blocks constitute an excellent candidate in terms of lack of 
synchronization requirements and workload granularity for 
FPGA core implementation. Mapping thread-blocks onto 
parallel cores on the FPGA minimizes inter-core 
communication without limiting parallelism extraction. Low 
inter-core communication helps achieve higher execution 
frequencies and eliminate synchronization overhead. As a final 
point, CUDA provides a very concise programming model for 
expressing coarse-grained parallelism through the single-thread 
kernel model. AutoPilot (as most existing HLS tools), on the 
other hand, employs a programming model that expresses 
coarse grained parallelism explicitly in the form of multiple 
function calls annotated with appropriate pragmas (Fig. 3). 
FCUDA automates the extraction of the inferred parallelism in 
CUDA code into explicit parallelism in AutoPilot input code 
while handling data partitioning and FPGA core 
synchronization. Thus, it eliminates the tedious and error-prone 
task of directly expressing the coarse grained parallelism in C 
for AutoPilot. Our FPGA design flow allows the programmer 
to describe the parallelism in a more compact and efficient way 
through the CUDA programming model regardless of the 
implemented number of FPGA cores.  

IV. FCUDA: CUDA-TO-FPGA FLOW  
Our CUDA-to-FPGA flow (Fig. 1) is based on a code 

transformation process, FCUDA (currently targeting the 
AutoPilot HLS tool), which is guided by preprocessor 

 
Fig. 2.  CUDA Programming Model 

 
Fig. 3.  AutoPilot C Programming Model 



directives (FCUDA pragmas) inserted by the FPGA 
programmer into the CUDA kernel. These directives control 
the FCUDA translation of the expressed parallelism in CUDA 
code into explicitly-expressed coarse-grained parallelism in the 
generated AutoPilot code. The FCUDA pragmas describe 
various FPGA implementation dimensions which include the 
number, type and granularity of tasks, the type of task 
synchronization and scheduling, and the data storage within on- 
and off-chip memories. AutoPilot subsequently maps the 
FCUDA specified tasks onto concurrent cores and generates 
the corresponding RTL description. Moreover, AutoPilot uses 
LLVM’s [18] dependence analysis techniques and its own 
SDC-based scheduling engine [5] to extract fine grained 
instruction-level parallelism within each task. Finally Xilinx 
FPGA synthesis tools are leveraged to map the generated RTL 
onto reconfigurable fabric. We demonstrate that the FPGA 
accelerators generated by our FPGA design flow can efficiently 
exploit the computational resources of top-tier FPGAs in a 
customized fashion and provide better performance compared 
to the GPU implementation for a range of applications. 

A. FCUDA Philosophy 
Concurrency in CUDA is inferred through a single-thread 

kernel with built-in variables that are used to distinguish the 
tasks of each thread. Application parallelism is expressed in the 
form of fine-granularity threads that are further bunched into 
coarse-granularity thread-blocks (Fig. 2). Even though thread-
level parallelism can improve performance, thread-blocks offer 
higher potential for an efficient multi-core implementation on 
FPGA. As discussed previously, CUDA thread-blocks 
comprise autonomous tasks that operate on independent data 
sets and do not need synchronization. Conversely, CUDA 
threads within a thread-block usually reference shared data 
which often results in synchronization overhead and/or shared 
memory access conflicts.  

Parallelism in C code for FPGA synthesis by AutoPilot is 
explicitly expressed through parallel function calls (Fig. 3). A 
single callee function with a different set of arguments in each 
call may be used to infer a homogeneous multi-core 
configuration similar to the GPU organization, whereas 
different callee functions may model a heterogeneous multi-
core configuration on FPGA. Therefore, the core task of the 
FCUDA source-to-source translation can be simply described 
as converting thread-blocks into C functions and invoking 
parallel calls of the generated functions with appropriate 
argument sets. Having extracted the coarse-granularity 
parallelism at the thread-block level, fine-granularity 
parallelism at the thread level may also be extracted, provided 
that non-allocated resources exist on the FPGA. This disparity 
in the thread parallelism extraction scheme between GPU and 
FCUDA may lead to different combinations of concurrently 
executing threads in the two devices. Nevertheless, the degree 
of parallelism will not differ in typical CUDA kernels that 
comprise hundreds of threads per thread-block and thousands 
thread-blocks per grid. 

Another important feature of the FCUDA philosophy 
consists of decoupling off-chip data transfers from the rest of 
the thread-block operations. The main goal is to prevent long 
latency references from impacting the efficiency of the multi-
core execution. This is particularly important in the absence of 
GPU-like fine-grained multi-threading support in FPGAs. 

Moreover, by aggregating all of the off-chip accesses into 
DMA burst transfers from/to on-chip BRAMs, the off-chip 
memory bandwidth can be utilized more efficiently.  

FCUDA also leverages synchronization of data transfer and 
computation tasks based on the FCUDA annotation injected by 
the FPGA programmer. The selection of the synchronization 
scheme often incurs a tradeoff between performance and 
resource requirements. The FPGA programmer needs to 
consider the characteristics of the accelerated kernel in order to 
make an educated decision. A simple and resource efficient 
scheme is the simple DMA synchronization (Fig. 4a) which 
serializes data communication and computation tasks. This 
scheme is memory overhead free and it can also be a good fit 
for kernels that are compute intensive and incur low data 
communication traffic. At the opposite end, the ping-pong 
synchronization scheme overlaps data communication with 
computation by doubling the number of BRAM blocks (Fig. 
4b). The interconnection logic interchangeably connects each 
BRAM block to the compute logic and the DMA controller, 
ensuring that each BRAM block is actively connected to only 
one of the two modules in each cycle. However, this scheme 
may result in BRAM utilization overhead, impacting the 
number of cores that can be instantiated on the FPGA.  

B. FCUDA Pragma Directives 
Fig. 5a depicts the FCUDA pragma annotation of the 

coulombic potential (CP) kernel. The kernel function is 
wrapped within GRID pragmas that define the sub-array of 
thread-blocks that can be computed by the available FPGA 
cores within one iteration (in Fig. 5a two thread-blocks with 
sequential x coordinates and same y coordinates). The BLOCK 
pragma determines the sub-grid of all thread-blocks that this 
kernel is assigned to compute. By splitting the original CUDA 
grid of thread-blocks into sub-grids, FPGA cores can be split 
into clusters with each cluster being assigned a sub-grid of 
thread-blocks. This can help further eliminate long wire 
interconnections between compute and synchronization cores 
and could enable asynchronous operation of different clusters. 
The SYNC pragma sets the type of synchronization scheme 
(currently a choice between simple or pingpong) to be 
implemented by the cluster synchronization core. COMPUTE 
and TRANSFER pragmas are used to wrap the computation and 
the data communication tasks of the kernel, respectively. In 
Fig. 5a, two TRANSFER sections are used: one for fetching 
off-chip data into the atominfo array and one for storing results 
to the energygrid off-chip storage. The following section 
describes how FCUDA leverages the translation of the CUDA 
code into properly crafted C code for AutoPilot. FCUDA 
compilation is based on the Cetus source-to-source compiler 
framework [19] and it consists of two major stages. 
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C. FCUDA Front-End Transformation 
The front-end engine of FCUDA aims to transform the 

single-thread kernel into semantically equivalent C code which 
explicitly expresses the execution of all the kernel threads in a 
serialized fashion. This is achieved by converting the CUDA 
built-in variables that hold the thread (and thread-block) IDs 
into regular C variables which are used as induction variables 
in thread-loops (and block-loops). Fig. 6, illustrates the 
transformation of the CUDA kernel threads into thread-loops 
by the FCUDA front-end engine (Serialization of thread-
blocks, though not depicted for space and clarity reasons, also 
takes place during this FCUDA phase).  

As shown in Fig. 6, synchronization directives within the 
CUDA kernel need to be considered during the front-end 
transformation phase of FCUDA in order to maintain the 
ordering semantics of thread execution within the serialized 
thread-blocks. Synchronization points are indicated by CUDA 
sync directives, FCUDA COMPUTE and TRANSFER pragmas 
and irregular control flow statements (i.e. break, continue and 
return). A loop-fission technique proposed in [10] is used to 
break the initially generated kernel-wide thread-loop into 
localized thread-loops which do not cross any of the 
synchronization directives encountered in the code. Fig. 6 
depicts the result of loop fission in a kernel with a single 
synchronization point. The initial kernel thread loop is split into 
two thread-loops: the first thread-loop implements the thread 
operations preceding the sync point, while the second thread-

loop implements the thread operations following the sync 
point. This way serialized execution of threads maintains the 
thread-block synchronization semantics. FCUDA extends the 
MCUDA [10] implementation of loop-fission by adding 
COMPUTE and TRANSFER pragmas to the list of 
synchronization directives. COMPUTE and TRANSFER 
pragmas are used by the FPGA programmer to annotate 
computation and off-chip data communication tasks. Thus, 
synchronization of threads between tasks is required. 
Synchronization primitives can be removed after loop-fission, 
except for FCUDA pragmas which carry implementation 
information used by the back-end engine of FCUDA.  

Thread serialization creates the opportunity for variable 
sharing among threads. However, there are cases in which each 
thread must have its private copy of a kernel variable. This 
happens usually for variables that are accessed across 
synchronization points (e.g. energyval in Fig. 5a). Scalar 
variable expansion [10] is applied for such variables in order to 
create thread-private copies of the variable. Fig. 7 depicts how 
the computation task of CP (Fig. 5a) is transformed after the 
front-end processing of FCUDA. Loop-fission forms a thread-
loop within COMPUTE pragmas whereas selective scalar 
expansion results in vectorization of energyval which is 
referenced across thread loops. 

D. FCUDA Back-End Transformation 
The back-end engine of FCUDA leverages the 

implementation information annotated in the FCUDA pragma 
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Fig. 5. Coulombic Potential (CP) kernel transformation through FCUDA

 
#pragma FCUDA COMPUTE cores=2 begin name="cp_block" 
    int energyval[]; 
    for(tIdx.y=0;tIdx.y<blockDim;tIdx.y++)   // thread loop 
      for(tIdx.x=0;tIdx.x<blockDim;tIdx.x++) { 
         . . .    
        energyval[tIdx]=0.0f; 
        /* For each atom, compute and accumulate its contribution to energyval for this thread's grid point */ 
        for (atomid=0; atomid<numatoms; atomid++) { 
           . . .       
          energyval[tIdx] += atominfo[atomid].w * r_1; 
        } 
      } 
#pragma FCUDA COMPUTE end name="cp_block" 
 

 

Fig. 7. FCUDA front-end processed CP compute task Fig. 6.  Extracting the CUDA coarse-grained parallelism in FCUDA 



directives to guide the translation of the kernel coarse grained 
parallelism into the function-level type of parallelism supported 
by AutoPilot (Fig. 6). Tasks annotated through FCUDA 
COMPUTE and TRANSFER pragmas are transformed into 
newly generated task functions which are called from the 
original kernel function, referred hereafter as parent function. 
Multiple calls of the task functions wrapped within 
AUTOPILOT REGION and PARALLEL directives in the parent 
function (Fig. 5b) drive the synthesis tool to instantiate parallel 
processing cores on the configurable fabric. The degree of 
parallelism is specified by the parameter information included 
in the COMPUTE and TRANSFER pragmas (Fig. 5a) and it is 
used to adjust the stride length of the block-loop in the parent 
function (Fig. 5b). One of the critical tasks of this 
transformation is the facilitation of data communication 
between the different task functions and the parent function. 
Variable analysis is performed to determine which variables are 
private to the task and which ones need to be communicated 
to/from the task function. Communication of both scalar and 
array variables is implemented through the task function 
parameters. Apart from the type and number of cores, the 
FPGA programmer can also extract thread parallelism 
(provided available resources exist) by injecting AUTOPILOT 
UNROLL and PIPELINE pragmas within the FCUDA 
COMPUTE annotated tasks, to specify thread-loop unrolling 
and pipelining, respectively.  

As discussed previously, FCUDA TRANSFER pragmas are 
used to annotate data communication tasks to off-chip 
addresses. According to the FCUDA philosophy, off-chip data 
communication usually infers DMA burst transfers of data 
between off-chip memory storage and on-chip BRAM arrays. 
The FCUDA back-end engine is also responsible for 
instantiating array variables which will infer BRAM block 
allocation during synthesis by AutoPilot. BRAM associated 
arrays are instantiated at the parent function and their number is 
determined by the degree of parallelism annotated in the 
compute tasks that reference them (Fig. 5b). BRAM associated 
arrays may be passed as arguments to compute and transfer 
functions similarly to the rest of the variables. A challenging 
task of the BRAM array instantiation is the determination of 
their dimensions. There are two ways that this is accomplished: 
i) through variable access analysis and consideration of the 
containing thread-loop induction variable range space (“write” 
TRANSFER in Fig. 5a) ii) through FCUDA DATA parameter 
information ( “fetch” TRANSFER in Fig. 5a). More details on 
the leveraging of different CUDA memory spaces within 
FCUDA are discussed in the following section.  

Finally, synchronization of the FCUDA annotated tasks is 
performed by the back-end engine according to the FCUDA 
SYNC parameter information (Fig. 5a). In the current 
implementation the available SYNC options are simple and 
pingpong. The former corresponds to the simple-DMA scheme 
and does not require any further code massaging before feeding 
it to AutoPilot. It essentially results in the serialization of all 
the COMPUTE and TRANSFER tasks of the kernel. The 
pingpong option selects the ping-pong DMA scheme in which 
two copies of each local array are declared, doubling the 
amount of inferred BRAM blocks on the FPGA. Moreover, the 
parent function is altered based on a double-buffering coding 
template. Fig. 8 displays how the CP parent function is 

transformed for a ping-pong synchronization scheme. An if-
else structure is used to implement the switching of the 
accessed BRAM block in each iteration of the block-loop.  

E. CUDA Memory Spaces 
The different memory spaces leveraged in the CUDA 

programming model have to ultimately be mapped onto local 
BRAM memories, as described in the previous sections. The 
most simple memory space to handle is shared memory due to 
its common semantics with BRAM memories. Both of them 
refer to local memory blocks that are private to threads within a 
thread-block. Thus direct mapping of shared memory arrays 
into BRAM memory is feasible. A distinguishing characteristic 
of shared memory is its 16-bank organization which allows 16 
concurrent accesses by equal threads. BRAM memories, on the 
other hand, only support dual access concurrency. However, 
the serialization of block threads in the FCUDA flow 
eliminates the potential latency overhead of increased BRAM 
access conflicts in kernels that are engineered to take advantage 
of the multi-bank organization of shared memory. Besides, 
FPGA configurability offers the flexibility of organizing 
BRAM blocks in a multi-bank scheme if necessary (though this 
is not supported by our current implementation). Moreover, the 
BRAM block size customizability enables flexible tuning of 
kernels without the constraining restrictions imposed by the 
small size of shared memory on GPUs.  

The constant memory space is shared by all the thread-
blocks running on the GPU, but it is read-only and it is used for 
references that exhibit locality, since it is cached. These 
attributes make it a good match for the different DMA bursts 
schemes described earlier. A portion of the off-chip DRAM 
will serve as constant memory and the BRAMs will be used as 
read-only buffers that will be filled with the corresponding 
block of data before the thread-block execution. It may be 
possible to share BRAM blocks that contain constant memory 
data among a few compute cores on the FPGA, to reduce 
BRAM resource requirements per core, if it does not severely 
impact execution frequency.  

Global memory corresponds to the off-chip memory of the 
GPU which is globally accessible at a high latency, but with 

 
void cenergy(int numatoms, int gridspacing, int * energygrid,  
                      dim3 blockDim, dim3 gridDim) { 
  . . . 
  int c11_atominfo[],c12_atominfo[],c21_atominfo[], c22_atominfo[]; 
  int c11_energyval[],c12_energyval[],c21_energyval[], c22_energyval[]; 
  int pingpong=0; 
  for(bIdx.y=0;bIdx.y<blockDim;bIdx.y++)   // block loop 

  for(bIdx.x=0;bIdx.x<blockDim;bIdx.x+=2) { 
    if(!pingpong) { 

#pragma AUTOPILOT REGION begin name="R1" 
#pragma AUTOPILOT PARALLEL  
        fetch(bIdx, blockDim, atominfo, c11_atominfo[], c21_atominfo[]) ; 
        cp_block(blockIdx, blockDim, c12_energyval[], c12_atominfo[]) ; 
        cp_block(blockIdx+1, blockDim, c22_energyval[], c22_atominfo[]) ; 
        write (blockIdx, blockDim, c11_energyval[],c21_energyval[], energygrid); 
        pingpong = 1; 
#pragma AUTOPILOT REGION end name="R1" 
 
    } else { 
#pragma AUTOPILOT REGION begin name="R2" 
#pragma AUTOPILOT PARALLEL  
        fetch(bIdx, blockDim, atominfo, c12_atominfo[], c22_atominfo[]) ; 
        cp_block(blockIdx, blockDim, c11_energyval[], c11_atominfo[]) ; 
        cp_block(blockIdx+1, blockDim, c21_energyval[], c21_atominfo[]) ; 
        write (blockIdx, blockDim, c12_energyval[],c22_energyval[], energygrid); 
        pingpong = 0; 
#pragma AUTOPILOT REGION end name="R2" 
}  } 
 

 

Fig. 8. CP kernel function with ping-pong scheduling 



high bandwidth. Taking advantage of the high bandwidth 
requires access coalescing, which infers spatial locality among 
threads. Thus, data in global memory space can potentially be 
handled similarly with constant memory, by pre-fetching 
blocks of off-chip memory data through DMA bursts onto local 
BRAMS. The data block address range may be explicitly 
specified in the code in the case of global to shared-memory 
transfers, or it may be necessary to specify it through insertion 
of FCUDA DATA pragma directives (Fig. 5a).  

Finally, textured memory is a cached read-only memory 
with the addition of filtering and special addressing 
capabilities. It could potentially be handled similarly to 
constant memory but it is not supported currently by our 
CUDA-to-FPGA flow. 

V. EXPERIMENTAL RESULTS 
As mentioned earlier, the CUDA programming model fits 

well in our FPGA design flow and offers the advantage of 
high-abstraction. Nevertheless achieving optimal performance 
requires some knob tuning from the programmer as well. One 
of the critical issues in achieving good application acceleration 
is the memory organization and the data access patterns to/from 
memory. The next subsection discusses the impact on memory 
from different implementation options. Subsequently we 
evaluate our FPGA programming flow by comparing the 
performance of CUDA kernels when executed on the GPU and 
FPGA (using FCUDA) platforms. 

A. Memory Design Decisions 
Table 1 lists BRAM experimental results from different 

multi-core implementations of the matrix-multiplication 
(matmul) kernel on the Xilinx FPGA. The first column lists the 
BRAM size, dimensions and element type (4, 2 or 1byte). 
Although Block RAMs can be flexibly combined into different 
size configurations and accessed through independent ports 
they have to obey the granularity of their architecture: 18Kbits 
for Xilinx devices. Thus, using them to store arrays of arbitrary 
sizes may result in waste of local memory space (column 2 in 
Table I) as the remaining space can not be used by other 
variables. This can be detrimental to parallelism extraction. 
Moreover, small sparsely populated BRAM blocks may affect 
the off-chip data transfers bandwidth.  

TABLE I.  BRAM DESIGN CHARACTERISTICS 

BRAM (depth x bytes) 
elem type 

BRAM 
waste 

Burst 
Bandwidth 

Total Bandwidth 
(#cores) 

8Kb (16x64) 
4-byte elem 55.5% 91.55MB/s 3.5GB/s 

(128) 
4Kb (16x32) 
2-byte elem 58.3% 52.45 MB/s 3.07GB/s 

(172) 
4Kb (16x16) 
1-byte elem. 59.7% 28.61MB/s 1.54GB/s 

(172) 
16Kb (32x64) 
2-byte elem. 11.1% 80.1MB/s 1.6GB/s 

(172) 
8Kb (32x32) 
1-byte elem. 55.5% 42.9MB/s 0.8GB/s 

(172) 
 
The third column of Table I displays the achievable 

bandwidth with regards to the BRAM dimensions and the 
access type. Since BRAMs are often used for storing tiles of 
larger arrays (like in matmul) bursts are done in BRAM row 
granularity. The bandwidth of DMA bursts is therefore affected 

by the horizontal dimension of the BRAM memories (e.g row 3 
vs row 5). The DMA burst efficiency depends also on the type 
of the array elements. Smaller elements may result in low bus 
utilization and more BRAM accesses. Both of these 
implementation details can impact the burst speed. Finally, the 
size of BRAM blocks affects the amount of computation 
involved in between DMA transfers and consequently the 
required off-chip bandwidth in a ping-pong synchronization 
scheme, where full overlap of data communication and 
computation is desired (4th column of Table I). For example, a 
configuration of 172 cores with 8Kbit arrays per core (row 6 in 
Table I) requires almost half the off-chip bandwidth compared 
to a similar configuration that only allocates 4Kbits of BRAM 
to each core (row4). This is due to the fact that in matrix 
multiplication the amount of computing is quadrupled for every 
doubling of the array data size. Thus, the window of time for 
transferring two times the data is increased by four, cutting the 
required bandwidth by half.  

B. FPGA – GPU Comparison 
For the evaluation of our FPGA design flow we targeted 

Xilinx Virtex5 FPGA devices. Virtex5 FPGAs are fabricated in 
65nm CMOS technology and can be clocked at frequencies of 
up to 550MHz. These features render them good candidates for 
making meaningful comparisons with most of the currently 
used GPU devices. Moreover, the Virtex5 family includes 
some of the biggest and most advanced FPGAs available today 
that have the capacity to efficiently host high-concurrency 
multi-core accelerators. For our comparison experiments we 
chose the XC5VFX200T Virtex5 device, which has more than 
100K LUTs, 16Mbits of on-chip BlockRAM memory and 384 
DSP units. The GPU device used for the comparisons was 
Nvidia’s G80 (90nm fabrication technology) with 16 SM units 
and 128 cores [14]. 

TABLE II.  CUDA KERNELS 

Kernel Configuration Description 

Matrix Multiply 
(matmul) 1024x1024 

Common kernel in many 
imaging, simulation, and 

scientific application 

Coulombic Potential 
(cp) 

4000 atoms, 
512x512 grid 

Computation of electric 
potential in a volume 

containing charged atoms 
RSA Encryption  

(rc5-72) 4 Billion Keys Brute force encryption key 
generation and matching 

 
The CUDA kernels we used in these experiments are 

described in Table II. Two of them (matmul and cp) were 
based on GPU-optimized versions that were tailored into 
different integer bitwidth versions. The third kernel was 
implemented without any device-specific optimizations. In 
these experiments we focused on integer performance. Fig. 9 
compares the FPGA and GPU performance for all versions of 
the 3 kernels. The rc5-72 kernel is intrinsically based on 
modulo-shift operations within 32-bit integers, and thus it was 
not transformed into smaller integer bitwidth implementation. 
The FPGA performance results are based on the assumption 
that the off-chip transfers are implemented by means of a high-
bandwidth bus, such as the FSB (8.5GB/s) [19]. The 
computation task latencies are measured on the FPGA.  Ping-
pong synchronization is used between compute and data 
communication tasks and the latency of a single invocation is 



measured for all kernels. The GPU latencies do not include the 
data communication from/to the CPU.  

Table III lists the implementation details of the multi-core 
accelerators for all the benchmark versions. The implemented 
number of cores and the required off-chip memory bandwidth 
are shown in columns 2 and 3 respectively. Column 4 lists the 
resource type that constrained the number of implemented 
cores.  

TABLE III.  KERNEL IMPLEMENTATION CHARACTERISTICS 

 
As can be seen, the generated multi-core accelerators can 

outperform the GPU, especially in the case of smaller 
bitwidths, where application specific customization can adapt 
the datapath of the cores and use the freed resources for 
instantiating more cores. Moreover, the narrower datapaths 
allow faster operation execution. For example the FSMs of the 
16bit matmul has fewer states and also uses less DSP resources 
than the 32-bit one. In the case of 32bit CP, the compute 
intensive nature of the kernel results in high DSP utilization per 
core and low number of cores.  

As mentioned above, the number of implemented cores was 
determined by the resource (LUTs, BRAMs and DSPs) that 
was most restrictive. However, in the case that BRAM or DSP 
blocks are the limiting resource it may be possible to extract 
more parallelism without increasing the number of cores. For 
example, in the case of 16bit and 8bit matmul kernels where 
BRAM constrains the number of cores, a 2X performance 
increase was achieved by exploiting thread-level parallelism 
within threadblocks. This is enabled by using AUTOPILOT 
UNROLL pragmas in the generated thread-loops.  

VI. CONCLUSIONS 
In this paper, we present a new FPGA design flow that 

takes annotated CUDA code as input and generates C code for 
AutoPilot with task level parallelism that is synthesized into 
customized multi-core accelerators on FPGA. We demonstrate 
that the user can indeed use a single starting point for an 
efficient acceleration, irrespective of whether the target 
platform is GPU or FPGA. CUDA allows the user to express 

application parallelism which our compiler can transform into 
explicitly parallel C suitable for advanced High Level 
Synthesis (HLS) tools such as AutoPilot. To our knowledge, 
this is the first such flow from CUDA to C code that leverages 
the potential of HLS tools for efficient FPGA design with high-
abstraction. Initial results are very promising – even with 
limited optimization in our translation process, we have 
observed competitive speedup for 32-bit versions of the kernel 
and superior speedups for smaller bitwidth versions of the 
kernel. We expect to see even better performance from the 
FPGA accelerators as we optimize the FCUDA flow to make 
more efficient use of the memory resources and to better 
exploit the benefits that reconfigurable devices provide such as 
custom data paths, bitwidth optimized functional units, 
pipelining and multi-rate designs, when compared to GPUs. 
Future work also includes extending the interaction between 
compiler and synthesis techniques involved in FCUDA to new 
domain-independent parallel programming models, such as 
OpenCL. 
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Benchmark Core # DRAM 
Bandwidth 

Limiting 
Resource 

matmul 32bit 128 3,5GB/s DSP 
matmul 16bit 172 1.6GB/s BRAM 
matmul 8bit 172 0.8GB/s BRAM 
cp 32bit 25 0.128GB/s DSP 
cp 16bit 96 0.19GB/sec DSP 
cp 8bit 96 0.1GB/sec DSP 
rc5-72 32bit 80 ≈ 0GB/sec LUT 
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Fig. 9.  GPU – FPGA Performance comparison


