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A patient’s response to immune checkpoint inhibitors (ICIs) is a complex quantitative trait,

and determined by multiple intrinsic and extrinsic factors. Three currently FDA-approved

predictive biomarkers (progra1mmed cell death ligand-1 (PD-L1); microsatellite instability

(MSI); tumor mutational burden (TMB)) are routinely used for patient selection for ICI

response in clinical practice. Although clinical utility of these biomarkers has been

demonstrated in ample clinical trials, many variables involved in using these biomarkers

have poised serious challenges in daily practice. Furthermore, the predicted responders

by these three biomarkers only have a small percentage of overlap, suggesting that each

biomarker captures different contributing factors to ICI response. Optimized use of

currently FDA-approved biomarkers and development of a new generation of predictive

biomarkers are urgently needed. In this review, we will first discuss three widely used FDA-

approved predictive biomarkers and their optimal use. Secondly, we will review four novel

gene signature biomarkers: T-cell inflamed gene expression profile (GEP), T-cell

dysfunction and exclusion gene signature (TIDE), melanocytic plasticity signature (MPS)

and B-cell focused gene signature. The GEP and TIDE have shown better predictive

performance than PD-L1, and PD-L1 or TMB, respectively. The MPS is superior to PD-L1,

TMB, and TIDE. The B-cell focused gene signature represents a previously unexplored

predictive biomarker to ICI response. Thirdly, we will highlight two combined predictive

biomarkers: TMB+GEP and MPS+TIDE. These integrated biomarkers showed improved

predictive outcomes compared to a single predictor. Finally, we will present a potential
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nucleic acid biomarker signature, allowing DNA and RNA biomarkers to be analyzed in

one assay. This comprehensive signature could represent a future direction of developing

robust predictive biomarkers, particularly for the cold tumors, for ICI response.
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INTRODUCTION

Immunotherapy has changed the treatment landscape of many

different cancer types in recent years. As opposed to

chemotherapy and targeted therapy, which directly target

tumor cells, immunotherapy stimulates a patient’s immune

response or enhances a patient’s ability to fight against tumor

cells. There are several different forms of immunotherapy used
clinically, including cytokines, antibodies, vaccines, and immune

checkpoint inhibitors (ICIs). Among those, ICIs are the most

widely investigated and clinically used in the treatment

of tumors.

ICIs target immune checkpoint regulators such as cytotoxic

T-lymphocyte associated protein 4 (CTLA4), programmed cell

death-1 (PD-1), or programmed death ligand 1 (PD-L1). Since
the FDA approval of CTLA-4 inhibitor (ipilimumab) in 2011, the

FDA has approved six more ICIs (1). Of those, three are PD-1

inhibitors (nivolumab, pembrolizumab and cemiplimab), and

three are PD-L1 inhibitors (atezolizumab, avelumab, and

durvalumab). These ICIs are widely utilized in around 15

tumor types (2) by oncologists in their daily practice and have
shown remarkable efficacy.

However, ICI treatments are only effective in approximately

20% to 30% of cancer patients whose tumors are generally hot

tumors with a high degree of T cell infiltration and high immune

checkpoint expression (3). The majority of patients have no

response or are resistant to the treatment, which is largely

associated with cold tumors with few or absence of T cells, low
tumor mutational burden, and poor antigen presentation (3).

Furthermore, the efficacy varies among different tumor types,

which further complicates treatment strategy. Given the

expensive nature of immunotherapy, how to efficiently identify

and select potential responders has become a clinical challenge to

the effective use of ICIs. There is an urgent need to develop and
validate more accurate biomarkers to assist in patient selection

for ICI treatment.

Several different forms of predictive biomarkers have been

developed for optimized use of immunotherapy, including

positive predictive biomarkers to predict response to ICI,

negative predictive biomarkers to predict resistance to ICI (4, 5),
and side effect biomarkers to predict immune-related toxicity (6).

Of those, the most validated and clinically used biomarkers for

ICI responses are three FDA-approved positive predictive

biomarkers: programmed death-ligand 1 (PD-L1), microsatellite

instability/defective mismatch repair (MSI/dMMR), and tumor

mutational burden (TMB). These three biomarkers have been

reviewed extensively in the literature. For the most recent review,
the readers can refer to Alessandro Rizzo et al.’s article in biliary

tract cancer (7). Here, we do not intend to further review those

biomarkers in general. Instead, we will focus on the challenges
and solutions for effective use of these FDA-approved biomarkers.

The use of these three FDA-approved biomarkers has played

a significant role in assisting appropriate selection of patients for

ICI treatment. However, PD-L1, MSI/dMMR, and TMB each

have different assays suitable to distinct tumor types and unique

limitations. There is a lack of well-defined best practices to
implement these biomarkers. In this article, we will review

these three widely used biomarkers in clinical practice and

discuss their strengths and weaknesses with the aim to

standardize and optimize methodology. We will also review four

promising gene signature biomarkers and two combinational gene

signature biomarkers with an aim to explore more effective and
accurate biomarkers suitable for larger tumor patient population,

including immunologically cold tumors. These new forms of

biomarkers are emerging and have shown impressive predictive

power for ICIs. Finally, we will explore a comprehensive nucleic acid

biomarker for future direction.

THREE FDA APPROVED PREDICTIVE
BIOMARKERS

PD-L1
FDA Approval and Rationale
PD-L1 was the first FDA-approved predictive biomarker for

non-small-cell lung cancer (NSCLC) in 2015. Since then, the

FDA has proved PD-L1 as a companion or complementary

diagnostic test for six additional tumor types (gastric or

gastroesophageal junction adenocarcinoma, cervical cancer,

urothelial carcinoma, head and neck squamous cell carcinoma

(HNSCC), esophageal squamous cell carcinoma (ESCC), and
triple-negative breast carcinoma (TNBC)). Today, PD-L1 is the

most investigated and clinically used predictive biomarker

for ICIs.

PD-1 and PD-L1 belong to the family of immune checkpoint

proteins. Their interaction plays a key role in regulating the

immune system to ensure that it is activated only at the
appropriate time to minimize excessive inflammation and

autoimmune reactions. PD-L1 is expressed on a variety of

normal and immune cells such as dendritic cells, activated T

and B lymphocytes, and macrophages. However, tumor cells

have also adopted this PD-1/PD-L1 interaction mechanism

through expressing PD-L1 on the tumor cell surface. Binding

of tumor PD-L1 to PD-1 on T cells results in attenuation or
inhibition of T cell activity, which helps tumor cells escape from

immune surveillance (8).

Blocking the PD-L1 and PD-1 interaction enables the

reactivation of T cells and enhancement of T cell activity to
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fight tumor cells. Since the number of tumor cells that express

PD-L1 largely affects its ability to suppress immunogenicity and

further determine the effectiveness of PD-L1 and PD-1 blockage

by ICI, the expression of PD-L1 on tumor cells is a predictive

biomarker for ICI therapy.

Different Test Methods and Challenges
Four FDA-approved IHC testing methods are available today for

measuring PD-L1 expression (Table 1). These methods use

different antibodies, different scoring systems, different PD-L1

expression thresholds, and different types of cells expressing PD-

L1. These variables among four methods are reflected in FDA

approvals across seven different tumor types (Table 2).
These variabilities have posed practical challenges for

clinicians and pathologists in daily practice. There is often

confusion surrounding the different FDA-approved parameters

in the tumor type and specific ICI administered. Consequently,

although most widely used, PD-L1 has poor diagnostic accuracy

overall, with a particularly low negative predictive value. For

example, up to 20% of patients have PD-L1 negative tumors were
reported to benefit from PD-1/PD-L1 antibodies (9). In addition

to testing variables that contribute to low diagnostic accuracy,

PD-L1 itself, as a predictive biomarker, has a relatively low

predictability. Davis and Patel (2) analyzed 45 PD-L1 FDA

approvals from 2011 to April 2019, and found that PD-L1 was

only predictive in 28.9% of the approvals. Furthermore, PD-L1
expression is temporally and spatially regulated (10) and can be

altered with prior therapeutic treatment (11). The combination of

these factors limits PD-L1’s predictability in certain circumstances.

Future Directions
Although PD-L1 testing has low diagnostic accuracy overall, it

has value for certain tumor types and remains the most widely

used predictive biomarker in current clinical practice. A recent
systematic review and meta-analysis showed that PD-L1 can

effectively predict survival benefit in the patients with metastatic

urothelial carcinoma (12), and soluble forms of PD-L1 and PD-1

in plasma samples can also predict sunitinib efficacy in patients

with metastatic clear cell renal cell carcinoma (13). To improve

clinical utility of PD-L1, future efforts should be directed to the

following three areas:

a) Making effort to standardize future assay in clinical trials.

Current variability of four PD-L1 assays is largely attributed

to the initial clinical trials that had evaluated different PD-1/

PD-L1 antibodies, used different scoring criteria and cut-offs

for PD-L1, and stained different cell types. The organizations

that design future clinical trials should consider possible

standardization for the areas that can be potentially
standardized in the planning stage.

b) Exploring standardization of currently-approved assays for

clinical practice. For the currently-approved four commercial

PD-L1 assays, we should explore possible standardization. A

recent multi-center study compared the performance of 4

PD-L1 assays in lung cancer (14). They found that 22C3 for

pembrolizumab, 28-8 for nivolumab, and SP263 for

durvalumab are comparable to each other in the staining of
tumor tissue. This result opens the possibility of using specific

tests interchangeably. Among 11 FDA-approved PD-L1

linked companion diagnostic tests for seven tumor types

(https://www.fda.gov/medical-devices/vitro-diagnostics/list-

cleared-or-approved-companion-diagnostic-devices-vitro-

and-imaging-tools), six tests for six tumor types used the PD-
L1 IHC 22C3 pharmDx assay, six tests for five tumor types

used tumor cells and immune cells for PD-L1 staining, and five

tests for five tumor types used Combined Positive Score (CPS) as

the scoring system. CPS is the number of PD-L1 staining cells

(tumor cells, lymphocytes, and macrophages) divided by the

total number of viable tumor cells, multiplied by 100. Therefore,

the PD-L1 IHC 22C3 pharmDx assay, tumor cells, and immune
cells for PD-L1 staining and the CPS scoring system could be

considered as bases for future standardization.

TABLE 1 | Variables for FDA Approved PD-L1 Test.

Testing Method • PD-L1 IHC 22C3 pharmaDx

• PD-L1 IHC 28–8 pharmaDx assay

• PD-L1 IHC SP 142

• PD-L1 IHC SP263

Antibody • Monoclonal mouse anti PD-L1 Clone 22C3

• Monoclonal rabbit anti PD-L1 Clone 28-8

• Monoclonal rabbit anti PD-L1 Clone SP26

• Monoclonal rabbit anti PD-L1 Clone SP142

Scoring System • TPS - Tumor Proportion Score, which is the percentage of viable tumor cells showing partial or complete membrane staining at any

intensity

• CPS- Combined Positive Score, which is the number of PD-L1 staining cells (tumor cells, lymphocytes, macrophages) divided by the

total number of viable tumor cells, multiplied by 100

• %IC - The proportion of tumor area occupied by PD-L1 expressing tumor-infiltrating immune cells of any intensity

PD-L1 Expression

Threshold

• >=1%

• >=5%

• >=10%

• >=50%

Type of Cells

Expressing PD-L1

• Tumor cells for NSCLC

• Tumor-infiltrating immune cells for the triple-negative breast cancer

• Tumor and immune cells for the cervical cancer
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c) Standardizing routinely used PD-L1 test may face a practical

challenge and will take time. Currently, the most reliable and

effective approach is to follow FDA-approved parameters for

PD-L1 assays in seven tumor types. Pathologists and
oncologists should use specific ICIs, scoring systems,

stained cells, thresholds, assay platforms, and tumor types

according to the approved PD-L1 test, and must be cautious

in using ICIs beyond the approved assays.

MSI/dMMR
FDA Approval and Rationale
MSI/dMMR was the second FDA-approved predictive biomarker

for the pembrolizumab treatment of adult and pediatric patients

with unresectable or metastatic solid tumors in 2017. The approval

of pembrolizumab for MSI-H (MSI-high)/dMMR cancer treatment

was based on the evidence of efficacy (ORR of 39.6%, complete
response rate of 7%, and duration of response of six months or

longer in 78% of responding patients) from five clinical trials (15).

This approval represents the first drug that has been approved for

solid tumors in general based on a common biomarker rather than

for a specific tumor type (e.g. PD-L1).

Tumors with a defective DNA mismatch repair (dMMR)
system accumulate thousands of mutations across the genome.

Since short tandem repeats are particularly prone to mismatch

errors, dMMR-induced hypermutations are most frequently

located in microsatellite regions (1–6 nucleotides short

stretches of DNA). This condition is defined as microsatellite

instability (MSI). MSI results from and is a marker of dMMR.

Tumors with dMMR will also have more mutations in non-

MSI regions throughout the genome and expectedly have more
neoantigens compared to those with intact MMR. This

assumption has been demonstrated by experimental data. Le

et al. (16) reported that an average of 1782 mutations were present

in colorectal cancers with dMMR compared with 73 mutations in

the same tumors with intact MMR; consistently, 578 and 21

predicted neoantigens were found, respectively. The increased
neoantigens in dMMR tumors are positively associated with

overall lymphocytic infiltration, tumor-infiltrating lymphocytes, T

helper 1 cells, and memory T cells (17, 18), which will render more

effective antitumor immune response and a higher likelihood of

response to immunotherapy. Thus, MSI/dMMR is a rational

predictive biomarker for the treatment response to ICIs targeting

PD-1, PD-L1, and CTLA-4 checkpoint receptor in such tumors.

Different Test Methods and Challenges
The FDA has approved pembrolizumab to be used in advanced

MSI-H/dMMR solid tumors, but has not specified which assay

should be used to measure MSI-H/dMMR. There are three

different assays available for determining MSI-H/dMMR status

in clinical practice: IHC for detecting dMMR, and PCR and NGS
for detecting MSI-H (19–21).

IHC test for determining dMMR involves four proteins:

MLH1, MSH2, MSH6, and PMS2. Loss of expression of one or

TABLE 2 | Key Parameters for Use of FDA Approved PD-L1 Testing for Immune Checkpoint Inhibitors.

Test Name PMA# Tumor Type ICI Approval

Year

Scoring

System

PD-L1-Threshold PD-L1 Staining

PD-L1 IHC 22C3

pharmDx

P150013 NSCLC Pembrolizumab 2015 TPS >=50% tumor cells

PD-L1 IHC 22C3

pharmDx

P150013/

S006

gastric or GEJ

adenocarcinoma

Pembrolizumab 2017 CPS >=1 tumor cells,

lymphocytes,

macrophages

PD-L1 IHC 22C3

pharmDx

P150013/

S009

Cervical Cancer Pembrolizumab 2018 CPS >=1 tumor cells,

lymphocytes,

macrophages

PD-L1 IHC 22C3

pharmDx

P150013/

S011

urothelial carcinoma Pembrolizumab 2018 CPS >=10 tumor cells,

lymphocytes,

macrophages

PD-L1 IHC 22C3

pharmDx

P150013/

S014

head and neck

squamous cell

carcinoma

Pembrolizumab 2019 CPS >=1 tumor cells,

lymphocytes,

macrophages

PD-L1 IHC 22C3

pharmDx

P150013/

S016

esophageal squamous

cell carcinoma

Pembrolizumab 2019 CPS >=10 tumor cells,

lymphocytes,

macrophages

VENTANA PD-L1

(SP142) Assay

P160002/

S006

urothelial carcinoma/

NSCLC

atezolizumab 2018 IC%/IC%

or TPS

>=5%/>=10% or >=50% tumor area/tumor

area, tumor ells

VENTANA PD-L1

(SP142) Assay

P160002/

S009

Triple-Negative Breast

Carcinoma

atezolizumab 2019 IC% >=1% tumor area

VENTANA PD-L1

(SP142) Assay

P160002/

S012

NSCLC atezolizumab 2020 IC%/TPS >=10%/>=50% tumor area

Tumor cells

PD-L1 IHC 28-8

pharmDx

P150025/

S013

NSCLC/SCCHN/UC Nivolumab in

combination with

ipilimumab

2020 TPS >=1% tumor cells

PD-L1 IHC

SP263

P160046 urothelial carcinoma Durvalumab 2017 TPS/ICP/

IC+

>=25%/ICP > 1% and IC+

>=25%/ICP = 1% and IC+ =

100%.

tumor cells

Immune cells
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more MMR proteins is considered as dMMR. MLH1 and MSH2

are obligatory proteins, and PMS2 and MSH6 are secondary

proteins. PMS2 and MSH6 can form a heterodimer only with

MLH1 and MSH2, respectively, while MLH1 and MHS2 can

form heterodimers with other MMR proteins in addition to

PMS2 and MSH6, respectively. The mutations in obligatory
proteins result in functional loss of both obligatory and

secondary binding partners, but the reverse is not true because

secondary proteins can be substituted in the heterodimer by

other MMR proteins. Consequently, antibodies against the

secondary proteins detect mutations in both obligatory and

secondary proteins, but antibodies for obligatory proteins alone
do not detect mutations in PMS2 or MSH6 abnormalities. For

this reason, some of the IHC assays only test PMS2 and MSH6.

IHC is a simple, cost-effective and widely available laboratory

test that can be easily performed in all hospitals, clinics, and testing

labs. The downside of IHC is a relatively low analytic sensitivity and

accuracy due to technical or biological reasons. Technical reasons
resulting in false negative staining can include pre-analytical issues,

such as tissue fixation (22). Biologically, missense mutations in any

MMR gene that can result in functional inactivation of a protein

without affecting its antigenicity and expression levels (23).

PCR test is the second established method for determining

MSI-H. Several PCR panels have been proposed, but two are

most widely used in clinical practice: (i) a panel with two
mononucleotide (BAT-25 and BAT-26) and three dinucleotide

(D5S346, D2S123 and D17S250) repeats, which was proposed in

1997 by an international consensus group, also known as the

Bethesda panel (24). Both tumor and paired normal tissue are

required for using this panel; (ii) a panel with five poly-A

mononucleotide repeats (BAT-25, BAT-26, NR-21, NR-24,
NR-27). This five poly-A panel has a higher sensitivity and

specificity compared to the Bethesda panel (25) and also does not

need corresponding normal tissue for the test. If two of these five

biomarkers in either panel lose stability, the tumor is diagnosed

as having MSI-H. Recently, Thermo Fisher released a new

TrueMark MSI Assay with a panel of 13 microsatellite

biomarkers. In addition to expanded content from the five
poly-A panel discussed above, this panel has a faster and

simpler workflow, requires only 2ng FFPE tumor DNA and

does not require the use of a tumor-normal match.

Since MSI testing by PCR is based on a specific and limited

number of microsatellites analyses, the test cannot capture full

MSI profiles and thus misses around 0.3% to 10% of cases (26).
Furthermore, although MSI can be present in almost all solid

tumor types, its prevalence and type of MSI are widely variable

across the different tumor types. Several major cancer types, like

NSCLC, breast cancer and prostate cancer have only 1-2%

prevalence while other cancer types, such as melanoma and

kidney cancer, have no data available (27, 28). The majority of

clinical data for predictive ability for ICIs were largely from CRC.
These factors limit its use as an effective and reliable predictive

biomarker for ICIs in a broad scale, despite being approved for

all solid tumors.

NGS-based MSI-H/dMMR testing is a relatively new assay

and can overcome the limitations of MSI testing by PCR to a

certain degree. NGS test uses either cancer gene panels or whole

exome sequencing. For cancer gene panels, the number of genes

varies from focused cancer gene panes with around 500 genes to

comprehensive cancer exomes with >5000 genes (29). A

bioinformatics method, MSIsensor, has also been developed to

predict MSI status using whole exome data (30). The MSIsensor
prediction showed 100% agreement with gold standard methods

of IHC and PCR for MSI testing in 130 CRC patients.

The main advantage of NGS is its ability to evaluate a large

number and different types of microsatellites including two- to

six-base repeats, and to discover additional microsatellites with

better predictive power. As opposed to PD-L1 and MSI testing,
which are primarily suitable for metastatic colorectal cancer and

other cancers belonging to the spectrum of Lynch syndrome,

NGS method can be used for all tumor types, including non-

Lynch syndrome rare cancers for multiple ICIs. Because NGS is

the primary method to evaluate TMB, which will be discussed

later, another advantage of NGS-based MSI-H/dMMR testing is
the ability to integrate MSI with TMB data for the prediction of

ICIs. The main challenges of NGS testing are its high cost,

technical demands and lack of wide availability. Once these

hurdles are overcome, NGS-based MSI testing will be a more

accurate and sensitive assay than PCR or IHC for determining

MSI status (21).

Future Directions
IHC-dMMR, PCR-MSI-H, and NGS-MSI-H each have strengths

and weaknesses (Table 3). Although agreement has been found

among the three methods, especially in CRC, differences exist

across cancer types. The FDA has granted approval for the use of

Pembrolizumab, nivolumab, and nivolumab–ipilimumab

combination in metastatic solid cancers with MSI-H or
dMMR, but did not specify which assay should be used to

measure MSI status. A clear guideline is needed to help

pathologists make informed decisions about which method to

use in a given clinical situation. The CAP and three collaborating

societies are developing a clinical guideline for testing MSI in

patients with a range of cancer types. The groups opened the
public comment period for the guideline in February, which

ended on March 13, 2020. Formal guidelines are expected to be

re leased soon. The European Socie ty for Medica l

Oncology (ESMO) has already published its recommendations

as of 2020 (28). Taken together, three general considerations can

improve effective utilization of these assays:

a) The first and most important consideration is the prevalence

of MSI in different tumor types. Although MSI-H can be

present in almost all solid tumor types, its prevalence is widely

variable across the different tumor types. MSI testing should

be performed using IHC, PCR, or NGS method for the tumor

types with high frequency of MSI, generally belonging to the

spectrum of Lynch syndrome, including colorectal cancer
(31), endometrial cancer (32), gastric cancer (33), ovarian

cancer (34), and small Intestinal cancer (35). For other tumor

types that do not belong to the spectrum of Lynch syndrome

with low prevalence of MSI or no MSI data available on the
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reliability of IHC and the PCR method, such as NSCLC,

breast cancer, melanoma, and kidney cancer, NGS-MSI

should be considered because the NGS method can scan all
types of MSI and also couple analyses of MSI with TMB.

b) The second consideration is the order of testing methods. In
consideration of availability, cost and ease of testing, ESMO

recommends IHC-dMMR as the first choice, and then PCR-

MSI when IHC results are indeterminate. However, previous

studies showed that the expression of MMR proteins,

commonly MSH6, can change after neoadjuvant therapy

(36, 37) and that dMMR tumors are more common in
early-stage disease of different cancer types (defined as

stage <IV) compared to advanced and metastatic settings

(38). Given these two variables, the PCR-MSI should be a

preferred testing method over IHC after neoadjuvant therapy

or in advanced tumors. The last choice is NGS-MSI. The

primary reason for recommending NGS-MSI last is due to the
assay complexity, high cost and lower accessibility. Another

complication of the NGS method is the determination of the

appropriate threshold for calling MSI-H. Different NGS

panels with different numbers of genes and different tumor

types with different MSI frequency each impact threshold

determination. It is practically difficult to reach a consensus

threshold, which needs to be determined empirically and
validated clinically for a specific NGS panel.

c) The third consideration is panel selection. For IHC-dMMR,

antibodies for four MMR proteins (MLH1, MSH2, PMS2 and
MSH6) should be used instead of MSH6 and PMS2 only. The

mutations in MLH1 and MSH2 lead to loss of MLH1 and

PMS2, and MSH2 and MSH6, respectively. However, there

are isolated losses of PMS2, MSH2, or MSH6, which supports

the notion of using all four antibodies to improve testing

certainty and accuracy. For PCR-MSI, a panel with five poly-
A mononucleotide repeats (BAT-25, BAT-26, NR-21, NR-24,

NR-27) is recommended over a panel with two

mononucleotides (BAT-25 and BAT-26) and three

dinucleotides (D5S346, D2S123 and D17S250) for higher

sensitivity and specificity. For NGS-MSI, the number of

genes in the panel should be at least >300. A panel of 2000-

5000 genes may be a good compromise between cost and
coverage.

TMB
FDA Approval and Rationale
TMB is a measure of the number of gene mutations in cancer

cells and can be reported as the total number of nonsynonymous

somatic mutations in the tumor exome (39) or per megabase

DNA (40). TMB was recently approved for pembrolizumab for
the treatment of adult and pediatric patients with unresectable or

metastatic solid tumors in June 2020. Foundation One CDx assay

(Foundation Medicine, Inc.) was also approved as a companion

diagnostic test.

Several key factors can contribute to elevated TMB, including

cigarette smoke, ultraviolet radiation, and defective damage

response (DDR) genes (40). Among those factors, mutations in
the DNA damage response (DDR) genes are particularly

important, and emerging as independent predictors for ICI

response. Teo et al. (41) observed that mutations in DDR

genes are significantly associated with clinical benefit in

patients receiving immunotherapy. Similar results were also

reported in colorectal cancer (42), urothelial cancer (43), and

serval other cancers (44). For a most recent review in this topic,
please reference Minlin Jiang et al. (45). A high number of

mutations in somatic exonic regions will lead to an increase in

neoantigen production, some of which are immunogenic, and

could then be recognized by T cells, resulting in improved

antitumor immune responses. Consequently, patients with

high TMB likely produce more intensified immune responses
and are more sensitive to ICI treatments.

Different Test Methods and Challenges
There are 2 primary methods for evaluating TMB: WES and

NGS panels. WES-TMB was first demonstrated to have an

association with ICI response and proposed as a predictive

marker for ICI by Snyder et al. (46) and Rizvi et al. (47),
followed by many others (48, 49). These early WES-TMB

studies count only nonsynonymous somatic mutations. TMB-

H (TMB high) was called using different cutoffs varying from

≥7.4 in Esophagogastric cancer and ≥23.1 in NSCLC when the

number of nonsynonymous somatic mutations was reported as

per megabase DNA, and from ≥158 mutations in Advanced

NSCLC to ≥248 mutations in advanced SCLC when whole tumor
exome bases were counted. These different reporting formats and

TABLE 3 | Strengths, weaknesses and recommendations for three predictive MSI-H/dMMR biomarkers for ICI response.

Assays Strengths Weaknesses Recommendations

IHC for

dMMR

• Simple

• Fast

• Cost-effective

• Widely available

• Too many variables

• Hard to determine cut-off

• Relatively low analytic sensitivity

and accuracy

• First choice in general

• Use of all four antibodies

• Use for colorectal cancer and other spectrum of Lynch

syndrome when suitable

PCR for

MSI-H

• Widely available

• Ease of use

• Accurate for colorectal cancer and other

spectrum of Lynch syndrome

• Capture partial MSI profiles

• Low prevalence in some tumor

types

• Use of five poly-A panel

• Use after neoadjuvant therapy or in advanced tumors

NGS for

MSI-H

• Capture full MSI profile

• Suitable for all tumor type

• More accurate and sensitive

• Simultaneous detection of other potential

predictors

• High cost

• Technical demands

• Lack of wide availability

• Need tumor-type specific cut-

off

• The last choice

• >300 genes in the panel

• Standardize technical parameters wherever possible
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cutoff values complicate clinical practice. In addition, the clinical

utility of WES-TMB was limited by high cost, long turn-around

time, technical complication, and availability (40).

To address the WES-TMB limitations, researchers developed

NGS panels with a sufficiently large number of cancer-targeted

genes to predict TMB (50, 51). Early pioneer studies
demonstrated that properly designed and sufficiently large

NGS panels can accurately recapitulate WES-TMB and be

effectively used as an independent predictor of ICI treatment.

Further analyses provided addit ional evidence on

reproducibility, repeatability, and the limit of detection

compared with WES, and demonstrated good agreement
between NGS panels-derived and WES-derived TMB data (52,

53). Importantly, these targeted NGS panels with fewer DNA

bases and relatively simpler assays have improved utility in

clinical settings.

The calculation of TMB has different methods, depending on

the assay adopted. The WES-TMB assays typically consider

nonsynonymous somatic mutations in the analysis, while NGS

panels have generally taken a more comprehensive approach,
such as FundationOne CDx, which includes synonymous and

non-synonymous single-nucleotide variants (SNVs) for

improved assay sensitivity (54), and insertions and deletions

(indels) per area of coding genome sampled, but excludes known

and likely oncogenic driver events and germline SNPs. There is

currently no standard of TMB calculation. The TMB
Harmonization Project is aimed to standardize TMB

calculation and reporting (55–57).

There are two NGS panels commercially available that have

been approved by regulatory bodies: (i) MSK-IMPACT with 468

cancer genes was cleared by the 510K pathway for mutation

profiling in November 2017, and (ii) the FoundationOne CDx

assay with 324 cancer genes was approved by the FDA as a

companion diagnosis for the evaluation of TMB in 2020. These
targeted gene panels can analyze and identify single nucleotide

substitutions, indels, CNAs, and selected gene rearrangements, as

well as genomic signatures including microsatellite instability

(MSI) and loss of heterozygosity in a single assay.

Overall, TMB as a predictive marker for ICI treatment is more

technically challenging than PD-1 and MSI. Many variable
factors can impact TMB estimation and output, including

tumor type (different tumor types biologically have different

TMB (39)), tissue type (FFPE tissue will artificially have more

mutations than fresh frozen tissue), sequencing parameters

(NGS panel content, size and sequencing depth, bioinformatics

pipeline), and the reporting cutoff (55). The wide variation in

TMB estimation and reporting methods across studies have
limited effective adoption of TMB and stressed the need to

standardize assays for determining TMB.

Future Directions
TMB-H is generally predictive of response to multiple forms of

ICIs, but the predictive ability can vary across tumor types and
mutation types. Since the affinity of neoantigen binding to

MHC1 and T cell receptor recognition of neoantigen as foreign

are two determinants of immune response, distinct qualities of

neoantigens contribute to ICI response differently. Generally, the

lack of similarity of neoantigen to self-antigens results in an

increased ability to activate T-cells, and thus, predicts response to

ICIs. For example, Merkel cell carcinoma (MCC), renal cell

cancers (RCC), and mesothelioma all have higher response

rates to ICIs than would be anticipated from their TMBs (58)
due to the higher quality of antigens in these tumor types.

Elevated antigen quality results from viral antigens (in MCC),

a high number of indel mutations (in RCC), and complex

chromosomal rearrangements (in mesothelioma) (59). Keeping

these in mind, the below 3 points should be considered in TMB

estimation and reporting:

a) A clinically validated, sufficiently large NGS panel is preferred

over WES. In consideration of clinical utility (low cost,

shorter turn-around time, use of smaller biopsy samples,

higher assay sensitivity, lower technical complexity and

bioinformatics demand), a standardized, commercially

available NGS panel, such as FDA-approved FoundationOne
CDx, is recommended for TMB determination. When

FoundationOne CDx panel is used, ones should follow

approved method for TMB calculation (Douglas B et al.,

2016). The panel should be sufficiently large, including ≥300

targeted genes. These genes should be carefully selected by

including the following: (i) other TMB-related marker genes,
such as POLE whose mutations are associated with TMB-H in

multiple solid tumor types like endometrial, CRC, gastric,

melanoma, lung, and pediatric cancers (60–62), or BRAF and

MET whose alterations are associated with longer duration of

ICI treatment; (ii) other immunotherapy response-related genes,

such as genes for MSI estimate, immune resistant gene, IDO1,

and JAK (4, 5); (iii) multiple types of alterations, such as
mutations, indels, amplifications, CNAs, and structure

variations. Such a panel will be small enough for broader

clinical application, but informative enough to allow

performing multiomic analyses to provide a more

comprehensive, complete, and robust patient biomarker profile

for independent or joint ICI treatment decisions.

b) Weighted calculation for TMB score. Since different types of

alterations have variable immunogenicity, one should not
only focus on the number of mutations, but also consider the

types of mutations when evaluating TMB. Generally, patients

with frameshift indels, transversions, and clonal mutations

are more immunogenic than those with nonsynonymous

mutations (63), transitions (47), and branching or subclonal

mutations (64), respectively. In calculating TMB status, the

index may be expressed as a TMB score. The more
immunogenic types of mutations should be preferably

weighted. By using a TMB score, other factors that also

affect TMB predictive value can also be considered, such as

age (65).

c) Tumor-type specific reporting cutoffs. TMB estimation and

reporting methods are widely variable in scientific

publications. Like PD-L1, there is an urgent need to

standardize current TMB assessment methods, which is

essential for reliable use of TMB as a clinical biomarker for
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ICI response. However, among these variables, some

technically related variations can be addressed by

standardization, such as sequencing depth and gene panel,

while others related to biological variations can be addressed

according to biology. The variation in reporting cutoff is a

typical example of biological variation. Some tumor types
have naturally higher TMB than others (66), and thus require

a different cutoff for reliable and reproducible ICI response

prediction. For example, >16 mutations/Mb is appropriate for

atezolizumab in urothelial carcinoma (67), while >23.1

mutations/Mb is needed for pembrolizumab in NSCLC

(68). In fact, the TMB cutoff varied markedly across the top
20% of each cancer type (66), suggesting that it is unlikely to

be able to use a universal cutoff. The optimal cutoff should be

developed and validated in different tumor types.

NON-FDA APPROVED EMERGING
BIOMARKERS

Promising Mutation Predictive Biomarkers
Inactivation of PTEN
PTEN is ubiquitously expressed protein phosphatase that is one

of the major human tumor suppressors (69). For example, it

dephosphorylates PIP3 to PIP2 and thus inhibits PI3K/mTOR/

Akt signaling axis (70) and serves as the potent regulator of DNA

repair (71). Even a single-allele mutation of PTEN can

irreversibly repress molecular functions of this gene, thus
making a cell susceptible to carcinogenesis (72). Decreased

expression of PTEN is also connected with the sensitivity to

ICIs which can be mediated by lower infiltration of such cells by

T-lymphocytes (73). In lung cancer, mutations of PTEN were

shown to be associated with poor response to ICI therapy (74).

Mutations of POLE
POLE is a subunit of DNA polymerase epsilon that has polymerase

and proofreading activities, and participates in both DNA

replication and repair (75). Mutations in proofreading domain of

POLE are present in 1-12% of all tumors (76, 77) and result in

approximately two orders greater mutation rate, thus directly

influencing TMB (78). Tumors with POLE mutation have more

neoantigens and more infiltrating lymphocytes (79).

Linked Mutations of KRAS and STK11
Somatic activating mutations in 12 and 13 codons of KRAS can

be detected in 5-35% of the patients in different cancer types (80)

and most frequently are associated with poor survival prognosis

(81). These mutations are statistically significantly linked with

the mutations in the STK11 gene (82) that encodes LKB1 kinase
which phosphorylates and activates AMPK, a potent metabolic

regulator (83) that controls mTOR signaling (84). In lung cancer,

up to 30% of tumors may have mutated STK11 (85), and

presence of both STK11 and KRAS mutations is a factor of

poor survival prognosis (86). Inactivation of STK11 is also a

factor of more inert tumor microenvironment and lower

expression of PD-L1 (87).

In lung cancer patients with mutant KRAS, ICI therapy

showed lack of benefit, in contrast to the wild-type group of

tumors (88). In KRASmutant tumors, less patients responded on

ICI therapy in a STK11-mutated subgroup compared to a TP53-

mutated subgroup (7.4% versus 35.7%, respectively). The same

was observed in clinical trials CheckMate057 (0% vs. 57,1%),
CheckMate-012 (0% vs. 78%) (89), and GEMINI (0% vs. 53%)

(87). This also reflected statistically lower time to progression

(TTP) in patients having both mutations in KRAS and STK11

genes compared to the tumor with only KRAS mutations (90).

In agreement with that, KRAS/STK11 double mutant lung

cancers showed worse survival compared to only STK11
mutants: TTP of ~two months vs. five months, and overall

survival of ~seven months vs 16 months (91). Bad prognosis of

double mutant tumors was relatively independent on PD-L1

expression and was also true for the PD-L1-positive group of

double mutants (90). Interestingly, these mutations can likely

synergistically promote tumor infiltration by T cell suppressing
neutrophils (92).

Gene Signature Predictive Biomarkers
Three FDA-approved predictive biomarkers, PD-L1, MSI/

dMMR, and TMB have played a critical role in guiding ICI

treatment selection. However, each has its limitations. PD-L1 has

limited positive and negative predictive values, MSI-H/dMMR

has a low prevalence in many common metastatic cancers (<5%),
and TMB is hindered by high cost and technical complications.

Additionally, a wide range of response rates have been reported,

such as patients with low TMB, absence of MSI or without PD-1/

PD-L1 expression showing good response, or vice versa. This

unpredictability clearly indicates that immunotherapy response

is also driven by other biomarkers. The identification and

validation of additional predictive biomarkers are needed.
Recently, gene expression-based signatures have emerged as a

new generation of predictive biomarkers for ICI response. Here,

we will discuss four different gene signature biomarkers: T cell-

inflamed gene expression profile (GEP), T cell dysfunction and

exclusion gene signature (TIDE), melanocytic plasticity signature

(MPS), and B cell-focused gene signature.

a) T cell-inflamed gene expression profile (GEP) is one of the

early reported and clinically validated gene signatures for

predicting response to pembrolizumab across multiple solid

tumors (93). Through stepwise validation of several

populations, an 18-gene pan-tumor signature was identified

in 220 patients of nine different tumor types. This signature is
represented by the genes related to IFN-g signaling, cytotoxic

effector molecules, antigen presentation, and T cell active

cytokines, which is a common characteristic of a T cell-

inflamed tumor microenvironment responsive to ICIs.

Across multiple tumor types, data showed that responders

have high level of signature gene expression (a T cell inflamed
phenotype) while non-responders have low expression level

across the signature genes (a non-T cell-inflamed phenotype).

Its predictive value was demonstrated independently in a 96-

patient population with head and neck squamous cell

carcinoma. ROC analysis showed that the 10-gene signature
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has a larger area under the ROC curve than that of PD-L1,

demonstrating that the T cell-inflamed multigene signature

has a better predictive value compared to the commonly used

single gene biomarker, PD-L1.

b) The second promising gene expression panel is the T cell

dysfunction and exclusion gene signature, termed TIDE for

Tumor Immune Dysfunction and Exclusion. Different from T

cell-inflamed gene signature, which captures a favorable

tumor environment for ICI response (a high level of gene
expression in the panel is indicative of response), TIDE

focuses on the loss of T cell functionality, which reflects an

unfavorable tumor environment for ICI response (a high level

of gene expression in the panel is indicative of non-response).

TIDE was developed based on two key mechanisms of tumor

immune evasion (94, 95): dysfunctional infiltrated T cells in
the tumor, and prevention of T cell infiltration into the tumor.

Using large data sets and computational modeling method,

Peng Jiang et al. (96) identified gene signatures that underlie

these two mechanisms of tumor immune escape separately

and integratively.

Using publicly available transcriptome profiles of non-treated

tumors with patient survival outcomes, the authors first used

Cox proportional hazard (Cox-PH) model to test the interaction
of the expression of each gene in tumors with the level of T cell

infiltration (defined as average gene expression of known

regulators of T cell dysfunction) to influence patient survival.

This systematic, statistical interaction test identified signature

genes that affect T cell function and patient survival. The profiles

of these genes are enriched by inflammatory and interferon
response-related pathways and lack of pathways that promote

T cell activation, reflective of T cell dysfunctional phenotype.

Similarly, the authors used the expression profiles of three cell

lines, MDSCs, TAMs, and CAFs that restrict T cell infiltration in

tumors, to model T cell exclusion, and developed a gene

signature of T cell exclusion. Finally, TIDE, an integrated

signature, was developed to predict ICI response. ROC analysis
showed that TIDE has better predictive performance than TMB

and PD-L1 for both anti-PD1 and anti-CTLA4 therapies. In

addition, a lower TIDE score is predictive of longer patient

overall survival.

c) Melanocytic plasticity signature (MPS) was developed by

studying four mouse immunocompetent melanoma models

(M1-M4), which represent major subtypes of human

cutaneous melanoma, and the diversity of clinical responses

to ICIs. M1 and M2 mice had no response to anti-PD-L1 and
sustained tumor growth, M3 mice had modest response

and delayed tumor growth, and M4 had the best response

and significantly longer survival time. By comparing RNA-

seq data of ICI-resistant M1 and M2 and the sensitive M3 and

M4, and subsequent evaluation of response prediction in the

Van Allen dataset, Eva Pérez-Guijarro et al. (97) identified a

45-gene signature predictive to ICI response. Low MPS scores
were significantly associated with responders. In the Van

Allen dataset, 81% of responsive patients can be correctly

predicted by using MPS score. Furthermore, the patients with

low MPS had longer progression-free survival and overall

survival.

Further analyses showed that the 45-gene signature reflects

the multipotency and differentiation of the melanocytic lineage.

A highMPS score represents undifferentiation and multipotency,

and a low MPS score indicates later stages of melanocytic
differentiation. These data suggest multipotency and

differentiation status of melanoma can predict ICI response,

which represents a novel discovery. In a comparison of predictive

performance among MPS, TIDE, TMB, and PD-L1, ROC

analysis showed that MPS had the best ROC area under the

curve (AUC) value followed by TIDE in the Van Allen and
Hugo–Riaz data sets (97).

d) The B cell gene signature is a recently reported new biomarker

for ICI response. Since current ICI treatments reinvigorate T
cells against tumors, research of predictive biomarkers to ICI

response in the past was largely focused on T cells. Several

recent studies showed that the B cell rich immune cell

population in tertiary lymphoid structures (TLS) of tumors

is a critical discriminative feature of ICI responsiveness and

patient overall survival (97–99). TLS are aggregates of

immune cells and have been associated with increased
patient survival in several cancer types. These recent studies

further demonstrated that significantly enriched B cells

localized in TLS, specifically switched memory B cells (99),

are key predictors of ICI response. Helmink et al. also showed

the presence of high diversity of B cell receptors in responders

compared with non-responders. All these data demonstrated
an active role of B cells and tertiary lymphoid structures

in ICI response, and highlighted a possibility to develop

predictive gene signatures for ICI response focused on

B cells within TLS.

Cabrita et al. (98) constructed a TLS gene signature in

metastatic melanoma. This signature is dominated by B cell-

specific genes and is predictive of ICI response as well as patient

overall survival. Cox regression analysis using several immune

signatures across the four cohorts demonstrated that the TLS

signature has the best predictive performance in the cohorts
treated with anti-PD1. The predictive performance of TLS

signature is independent of TMB. A similar B cell dominated

gene signature was also developed in soft tissue sarcoma (100).

Using the microenvironment cell populations (MCP-counter)

method (101), the authors classified 608 tumors from different

subtypes of soft-tissue sarcoma into five groups (A, B, C, D, and
E) based on the composition of the tumor microenvironment.

An immune-high group E was characterized by the high density

of B cells and TLS. The key determinant of group E was the high

expression of the B cell signature. Once again, the B cell signature

was significantly associated with better ICI response and

improved overall survival.
Of the above 4 gene signatures, the T cell-inflamed, GEP, and

TIDE have superior predictive performance for ICI response

compared to PD-L1, and PD-L1 or TMB, respectively. MPS has

better predictive performance than PD-L1, TMB, and TIDE. The

B cell focused gene signature is a new predictive biomarker, and

Wang et al. Predictive Biomarkers for ICI

Frontiers in Oncology | www.frontiersin.org June 2021 | Volume 11 | Article 6834199

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


its predictive value has yet to be thoroughly evaluated in relation

to other established biomarkers. Based on currently available

data, the gene expression-based signatures are generally more

robust with enhanced predictive value compared to single gene

or protein markers.

In addition, a proof of concept has been recently reported that
next-generation expression signatures based on molecular

pathway activation profiles (102, 103) using RNA sequencing

data (104) can guide personalized ICI prescription in treatment

refractory tumors (105).

Combinational Predictive Biomarkers
Currently FDA-approved and recently developed gene signature

biomarkers for ICI response fall into two broad categories: one

category is related to tumor intrinsic factors, such as TMB, MSI

and MPS, and the other category is related to tumor extrinsic
factors, including PD-L1, T cell, and B cell gene signatures

(Figure 1). These biomarkers have independent predictive

values for ICI response, but predicted responders across those

biomarkers have a generally low percentage of overlapping,

particularly between these two categories. This lack of

correlation, together with the demonstrated individual
predictive values, indicates that these biomarkers measure

different aspects of complex tumor immunobiology and

capture unique features of ICI response phenotypes. This

suggests that the combination of different biomarkers may

provide complementary or additive effects and lead to an

improved predictive performance. Here, we will review two

combined predictive biomarkers, GEP+TMB and MPS+TIDE,
to demonstrate their improved predictive performance.

1) GEP+TMB. T cell-inflamed GEP and TMB measure T cell

activation (tumor microenvironment) and tumor

antigenicity, respectively, representing unique aspects of

tumor immunobiology. To understand the interplay

between these two distinct categories of biomarkers,

Cristescu et al. (106) explored the joint predictive response

to pembrolizumab across 22 tumor types from four

KEYNOTE clinical trials. The individual biomarker
prediction was first performed, followed by classification of

patients into four individual biomarker-defined response

groups (GEPloTMBlo, GEPloTMBhi, GEPhiTMBlo, and

GEPhiTMBhi) using predefined cutoffs for TMB and

GEP. The highest response rate was observed among

patients in the group of GEPhiTMBhi in all four cohorts. No
response was seen in the group of GEPloTMBlo in the pan-

tumor and HNSCC cohorts, and intermediate response rate was

observed in the group of either TMBloGEPhi or TMBhiGEPlo.

These data demonstrated that the combination of two

biomarkers offers higher sensitivity and greater predictive

value compared to a single biomarker. Additionally, the
patients in the GEPhiTMBhi group had longer progression-free

survival time.

The joint utility of the GEP+TMB in predicting ICI response

was further tested in TCGA database using 6384 patients of

matched transcriptome and WES data across a wide range of

tumor types. Consistent with the data derived from KEYNOTE

clinical trials, the patients with GEPhiTMBhi had the strongest

response, and GEPloTMBlo group had no or poorest response to
pembrolizumab, demonstrating that the improved response rate

by joint prediction of GEP+TMB can be generalized across

cancer types.

2) MSP+TIDE. As discussed above, MSP reflects cancer cell

intrinsic factor (multipotency and differentiation), which is not

associated with immune response, while TIDE represents

extrinsic factor (immune phenotype) reflective of the tumor

FIGURE 1 | Intrinsic and extrinsic biomarkers predictive of ICI response. Intrinsic biomarkers are tumor cell-related, extrinsic biomarkers are tumor

microenvironment-related.

Wang et al. Predictive Biomarkers for ICI

Frontiers in Oncology | www.frontiersin.org June 2021 | Volume 11 | Article 68341910

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


microenvironment. Given these different features, Guijarro et al.

(97) hypothesized that the combination ofMPS and TIDE scores

will increase predictive value. Indeed, ROC analysis showed a

noticeable improvement of the AUC values by MPS+TIDE

compared to any of the single methods in the Van Allen cohort.

The improved ICI response by combining MPS and TIDE
signatures translated into patient survival. Similar to the GEP+TMB

analysis described above, melanoma patients were classified into

three groups based on their MPS and TIDE scores. The low-MPS

and low-TIDE group showed significantly longer PFS and OS,

whereas the high-MPS and high-TIDE group exhibited the poorest

survival in Kaplan–Meier analysis.

Altogether, the results demonstrated that combining cancer

cell intrinsic and extrinsic factor-related gene signatures can

improve the predictability of not only ICI response, but also
patient survival. This integrated predictive biomarker may

represent a future direction for additional biomarker discovery.

FUTURE DIRECTION OF PREDICTIVE
BIOMARKER DISCOVERY

The above analyses cover different predictive biomarkers from
single to complex, DNA to RNA, and neoantigenic to TME-

related. All data suggest that patient response to ICIs is a

complex quantitative trait determined by multiple factors

(Figure 2). Current biomarkers tend to capture a unique

contributing factor of ICI response. Thus, a combination of

biomarkers should offer improved predictive performance to

ICI response. Because of ICI-related toxicities and the high cost
of these agents, current predictive biomarkers with a highly

variable response to ICIs cannot fully meet clinical need. There

is an urgent need to develop a new generation of biomarkers that

can reliably predict ICI response. Based on current knowledge

and available data, an optimal ICI predictive biomarker is an

integrated nucleic acid biomarker signature. This signature can
combine information from different DNA and RNA biomarkers

in one single assay to retrieve as many ICI response-related

contributors as possible, from the upstream to downstream of

immune response, from intrinsic to extrinsic factors, and from

TME to neoantigenic aspects. A final combined index score will

be used to predict ICI response, which will overcome potential

conflicting results from different biomarkers in the same assay.
Broadly, this integrated nucleic acid biomarker signature may

include at least the following four categories:

1) TME-related RNA biomarker genes, including key T cell-

inflamed signature genes, T cell dysfunction & exclusion

signature genes, and B cell signature genes.

2) Tumor multipotency and differentiation related RNA

biomarker genes, such as MSP signature genes.

3) Tumor neoantigenicity-related DNA biomarker genes

including frequently mutated core cancer genes for TMB,

DNA mismatch repair genes, and MSI panel.

4) Other high impact genes, such as TGFB1 with a known role in

promoting tumor immune escape and ICI resistance (107–

109), SOX10 with known function in promoting T cell-

mediated tumor cell attacking (110, 111), SERPINB9 with a

demonstrated role in regulating ICI resistance, and POLE/
POLD1 with an established role in contributing to high TMB

in some cancers (54). These high impact genes can come from

both tumor cells and tumor infiltrating immune cells.

To ensure its clinical utility and economic feasibility, this

integrated nucleic acid signature panel should be large enough to

capture all key ICI responsive features and allow calculation of a
reliable TMB, and small enough to be economically and technically

feasible for broad application in daily clinical practice using next

generation sequencing platforms. Because this integrated nucleic

acid biomarker panel can comprehensively analyze DNA and RNA

markers in one assay instead of two, it will have enhanced cost

efficiency, reduced assay time, and require less biological material
(total nucleic acids as input). This integrated assay includes multiple

contributing factors to ICI response, and will likely be more

predictive for immunologically cold tumors or advanced tumors.

FIGURE 2 | Patient response to ICIs is a quantitative trait. Each biomarker only captures a unique feature of the contributing factor (s).
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