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FDA-GAN: Flow-based Dual Attention GAN
for Human Pose Transfer
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Abstract—Human pose transfer aims at transferring the ap-
pearance of the source person to the target pose. Existing
methods utilizing flow-based warping for non-rigid human image
generation have achieved great success. However, they fail to
preserve the appearance details in synthesized images since
the spatial correlation between the source and target is not
fully exploited. To this end, we propose the Flow-based Dual
Attention GAN (FDA-GAN) to apply occlusion- and deformation-
aware feature fusion for higher generation quality. Specifically,
deformable local attention and flow similarity attention, con-
stituting the dual attention mechanism, can derive the output
features responsible for deformable- and occlusion-aware fusion,
respectively. Besides, to maintain the pose and global position
consistency in transferring, we design a pose normalization
network for learning adaptive normalization from the target pose
to the source person. Both qualitative and quantitative results
show that our method outperforms state-of-the-art models in
public iPER and DeepFashion datasets.

Index Terms—Pose Transfer, Image Synthesis, Generative Ad-
versarial Networks(GANs).

I. INTRODUCTION

UMAN pose transfer refers to the task of synthesizing

human image with source human texture and target pose.
We can utilize it to produce various human motions that
are absent in the real world. This task has a wide range of
multimedia and computer vision applications such as video
meetings, virtual human generation, data augmentation for
person re-identification, etc.

The generation of target-posed source image can be divided
into two subtasks: reassembling source image parts coexistent
in the target image and predicting the nonexistent parts to fill
in the target image. By deforming the source image features
to align them with the target pose, deformation-based methods
like [1], [2] have demonstrated great success. However, these
methods are built on the rigid human body assumption and
fail to model complex non-rigid body deformations for motion
transfer tasks. The recent emergence of one-to-one [3], [4] and
one-to-local [5] flow-based methods managed to address the
issue mentioned above by predicting warping flows, which can
establish point-wise correlations between source and target.
However, the following weaknesses remain in these flow-based
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Fig. 1. The illustration of our dual attention and the conventional sampling
methods. The red and orange lines connect the attention locations with the
invisible non-occluded target location and visible occluded target location.
(a) The one-to-one attention builds the exclusive relationship between source
and target, and the yellow triangles indicate the misleading values compared
with the red square. (b) For one-to-local attention, each target value connects
to a regular local source patch. (c) In our one-to-dual attention module, the
non-occluded part of the target uses deformable blocks to sample the source’s
value externally. The occluded regions can internally relate themselves with
target areas visible in the source. (d) We visualize the pose transfer results
with our one-to-dual attention mechanism.

methods. As is shown in Figure 1 (a), the one-to-one map-
ping between source and target is sensitive to incorrect flow
guidance caused by indistinguishable source values around the
expected source position. The one-to-local attention further
improves it by sampling a local source patch for each target
position as visualized in Figure 1 (b). The local attention
mechanism is still restricted by the limited receptive field, as
the attention value is confined to a small local region. Notably,
both methods cannot supply reliable attention values for the
occluded parts without a source counterpart. Besides, most
of the existing motion transfer methods cannot transfer target
pose while retaining the source body size or global position.

This paper proposes Flow-based Dual Attention GAN
(FDA-GAN) to attentionally integrate the source values with
the target and infer the shape-invariant warping flow with
adaptive pose normalization. Our one-to-dual attention module
is composed of deformable local attention and flow similarity
attention corporately. To minimize the impact caused by the
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Fig. 2. The overall framework of our FDA-GAN, which consists of three parts. The gray, orange, and blue blocks represent the Pose Normalization, Flow
Generation, and Image Feature Transformation modules, respectively. Given the source image Is and pose pairs (Ps, P;), the Flow Generation module predicts
the warping flow w and occlusion map m. Then the dual-attention block propagates the source feature fs into the target feature f; in multi-feature level.
Finally, it generates the target-posed image [; with encoded target feature f;. The Pose Normalization network is trained separately to provide consistent
target pose input for Flow Generation and Image Feature Transformation in test period. It takes inconsistent pose pairs (Psg, P;) as input, and normalizes

the original target pose P; into the source-type pose Pyp .

incorrect flow estimation result, the deformable local attention
samples a learnable irregular local patch around the corre-
sponding source position rather than the fixed regular local
patch. Therefore we can allow a larger receptive field for each
target position and gain a more precise spatial correlation
between source and target. Besides, we propose a bidirec-
tional consistency loss to avoid sampling source’s ambiguous
attention values for occluded target positions. Thus we infer
the occluded target values with the adjacent non-occluded
positions that have similar warping flow values as shown in
Figure 1 (c). In summary, the invisible target positions can
be predicted from the visible ones with motion similarity and
spatial correlation.

When training pose transfer model on the video-based
datasets like iPER [4], which collects consecutive posed
human images for each person, the source and the target
share the same pose structure in the training period. However,
it becomes difficult for this model to handle pose pairs
with high variance in testing, leading to undesired generated
results. For consistent pose estimation, we utilize the smpl
[6] model to collect same-posed but different-shaped skeleton
training samples and design the pose normalization network
for learning the mapping. In the test, we transfer the target
pose to keep it aligned with the source pose, which has no
dependency on the estimated 3d vertices like [4].

To prove our model’s superiority, we compare it with other
state-of-the-art methods performing image-based human pose
transfer. The experiment results qualitatively and quantitatively
show that our model outperforms the conventional schemes,
especially in image details and human appearance consistency.
Moreover, we conduct ablation studies and prove its effective-
ness with detailed analysis.

In general, we summarize our contributions as follows:

o We introduce a feedforward network to estimate the bidi-
rectional consistent 2d warping flow, which uses forward-
backward mapping to check the misestimated flow values
brought by self-occlusion or fuzzy texture.

o We propose a flow-guided dual attention block to deform
and reassemble the critical image features into the gener-
ated result, which works in the generation of the occluded
regions by flow similarity measurement.

e« We propose the pose normalization network to align
better the source and the target pose, which can help to
generate the target posed human of similar build and body
structure with the source human.

The rest of this paper is structured as follows: Sec.II intro-
duces the related works. Sec.IIl describes the details of our
proposed FDA-GAN. The analysis of our results is presented
in Sec.IV. In Sec.V we discuss our limitation and the future
directions for improvement. Finally, the paper is concluded in
Sec.VI.

II. RELATED WORK

A. Person Image Synthesis

The development of image-based pose transfer is largely
based on the flourishment of image synthesis techniques.
Unlike the conventional synthesis methods, which heavily
rely on the dedicated hand-crafted features, the emergence
of Generative Adversarial Networks (GANs) [7]-[17] brings
new insight to the sharp image generation by two-players
adversarial learning. Much of the current literature pays at-
tention to generating images under some conditional con-
straints, e.g., desired pose, viewpoint, sketch, etc. Conditional
GANs (cGANSs) [11] have achieved impressive performance



Fig. 3. The visualization of the dual attention heatmaps. Images from left to
right are: the source input, the generated result, and the corresponding encoded
target. The left blue line and the right red line indicate the sampling locations
with our deformable local attention module and flow similarity attention,
respectively. The attention coefficients are visualized with heatmaps.

in controllable image generation. [18] demonstrates their re-
markable scalability to handle problems such as sketch-to-
image, label-to-image. However, the pose-conditioned image
transfer cannot easily be tackled by pixel-wise aligned image
transfer methods due to the unaligned nature between pose
pairs. [19] introduces a model to combine the variation auto-
encoder and GAN to synthesize the vivid person images,
which can generate person images with different appearances.
[20] splits the person image synthesis task into the generation
of foreground and the background. [21] proposes a model for
synthesizing the fashion images conditioned with pose map
and textual description. [22] presents a unified multi-stage
deep generative model to tackle the multi-conditional person
image generation. [23] designs a novel generator architecture
with attribute decomposition and recombination to handle
attributed-guided person synthesis under various appearances
and poses. [24] generates the person images for data augmen-
tation, which uses body-part maps to attentionally entangle the
appearance and structure features. [25] proposes an approach
to characterize the person clothing segments with disentangled
geometry and style modeling, generating a realistic-looking
new-clothed person with fine-level style control.

B. Human Pose Transfer

Human pose transfer is a more challenging task. [26] is
the first work to deal with human pose transfer. It uses a
two-stage U-Net to transfer the target person’s pose to the
reference image. After that, the generated images are refined
with sharper texture in an adversarial way. The subsequent
works [27], [28] further split the task into pose generation
and appearance generation to avoid disturbance from the other.
However, the above Encoder-decoder methods all fuse the
motion and content information in an add or concatenate
manner, taking no deformation between paired poses into
consideration. To learn the deformation in different poses,
[1], [29] utilize the result of human parsing [30] as ground
truth to learn the spatial transformation in feature and image
level, respectively. [2] and [31] treat the transformation as a set
of body parts affine transformation. [2] proposes deformable
affine skip connection in U-Net to define the local feature
transformation for each body part based on the rigid body
assumption. Unlike the above one, [31] performs the human
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Fig. 4. The illustration of our flow similarity attention module. For readability,
we take the flow similarity computation process of location (z, y) as example
and then apply the calculation for every location in the target feature map.
The extractor E represents the bilinear grid sampler which takes In as input
and G as grid index map, and the S means the flow similarity calculation
block.
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pose transfer in the image level and recomposes body part
images to generate the new posed image.

Nonetheless, these methods commonly conflict with hu-
man’s non-rigid nature and thus limit their performance on the
task. With the help of a 2d flow map or a 3d corresponding
map, [3], [4], [32]-[34] try to extract the reliable appearance
information with multi-scale flow and reach higher warping
performance. [5], [35], [36] realize that warping source at the
pixel level prevents the model from generating new content.
They perform feature deformation to source features, which
can better propagate the source information to the composed
target in the feature space. Besides, most of the existing motion
transfer methods cannot transfer target poses while retaining
the source body sizes or global positions. Even if some recent
methods [3], [4] can alleviate this by describing motions with
3d human models rather than 2d poses, they deeply rely on
precise reconstructed 3d models and thus frequently fail.

C. Attention Mechanism in human pose transfer

Attention mechanism is widely used to assist the feature
matching [37]. In motion transfer, an attention mechanism can
help the model to find more reasonable sampling positions.
[38]-[41] propose a pose-guided attention network to avoid
misalignment. However, their self-attention module has a
high computational burden and considers excessive unrelated
information. Flow-based methods regard target image as the
deformation of source image, [5] propose a local attention
framework to calculate each output position with a local
source patch whose center is provided by feature flow. The
local attention can avoid the poor gradient brought by bilinear
sampling, and we extend this idea to use a deformable local
patch. Our learnable deformable kernel can capture more
relevant information around the patch center.

III. METHOD

FDA-GAN consists of three parts: Flow Generation, Image
Feature Transformation, and Pose Normalization. As is



shown in Figure 2, the Flow Generation module generates
an bidirectional consistent feature flow w to obtain valid
sampling locations from the source appearance feature. Based
on such sampling constraints, the Image Feature Transforma-
tion module utilizes our dual-attention (i.e., flow similarity
attention and deformable local attention) blocks to sample
useful appearance features. Then it takes the encoded target
features as inputs, and synthesizes the final output image I,
with a decoder. Moreover, considering the substantial skeleton
structure difference between source and target when they
belong to different individuals, we utilize Pose Normalization
to minimize the structure disparity between source and target
skeletons.

A. Bidirectional Consistent Flow Generation

The flow generation module aims to generate warping flows
that align encoded source features with the target features. The
warping flows are used to place the source feature values in
the target feature map. The pretrained VGG [42] can supply
image’s spatial distribution information in multi-feature level.
Thus with the VGG features of source image warped by flow
w/ and ground truth target images, we can predict the w/ by
minimizing the flow loss at all N positions in the ) coordinates
set of feature maps to learn the mapping relationship:

Ly= Jbl; exp (f¢ (vggi,wf,vggi)) (1)

where Vggivwf and Vggi represent the VGG feature values
of warped source and ground truth target located in I, and ¢(-)
means the cosine similarity function.

However, the estimated flow merely uses forward mapping
to supervise the flow learning, which is sensitive to pertur-
bation from indistinguishable matching pairs as shown in
Figure 1 (a). We then take a forward-backward mapping check
with bidirectional consistency loss to better differentiate the
analogous feature positions and mark the occluded ones in the
occlusion mask. The motivation comes from that the sum of
the forward flow and the backward flow at the corresponding
non-occluded positions should be zero to achieve the correct
mapping relationship. Correct bilateral matching between the
source and the target distinguishes occluded and non-occluded
positions with occlusion mask m:

Lpe = Zmlf p (Wf(l) +wh (I+ wf(l)))
leQ
+mp-p (W) +w! (1+w'(D)) @

The forward flow w/ and backward flow w?® are estimated

by computing them from both flow directions (i.e.,source to
target and target to source), along with the occlusion masks
mf and m®. p(-) are the robust Charbonnier function p(r) =

(x2 + 62)K.

B. Dual Attention Image Feature Transformation

Our image feature transformation module is based on the
dual attention mechanism. As shown in Figure 3, the dual
attention module consists of the flow similarity attention block
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Fig. 5. The illustration of our deformable local attention module.

and the deformable local attention block, which are used to
sample relevant positions from the encoded target and the
source, respectively.

1) Flow Similarity-based Attention Block: The flow gen-
eration module aims to warp the source features to align
with the target features. However, due to inconsistency with
the source, some invisible target parts may be assigned with
inappropriate source features during warping, degenerating the
results. Our flow similarity-based attention block is inspired
by the fact that similar appearances are more likely to have
similar motions (denoted by flow similarity in our method).
It samples target features visible in the source instead of
ambiguous source features for these target parts, where the
sampled target features have high flow similarity.

We group regions with the similar motion by measuring
the direction and displacement coherence of flow vectors with
the cosine similarity kernel K. and the gaussian kernel K,
respectively. As is shown in Figure 4, given the flow value
w; located in I(x,y), the similarity evaluator S calculates
the similarity map S;* by comparing w; with its neighbors

{wn|n € Ny (D)}
St = K. (w, wn) + Ky (wy, wy,)

T 2

w; Wy, lwi — wn |5
_ = 2 e N (l
anle [wn 5 e ( 20 . L0

3)

where w,, comes from k x k neighbors N (I) around the
I(x, y) rather than the whole flow map to reduce the calculation
cost and filter out the remote irrelevant values. The o and
[ represent the respective weights for both kernels and the
gaussian kernel bandwidth is set with o = 0.06.

Afterwards, we calculate k2 largest elements’s indexes from
{S/'ln € Nj (1)}, and reshape them to k x k sampling
index map G; : {Gj|i € Nj (I)}. The extractor E samples
flow similarity attention values and weight values from target
feature map f; and occlusion mask m. The occlusion map
shows the probability of being occluded or not. Thus our
attention module can utilize the feature values tending to be
non-occluded to calculate the flow similarity attention value.

After that, we normalize weight maps by softmax function,



ensuring the reliability of gradient propagation. Eventually,
the flow similarity attention result at location | = (x,y) is
computed as:

éatm = P(E(fi, Gi) ® softmaz(E(m,G)))) 4)

where ® means the element-wise multiplication, and P rep-
resents the average pooling. We can get the flow similarity
attention values fg,¢n by traversing through every locations.

2) Deformable Local Attention Module: The original local
attention sampling strategy uses a regular grid R" over the
source feature map f!* to extract source feature patches
around [ 4 w. The grid R"™ defines an n x n sampling kernel:

n—1n-1

g ®

n—1 n-—1
2 2

Rn:{(_ )""a(

However, the predefined square sampling region restricts its
performance since the adjacent feature values may not supply
correct sampling values. As shown in the Figure 5, we augment
the regular grid R™ by predicting the n X n irregular sampling
kernel for each source sampling location [ 4+ w in deformable
local attention block. For literal simplicity, we denote it as
Ra,. Then we get the deformable local attention sampling
index map by summing the offset map R4, with flow value w,
and original location [. After that, the extractor E calculates the
n x n sampled block f¢, . in the source map corresponding
to target location [. The sampling result f;; in target feature
map is acquired by regular sampling centered in target position
l. The kernel generation block takes the concatenation of
f{y and f2, . as input, followed by convolution blocks and
softmax function to output the n x n weighting values kj* for
corresponding sampled source feature block. The deformable
local attention value for target location [ is defined as:

D

IER™,jERIn

fcliattn = E kln (Z) ' fgl—f—w (j) (6)

The offset value should be constrained within the reasonable
region. A ¢, norm sampling alignment loss is thus proposed
to lower the offset map’s variance around position (I + w) of
source feature maps.

Ealign = Z Z

1€Q jER,

)

‘ fs,l+w - fz,l-&-w 9

In summary, using the estimated occlusion mask m, we
selectively combine the warped source feature fqq1tn, flow
similarity attention result fjusn, and the target feature f; to
get the final generated feature map:

fg = (1_m)*(ft+fsattn)+m*fdattn (8)

where the deformable local attention value fg,4+, Warps the
non-occluded source feature maps and the occluded parts are
predicted with fsqir,-

Apart from the losses mentioned above, we further use
several losses to train the network, namely adversarial loss,
perceptual loss and reconstruction loss. Our adversarial loss
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Fig. 6. The training pipeline of pose normalization network. The blue and
gray block in the right bottom indicate the 2d instance normalization layer
and residual convolution blocks which are the main components of our pose
normalization network. The yellow circles represent shape param’s dimensions
applied with gaussian perturbation.

adopts a vanilla GAN to approximate the distribution between
generated result and ground truth, which is defined as:

Loay = Ellog (1 — D (G (Is, pt, w,m)))] + E [log D (I})]
©))
To stabilize the training process and reduce the recon-
struction errors, we also apply an L1 constraint between the
generated image and the ground truth:

Lo, = i1 (10)

1

The pretrained extracted activation maps are used to penal-
ize in the feature level. The perceptual loss is calculated as:

N
ﬁperc = E ’
Jj=1

where ¢; means the i-th layer of the pretrained VGG
network. Our model is trained by a weighted sum of losses:

2
2

05 (1) =0 (1) (an

La =MLy 4+ XoLpe + A3Ly, + MaLaign

+)\5£ad1; + )\Gﬁperc (12)

C. Self-supervised Pose Normalization

Motion transfer aims to preserve the source person’s ap-
pearance, global location, and body shape. Since ground truth
skeleton with the same pose but different shape and global
location is scarce by nature, we address this problem by
fitting SMPL [6] model with 3d body model parameters
estimator [43] for target human. The SMPL model represents
the human body with parameters including pose # € RN 72,
shape B3 € R!'°, weak-perspective camera K € R3, and
the render function M (0, 3) € R®¥9°%3. The shape param
B € R controls different aspects of body shape like body
height, proportion, etc. Thus, the body shape can be altered
by adding gaussian perturbation to specified dimensions as is
shown in Figure 6. Then we project the new-shaped 3d body
into 2d plane to get pose map P;. In the testing period, unlike



the LiquidNET [4] which needs an extra 3d human model to
generate the target pose by deforming the source pose, our
pose normalization network shows no dependency on costly
3d modeling.

Figure 6 reveals that P, has a different shape and global
position but same pose with target pose map P;. To normalize
skeletons into source type, we use P, as input and design the
self-supervised pose normalization network to reconstruct P;.
Eighteen joint heatmaps define the input and output pose maps,
so the widely used cross-entropy loss is applied to minimize
the gap between model output P, and ground truth P;.

18
Lpp =— Z Pf log (Pfl)
i=1

The pose normalization network architecture is inspired by
[44]. We modify it with 2d convolution layers, instance norm
layers, and residual structure. The instance norm layers are
utilized to diminish the structure difference between P, and
I:’t. Further, the residual structure can capture the structure
residuals caused by varying shapes.

13)

IV. EXPERIMENT

In this section, we first introduce the datasets, the training
details, and evaluation metrics in Sec.IV-A. Then we compare
our method with conventional methods in Sec.IV-B. Finally,
we analyse the efficiency of the FDA-GAN Framework and
the pose normalization network in Sec.IV-C and Sec.IV-D.

A. Implementation Details

1) Datasets: In the task of human motion transfer task,
we use video-based dataset iPER [4] and image-based dataset
DeepFashion In-shop Clothes Retrieval Benchmark [49] to
evaluate the performance of our model. The iPER dataset
contains 206 high-resolution video sets from 30 persons. The
human subjects in iPER videos are filmed with static view-
points and show various motions. The DeepFashion dataset
contains 72712 high-fidelity images with dynamic viewpoints,
varying clothes, and background. Both are challenging in the
scope of human pose transfer. We extract the human key points
with OpenPose [50] to get the pose information. Further, we
split the iPER dataset into 164 training videos and 42 testing
videos and collect 101966 training image pairs and 8570
testing image pairs for the DeepFashion dataset. To ensure
the generalization ability of our method, the person identities
in the training set do not overlap with the testing set.

2) Network Architecture and Training Procedure: We em-
ploy a triple-encoder with a single decoder architecture as the
generation network in our experiment. All three encoders share
the same network structure with three times downsampling.
The initial search area size k and k of top/’?:2 operation are
set to 10 and 4 for calculating the flow similarity attention,
respectively. The whole training process is divided into two
stages. First, we train the pose transfer model end-to-end with
the estimated flow map and occlusion map. Then we separately
train the pose normalization model as described in Sec.IV-D
and apply it before the pose transfer model in testing. The

TABLE I
QUANTITATIVE RESULTS OF MOTION TRANSFER WITH VARIOUS MODELS
ON THE IPER DATASET. THE ASTERISK (*) MEANS THAT THERE IS NO
NEED TO EVALUATE THE INFLUENCE OF POSE NORMALIZATION IN
SELF-IMITATION SETTING SINCE THE POSE PAIR BELONG TO THE SAME
PERSON. THE ARROW NEAR THE METRIC NAME INDICATES THE BETTER
RESULTS DIRECTION.

Self-Imitation Cross-Imitation
SSIM T | LPIPS | IST FID |
FSV2V [48] 0.776 0.314 2.36 131.9
LiquidGAN [4] 0.888 0.068 2.11 86.8
GFLA [5] 0.909 0.059 2.15 128.6
PoNA [41] 0.972 0.075 2.27 139.2
PISE [47] 0.910 0.044 2.08 80.3
Baseline 0.920 0.043 1.92 80.3
w/i be loss 0.928 0.040 2.49 75.1
w/4 dual attn 0.924 0.040 241 78.3
Full 0.930 0.036 2.58 72.9
w/o posenorm * * 2.19 84.1
TABLE II

QUANTITATIVE RESULTS OF MOTION TRANSFER WITH VARIOUS MODELS
ON THE DEEPFASHION DATASET. THE ARROW NEAR THE METRIC NAME
INDICATES THE BETTER RESULTS DIRECTION.

SSIM 1 | LPIPS | IST | FID |

LiquidNET [4] 0.696 0.470 3.47 28.1
XingGAN [45] 0.710 0.297 3.49 48.8
GFLA [5] 0.701 0.221 3.69 14.5
PoNA [41] 0.775 0.406 3.33 323
PINet [46] 0.648 0.216 3.41 15.2
PISE [47] 0.630 0.2059 3.41 13.6
Baseline 0.683 0.290 2.89 32.0
w/i be loss 0.709 0.220 3.65 12.8
w/i dual attention 0.715 0.237 3.52 16.9
Full 0.729 0.187 3.77 8.4

overall training period costs ten epochs with Adam optimizer
(learning rate:2 X 10~%) in 4 Nvidia 2080Ti (11GB VRAM)
GPUs and the batchsize is set to 8.

3) Evaluation Metrics: We evaluate our generated result
in the iPER dataset from two aspects: self-imitation results
with ground truth comparison and cross-imitation among dif-
ferent persons without ground truth. For self imitation, we
mainly evaluate the quality of the reconstructed image with
Structure Similarity [51] (SSIM) and Learn Perceptual Image
Patch Similarity [52] (LPIPS). SSIM measures image structure
similarity, and LPIPS calculates the image patch’s perceptual
distances between generation result and ground truth. For cross
imitation, Inception Score [53] (IS) and Fréchet Inception
Distance [54] (FID) estimate the realness of generated images
with machine perception. Meanwhile, all metrics are calcu-
lated in the DeepFashion dataset to evaluate its reality and
quality.

B. Comparison with the Conventional Methods

1) Qualitative Results: We visualize the generated results
on iPER and DeepFashion datasets, compared with several
state-of-the-art methods including FSV2V [48], LiquidNET
[4], XingGAN [45], PoNA [41], PINet [46], and PISE [47].
The FSV2V can only be employed on the video dataset, so
we conduct its experiment on the iPER dataset. Besides, since
XingGAN and PINet do not provide a pretrained model on the
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Fig. 7. Qualitative comparison in DeepFashion dataset between our model and the conventional methods (please zoom in for better view). From left to right
are: input source image, input target pose, results of LiquidGAN [4](2019), results of XingGAN [45](2020), results of GFLA [5](2020), results of PONA

[41](2020), results of PINet [46](2020), and results of PISE [47](2021).

iPER dataset, we solely compare them on the DeepFashion
dataset.

As shown in Figure 7 and Figure 8, visualization results
generated by state-of-the-art models are used for qualitative
comparison to show the superiority of our method. Specifi-

cally, our model can generate high-fidelity images and main-
tain the human identity compared with FSV2V, XingGAN,
and PoNA, while these methods fail to preserve the texture
sharpness and image details. Moreover, even conditioned with
complex source dressing patterns, our method can produce



Self
imitation

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| Cross
| imitation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

e

Source
image

Target pose FSva2v LiquidNET

Target

GFLA .
image

PoNA PISE Ours

Fig. 8. Qualitative comparison between our model and the conventional methods including FSV2V [48](2019), LiquidGAN [4](2019), GFLA [5](2020),
PoNA [41](2020), and PISE [47](2021). We emphasize our model’s better rendering of occluded region with enlarged shoes image. The red and blue boxes
show the contrast of inability and ability to maintain the source human body shape and global position. The green box shows the comparison of different

local pose (head) adjustment. Best viewed enlarged on screen.

the most plausible garment details consistent with the source,
eg., the sweater detail is preserved in our result (as shown in
the fifth row of Figure 7). Besides, our method can predict
better texture and structure information in the occluded region
than methods like GFLA, PINet, and PISE. For example,
we achieve better size consistency of parts like bracelet and
camisole (as circled in red in the first, second, and third rows of
Figure 7), as well as better details of shoes near the boundary
(as shown in the second row of Figure 8). Additionally, the
body shape and foot position in our results can remain the
same as the source human. Although LiquidNET [4] can
roughly keep the output body shape invariant with the source,

it is vulnerable to the inaccurate 3d model estimation result
caused by huge camera coordinate difference. It shows a
conflicting leg or head pose with the target (as shown in
the third, fourth, and fifth rows of Figure 7). More analysis
will be presented in the Sec.IV-D. In summary, our method
can guarantee the detailed source appearance recovery and
maintain the body shape in the target pose simultaneously.

2) Quantitative Results: We compare our method with
several latest models on the iPER and DeepFashion datasets
in Table I and Table II, respectively. Specifically, to better
evaluate the performance of our model in the video-based
iPER dataset, we conduct cross-imitation evaluation where the
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Fig. 9. Qualitative results of ablation study in iPER and DeepFashion datasets.

source and target belong to different identities. We calculate
the SSIM and deep feature-based LPIPS metric to assess the
spatial similarity with ground truth using the generated images
in the iPER dataset. Our SSIM is slightly lower than the PONA
[41] because SSIM prefers more blurry images as pointed out
by [10], [55], [56] which indicates the inconformity between
higher SSIM score and better perceptual quality. We achieve
the lowest LPIPS score, which is more consistent with human
judgment. It means that our FDA-GAN can generate the im-
ages with better maintenance of perceptual structure similarity.
In the cross-imitation setting, when there is no existing ground
truth, we use IS and FID to measure the generation quality
compared with worldwide images and source human image
collections, respectively. Both metrics outperform the state-of-
the-art methods, which validates our method’s improvements
in generation quality and realism. For the DeepFashion dataset,
we can see that our model surpasses others in most metrics,
which validates our method’s improvement on the high-quality
image generation.

C. Effectiveness of the FDA-GAN Framework

To demonstrate the effectiveness of our dual attention mod-
ule and bidirectional consistency (bc) loss, we perform an
ablation study with several variant models for comparison.

1) Baseline: The source feature maps are directly warped
according to the feature flow map predicted by the flow
estimator without bidirectional loss.

2) w/i bc loss: This model adopts the same architecture
as the baseline except for the bc loss constraint. Especially,

DeepFashion Dataset
d

w/i. dual

Baseline X
loss attention

TABLE 1II N )
QUANTITATIVE RESULTS WITH VARYING SEARCH SIZE k AND k OF topk2
SELECTION IN OUR FLOW SIMILARITY ATTENTION MODULE ON THE
DEEPFASHION DATASET. WE HIGHLIGHT BEST, SECOND BEST AND
THIRD BEST SCORES. ‘*’ AND TC DENOTE THE DEFAULT SETTING AND
THE TIME COST FOR ONE FORWARD PROCESS OF OUR FLOW SIMILARITY
ATTENTION MODULE IN OUR ORIGINAL MANUSCRIPT, RESPECTIVELY.

Models SSIMT | LPIPS | | IST | FIDJ | TCG) 4
k=10, k=9 | 0.725 0.205 3.59 9.7 0.460
k=10, k=16 | 0.714 0.205 350 | 102 0.470
k=4, k=4 0.714 0.196 360 | 8.6 0.062
k=8, k=4 0.723 0.190 3.67 8.5 0.296
k=16, k=4 | 0.730 | 0.184 | 3.79 | 8.4 1.321
k=10, k=4 | 0.729 | 0.187 [ 3.77 [ 84 [ 0456

to eliminate the influence from pose difference, we normalize
the target pose for cross-imitation in the iPER dataset.

3) w/i dual attention: We propose this model to validate the
efficacy of our dual attention module introduced in Sec.III-B.
We still normalize the original target pose using our pose
normalization network.

4) Full model: We use the complete FDA-GAN, which
contains all the modules.

5) Full model w/o posenorm: We remove the pose normal-
ization before the main FDA-GAN generator, which has dual
attention and bc loss.

As shown in Table I and Table II, the combination of bc loss
and dual attention module prompts the result of all metrics.
Compared with the baseline, the performance gain from bc loss
proves that our forward-backward checking can help the flow
estimator to calculate more accurate flow values. We observed
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that such benefit is positively correlated to the degrees of
occlusion. In DeepFashion dataset, the degree of occlusion is
higher due to the large amount of viewpoint changes. In iPER
dataset, the viewpoint is almost the same for each person,
leading to a relatively lower degree of occlusion. Regardless
of the difference, the occlusion problem still exists, and that
is the reason why BC loss has such effect on these two
datasets. Furthermore, the dual attention module can sample
more reasonable positions for target outputs. However, the
direct warping baseline cannot supply correct source feature

values, leading to degraded performance. We further tested
the results of variant models trained with different search size
k and k of topk? selection in our flow similarity attention
module as shown in Table III, which indicates that our setting
(k=10, k=4) can achieve relatively good performance while
maintaining appropriate training time consumption. The best
setting (k=16, k=4) requires about 2.9 times longer than our
setting but the performance is not significantly improved. Our
full FDA-GAN outperforms the other variants and achieves
the best results.

Besides, from the visualization results in Figure 9, the
results of these variants suffer blurry and unrealistic warped
appearance generation in the face, shoe, or hand, as circled in
red in Figure 9. In contrast, the full model can generate more
plausible results, intuitively discovered by the face and clothes
details. It is worth noting that the clothes texture generated by
our model is sharper and more similar to the source, which
proves the effectiveness of our dual attention mechanism and
bc loss. Particularly, the pose normalization merely works in
the cross setting since it just improves the generation detail
when the source differs from the target, as circled in blue
in Figure 9. More detailed analysis about pose normalization
network is given in Sec.IV-D.



D. Effectiveness of the Pose Normalization Network

We propose the Pose Normalization Network (PN Net) to
preprocess the target pose before the main FDA-GAN, which
can tackle high variance in source and target pose pair and
avoid degraded performance in pose transfer. To prove the
effectiveness of a self-supervised trained pose normalization
network, we generate a normalized pose map and then conduct
motion transfer based on the normalized pose on the iPER
dataset. Besides, we compare our PN Net with the normaliza-
tion method proposed in EDN [57], which uses 2d scaling and
translation to align the target pose.

To demonstrate superior performance in normalizing the
poses, we generate person images based on our PN Net and the
pose normalization method in EDN. As shown in Figure 10(a),
when the human is in an upright posture, the generated results
by both methods show no noticeable difference (the first
row of the Figure 10(a)), which indicates that our method
has a similar effect when the bone length changes in the
approximate 2d plane. However, in cases like bending or leg
pressing, joint positions move in the 3d space. EDN fails to
preserve the source pose and adapt the original target joint to
the right positions when there is high variance between the
source and target, as shown in the Figure 10(a). The simply
scaling and translation way cannot deal with the complex
body structure deformation and would cause misalignment
w.r.t joint positions. We might have to introduce a complicated
linkage mechanism with many handcrafted hyperparameters if
we implement 2d pose normalization manually. In contrast,
our method uses a self-supervised model to learn how to
transfer from one body structure to another and achieve better
performance.

Notably, from the visualization results of Figure 10(b), we
can intuitively discover that the normalized pose can keep the
action pattern unchanged (the action he/she is doing) and adapt
the original pose to align with the source human’s body size
and global position.

V. DISCUSSION
A. Limitations

Despite the improvement over previous methods of our
model, we have to point out that the generation of occlusion
regions remains a challenge in pose transfer. Figure 11 presents
some failure cases with our FDA-GAN model. Our model
generates the occluded regions by searching regions with
similar flow values, which is less useful when facing large
occlusion and may result in unreasonable and blurry texture
in these areas. Besides, the errors of pose estimation can be
another big issue since the model cannot acquire reasonable
pose guidance.

B. Future improvements

In the case with large occlusion, which means that the
target generation cannot get much help from the source, the
pose transfer task can be more like the unconditional image
generation and need more common sense reasoning. So in the
future, we seek to enhance the capability of the unconditional

generation to solve this problem. To alleviate the negative
effect of pose estimator, we may try to get the latent pose
guidance from the target image directly without reliance upon
off-the-shelf pose estimation.

VI. CONCLUSION

In this paper, we have proposed a novel method to per-
form human pose transfer. It augments the flow generation
module with bidirectional consistency and employs a dual
attention module to integrate the source and target features
better. Furthermore, to remove the impact of disparate skeleton
structure and global position between source and target, a
pose normalization network has been trained to generate
consistent pose skeletons. Extensive experiments qualitatively
and quantitatively prove that our model outperforms others.
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