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Abstract

Despite the maturity of face detection research, it re-

mains difficult to compare different algorithms for face de-

tection. This is partly due to the lack of common evaluation

schemes. Also, existing data sets for evaluating face detec-

tion algorithms do not capture some aspects of face appear-

ances that are manifested in real-world scenarios. In this

work, we address both of these issues. We present a new

data set of face images with more faces and more accurate

annotations for face regions than in previous data sets. We

also propose two rigorous and precise methods for evaluat-

ing the performance of face detection algorithms. We report

results of several standard algorithms on the new bench-

mark.

1. Introduction

Face detection has been a core problem in computer vi-

sion for more than a decade. Not only has there been sub-

stantial progress in research, but many techniques for face

detection have also made their way into commercial prod-

ucts such as digital cameras. Despite this maturity, algo-

rithms for face detection remain difficult to compare, and

are somewhat brittle to the specific conditions under which

they are applied. One difficulty in comparing different face

detection algorithms is the lack of enough detail to repro-

duce the published results. Ideally, algorithms should be

published with sufficient detail to replicate the reported per-

formance, or with an executable binary. However, in the ab-

sence of these alternatives, it is important to establish better

benchmarks of performance.

For a data set to be useful for evaluating face detection,

the locations of all faces in these images need to be anno-

tated. Sung et al. [24] built one such data set. Although

this data set included images from a wide range of sources

including scanned newspapers, all of the faces appearing in

these images were upright and frontal. Later, Rowley et

al. [18] created a similar data set with images that included

faces with in-plane rotation. Schneiderman et al. [20, 21]

combined these two data sets with an additional collection

of profile face images, which is commonly known as the

MIT+CMU data set. Since this resulting collection con-

tains only grayscale images, it is not applicable for evalu-

ating face detection systems that employ color information

as well [6]. Some of the subsequent face detection data sets

included color images, but they also had several shortcom-

ings. For instance, the GENKI data set [25] includes color

images that show a range of head poses (yaw, pitch ±45◦.

roll ±20◦), but every image in this collection contains ex-

actly one face. Similarly, the Kodak [13], UCD [23] and

VT-AAST [1] data sets included images of faces with oc-

clusions, but the small sizes of these data sets limit their

utility in creating effective benchmarks for face detection

algorithms.

One contribution of this work is the creation of a new

data set that addresses the above-mentioned issues. Our

data set includes

• 2845 images with a total of 5171 faces;

• a wide range of difficulties including occlusions, diffi-

cult poses, and low resolution and out-of-focus faces;

• the specification of face regions as elliptical regions;

and

• both grayscale and color images.

Another limitation of the existing benchmarks is the lack

of a specification for evaluating the output of an algorithm

on a collection of images. In particular, as noted by Yang

et al. [28], the reported performance measures depend on

the definition of a “correct” detection result. The definition

of correctness can be subtle. For example, how should we

score an algorithm which provides two detections, each of

which covers exactly 50% of a face region in an image?

Since the evaluation process varies across the published re-

sults, a comparison of different algorithms remains diffi-

cult. We address this issue by presenting a new evaluation

scheme with the following components:
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• An algorithm to find correspondences between a face

detector’s output regions and the annotated face re-

gions.

• Two separate rigorous and precise methods for evaluat-

ing any algorithm’s performance on the data set. These

two methods are intended for different applications.

• Source code for implementing these procedures.

We hope that our new data set, the proposed evaluation

scheme, and the publicly available evaluation software will

make it easier to precisely compare the performance of al-

gorithms, which will further prompt researchers to work on

more difficult versions of the face detection problem.

The report is organized as follows. In Section 2, we

discuss the challenges associated with comparing different

face detection approaches. In Section 3, we outline the con-

struction of our data set. Next, in Section 4, we describe a

semi-automatic approach for removing duplicate images in

a data set. In Section 5, we present the details of the an-

notation process, and finally in Section 6, we present our

evaluation scheme.

2. Comparing face detection approaches

Based of the range of acceptable head poses, face detec-

tion approaches can be categorized as

• single pose: the head is assumed to be in a single, up-

right pose (frontal [24, 18, 26] or profile [21]);

• rotation-invariant: in-plane rotations of the head are

allowed [8, 19];

• multi-view: out-of-plane rotations are binned into a

pre-determined set of views [7, 9, 12];

• pose-invariant: no restrictions on the orientation of

the head [16, 22].

Moving forward from previous comparisons [28] of ap-

proaches that focus on limited head orientations, we intend

to evaluate different approaches for the most general, i.e.,

the pose-invariant, face detection task.

One challenge in comparing face detection systems is the

lack of agreement on the desired output. In particular, while

many approaches specify image regions – e.g., rectangular

regions [26] or image patches with arbitrary shape [17] – as

hypotheses for face regions, others idetify the locations of

various facial landmarks such as the eyes [27]. Still others

give an estimate of head pose [16] as well.

The scope of this work is limited to the evaluation of

region-based output alone (although we intend to follow this

report in the near future with a similar evaluation of 3D pose

estimation algorithms). To this end, we annotate each face

region with an ellipse of arbitrary size, shape, and orienta-

tion, showing the approximate face region for each face in

the image. Compared to the traditional rectangular annota-

tion of faces, ellipses are generally a better fit to face regions

and still maintain a simple parametric shape to describe the

face. We discuss the details of the annotation process in

Section 5. Note that our data set is amenable to any addi-

tional annotations including facial landmarks and head pose

information, which would be beneficial for benchmarking

the next generation of face detection algorithms.

Next we discuss the origins and construction of our

database.

3. FDDB: Face Detection Data set and Bench-

mark

Berg et al. [2] created a data set that contains images

and associated captions extracted from news articles (see

Figure 1). The images in this collection display large varia-

tion in pose, lighting, background and appearance. Some of

these variations in face appearance are due to factors such as

motion, occlusions, and facial expressions, which are char-

acteristic of the unconstrained setting for image acquisition.

The annotated faces in this data set were selected based on

the output of an automatic face detector. An evaluation of

face detection algorithms on the existing set of annotated

faces would favor the approaches with outputs highly cor-

related with this base detection algorithm. This property of

the existing annotations makes them unsuitable for evaluat-

ing different approaches for face detection. The richness of

the images included in this collection, however, motivated

us to build an index of all of the faces present in a subset of

images from this collection. We believe that benchmarking

face detection algorithms on this data set will provide good

estimates of their expected performance in unconstrained

settings.

3.1. Construction of the data set

Original 
Collection

Near-
duplicate 
Detection

Ellipse 
Fitting

Figure 2. Outline of the labeling process. Semi-automatic ap-

proaches are developed for both of these steps.

The images in Berg et al.’s data set were collected from

the Yahoo! news website,1 which accumulates news arti-

cles from different sources. Although different news or-

ganizations may cover a news event independently of each

other, they often share photographs from common sources

such as the Associated Press or Reuters. The published

1http://news.yahoo.com
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Figure 1. Example images from Berg et al.’s data set.

photographs, however, may not be digitally identical to

each other because they are often modified (e.g., cropped

or contrast-corrected) before publication. This process has

led to the presence of multiple copies of near-duplicate im-

ages in Berg et al.’s data set. Note that the presence of such

near-duplicate images is limited to a few data collection do-

mains such as news photos and those on the internet, and

is not a characteristic of most practical face detection ap-

plication scenarios. For example, it is uncommon to find

near-duplicate images in a personal photo collection. Thus,

an evaluation of face detection algorithms on a data set with

multiple copies of near-duplicate images may not generalize

well across domains. For this reason, we decided to identify

and remove as many near duplicates from our collection as

possible. We now present the details of the duplicate detec-

tion.

4. Near-duplicate detection

We selected a total of 3527 images (based on the chrono-

logical ordering) from the image-caption pairs of Berg et

al. [2]. Examining pairs for possible duplicates in this col-

lection in the naı̈ve fashion would require approximately

12.5 million annotations. An alternative arrangement would

be to display a set of images and manually identify groups

of images in this set, where images in a single group are

near-duplicates of each other. Due to the large number of

images in our collection, it is unclear how to display all the

images simultaneously to enable this manual identification

of near-duplicates in this fashion.

Identification of near-duplicate images has been stud-

ied for web search [3, 4, 5]. However, in the web search

domain, scalability issues are often more important than

the detection of all near-duplicate images in the collec-

tion. Since we are interested in discovering all of the near-

duplicates in our data set, these approaches are not directly

applicable to our task. Zhang et al. [29] presented a more

computationally intensive approach based on stochastic at-

tribute relational graph (ARG) matching. Their approach

Figure 3. Near-duplicate images. (Positive) The first two images

differ from each other slightly in the resolution and the color and

intensity distributions, but the pose and expression of the faces are

identical, suggesting that they were derived from a single photo-

graph. (Negative) In the last two images, since the pose is differ-

ent, we do not consider them as near-identical images.

was shown to perform well on a related problem of detect-

ing near-identical frames in news video databases. These

ARGs represent the compositional parts and part-relations

of image scenes over several interest points detected in an

image. To compute a matching score between the ARGs

constructed for two different images, a generative model

for the graph transformation process is employed. This ap-

proach has been observed to achieve high recall of near-
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duplicates, which makes it appropriate for detecting similar

images in our data set.

As with most automatic approaches for duplicate detec-

tion, this approach has a trade-off among false positives

and false negatives. To restrict the number of false posi-

tives, while maintaining a high true positive rate, we follow

an iterative approach (outlined in Algorithm 1) that alter-

nates between clustering and manual inspection of the clus-

ters. We cluster (steps 3-5 of Algorithm 1) using a spectral

graph-clustering approach [15]. Then, we manually label

each non-singleton cluster from the preceding step as either

uniform, meaning that it contains images that are all near

duplicates of each other, or non-uniform, meaning that at

least one pair of images in the cluster are not near duplicates

of each other. Finally, we replace each uniform cluster with

one of the images belonging to it.

For the clustering step, in particular, we construct a fully-

connected undirected graph G over all the images in the

collection, where the ARG-matching scores are used as

weights for the edges between each pair of images. Follow-

ing the spectral graph-clustering approach [15], we compute

the (unnormalized) Laplacian LG of graph G as

LG = diag(d) − WG, (1)

where d is the set of degrees of all the nodes in G, and WG

is the adjacency matrix of G. A projection of the graph G

into a subspace spanned by the top few eigenvectors of LG

provides an effective distance metric between all pairs of

nodes (images, in our case). We perform mean-shift clus-

tering with a narrow kernel in this projected space to obtain

clusters of images.

Algorithm 1 Identifying near-duplicate images in a collec-

tion

1: Construct a graph G = {V,E}, where V is the set of

images, and E are all pairwise edges with weights as

the ARG matching scores.

2: repeat

3: Compute the Laplacian of G, LG.

4: Use the top m eigenvectors of LG to project each

image onto Rm.

5: Cluster the projected data points using mean-shift

clustering with a small-width kernel.

6: Manually label each cluster as either uniform or non-

uniform.

7: Collapse the uniform clusters onto their centroids,

and update G.

8: until none of the clusters can be collapsed.

Using this procedure, we were able to arrange the im-

ages according to their mutual similarities. Annotators were

asked to identify clusters in which all images were derived

from the same source. Each of these clusters was replaced

by a single exemplar from the cluster. In this process we

manually discovered 103 uniform clusters over seven iter-

ations, with 682 images that were near-duplicates. Addi-

tional manual inspections were performed to find an addi-

tional three cases of duplication.

Next we describe our annotation of face regions.

5. Annotating face regions

As a preliminary annotation, we drew bounding boxes

around all the faces in 2845 images. From this set of anno-

tations, all of the face regions with height or width less than

20 pixels were excluded, resulting in a total of 5171 face

annotations in our collection.

Figure 4. Challenges in face labeling. For some image regions,

deciding whether or not it represents a “face” can be challeng-

ing. Several factors such as low resolution (green, solid), occlu-

sion (blue, dashed), and pose of the head (red, dotted) may make

this determination ambiguous.

For several image regions, the decision of labeling them

as face regions or non-face regions remains ambiguous due

to factors such as low resolution, occlusion, and head-pose

(e.g., see Figure 4). One possible approach for handling

these ambiguities would be to compute a quantitative mea-

sure of the “quality” of the face regions, and reject the im-

age regions with the value below a pre-determined thresh-

old. We were not able, however, to construct a satisfactory

set of objective criteria for making this determination. For

example, it is difficult to characterize the spatial resolution

needed to characterize an image patch as a face. Similarly,

for occluded face regions, while a threshold based on the

fraction of the face pixels visible could be used as a crite-

rion, it can be argued that some parts of the face (e.g., eyes)

are more informative than other parts. Also, note that for

the current set of images, all of the regions with faces look-

ing away from the camera have been labeled as non-face

regions. In other words, the faces with the angle between

the nose (specified as radially outward perpendicular to the
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head) and the ray from the camera to the person’s head is

less than 90 degrees. Estimating this angle precisely from

an image is difficult.

Due to the lack of an objective criterion for including (or

excluding) a face region, we resort to human judgments for

this decision. Since a single human decision for determin-

ing the label for some image regions is likely to be inconsis-

tent, we used an approach based on the agreement statistics

among multiple human annotators. All of these face regions

were presented to different people through a web interface

to obtain multiple independent decisions about the validity

of these image regions as face regions. The annotators were

instructed to reject the face regions for which neither of the

two eyes (or glasses) were visible in the image. They were

also requested to reject a face region if they were unable

to (qualitatively) estimate its position, size, or orientation.

The guidelines provided to the annotators are described in

Appendix A.

5.1. Elliptical Face Regions

Figure 5. Shape of a human head. The shape of a human head

(left) can be approximated as the union of two ellipsoids (right).

We refer to these ellipses as vertical and horizontal ellipsoids.

As shown in Figure 5,2 the shape of a human head can

be approximated using two three-dimensional ellipsoids.

We call these ellipsoids the vertical and horizontal ellip-

soids. Since the horizontal ellipsoid provides little informa-

tion about the features of the face region, we estimate a 2D

ellipse for the orthographic projection of the hypothesized

vertical ellipsoid in the image plane. We believe that the re-

sulting representation of a face region as an ellipse provides

a more accurate specification than a bounding box without

introducing any additional parameters.

We specified each face region using an ellipse parame-

terized by the location of its center, the lengths of its major

and minor axes, and its orientation. Since a 2D orthographic

projection of the human face is often not elliptical, fitting

an ellipse around the face regions in an image is challeng-

ing. To make consistent annotations for all the faces in our

2Reproduced with permission from Dimitar Nikolov, Lead Animator,

Haemimont Games.

1 unit

1 unit

Chin

Top of the head

Figure 6. Guidelines for drawing ellipses around face regions.

The extreme points of the major axis of the ellipse are respectively

matched to the chin and the topmost point of the hypothetical ver-

tical ellipsoid used for approximating the human head (see Fig-

ure 5). Note that this ellipse does not include the ears. Also, for a

non-frontal face, at least one of the lateral extremes (left or right)

of this ellipse are matched to the boundary between the face re-

gion and the corresponding (left or right) ear. The details of our

specifications are included in Appendix A.

Figure 7. Sample Annotations. The two red ellipses specify the

location of the two faces present in this image. Note that for a non-

frontal face (right), the ellipse traces the boundary between the

face and the visible ear. As a result, the elliptical region includes

pixels that are not a part of the face.

data set, the human annotators are instructed to follow the

guidelines shown in Figure 6. Figure 7 shows some sample

annotations. The next step is to produce a consistent and

reasonable evaluation criterion.
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6. Evaluation

To establish an evaluation criterion for detection algo-

rithms, we first specify some assumptions we make about

their outputs. We assume that

• A detection corresponds to a contiguous image region.

• Any post-processing required to merge overlapping or

similar detections has already been done.

• Each detection corresponds to exactly one entire face,

no more, no less. In other words, a detection cannot

be considered to detect two faces at once, and two de-

tections cannot be used together to detect a single face.

We further argue that if an algorithm detects multiple

disjoint parts of a face as separate detections, only one

of them should contribute towards a positive detection

and the remaining detections should be considered as

false positives.

To represent the degree of match between a detection di

and an annotated region lj , we employ the commonly used

ratio of intersected areas to joined areas:

S(di, lj) =
area(di) ∩ area(lj)

area(di) ∪ area(lj)
. (2)

To specify a more accurate annotation for the image re-

gions corresponding to human faces than is obtained with

the commonly used rectangular regions, we define an ellip-

tical region around the pixels corresponding to these faces.

While this representation is not as accurate as a pixel-level

annotation, it is a clear improvement over the rectangular

annotations in existing data sets.

To facilitate manual labeling, we start with an automated

guess about face locations. To estimate the elliptical bound-

ary for a face region, we first apply a skin classifier on the

image pixels that uses their hue and saturation values. Next,

the holes in the resulting face region are filled using a flood-

fill implementation in MATLAB. Finally, a moments-based

fit is performed on this region to obtain the parameters of

the desired ellipse. The parameters of all of these ellipses

are manually verified and adjusted in the final stage.

6.1. Matching detections and annotations

A major remaining question is how to establish a cor-

respondence between a set of detections and a set of an-

notations. While for very good results on a given image,

this problem is easy, it can be subtle and tricky for large

numbers of false positives or multiple overlapping detec-

tions (see Figure 8 for an example). Below, we formulate

this problem of matching annotations and detections as find-

ing a maximum weighted matching in a bipartite graph (as

shown in Figure 9).

Figure 8. Matching detections and annotations. In this image, the

ellipses specify the face annotations and the five rectangles denote

a face detector’s output. Note that the second face from left has

two detections overlapping with it. We require a valid matching

to accept only one of these detections as the true match, and to

consider the other detection as a false positive. Also, note that the

third face from the left has no detection overlapping with it, so no

detection should be matched with this face. The blue rectangles

denote the true positives and yellow rectangles denote the false

positives in the desired matching.

l
1

l
3

l
2

d
1

d
2

Max-Flow

Detections

Labels

n
1

n
2 No Match

Figure 9. Maximum weight matching in a bipartite graph. We

make an injective (one-to-one) mapping from the set of detected

image regions di to the set of image regions li annotated as face

regions. The property of the resulting mapping is that it maximizes

the cumulative similarity score for all the detected image regions.

Let L be the set of annotated face regions (or labels) and

D be the set of detections. We construct a graph G with

the set of nodes V = L ∪ D. Each node di is connected

to each label lj ∈ L with an edge weight wij as the score

computed in Equation 2. For each detection di ∈ D, we

further introduce a node ni to correspond to the case when

this detection di has no matching face region in L.

A matching of detections to face regions in this graph

corresponds to the selection of a set of edges M ⊆ E. In

the desired matching of nodes, we want every detection to

be matched to at most one labeled face region, and every

labeled face region to be matched to at most one detection.
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Note that the nodes nk have a degree equal to one, so they

can be connected to at most one detection through M as

well. Mathematically, the desired matching M maximizes

the cumulative matching score while satisfying the follow-

ing constraints:

∀d ∈ D,∃l ∈ {L ∪ N}, d
M
−→ l (3)

∀l ∈ L, ∄d, d′ ∈ D, d
M
−→ l ∧ d′

M
−→ l (4)

The determination of the minimum weight matching in a

weighted bipartite graph has an equivalent dual formulation

as finding the solution of the minimum weighted (vertex)

cover problem on a related graph. This dual formulation

is exploited by the Hungarian algorithm [11] to obtain the

solution for the former problem. For a given image, we em-

ploy this method to determine the matching detections and

ground-truth annotations. The resulting similarity score is

used for evaluating the performance of the detection algo-

rithm on this image.

6.2. Evaluation metrics

Let di and vi denote the ith detection and the correspond-

ing matching node in the matching M obtained by the al-

gorithm described in Section 6.1, respectively. We propose

the following two metrics for specifying the score yi for this

detection:

• Discrete score (DS) : yi = δS(di,vi)>0.5.

• Continuous score (CS): yi = S(di, vi).

For both of these choice of scoring the detections, we

recommend analyzing the Receiver Operating Character-

istic (ROC) curves to compare the performance of differ-

ent approaches on this data set. Although comparing the

area under the ROC curve is equivalent to a non-parametric

statistical hypothesis test (Wilcoxon signed-rank test), it is

plausible that the cumulative performances of none of the

compared approaches is better than the rest with statistical

significance. Furthermore, it is likely that for some range

of performance, one approach could outperform another,

whereas the relative comparison is reversed for a different

range. For instance, one detection algorithm might be able

to maintain a high level of precision for low recall values,

but the precision drops sharply after a point. This trend may

suggest that this detector would be useful for application

domains such as biometrics-based access controls, which

may require high precision values, but can tolerate low re-

call levels. The same detector may not be useful in a setting

(e.g., surveillance) that would requires the retrieval of all

the faces in an image or scene. Hence, the analysis of the

entire range of ROC curves should be done for determining

the strengths of different approaches.

7. Experimental Setup

For an accurate and useful comparison of different ap-

proaches, we recommend a distinction based on the training

data used for estimating their parameters. In particular, we

propose the following experiments:

EXP-1: 10-fold cross-validation

For this experiment, a 10-fold cross-validation is performed

using a fixed partitioning of the data set into ten folds.3 The

cumulative performance is reported as the average curve of

the ten ROC curves, each of which is obtained for a different

fold as the validation set.

EXP-2: Unrestricted training

For this experiment, data outside the FDDB data set is

permitted to be included in the training set. The above-

mentioned ten folds of the data set are separately used as

validation sets to obtain ten different ROC curves. The cu-

mulative performance is reported as the average curve of

these ten ROC curves.

8. Benchmark

For a proper use of our data set, we provide the imple-

mentation (C++ source code) of the algorithms for matching

detections and annotations (Section 6.1), and computing the

resulting scores (Section 6.2) to generate the performance

curves at http://vis-www.cs.umass.edu/fddb/

results.html. To use our software, the user needs to

create a file containing a list of the output of this detector.

The format of this input file is described in Appendix B.

In Figure 10, we present the results for the following ap-

proaches for the above-mentioned EXP-2 experimental set-

ting:

• Viola-Jones detector [26] – we used the OpenCV4 im-

plementation of this approach. We set the scale-factor

and minimum number of neighbors parameters to 1.2

and 0, respectively.

• Mikolajczyk’s face detector [14] 5 – we set the param-

eter for the minimum distance between eyes in a de-

tected face to 5 pixels.

• Kienzle et al.’s [10] face detection library (fdlib 6).

3The ten folds used in the proposed experiments are available at http:

//vis-www.cs.umass.edu/fddb/FDDB-folds.tgz
4http://sourceforge.net/projects/opencvlibrary/
5http://www.robots.ox.ac.uk/∼vgg/research/

affine/face detectors.html
6http://www.kyb.mpg.de/bs/people/kienzle/fdlib/

fdlib.htm
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(a) ROC curves based on discrete score (DS)

(b) ROC curves based on continuous score (CS)

Figure 10. FDDB baselines. These are the ROC curves for differ-

ent face detection algorithms. Both of these scores (DS and CS)

are described in Section 6.2, whereas the implementation details

of these algorithms are included in Section 8.

As seen in Figure 10, the number of false positives ob-

tained from all of these face detection systems increases

rapidly as the true positive rate increases. Note that the per-

formances of all of these systems on the new benchmark are

much worse than those on the previous benchmarks, where

they obtain less than 100 false positives at a true positive

rate of 0.9. Also note that although our data set includes im-

ages of frontal and non-frontal faces, the above experiments

are limited to the approaches that were developed for frontal

face detection. This limitation is due to the unavailability

of a public implementation of multi-pose or pose-invariant

face detection system. Nevertheless, the new benchmark in-

cludes more challenging examples of face appearances than

the previous benchmarks. We hope that our benchmark will

further prompt researchers to explore new research direc-

tions in face detection.
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A. Guidelines for annotating faces using el-

lipses

To ensure consistency across multiple human annotators,

we developed a set of instructions (shown in Figure 11).

These instructions specify how to use facial landmarks to

fit an ellipse depending on the pose of the head. Figure 12

presents an illustration of the resulting ellipses on line draw-

ings of a human head. The annotators were futher instructed

to follow a combination of these guidelines to fit ellipses to

faces with complex head poses.

The illustrations shown in Figure 12 use faces with neu-

tral expressions. A presence of some expressions such as

laughter, often changes the shape of the face significantly.

Moreover, even bearing a neutral expression, some faces

have shapes markedly different from the average face shape

used in these illustrations. Such faces (e.g., faces with

square-jaw or double-chin) are difficult to approximate us-

ing ellipses. To annotate faces with such complexities, the

annotators were instructed to refer to the following guide-

lines:

• Facial expression. Since the distance from the eyes to

the chin in a face with facial expression is not necessar-

ily equal to the distance between the eyes and the top

of the head (an assumption made for the ideal head),

the eyes do not need to be aligned to the minor axis for

this face.

• Double-chin. For faces with a double chin, the aver-

age of the two chins is considered as the lowest point

of the face, and is matched to the bottom extreme of

the major axis of the ellipse.

• Square jaw. For a face with a square jaw, the el-

lipse traces the boundary between the face and the ears,

while some part of the jaws may be excluded from the

ellipse.
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Pose?

1. Make the major axis 
parallel to the nose.

2. Match the chin to the 
bottom end of the major 
axis of the ellipse. 

3. Make the eyes align 
with the minor axis of the 
ellipse.

4. Ensure that the ellipse 
traces the boundary 
between the ears and the 
face.

1. Make the major axis 
parallel to the projection of 
the nose onto the face.

2. Place the visible eye on 
the minor axis.

3. Include the entire chin 
in the ellipse.

4. Ensure that the ellipse 
traces the boundary 
between the visible ear 
and the face.

1. Make the major axis 
parallel to the nose.

2. Ensure that the ellipse 
traces the boundary 
between the ears and the 
face.

1. Ensure that the ellipse 
traces the top of the 
head.

1. Ensure that the 
ellipse traces the jaw-
line.

Tilt direction?

Frontal Profile Tilted back/front

Back Front

Figure 11. Procedure for drawing ellipses around an average face region. The annotators were instructed to follow this flowchart to draw

ellipses around the face regions. The annotation steps are a little different for different poses. Here, we present the steps for three canonical

poses: frontal, profile and tilted back/front. The annotators were instructed to use a combination of these steps for labeling faces with

derived, intermediate head poses. For instance, to label a head facing slightly towards its right and titled back, a combination of the steps

corresponding to the profile and tilted-back poses are used.

1 unit

1 unit

Chin

Top of the head

1 unit

1 unit

Top of the head

Chin

1 unit

1 unit

Top of the head

Chin

Figure 12. Illustrations of ellipse labeling on line drawings of human head. The black curves show the boundaries of a human head in

frontal (left), profile (center), and tilted-back (right) poses. The red ellipses illustrate the desired annotations as per the procedure shown

in Figure 11. Note that these head shapes are approximations to an average human head, and the shape of an actual human head may

deviate from this mean shape. The shape of a human head may also be affected by the presence of factors such as emotions. The guidelines

on annotating face regions influenced by these factors are specified in Appendix A.

• Hair. Ignore the hair and fit the ellipse around the hy-

pothetical bald head.

• Occlusion. Hypothesize the full face behind the oc-

cluding object, and match all of the visible features.
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Figure 13. Illustrations of labeling for complex face appearances. These images show example annotations for human heads with shapes

different from an average human head due to the presence of facial expression, double chin, square jaw, hair-do, and occlusion, respectively.

Figure 13 shows some example annotations for complex

face shapes.

B. Data formats

The original set of images can be down-

loaded as originalPics.tar.gz from

http://tamaraberg.com/faceDataset/.

Uncompressing this tar-file organizes the images as

originalPics/year/month/day/big/*.jpg.

The ten folds described in the EXP-1 experiments (Sec-

tion 7) are available at http://vis-www.cs.umass.

edu/fddb/FDDB-folds.tgz. Uncompressing the

FDDB-folds.tgz file creates a directory FDDB-folds,

which contains files with names: FDDB-fold-xx.txt

and FDDB-fold-xx-ellipseList.txt, where xx

= {01, 02, ..., 10} represents the fold-index.

Each line in the FDDB-fold-xx.txt file

specifies a path to an image in the above-

mentioned data set. For instance, the entry

2002/07/19/big/img 130 corresponds to

originalPics/2002/07/19/big/img 130.jpg.

The corresponding annotations are included in the file

FDDB-fold-xx-ellipseList.txt. These anno-

tations are specified according to the format shown in

Table 1. Each of the annotation face regions are represented

as an elliptical region, which is denoted by a 6-tuple

(ra, rb, θ, cx, cy, 1), (5)

where ra and rb refer to the half-length of the major and mi-

nor axes; θ is the angle of the major axis with the horizontal

axis; and cx and cy are the x and y coordinates of the center

of this ellipse.

The detection output should also follow the format de-

scribed in Table 1. The representation of each of the de-

tected face regions, however, could either be denoted using

a rectangle or an ellipse. The exact specification for these

two types of representations is as following:

• Rectangular regions

. . .

name of the ith image

number of faces in the ith image = m

face f1

face f2

. . .

face fm

. . .
Table 1. Format used for the specification of annotations and

detections .

Each face region is represented as a 5-tuple

(x, y, w, h, s), (6)

where x, y are the coordinates of the top-left corner;

w and h are the width and height; and s ∈ {−∞,∞}
is the confidence score associated with the detection of

this rectangular region.

• Elliptical regions

Each face region is represented as a 6-tuple

(ra, rb, θ, cx, cy, s), (7)

where ra and rb refer to the half-length of the major

and minor axes; θ is the angle of the major axis with

the horizontal axis; and cx and cy are the x and y coor-

dinates of the center; and s ∈ {−∞,∞} is the confi-

dence score associated with the detection of this ellip-

tical region.

Note that the order of images in the output file

is expected to be the same as the order in the file

annotatedList.txt.
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