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Predictive compact models are extensively used for circuit 
level design; the development of these models allows a fair 
comparison between bulk and FDSOI based designs for the 
same process and device features. In [4], a pre-silicon 
modeling methodology is introduced; it unifies bulk and 
FDSOI based on BSIM4/BSIM4SOI and same process/device 
features. Using this methodology, 22-nm technology node 
model cards are generated and aligned with the ITRS targets. 
MOSFET performance is also aligned with experimental 
results. Figure 1 shows that the Ion of a FDSOI MOSFET is 
higher (nearly twice) than a bulk MOSFET under the same 
biasing conditions; moreover, the channel length modulation 
and short channel effects are not as significant as for a bulk 
MOSFET. 

Next, consider the circuit techniques for reducing power 
consumption in a SRAM. Leakage in a SRAM can occur 
either inside the cell itself, or on the access transistor paths 
[5][6]. The transistor which is actually leaking in a cell 
depends on the stored value, the logic level of the wordline 
(WL) and the type of operation (i.e., the value of the bitline 
BL). A low power design of a SRAM cell can be achieved by 
reducing the dynamic power when in operating mode or the 
leakage current when in standby mode. The techniques 
commonly used for reducing leakage power in bulk CMOS 
circuits are forced stacking, sleep transistor, MTCMOS/SOI 
technology [3] and low vdd voltage/power (Subthreshold 
operation). Specifically, some of these techniques can also be 
used in FDSOI based designs of a low leakage SRAM. 

III. PROPOSED FDSOI SRAM DESIGNS 
In this section, two low-power designs are introduced, 

namely (I) 8T stack forced SRAM cell; (II) a subthreshold 9T 
SRAM cell with low power supply. 

A. Force Stacked 8T SRAM Cell 
A force stacked 8T SRAM Cell is proposed to decrease the 

standby leakage power. In this scheme [8], additional NMOS 
transistors are connected in series (i.e. the stack). The total 
gate area of all NMOS transistors of the stack is the same as 
the non-stacked NMOS transistors. The following condition 
applies to a two-transistor stack w୳ ൑ w୮ୢ2 , w୪ ൑ w୮ୢ2   w୳ ൅ w୪ ൌ w୮ୢ 
where w୮ୢ  is the width of the NMOS transistor prior to 
stacking, w୳ is the width of the upper transistors (T1 and T3) 
of the stack and  w୪ is the width of the bottom transistors (T7 
and T8) of the stack. The leakage current flowing through the 
stack is dependent on the number of “off’’ transistors in the 
stack; it has been shown that this technique is effective in 
reducing the subthreshold leakage current for nanometer 
CMOS [9].  

Figure 2 (a) shows the proposed FDSOI MOSFET based 
SRAM cell using a force staking technique. As commonly 
applicable to a 6T SRAM cell, all transistors have minimum 
gate length (i.e. 22nm); the cell ratios are given by w୮ୢ wୟ⁄ ൌ4 3⁄ , w୮୳ wୟ⁄ ൌ 2 3⁄  (wୟ is the width of the access transistor). 
The stack transistor width is given by w୳ w୪⁄ ൌ 5 3⁄ . 

(a) (b) 
Figure 2 (a) Circuit of proposed force stack 8T FDSOI SRAM cell (b) Circuit 
of proposed subthreshold low-voltage 9T SRAM cell 

B. Subthreshold Low-Voltage 9T SRAM Cell 
The proposed subthreshold low-voltage SRAM cell is 

shown in Figure 2 (b). A FDSOI based SRAM cell can benefit 
from lowering the supply voltage to 0.4 volts, thus reducing 
both static and dynamic power consumptions. The 
subthreshold cell is made of a conventional 6T SRAM cell and 
a readout buffer. The buffer is enabled by the control signal 
RWL turning T9 and T8 on when performing the read 
operation. When reading a ‘0’, T7 is turned on and the 
precharged RBL line is discharged; when reading a ‘1’, T7 is 
off and RBL stays to the precharged high state. The cell 
operates in the subthreshold region and the supply voltage 
value is decreased, as in a 6T SRAM, the read stability and 
write ability become weaker. The read out buffer is introduced 
to compensate for the weaker read stability. As the read 
operation is isolated from the storage node, the read SNM is 
nearly equal to the standby SNM. Sizing of the transistors 
must also be considered; the ratio of the pull-down transistor 
T1 to the access transistor can be smaller than in the 6T 
SRAM to further decrease the leakage power of the cross-
coupled inverters. To enhance the weaker write ability, the 
ratio of the pull-up transistor T2 to the access transistor is 
made smaller by having a wider access transistor. Moreover, 
tradeoff between read speed and static leakage must be 
assessed for sizing the read buffer. 

IV. SIMULATION AND COMPARISON 
In this section, the proposed memory cells are simulated 

and compared to the bulk CMOS counterpart. The PTM 
model is used for the bulk MOSFETs and the 22nm model 
generated for the FDSOI MOSFETs as described previously. 
Sizing of the SRAM cell is the same for both bulk and FDSOI 
based designs and are optimized for the write operation and to 
avoid a destructive read [7]. The simulation results show that 
the subthreshold 9T design cannot be fully functional using 
bulk MOSFETs; however this design operates correctly when 
FDSOI is utilized. Moreover, FDSOI performs better in the 
subthreshold region than the bulk MOSFET due to the 
reduced short-channel effect [10]. 

A. Power 
Power consumptions under different operations mode are 

simulated. The results of Figure 3 show that the FDSOI cells 
have significantly lower static power consumption in the 
standby mode, i.e. for FDSOI, the inner oxide layer under the 
channel region isolates the current path from drain to source. 
The active power is shown in Figure 4; due to the high current 

528



driving capability, all FDSOI-based memory cells have higher 
dynamic power consumption than their bulk-based 
counterparts. As shown in Figure 5, the standby power of all 
SRAM cells is reduced when the power supply Vdd is 
decreased. 

 
Figure 3 Static power of memory cells 

 
Figure 4 Active power of memory cells 

 
Figure 5 Static Power at different supply voltage values 

B. Delay 
Table I shows the results for the read and write delays for 

all SRAM cells considered in this paper at different values of 
power supply; in all cases the FDSOI based SRAM cells are 
faster than the bulk based counterparts due to the smaller 
drain-to-substrate capacitance and higher current driving 
capability. It is also observed that when vdd decreases down 
to 0.4v, the 6T and 8T cell begins to fail for write operation; 
it means 0.4v Vdd is functional limits for 6T and 8T design. 
Actually, under 0.4v Vdd, the SRAM enter subthreshold 
region, 9T design is still functioning in this region. 

C. Static Noise Margin 

The static noise margins (SNM)  of the read and write 
operations must guarantee the correct functional stability of a 

SRAM cell [11]. The values of the read, standby and write 
SNMs of the FDSOI and bulk cells are summarized in Table II. 
Compared to bulk based SRAMs, the FDSOI based SRAMs 
have a slightly larger SNM in all cases; for the different 
structures, the 6T SRAM cell has similar SNMs as the 8T 
SRAM cell. While retaining a similar write SNM, the 9T 
SRAM cell has a better read SNM than the 6T and 8T cells 
due to the read buffer (so separate from the storage node). 

TABLE I  READ AND WRITE DELAY OF VARIOUS SRAM CELLS (PS) 

Vdd 0.95v 0.8v 0.6v 0.4v
Write Read Write Read Write Read Write Read

FDSOI (6T) 16.7 5.1 53.1 10.9 88.7 30.0 4712.3 1735.2
FDSOI (8T) 21.2 14.8 62.3 36.2 80.3 36.1 4113.8 2005.9
FDSOI (9T) 18.2 8.5 56.2 16.5 86.4 27.3 4546.6 1518.5
BULK (6T) 40.2 10.3 90.6 30.6 779.7 132.7 Fail 7757.0
BULK (8T) 35.9 25.6 84.1 60.1 680.0 272.4 Fail 15298.0
BULK (9T) 47.3 15.7 97.2 34.5 899.7 242.4 Fail 10259.8

TABLE II  SNMS 

 FDSOI (6T) SNM (mv) Bulk (6T) SNM (mv) 
Vdd Read Standby Write Read Standby Write
0.95v 178.80 388.35 391.45 175.29 369.38 382.75
0.8v 148.73 329.02 341.93 141.64 307.77 333.25
0.6v 104.49 240.51 198.03 96.77 222.31 156.68
0.4v 61.43 149.08 86.72 52.13 134.69 Fail

FDSOI (8T) SNM (mv) Bulk (8T) SNM (mv)
Vdd Read Standby Write Read Standby Write
0.95v 226.68 402.08 427.38 180.45 390.21 423.12
0.8v 174.28 339.43 372.99 139.65 326.60 370.49
0.6v 94.61 248.64 234.66 93.66 237.56 183.84
0.4v 53.59 155.73 145.91 46.10 106.02 Fail

FDSOI (9T) SNM (mv) Bulk (9T) SNM (mv)
Vdd Read Standby Write Read Standby Write
0.95v 388.01 388.10 461.01 346.61 347.38 430.26
0.8v 328.73 328.78 392.94 290.24 290.72 372.10
0.6v 240.21 240.23 301.86 212.02 212.30 290.95
0.4v 148.69 148.69 136.38 129.62 129.64 Fail

D. Impact of Process Variation  
TABLE III  VTH VARIATION FOR FDSOI AND BULK [12] 

Bulk MOSFET FDSOI MOSFET
σ(Vth)| RDF 45mV 21mV
σ(Vth)| LER 25mV 10mV

σ(Vth)| TOTAL 51mV 23mV

For a SRAM cell design, the Vth variation of a transistor 
plays a critical role in its operation; the local component of 
this variation is referred to as the intra-die Vth variation, and is 
mainly due to random dopant fluctuation (RDF) in the channel 
and line edge roughness (LER). The dopant distribution 
increases with process scaling for controlling the short channel 
effect; the extent of the variation is usually measured by the 
standard deviation. The experimental results are reported in 
Table III (it is assumed that the LER and RDF are independent 
random variables); a FDSOI MOSFET accomplishes a 
significant reduction in the random dopant fluctuation due to 
the intrinsic undopped thin channel region. The FDSOI 
MOSFET also shows a smaller LER-induced variation due to 
the reduced short-channel effects. 
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The impact of process variation on the SNMs of the 
SRAM cells is evaluated next; in the simulation for the Vth 
variation, a Gaussian distribution and independent random 
components are assumed for the variation. Monte Carlo 
simulation of the SNM is performed; the value of the mean, 
sigma and variance are shown in Table IV. These results yield 
the following conclusions: (1) For superthreshold 6T and 8T 
design, the 8T cell has a better SNM than the 6T cell in all 
cases; (2) For subthreshold 9T design, although Vdd is very 
low (i.e. 0.4V), the read SNM is comparable to the 6T cell; (3) 
For all designs, the FDSOI MOSFET has a better tolerance in 
terms of SNM to threshold voltage variation than a bulk 
MOSFET. 

TABLE IV  MONTE CARLO SIMULATION OF IMPACT OF VTH RANDOM 
VARIATIONS ON THE SNM OF SRAM CELLS* 

SNM Monte Carlo (Mean) 
6T FDSOI 6T Bulk 8T FDSOI 8T Bulk 9T FDSOI 9T Bulk

Standby 377.49 344.90 393.34 367.21 138.22 109.73
Read 166.95 152.40 258.21 184.47 137.97 111.09
Write 392.46 383.93 430.13 428.38 138.00 162.06

SNM Monte Carlo (Sigma) 
6T FDSOI 6T Bulk 8T FDSOI 8T Bulk 9T FDSOI 9T Bulk

Standby 8.39 19.51 7.07 15.48 8.35 17.28
Read 10.75 20.36 11.97 14.47 8.13 16.85
Write 13.80 34.39 13.34 29.85 31.46 53.81

SNM Monte Carlo (variance) 
6T FDSOI 6T Bulk 8T FDSOI 8T Bulk 9T FDSOI 9T Bulk

Standby 0.07 0.38 0.05 0.24 0.07 0.30
Read 0.12 0.41 0.14 0.21 0.07 0.28
Write 0.19 1.18 0.18 0.89 0.99 2.90

*Note: For 6T and 8T design, the vdd is nonimal 0.95v. For 9T design the 
vdd is 0.4v. 

E. Critical Charge 
A further measurement considered in this manuscript for 

SRAM cell comparison is the resilience to soft error. This is 
usually related to the so-called critical charge which is defined 
as the smallest injected charge at certain circuit node that 
could flip the memory cell. The larger critical charge is, the 
better soft error resilience it has. The critical charge is usually 
depend on the node parasitic capacitance, circuit structure and 
other device physics. Table V shows the simulated critical 
charge due to the parasitic capacitance at node D and DB. The 
6T and 9T cells have larger critical charge than the 8T SRAM 
cell and due to less parasitic capacitance of FDSOI, all FDSOI 
based cell is less resilience to soft error than its bulk 
MOSFETs counterpart. However, it is believed that the SOI 
technology has an intrinsically well 5X to 10X lower soft error 
rate than bulk due to the oxide layer acting as a block for the 
track of electron-holes pairs to drift to the p-n junctions [2]. 
Due to limitation of the device model, the soft error reduction 
benefit from the oxide layer cannot be observed at the circuit 
level simulation here. 

TABLE V  CRITICAL CHARGE DUE TO PARASITIC CAPACITANCE (FC) 
Node 6T FDSOI 6T Bulk 8T FDSOI 8T Bulk 9T FDSOI 9T BULK
DB 0.295 0.365 0.265 0.305 0.270 0.335
D 0.9 0.81 0.41 0.39 0.84 0.79
S NA NA 1.15 1.20 NA NA

SB NA NA 1.50 1.65 NA NA

V. CONCLUSION 
In this paper, the 22nm FDSOI MOSFET has been used 

for SRAM cell design; two memory cells using different 
number of transistors have been investigated. An extensive 
evaluation based on HSPICE simulation has been presented 
for comparative assessment versus bulk (MOSFET) designs. 
The rankings of these cells are presented in Table VI. 
Compared with the corresponding MOSFET-based cell 
structure, the static power of a FDSOI based design is nearly 
47.5% less, while retaining a similar SNM and circuit 
complexity.  However, the read and write delays are  
improved by 58% and 40.9% respectively due to high driving 
capabilities of FDSOI devices. Additionally, due to the low 
Vth variation, FDSOI cells shows low sensitivity in terms of 
SNM. 

TABLE VI  RANKING OF SRAM CELL DESIGNS 

 Power
Delay

Avg. SNM Vth Var. Crit. 
Charge Transistor

Read Write
FDSOI 6T 4 1 1 5 3 4 1
FDSOI 8T 2 2 2 3 1 6 2
FDSOI 9T 1 5 3 1 2 5 3
Bulk 6T 6 3 4 6 6 1 1
Bulk 8T 3 4 5 4 4 3 2
Bulk 9T 5 6 6 2 5 2 3
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