
FE and iO for Turing Machines

from Minimal Assumptions

Shweta Agrawal(B) and Monosij Maitra

IIT Madras, Chennai, India
shweta.a@cse.iitm.ac.in, monosij@cse.iitm.ac.in

Abstract. We construct Indistinguishability Obfuscation (iO) and
Functional Encryption (FE) schemes in the Turing machine model from
the minimal assumption of compact FE for circuits (CktFE). Our con-
structions overcome the barrier of sub-exponential loss incurred by all
prior work. Our contributions are:
1. We construct iO in the Turing machine model from the same assump-

tions as required in the circuit model, namely, sub-exponentially
secure FE for circuits. The previous best constructions [6,41] require
sub-exponentially secure iO for circuits, which in turn requires sub-
exponentially secure FE for circuits [5,15].

2. We provide a new construction of single input FE for Turing machines
with unbounded length inputs and optimal parameters from polyno-

mially secure, compact FE for circuits. The previously best known
construction by Ananth and Sahai [7] relies on iO for circuits, or
equivalently, sub-exponentially secure FE for circuits.

3. We provide a new construction of multi-input FE for Turing
machines. Our construction supports a fixed number of encryptors
(say k), who may each encrypt a string xi of unbounded length. We
rely on sub-exponentially secure FE for circuits, while the only previ-
ous construction [10] relies on a strong knowledge type assumption,
namely, public coin differing inputs obfuscation.

Our techniques are new and from first principles, and avoid usage of
sophisticated iO specific machinery such as positional accumulators and
splittable signatures that were used by all relevant prior work [6,7,41].

1 Introduction

The notion of indistinguishability obfuscation (iO) [11] seeks to garble programs
such that the obfuscations of any two functionally equivalent programs are indis-
tinguishable. While non-obvious at first what such a guarantee is good for,
iO has emerged as a surprisingly powerful notion in cryptography, leading to
many advanced cryptographic applications that were previously out of reach
[12,14,22–24,26,27,41,44,46,50].

Functional encryption (FE) [16,48,49] is a generalization of public key encryp-
tion that enables fine grained access control on encrypted data. In FE, a secret
key corresponds to a function f and ciphertexts correspond to strings from the

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 473–512, 2018.
https://doi.org/10.1007/978-3-030-03810-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03810-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-03810-6_18

474 S. Agrawal and M. Maitra

domain of f . Given a function key SKf and a ciphertext CTx, the decryptor
learns f(x) and nothing else.

While an important primitive in its own right, FE has also been shown to
imply iO, albeit with sub-exponential loss [5,15]. Over the last few years, both
primitives have received significant attention, with a rich body of work that
attempts to support more general models of computation [4,12,20–22,25,41],
rely on weaker assumptions [8,13,19,30,37–40,42,43,45], achieve stronger secu-
rity [3,19] and greater efficiency [6].

In this work, we make further progress towards the goal of basing iO and
FE on minimal assumptions, in the Turing machine model of computation. This
question has been studied extensively [4,6,7,12,20–22,25,34,41] – we refer the
reader to [6,7] for a detailed discussion. Below, we summarize the state of art:

1. iO for Turing Machines with unbounded memory and bounded inputs are
constructed in the works of Koppula et al. and Ananth et al. [6,41]. Both
works rely on the existence of sub-exponentially secure iO for circuits along
with other standard assumptions. We note that FE for circuits implies iO

with sub-exponential loss, so when relying on FE for circuits, these works
incur double sub-exponential loss.

2. For single input FE for Turing machines that accept unbounded length inputs
and place no restriction on the description size or space complexity of the
machine, the state of art is the work of Ananth and Sahai [7], which relies on
the existence of iO for circuits.

3. For multi-input FE in the Turing machine model, the only known construction
is [10], which relies on the existence of public coin differing inputs obfuscation
(diO).

Our Results. We construct Indistinguishability Obfuscation (iO) and Functional
Encryption (FE) schemes in the Turing machine model from the minimal assump-
tion of compact FE for circuits (CktFE). Our constructions overcome the barrier
of sub-exponential loss incurred by all prior work. Our contributions are:

1. We construct iO for Turing machines with bounded inputs and unbounded
memory from the same assumptions as required by iO for circuits, namely,
sub-exponentially secure FE for circuits. The previous best constructions [6,
41] require sub-exponentially secure iO for circuits, which in turn requires sub-
exponentially secure FE for circuits [5,15], resulting in double sub-exponential
loss.

2. We provide a new construction of single input FE for Turing machines with
unbounded inputs, achieving optimal parameters from polynomially secure,
compact FE for circuits. The previously best known construction by Ananth
and Sahai [7] relies on iO for circuits, or equivalently, sub-exponentially secure
FE for circuits. We note that iO for circuits implies decomposable compact
FE for circuits [27] (please see the full version [1]), so our construction also
implies FE for TMs from iO for circuits.

FE and iO for Turing Machines from Minimal Assumptions 475

3. We provide a new construction of multi-input FE for Turing machines. Our
construction supports a fixed number of encryptors (say k), who may each
encrypt a string xi of unbounded length. We rely on sub-exponentially secure
FE for circuits, while the only previous construction [10] relies on a strong
knowledge type assumption, namely, public coin differing inputs obfuscation.
The arity k supported by our scheme depends on the underlying multi-input
CktFE scheme, for instance using [40], we can support k = polylog(λ).

Our constructions make use of FE for circuits that satisfy a mild property called
decomposablity, which in turn can be constructed generically from FE for cir-
cuits (please see Appendix A). Decomposable FE, analogously to decomposable
randomized encodings [9], roughly posits that a long string be encrypted bit by
bit using shared randomness across bits. This property is already satisfied by all
known constructions of CktFE in the literature to the best of our knowledge.

Our techniques are new and from first principles, and avoid usage of sophisti-
cated iO specific machinery such as positional accumulators and splittable signa-
tures that were used by all prior work [6,7,41]. Our work leverages the security
notion of distributional indistinguishability (DI) for CktFE which was first con-
sidered by [31], who provided a construction for single input FE satisfying DI
security assuming the existence of iO. We strengthen this result by constructing
DI secure CktFE from standard CktFE. Please see Fig. 1 for an overview of our
results.

Additional Prior Work. Since iO is considered an inherently sub-exponential
assumption and much stronger than the polynomial assumption of compact
FE, replacing iO by FE in cryptographic constructions has already been stud-
ied extensively, for instance in the context of PPAD hardness [28], multi-input
FE for circuits [19,40] as well as trapdoor one-way permutations and universal
samplers [29]. We note that aside from reliance on weaker, better understood
assumptions, avoiding sub-exponential loss results in significantly more efficient
schemes. We refer the reader to [29] for a detailed discussion.

Distributional indistinguishability was also considered in the context of out-
put compressing randomized encodings [44]; indeed, this work implies that
achieving DI security for FE for Turing machines with long outputs is impossible
in the plain model. We note that our construction sidesteps this lower bound by
considering Turing machines with a single output bit.

iO for TMs with unbounded memory has been constructed by [6,41] as dis-
cussed above, other prior works were limited to bounded space constraints. We
note that [6] additionally achieve constant overhead in the size of the obfuscated
program as well as amortization, which we do not consider in this work. We also
note that the work of [10] achieve miFE for TMs where the number of encrypt-
ing parties can be arbitrary, whereas we only support a-priori fixed, bounded
number of parties.

The approach of using decomposable FE for circuits to construct FE for deter-
ministic finite automata (DFA) in the single key setting was suggested by [2].
In this work we develop and significantly generalize their ideas. In particular,

476 S. Agrawal and M. Maitra

we handle the unbounded key setting in FE for TMs which necessitates dealing
with the much more complex indistinguishability style definition, for which we
develop new proof techniques which use a novel “sliding trapdoor” approach
and leverage distributional indistinguishability. In contrast, since [2] use simula-
tion security for single key FE, their proof must not contend with any of these
challenges. Please see below for details.

iO for TMs

FE for circuits

iO for circuits

Subexp

Subexp

Rerandomizable

encryption

DDH, LWE, etc

Subexp

FE for circuits

iO for circuits

FE for TMs

Subexp

AS16 AJS17 This

iO for circuitsFE for circuits

FE for TMs MIFE for TMs

iO for TMs

Subexp

Subexp

Poly

Fig. 1. Prior work and our results. The reductions with subexponential loss are speci-
fied, no specification implies standard polynomial loss. The dashed blue lines indicate
primitives that are not actually used by the work in question; we add these to elucidate
the relationship between primitives. We do not include [10] here since it relies on public
coin diO.

Our Techniques. We describe an overview of our constructions, starting with
single input FE, generalizing to multi-input FE and then building iO. All our
constructions support the Turing machine model of computation. Our construc-
tions rely on a single input FE scheme for circuits, denoted by CktFE, which
satisfies decomposability. In Appendix A, we show that decomposable FE for
circuits is implied by FE for circuits. Intuitively, decomposability means that
the ciphertext CTx for a multi-bit message x be decomposable into multiple
ciphertext components CTi for i ∈ |x|, one for each bit xi of the message. More-
over, the ciphertext components encoding individual bits of a single input are
tied together by common randomness, that is CTi = E(PK, r, xi) where E is an
encoding function and r is common randomness used for all i ∈ |x|1. The notion
of decomposability has been widely studied and used in the context of random-
ized encodings, which may be seen as a special case of functional encryption;
please see [9] as an example.

1 Encoding of each bit may also use additional independent randomness, which is not
relevant to the discussion here, and hence omitted.

FE and iO for Turing Machines from Minimal Assumptions 477

Single Input. TMFE. Recall that a Turing machine at any time step reads a
symbol, state pair and produces a new symbol which is written to the work
tape, a new state and a left or right head movement. By assuming the Turing
machine is oblivious, the head movements of the TM may be fixed; thus, at any
given time step when a work tape cell is read, we can compute the next time
step when the same work tape cell will be accessed. This reduces the output at
any time step t to a symbol, state pair, where the state is read in the next time
step t + 1 and the symbol is read at a future (fixed) time step t′ > t.

Our construction uses two CktFE schemes, 1FE1 and 1FE2, where 1FE2

is decomposable. Intuitively, 1FE1 is used by the encryptor to encode the
unbounded length input, while 1FE2 is used to mimic the computation of the
Turing machine, as we describe next. The ciphertext of 1FE2 is divided into two
parts, encoding input components (t, σ) and q respectively. Here, t is the current
time step in the computation and σ, q are the current work-tape symbol and
state respectively. We maintain the invariant that at any time step t in the com-
putation, both components of the ciphertext have been computed using common
randomness derived from PRFK((t‖salt)), where salt is an input chosen by the
key generator and the PRF key K is chosen by the encryptor.

Now, to mimic the TM computation, we provide a function key for the Next

functionality, that stores the transition table, receives as input the current (sym-
bol, state) pair, computes the symbol to be written on the work tape and the
next state using the transition table, derives the randomness using the PRF for
the appropriate time step and outputs the encodings of the new (symbol, state)
pair. In more detail, say the encryptor provides encodings of each input symbol
xi, for i ∈ [|x|], in addition to an encoding for the first (fixed) state qst, where
the encodings of (1, x1) and qst share the same randomness so that they may be
concatenated to yield a complete ciphertext for (1, x1, qst). Now, the function key
may read input (1, x1, qst), lookup the transition table and produce an encryp-
tion of the next state q2 and the symbol to be written x′

2. The randomness used
to encrypt q2 is derived using a PRF as described above, and is the same as the
randomness used by the encryptor to encode (2, x2). Hence, the two ciphertext
components encoding (2, x2) and q2 may be concatenated to yield a complete
1FE2 ciphertext which may be again decrypted using the function key.

Now consider how to support writing on tape. Say the symbol x′
2 will be

read at future fixed time step t′. Then the function key encodes the tuple (t′, x′
2)

using randomness PRFK((t′‖salt)). The state for time step t′, say q′ is computed
at time step t′ − 1, also using randomness PRFK((t′‖salt)). Thus, encodings of
(t′, x′

2) and q′ may be joined together to yield a complete 1FE2 ciphertext which
may be decrypted to propagate the computation.

A detail brushed away by the above description is that the encryptor, given
input x, cannot compute randomness generated by a PRF which has input a
value salt chosen by the key generator. This is handled by making use of an
additional scheme 1FE1, which re-encrypts ciphertexts provided by the encryptor
via a ReRand functionality, using the requisite randomness. Note that we support
inputs of unbounded length by leveraging the fact that CktFE schemes 1FE1, 1FE2

478 S. Agrawal and M. Maitra

support encryption of unbounded number of inputs, even if each must be of
bounded length. Thus, the encryptor provides an unbounded number of 1FE1

ciphertexts which are rerandomized and translated to ciphertexts under 1FE2

using the ReRand function key provided by the key generator.

Encoding the PRF key. The above informal description hides an important detail
– for the function key to produce ciphertext components using a PRF, it must
have the key of the PRF, chosen by the encryptor2, passed to it as input. Thus
the ciphertext must additionally encode the PRF key along with inputs (t, x, q).
However, the ciphertext is constructed using randomness derived from the same
PRF- resulting in circularity. We resolve this difficulty by using constrained PRFs
[17,18,36], and having a ciphertext encode a PRF key that only allows compu-
tation of randomness for time steps of the future; this does not compromise its
own security. For this constraint family, we provide a construction of cPRFs
from standard assumptions. We believe this construction and the method of its
application may be useful elsewhere3.

More formally, our construction makes use of constrained, delegatable PRF
for the function family ft : {0, 1}2·λ → {0, 1} defined as follows.

ft(x‖z) = 1 if x ≥ t

= 0 otherwise

We denote the constrained PRF key Kft
by Kt for brevity. By the delegation

property of constrained PRFs, we have that if t′ ≥ t then Kt′ can be derived from
Kt. The proof requires the PRF to be punctured at a fixed point in each hybrid,
we provide a construction of delegatable punctured PRF in the full version of
the paper [1].

Proof Overview. While the above description of single input TMFE is natural
and intuitive, the proof of indistinguishability based security is quite subtle and
requires new techniques as we discuss next. For ease of exposition, we describe
the proof overview for the case where the adversary makes a single key request
corresponding to some TM M . We must argue that the challenge ciphertext,
which is a sequence of 1FE1 ciphertexts, together with ReRand and Next keys
corresponding to a TM M , do not distinguish the bit b.

As discussed above, the 1FE1 ciphertexts are decrypted using the ReRand

key to produce a sequence of 1FE2 ciphertexts, each corresponding to a time
step in the TM execution (when the encoded symbol is read), which are in
turn decrypted by Next keys to compute new 1FE2 ciphertexts for future time
steps. We may view the 1FE2 ciphertexts as forming a chain, with each link
of the chain corresponding to a single step of the TM computation, and each
ciphertext producing (via decryption) a new ciphertext for the next time step,

2 Note that the PRF key must be encoded in the ciphertext rather than function key
since it is required to be hidden.

3 For instance, a similar situation w.r.t circularity arises in the original garbled RAM
construction of Lu and Ostrovsky [47].

FE and iO for Turing Machines from Minimal Assumptions 479

finally yielding the output when the TM halts (after T steps, say). Intuitively,
since the output of the TM does not distinguish the bit b by admissibility of
the TMFE adversary, we may argue by security of 1FE2 that the ciphertext at
the penultimate step T − 1 also does not distinguish b, which implies that the
ciphertext at step T −2 hides b and so on, ultimately yielding indistinguishability
of the entire chain, and hence of the 1FE1 challenge ciphertext.

Formalizing this intuitive argument is quite tricky. A natural approach would
be to consider a sequence of hybrids, one corresponding to each link in the chain,
and switch the 1FE2 ciphertexts one by one starting from the end of the chain.
While intuitive, this idea is misleading – note that a naive implementation of this
idea would lead to a chain which is “broken”: namely, its first links correspond
to b = 0, and last links to b = 1. Since the ciphertext at a given step is decrypted
to compute the ciphertext at the next step, a ciphertext corresponding to b = 0
cannot in general output a ciphertext for b = 1.

A standard approach to deal with this difficulty is to embed a “trapdoor”
mode within the functionality [3,5,19] which lets us“hardwire” the ciphertexts
that must be output by decryption directly in the key, allowing decryption to
yield an inconsistent chain. However, this approach also fails in our case, since
the length of the chain is unbounded and there isn’t sufficient space in the key
to incorporate all its values.

Our Approach: “Sliding” Trapdoors. We deal with this difficulty by designing a
novel “sliding-window” trapdoor approach which lets us hardwire the decryption
chain“piece by piece”. In more detail, we start with the last two time steps (T, T−
1), program the key to produce the output corresponding to b = 1 for time step
T and b = 0 for T − 1, then transition to a world where the output corresponds
to b = 1 for both T and T − 1. At this point, the hardwiring of the output for
time step T is redundant, since the ciphertext output by the decryption process
at time step T − 1 automatically computes the output coresponding to b = 1 at
time step T . Thus, we may now slide the trapdoor to program to the next pair
(T − 1, T − 2), switching the decryption output at time step T − 2 to b = 1 and
so on, until the entire chain corresponds to b = 1.

Intuitively, we are “programming” the decryption only for outputs at both
ends of the“broken link”, so that preceding links are generated using b = 0
and subsequent links are generated using b = 1. We leverage the fact that the
chain links corresponding to future time-steps are encoded implicitly in a given
time step – hence if we manage to hide the chain inconsistency at a certain
position i, this implies that the remainder of the chain is constructed using the
bit encoded at step i. Formalizing this argument requires a great deal of care, as
we must keep track of the “target” time steps corresponding to the two ends of
the broken link that are being programmed, the time steps at which the symbol
and state ciphertexts are generated to be“consumed” at the target time-steps,
the particular values that must be encoded in the symbol, state fields in both
cases as well as the key that is being handled at a given time in the proof. For
more details, please see Sect. 3.3.

480 S. Agrawal and M. Maitra

Generalising to Multi-input FE for Turing Machines. For the k party setting, a
natural idea is to have each party encrypt its own input xi, and use a k input
CktFE scheme kFE [19,40], to “aggregate” these into the“input” ciphertext CT(x)
for one long input x = (x1‖x2‖ . . . ‖xk), under a different CktFE scheme 1FE.
Note that the length of x is unknown hence it may not be encoded “all at once”
but must be encoded bit by bit as in the previous scheme. Now, by additionally
providing the 1FE ciphertext encoding the start state of the Turing machine
CT(qst), and a function key to compute the transition table of the TM as in the
previous scheme, we may proceed with the computation exactly as before.

Formalizing this idea must contend with several hurdles. In the multi-input
setting, the ith encryptor may encode multiple inputs and functionality permits
“mix and match” of ciphertexts in the sense that any input encoded by party i

may be combined with any input encoded by parties j ∈ [k], j �= i. Therefore, if
each of k parties encodes T ciphertexts, there are T k valid input combinations
that the TM may execute on. However, when the TM is executing on any input
combination, we must ensure that it cannot mix and match symbol, state pairs
across different input combinations. Moreover, an encryption for a symbol, state
pair produced by some machine Mi should not be decryptable by any machine
Mj for j �= i. These issues are handled by careful design of the aggregate func-
tionality to ensure that an execution thread of any input combination by any
machine is separate from any other. The proof extends naturally from the single
input case. Please see Sect. 4 for details.

Distributional Indistinguishability. As discussed above, our constructions rely
on the security notion of distributional indistinguishability (DI) for functional
encryption for circuits [31]. Intuitively, this notion says that if the outputs pro-
duced by a circuit on two input distributions are merely indistinguishable (as
against exactly equal), then the ciphertexts encoding those inputs must also be
indistinguishable. In the full version [1] we give a construction of DI secure single
input FE from standard FE.

Indistinguishability Obfuscation. Constructing iO for TMs given miFE for TM is
straightforward, and adapts the miFE to iO circuit compiler by [33] to the TM

setting. As in the circuit case, an miFE for TM that supports two ciphertext
queries and single key query suffices for this transformation. Please see Sect. 5
for details. Since our security proof for miFE for TM is tight, this compiler
yields iO for TM from sub-exponentially secure FE for circuits rather than sub-
exponentially secure iO for circuits.

Organization of the Paper. Definitions and preliminaries are provided in Sect. 2
as well as the full version [1]. In Sect. 3, we provide our construction for single
input FE for Turing machines. In Sect. 4, we provide our construction for multi-
input FE for Turing machines for any fixed arity k and in Sect. 5 we describe
our iO for TMs for bounded inputs.

FE and iO for Turing Machines from Minimal Assumptions 481

2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. We begin by defining the notation that we will use throughout the
paper. We use bold letters to denote vectors and the notation [a, b] to denote
the set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n].
Concatenation is denoted by the symbol ‖.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use
negl(n) to denote a negligible function of n. We say f(n) is polynomial if it is
O(nc) for some c > 0, and we use poly(n) to denote a polynomial function of
n. We use the abbreviation PPT for probabilistic polynomial-time. We say an
event occurs with overwhelming probability if its probability is 1 − negl(n). The
function log x is the base 2 logarithm of x.

2.1 Definitions: FE for Circuits

In this section, we define functional encryption for circuits, in both the single
and multi-input setting.

Single Input Functional Encryption for Circuits. Let X = {Xλ}λ∈N and
Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a finite set. Let F ={
Fλ

}
λ∈N

denote an ensemble where each Fλ is a finite collection of circuits, and

each circuit f ∈ Fλ takes as input a string x ∈ Xλ and outputs f(x) ∈ Yλ.
A functional encryption scheme CktFE for F consists of four algorithms

CktFE = (CktFE.Setup,CktFE.Keygen, CktFE.Enc,CktFE.Dec) defined as follows.

– CktFE.Setup(1λ) is a PPT algorithm that takes as input the unary represen-
tation of the security parameter and outputs the master public and secret
keys (PK,MSK). Sometimes, the CktFE.Setup algorithm may also accept as
input a parameter 1ℓ, denoting the length of the input. In this case, the input
lives in domain X ℓ.

– CktFE.Keygen(MSK, f) is a PPT algorithm that takes as input the master
secret key MSK and a circuit f ∈ Fλ and outputs a corresponding secret key
SKf .

– CktFE.Enc(PK,x) is a PPT algorithm that takes as input the master public
key PK and an input message x ∈ Xλ and outputs a ciphertext CT.

– CktFE.Dec(SKf ,CTx) is an (a deterministic) algorithm that takes as input
the secret key SKf and a ciphertext CTx and outputs f(x).

Definition 1 (Correctness). A functional encryption scheme CktFE is correct
if for all λ ∈ N, all f ∈ Fλ and all x ∈ Xλ,

Pr

[
(PK,MSK) ← CktFE.Setup(1λ);

CktFE.Dec
(
CktFE.Keygen(MSK, f),CktFE.Enc(PK,x)

)
�= f(x)

]
= negl(λ)

where the probability is taken over the coins of CktFE.Setup, CktFE.Keygen, and
CktFE.Enc.

482 S. Agrawal and M. Maitra

Definition 2 (Compactness [5]). A functional encryption scheme for circuits
is said to be compact if for any input message x, the running time of the encryp-
tion algorithm is polynomial in the security parameter and the size of x. In
particular, it does not depend on the circuit description size or the output length
of any function f supported by the scheme.

A weaker version of compactness, known as succinct or semi-compact FE,
allows the run time of the encryption algorithm to depend on the output length
of the functions. Equivalently, a semi-compact FE scheme is simply a compact
FE scheme when we restrict our attention to functions with single-bit outputs.

Distributional Indistinguishability for Circuit FE. In this section we define the
notion of distributional indistinguishability for functional encryption for circuits.
The notion was first defined by [31, Sect. 3.4] in the context of reusable garbled
circuits, i.e. single key functional encryption but may be generalized to the multi-
key setting in a straightforward way. Intuitively, this notion says that if the
outputs produced by a circuit on two input distributions are indistinguishable,
then the ciphertexts encoding those inputs must also be indistinguishable.

Definition 3. A functional encryption scheme F for a circuit family G is secure
in the distributional indistinguishability game, if for all PPT adversaries A, the
advantage of A in the following experiment is negligible in the security parameter
λ:

1. Public Key: Challenger returns PK to the adversary.
2. Pre-Challenge Key Queries: A may adaptively request keys for any circuits

gi ∈ G. In response, A is given the corresponding keys SKgi
. This step may

be repeated any polynomial number of times by the attacker.
3. Challenge Declaration: A(1λ,PK) outputs two ensembles of challenge distri-

butions
(
D0(λ), D1(λ)

)
4 to the challenger, subject to the restriction that for

any x0 ← D0,x1 ← D1, it holds that gi(x0)
c
≈ gi(x1) for all i.

4. Challenge CT: A requests the challenge ciphertext, to which challenger
chooses a random bit b, samples xb ← Db and returns the ciphertext CTxb

.
5. Key Queries: The adversary may continue to request keys for additional func-

tions gi, subject to the same restriction that for any x0 ← D0,x1 ← D1, it

holds that gi(x0)
c
≈ gi(x1) for all i.

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success
probability and 1/2. In the selective game, the adversary is required to declare
the challenge distributions in the very first step, without seeing the public key.

Comparison with Standard Indistinguishability. We note that the stan-
dard indistinguishably game is implied by the above by restricting the adversary
to choose distributions D0, D1 above to simply be two messages x0,x1 with
probability 1 and requesting keys that satisfy gi(x0) = gi(x1) for all i, which is

a special case of gi(x0)
c
≈ gi(x1).

4 We omit the parameter λ in what follows for brevity of notation.

FE and iO for Turing Machines from Minimal Assumptions 483

Decomposable Functional Encryption for Circuits. In this section, we
recall the notion of decomposable functional encryption (DFE) defined by [2].
Decomposable functional encryption is analogous to the notion of decomposable
randomized encodings [9]. Intuitively, decomposability requires that the public
key PK and the ciphertext CTx of a functional encryption scheme be decom-
posable into components PKi and CTi for i ∈ [|x|], where CTi depends on a
single deterministic bit xi and the public key component PKi. In addition, the
ciphertext may contain components that are independent of the message and
depend only on the randomness.

Formally, let x ∈ {0, 1}k. A functional encryption scheme is said to be decom-
posable if there exists a deterministic function E : P × {0, 1} × R1 × R2 → C
such that:

1. The public key may be interpreted as PK = (PK1, . . . ,PKk,PKindpt) where
PKi ∈ P for i ∈ [k]. The component PKindpt ∈ Pj for some j ∈ N.

2. The ciphertext may be interpreted as CTx = (CT1, . . . ,CTk,CTindpt), where

CTi = E (PKi, xi, r, r̂i) ∀i ∈ [k] and CTindpt = E (PKindpt, r, r̂)

Here r ∈ R1 is common randomness used by all components of the encryption.
Apart from the common randomness r, each CTi may additionally make use
of independent randomness r̂i ∈ R2.

We note that if a scheme is decomposable “bit by bit”, i.e. into k compo-
nents for inputs of size k, it is also decomposable into components correspond-
ing to any partition of the interval [k]. Thus, we may decompose the public
key and ciphertext into any i ≤ k components of length ki each, such that∑

ki = k. We will sometimes use Ē(y) to denote the tuple of function val-
ues obtained by applying E to each component of a vector, i.e. Ē(PK,y, r) �(
E(PK1, y1, r, r̂1), . . . , E(PKk, yk, r, r̂k)

)
, where |y| = k. We assume that given

the security parameter, the spaces P, R1, R2, C are fixed, and the length of
the message |x| can be any polynomial.

Multi-input Functional Encryption for Circuits. We define the notion of
private-key t-input functional encryption for circuits here. Our definition follows
that of [40].

Let ∀i ∈ [t],Xi = {(Xi)}λ∈N and Y = {Yλ}λ∈N be ensembles of finite sets,
and let F = {Fλ}λ∈N be an ensemble of finite t-ary function families. For each
λ ∈ N, each function f ∈ Fλ takes as input t strings, x1 ∈ (X1)λ, . . . ,xt ∈ (Xt)λ,
and outputs a value f(x1, . . . ,xt) ∈ Yλ.

A private-key t-input functional encryption scheme t-CktFE for F
consists of four algorithms t-CktFE = (t-CktFE.Setup, t-CktFE.Keygen,

t-CktFE.Enc, t-CktFE.Dec) defined as follows.

484 S. Agrawal and M. Maitra

– t-CktFE.Setup(1λ) is a PPT algorithm that takes as input the unary repre-
sentation of the security parameter and outputs the master secret key MSK.

– t-CktFE.Keygen(MSK, f) is a PPT algorithm that takes as input the master
secret key MSK and a circuit f ∈ Fλ and outputs a corresponding secret key
SKf .

– t-CktFE.Enc(MSK,m, ind) is a PPT algorithm that takes as input the master
secret key MSK, an input message m = xi ∈ (Xi)λ if ind = i, i ∈ [t], and
outputs a ciphertext CTind.

– t-CktFE.Dec(SKf , (CT1, . . . ,CTt)) is an (a deterministic) algorithm that takes
as input the secret key SKf and t ciphertexts CT1, . . . ,CTt and outputs a
string y ∈ Yλ ∪ ⊥.

Definition 4 (Correctness). A private-key t-input functional encryption
scheme t-CktFE is correct if for all λ ∈ N, f ∈ Fλ and all (x1, . . . ,xt) ∈
(X1)λ × . . . × (Xt)λ,

Pr

[
t-CktFE.Dec

(
t-CktFE.Keygen(MSK, f),

(
t-CktFE.Enc(MSK,x1, 1), . . . ,

t-CktFE.Enc(MSK,xt, t)
))

�= f(x1, . . . ,xt)

]

= negl(λ)

Here, MSK ← t-CktFE.Setup(1λ) and probability is taken over the random coins
of t-CktFE.Setup, t-CktFE.Enc and t-CktFE.Keygen.

Distributional Indistinguishability. We define the notion of distributional indis-
tinguishability for a t-input functional encryption scheme for circuits. To begin,
we describe a valid t-input adversary.

Definition 5 (Valid t-Input Adversary). A PPT algorithm A is a valid
t-input adversary if for all private-key t-input functional encryption schemes
over message space (X1)λ × . . . × (Xt)λ, and a circuit space F , for any (f0, f1)
queried by the adversary, and any t pairs of input distribution ensembles
(D01(λ), D11(λ)), . . . , (D0t(λ), D1t(λ))5 output by the adversary such that Dbj

is a distribution over Xj for b ∈ {0, 1}, j ∈ [t], it holds that

f0(x01, . . . ,x0t)
c
≈ f1(x11, . . . ,x1t),

where xbj ← Dbj for b ∈ {0, 1}, j ∈ [t].

We define the following game between a challenger and an adversary:

1. Key Queries. A may adaptively submit key requests for pairs of functions
(f0, f1) ∈ F . In response, A is given the corresponding keys SKfb

for some
random bit b chosen by the challenger. This step may be repeated any poly-
nomial number of times by the attacker.

5 We omit the argument λ where it is implicit for notational brevity.

FE and iO for Turing Machines from Minimal Assumptions 485

2. Ciphertext Queries. A(1λ) submits ciphertext requests for pairs of
challenge distribution ensembles (D01, D11), . . . , (D0t, D1t) to the chal-
lenger. The challenger samples xj ← Dbj for j ∈ [t] and returns
t-CktFE.Enc(MSK,xj , j),∀j ∈ [t]. This step may be repeated any polynomial
number of times by the attacker.

3. Guess. A outputs a bit b′, and succeeds if b′ = b.

In the above definition, ciphertext and key queries may be interspersed in any
order. The advantage of A is the absolute value of the difference between its
success probability and 1/2. In the selective game, the adversary is required
to declare the challenge ciphertext distributions in the very first step, without
seeing the public key.

Definition 6. A t-input functional encryption scheme t-CktFE for a circuit
family F is secure in the distributional indistinguishability game, if for all valid
PPT adversaries A, the advantage of A in the above game is negligible in the
security parameter λ.

We note that the standard indistinguishability game is the special case where
the adversary submits challenge messages rather than distributions and all
queried functions must output exactly the same rather than indistinguishable
values.

2.2 Definitions: FE for Turing Machines

In this section, we will define functional encryption for Turing Machines (TM).
We denote the runtime (i.e. number of steps the head takes) by runtime(M,w).

Let M = {Mλ}λ∈N be a family of Turing machines with alphabet Σ =
{Σλ}λ∈N and the running time upper-bounded by a polynomial in λ. A func-
tional encryption scheme TMFE for a Turing machine family M consists of
four algorithms TMFE = (TMFE.Setup,TMFE.KeyGen, TMFE.Enc,TMFE.Dec)
defined as follows.

– TMFE.Setup(1λ) is a PPT algorithm that takes as input the unary represen-
tation of the security parameter and outputs the master public and secret
keys (PK,MSK).

– TMFE.KeyGen(MSK,M) is a PPT algorithm that takes as input the master
secret key MSK and a TM M and outputs a corresponding secret key SKM .

– TMFE.Enc(PK,x) is a PPT algorithm that takes as input the master public
key PK, and an input message x ∈ Σ∗

λ of arbitrary length, outputs a ciphertext
CTx.

– TMFE.Dec(SKM ,CTx) is an (a deterministic) algorithm that takes as input
the secret key SKM and a ciphertext CTx and outputs a bit b.

Correctness is defined analogously to the circuit setting.

486 S. Agrawal and M. Maitra

Efficiency [7]. The efficiency property of a public-key FE scheme for Turing
machines says that the algorithm TMFE.Setup on input 1λ should run in time
polynomial in λ, TMFE.KeyGen on input the Turing machine M and the mas-
ter key MSK should run in time polynomial in (λ, |M |), TMFE.Enc on input a
message x and the public key should run in time polynomial in (λ, |x|). Finally,
TMFE.Dec on input a functional key of M and an encryption of x should run in
time polynomial in (λ, |M |, |x|, runtime(M,x)).

The multi-input case may be defined as in the circuit setting.

Indistinguishability Obfuscation for Turing Machines. As in prior work,
we construct iO for Turing machines (TMs) in the setting where the input length
is fixed a-priori. A uniform P.P.T machine iO is an indistinguishability obfuscator
for a class of Turing machines {Mλ}λ∈N with input length L, if the following
conditions are satisfied:

1. Correctness. For all security parameters λ ∈ N, for any M ∈ Mλ and every
input x ∈ {0, 1}≤L, we have that:

Pr
[
M ′ ← iO(1λ,M,L) : M ′(x) = M(x)

]
= 1

where the probability is taken over the coin-tosses of the obfuscator iO.
2. Indistinguishability of Equivalent TMs. For every ensemble of pairs of

Turing machines {M0,λ,M1,λ}λ∈N, such that M0,λ(x) = M1,λ(x) for every
x ∈ {0, 1}≤L and runtime(M0,λ,x) = runtime(M1,λ,x), we have that the
following ensembles of pairs of distributions are indistinguishable to any PPT

Adv: {
M0,λ,M1,λ, iO(1λ,M0,λ)

}
c
≈

{
M0,λ,M1,λ, iO(1λ,M1,λ)

}

3. Succinctness. For all security parameters λ ∈ N, for any M ∈ Mλ , we have
that the running time of iO(1λ,M,L) is poly(λ, |M |, L) and the evaluation
time of iO(M) on input x where x ∈ {0, 1}≤L, is poly(|M |, L, t) where t =
runtime(M,x).

2.3 Constrained Pseudorandom Functions

Constrained pseudorandom functions (introduced concurrently by Boneh and
Waters (CCS 2013), Boyle, Goldwasser, and Ivan (PKC 2014), and Kiayias,
Papadopoulos, Triandopoulos, and Zacharias (CCS 2013)), are pseudorandom
functions (PRFs) that allow the owner of the secret key K to compute a con-
strained key Kf , such that anyone who possesses Kf can compute the output
of the PRF on any input x such that f(x) = 1 for some predicate f . The secu-
rity requirement of constrained PRFs state that the PRF output must still look
indistinguishable from random for any x such that f(x) = 0. We will also require
the property of delegatability, formalized below.

FE and iO for Turing Machines from Minimal Assumptions 487

Definition 7 ([17]). Let F : {0, 1}seed(λ) × {0, 1}in(λ) → {0, 1}out(λ) be an
efficient function, where seed, in and out are all polynomials in the secu-
rity parameter λ. We say that F is a delegatable constrained pseudorandom

function with respect to a set system S ⊆ 2{0,1}in(λ)

if there exist algorithms
(Setup,Constrain,Eval,KeyDel) that satisfy the following:

– Setup(1λ, 1in(λ)) outputs a pair of keys pk, sk.
– Constrain(sk, S) outputs a constrained key KS which enables evaluation of

F (sk,x) on all x ∈ S and no other x.
– KeyDel(KS , S′) outputs a constrained key KS∩S′ which enables the evaluation

of F (sk,x) for all x ∈ S ∩ S′ and no other x. We note that in systems
where KeyDel is supported, the Constrain algorithm above can be expressed as
a special case of KeyDel by letting sk correspond to the set of all inputs, i.e.
sk = K{0,1}in(λ) .

– Eval(KS ,x) outputs F (sk,x) if x ∈ S, ⊥ otherwise.

Please refer to the full version [1] for the definition of security.

3 Construction: Single Input FE for Turing Machines

In this section, we construct a single input functional encryption scheme for
Turing machines, denoted by TMFE from the following ingredients:

1. Two compact functional encryption schemes for circuits, 1FE1 and 1FE2. We
will assume that the scheme 1FE2 is decomposable as defined in the prelimi-
naries.

2. A symmetric encryption scheme SKE = (SKE.KeyGen,SKE.Enc,SKE.Dec).
3. A delegatable constrained pseudorandom function (cPRF), denoted by F

which supports T delegations for the function family ft : {0, 1}2·λ → {0, 1}
defined as follows. Let x, t denote integers whose binary representations are
x, t of λ bits. Then,

ft(x‖z) = 1, if x ≥ t and 0 otherwise

Intuitively, the function is parametrized by a value t and evaluates to 1 if the
first half of its input, x ≥ t. We will denote the constrained PRF key Kft

corre-
sponding to function ft by Kt for ease of notation. By the delegation property of
constrained PRFs, we have that if t′ ≥ t then Kt′ can be derived from Kt. In our
construction the parameter t will represent the time step in the computation,
which means that a PRF key of the current time step can be used to derive PRF
keys for future time steps. We will denote a PRF for this functionality by F. The
security proof makes use a punctured version of the above cPRF, please see the
full version [1] for details.

488 S. Agrawal and M. Maitra

3.1 Construction

Below we provide our construction for single input FE for Turing machines.
Notation. Note that since 1FE2 is decomposable, there exists an encoding

function E which encodes each bit of the input and since it is compact, the
output length of E is independent of the circuit class supported by 1FE2. Thus,
by choosing the encoding function first, the CktFE scheme may support a circuit
class that outputs its own ciphertext components. We denote by Ē the encoding
function E applied bitwise to a vector, i.e. Ē(w) = E(w1) . . . E(wn).

TMFE.Setup(1λ): Upon input the security parameter 1λ, do the following:

1. Let (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), where 1FE2 is a decompos-
able functional encryption scheme for the circuit family

Next :

((

{SYM} × {0, 1}4λ × Σ × Trap
)

×
(

{ST}×Q
))

→
(

C1FE2

)

2

∪{ACC, REJ, ⊥}

Here, Σ and Q are the alphabet and state space respectively of the Turing
machine family. The tokens SYM and ST are flags denoting a symbol and
a state respectively. The set {0, 1}4λ encodes in order, a random value
key-id associated with a TM M , a cPRF key, the current time step in the
computation and the length of the input string, each of λ bits. Here, Trap

is a data structure of fixed polynomial length which will be used in the
proof. Since we do not need it in the construction, we do not discuss it
here, please see Fig. 6 for its definition. C1FE2 denotes the ciphertext space
of 1FE2, and ACC and REJ are bits indicating accepting and a rejecting
states of a TM respectively.

2. Let (1FE1.PK, 1FE1.MSK) ← 1FE1.Setup(1λ), where 1FE1 is a compact,
public-key CktFE scheme for the circuit family

ReRand :
(
{0, 1}3λ × Σ × Trap

)
→ C1FE2 ×

(
C1FE2 ∪ {⊥}

)

Again, {0, 1}3λ encodes in order, a root cPRF key, a time step and the
length of the input string respectively, while Σ, Trap and C1FE2 are as
described above.

3. Output PK = 1FE1.PK and MSK = (1FE1.MSK, (1FE2.PK, 1FE2.MSK)).
TMFE.Enc(PK,w): Upon input the public key PK, and message w of arbitrary

length ℓ = |w|, do the following:
1. Sample the root key K0 for function ft where t = 0 for the cPRF F

described above.
2. For i ∈ [ℓ], let CTi = 1FE1.Enc(PK, (K0, i, ℓ, wi,Trap)), where Trap is a

data structure which is only relevant in the proof. Here, all fields of Trap

are set to ⊥ except a flag Trap.mode-real = 1 which indicates that we are
in the real world. Please see Fig. 6 for the definition of Trap.

3. Output CTw = {CTi}i∈[ℓ].

FE and iO for Turing Machines from Minimal Assumptions 489

TMFE.KeyGen(MSK,M): Upon input the master secret key MSK and the
description of a Turing machine M , do the following. We will assume, w.l.o.g.
that the TM is oblivious (see [1] for a justification) and qst ∈ Q is the start
state of M .
1. Sample a random value salt ← {0, 1}λ.
2. Interpret MSK = (1FE1.MSK, (1FE2.PK, 1FE2.MSK)).
3. Let SKReRand = 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥) where

Fig. 2 defines the circuit ReRand1FE2.PK,salt,qst,⊥,⊥.
4. Let SKNext = 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,⊥,⊥) where Fig. 4

defines the circuit Next1FE2.PK,salt,M ,⊥,⊥.
5. Output SKM = (SKReRand,SKNext).

TMFE.Dec(SKM ,CTw): Upon input secret key SKM and ciphertext CTw, do the
following:
1. Interpret SKM = (SKReRand,SKNext) and CTw =

(
CT1, . . . ,CT|w|

)
.

2. For i ∈ [|w|], do the following:
(a) If i = 1, invoke 1FE1.Dec(SKReRand,CT1) to obtain (CTsym,1,CTst,1).
(b) Else, invoke 1FE1.Dec(SKReRand,CTi) to obtain (CTsym,i,⊥).

3. Denote
(
(CTsym,1,CTst,1),CTsym,2, . . . ,CTsym,|w|

)
as the new sequence of

ciphertexts obtained under the Next scheme.
4. Let t = 1. While the Turing machine does not halt, do:

(a) Invoke 1FE2.Dec
(
SKNext, (CTsym,t,CTst,t)

)
to obtain:

– ACC or REJ. In this case, output “Accept” or “Reject” respec-
tively, and exit the loop.

–
(
CTsym,t′ ,CTst,t+1

)
.

Note that t′ is the next time step that the work tape cell accessed at
time step t will be accessed again.

(b) Let t = t + 1 and go to start of loop.

3.2 Correctness and Efficiency of Single Input TMFE

We now argue that the above scheme is correct. The TMFE.Dec algorithm
takes as input a secret key SKM = (SKReRand,SKNext) and a ciphertext CTw =(
CT1, . . . ,CT|w|

)
under the 1FE1 scheme supporting the functionality ReRand :=

ReRand1FE2.PK,salt,qst,C2,C2
. Firstly, note that given a secret key SKReRand along with

a ciphertext CTw, we have as follows.

1. Since CT1 encodes Trap with Trap.mode-real = 1, hence by the correctness
of the 1FE1 scheme, we get 1FE1.Dec(SKReRand,CT1) = (CTsym,1,CTst,1) as
output.

2. For i ∈ [2, |w|], since CTi encodes Trap with Trap.mode-real = 1, hence by the
correctness of the 1FE1 scheme, we get 1FE1.Dec(SKReRand,CTi) = (CTsym,i,⊥)
as the correct output.

490 S. Agrawal and M. Maitra

Fig. 2. This circuit re-randomizes the ciphertexts provided during encryption to use
randomness derived from a cPRF. The seed for the cPRF is specified in the ciphertext
and the input is specified by the key. This ensures that each ciphertext, key pair form
a unique “thread” of execution.

Fig. 3. Subroutine handling the trapdoor modes in ReRand. This is “active” only in
the proof.

FE and iO for Turing Machines from Minimal Assumptions 491

Fig. 4. Function to mimic TM computation. It reads the current symbol, state pair and
outputs an encryption of the new state and symbol to be written under the appropriate
randomness generated using a cPRF.

Fig. 5. Subroutine handling the trapdoor modes in Next. This is “active” only in the
proof.

492 S. Agrawal and M. Maitra

The new sequence of 1FE2 ciphertexts output by ReRand are now sequenced as(
(CTsym,1,CTst,1), CTsym,2, . . . ,CTsym,|w|

)
. The 1FE2 scheme supports the func-

tionality Next := Next1FE2.PK,salt,M ,C1,C2
. Throughout the 1FE2 decryption, we

maintain the invariant that at any time step t, apart from a secret key SKNext, the
input to the 1FE2.Dec algorithm is an entire 1FE2 ciphertext decomposed into two
components corresponding to a symbol and a state ciphertext both of which are
computed with the same randomness, which is computed as F.Eval(K0, (t‖salt))6.

We show that given a secret key SKNext and the sequence of ciphertexts(
(CTsym,1,CTst,1), CTsym,2, . . . ,CTsym,|w|

)
generated from the outputs of the

1FE1.Dec algorithm, 1FE2.Dec correctly computes the decomposed ciphertext
components of a symbol and a state that occur along the computation path
and finally outputs the value of machine M on the sequenced input. Define
τ = runtime(M,w). Formally, by the correctness of 1FE2 scheme, at any time
step t ∈ [τ − 2], 1FE2.Dec(SKNext, (CTsym,t,CTst,t)) correctly outputs either
(CTsym,t′ ,CTst,t+1) with t < t′ ≤ τ − 1. Further, for any time step t ∈ [τ − 2], we
have:

1. Let t ∈ [τ − 2] \ [ℓ]. If the current work tape cell was accessed7, at some
time step t̃ < t, then CTsym,t encoding (SYM, key-id,Kt+1, t, ℓ, σt,Trap) was
constructed at time step t̃. Note that σt may be the blank symbol β. When
t ∈ [ℓ], CTsym,t is constructed at time step t via the ReRand circuit.

2. The ciphertext component CTst,t encoding (ST, qt) at time step t was con-
structed at time step t − 1 for t > 1 and at time step 1, when t = 1.

3. The randomness rt = F.Eval(Kt̃+1, (t‖salt)) = F.Eval(Kt, (t‖salt)) binds the
components CTsym,t and CTst,t .

Thus, at any given time step t ∈ [τ − 2], we have a complete ciphertext of 1FE2

which may be fed again with SKNext to 1FE2.Dec in order to proceed with the
computation. Thus, the execution of 1FE2.Dec at the (τ −2)th time step provides
the complete pair (CTsym,τ−1,CTst,τ−1). By the correctness of 1FE2 scheme again,
at time step t = τ − 1, invoking 1FE2.Dec(SKNext, (CTsym,τ−1,CTst,τ−1)) outputs
either “Accept” or“Reject” by simulating the execution of M for the final time
step τ inside the function Next, thus correctly outputting M(w).

Efficiency. The TMFE construction described above inherits its efficiency from
the underlying CktFE constructions. Note that the ciphertext is compact and is
of size poly(λ, |w|). Also, the running time of the decryption procedure is input
specific since it mimics the computation of M on w using secret key encoding M

and ciphertext encoding all the intermediate states of the computation. Addi-
tionally, the public parameters are short poly(λ), since these are just the public

6 We do not explicitly construct ciphertext components corresponding to blank tape
cells in the Next functionality for ease of exposition; we assume w.l.o.g that any non-
input cell that is accessed by the OTM has been written to by the Next functionality
in a previous step, thus generating the requisite symbol ciphertext.

7 We assume that every time a cell is accessed, it is written to, by writing the same
symbol again if no change is made.

FE and iO for Turing Machines from Minimal Assumptions 493

parameters of a compact CktFE scheme. The function keys are also short, since
they are CktFE function keys for circuits ReRand and Next which are of size
poly(λ) and poly(|M |, λ) respectively.

3.3 Proof of Security for Single Input TMFE

Next, we prove that the above TMFE scheme satisfies distributional indistin-
guishability (DI) for single (or constant) length outputs, as long as the under-
lying CktFE scheme satisfies distributional indistinguishability for any output
length. In the full version [1], we provide an instantiation of a CktFE scheme
satisfying distributional indistinguishability.

Theorem 1. Assume that the functional encryption schemes for circuits 1FE1

and 1FE2 are DI secure and that F is a secure cPRF for the function fam-
ily defined above. Then, the construction of functional encryption for Turing
machines TMFE is selective DI secure for single bit outputs.

The Trapdoor Data Structure. To implement the approach discussed in Sect. 1,
we will make use of a data-structure Trap that lets us store all the requisite
trapdoor information needed for the security proof within the ciphertext. In our
construction, decryption of a particular input by a particular function key results
in a chain of ciphertexts, each of which contain the trapdoor data structure. In
the real world, this information is not used but as we progress through the proof,
different fields become relevant. The data structure is outlined in Fig. 6.

Fig. 6. Data structure Trap used for proof

Row 1. Above, key-id refers to the particular function key being considered
and we switch the execution chain from b = 0 to b = 1 key by key. All the
ciphertexts in a given execution chain share the key-id value. We assume a
lexicographic order on the key-id fields, this can be easily ensured by having
a counter as part of the key-id field. We do not make this explicit below for
notational brevity. If key-id∗ is the key identity programmed in a particular
execution chain, then all keys with values smaller than key-id∗ will decrypt
the chain using the input bit b = 1, and all keys with values larger than
key-id∗ will use b = 0. Hence, the 1FE1 ciphertexts provided by the encryptor
must encode messages corresponding to both values of b, the fields val0 and
val1 are designed for this purpose8. Note that 1FE2 ciphertexts computed by

8 For the knowledgeable reader, this is similar to what was done by [5].

494 S. Agrawal and M. Maitra

decryption need not track messages corresponding to both values of b, since
the “chain is extended” via decryption corresponding to exactly one of b = 0
or b = 1 depending on the relation between the key identities in the ciphertext
and the function key. The field SKE.K refers to the key of a symmetric key
encryption scheme, which is used to decrypt some encrypted value embedded
in the function key. This is a standard trick when the key must hide something
in the public key setting. The flag mode-real means the scheme operates in
the real world mode and the trapdoor information is not used.

Rows 2 and 3. The fields Target TS1 and Target TS2 refer to the time steps
corresponding to the “broken link” in the decryption chain, namely the two
time steps for which the ciphertext and function key are being programmed
so as to switch from b = 0 to b = 1. The fields Sym TS1 and ST TS1 are the
time steps when the symbol and state ciphertexts for time step Target TS1 are
generated; for instance ST TS1 = Target TS1 − 1 since the state ciphertext
for a given time step is always generated in the previous time step, while
the symbol ciphertext for a given time step may be generated much earlier.
Sym TS2 and ST TS2 are defined analogously. The fields Sym val1 and ST val1
contain the symbol and state values which will be encrypted in the hybrid at
the time steps Sym TS1 and ST TS1 when mode-trap1 is set; Sym val2 and
ST val2 are defined analogously.

Row 4. When mode-trap3 is set, the symbol and state values are set to ⊥, and
the values hard coded in the function key are used for the target time step. In
more detail, the function key contains SKE encryptions of symbol and state
ciphertexts corresponding to time step Target TS hard-coded within itself. If
key-id∗ = key-id, where key-id∗ is the key identity programmed in a particular
execution chain and key-id is the key identity of the function key in question,
and mode-trap3 = 1, then at time steps SYM TS and ST TS the SKE secret
key in row 1 of the Trap data structure is used to decrypt the SKE encryptions
and output the encrypted values.

The Hybrids. We now proceed to describe our hybrids. For simplicity we first
describe the hybrids for a single function request, for some Turing machine M .
We denote by T the time taken by M to run on the challenge messages. Since
the proof is very involved, we describe it first for the weak selective game, where
the adversary specifies the challenge vectors and machine at the same time. In
the full version [1] we discuss how to remove this restriction.

H(0): This is the real world, when mode-real = 1 and mode-trap1 = mode-trap2 =
mode-trap3 = ⊥.

H(1, 1): In this world, all ciphertexts (constructed by the encryptor as well
as function keys) have mode-real = ⊥, mode-trap1 = 1, mode-trap2 =
1, mode-trap3 = ⊥. We program the last link in the decryption chain for
switching bit b by setting:

Target TS1 = T − 1,Target TS2 = T − 2

The fields Sym TS1 and ST TS1 contain the time steps when the symbol
and state ciphertext pieces are generated for time step T − 1, and the fields

FE and iO for Turing Machines from Minimal Assumptions 495

Sym val1 and ST val1 contain the symbol and state values which must be
encrypted by the function key in the above time steps when mode-trap1 is set.
Note that these fields exactly mimic the behaviour in the real world, namely
the time steps and values are set to be exactly what the real world decryption
would output. The fields corresponding to TS2 are defined analogously.
Indistinguishability follows from security of 1FE1, since the decryption values
in both hybrids are exactly the same.

H(1, 2): Hardwire the key with an SKE encryption of symbol and state cipher-
texts output at step T − 1 for b = 0. Use the same ciphertexts as would be
generated in the previous hybrid.
Indistinguishability follows from security of SKE, since the only difference is
the value of the message encrypted using SKE which is embedded in the key.

H(1, 3): Set mode-trap1 = ⊥, mode-trap2 = 1, mode-trap3 = 1 and Target TS =
T − 1. In this hybrid the hardwired value in the key is used to be output as
step T − 1 ciphertext.
Indistinguishability follows from security of 1FE1, since the decryption values
in both hybrids are exactly the same.

H(1, 4): Change normal root key K0 to punctured root key KT−1
0 which punctures

all delegated keys at point (T − 1‖key-id).
Indistinguishability follows from security of 1FE1. Note that we evaluate the
cPRF at point (T − 1‖key-id) only to construct the 1FE2 ciphertext output at
time step T − 1 identified with key-id. This ciphertext is currently hardwired
in the function key, and is computed exactly the same way in both hybrids.
Thus, the cPRF key is only required to compute randomness of points �=
(T − 1‖key-id), for which the punctured key suffices, and which moreover
evaluates to the same value as the normal key on all such points. Hence, we
have that the decryption values in both hybrids are exactly the same. Note
that the punctured key is not used to evaluate on the punctured points.

H(1, 5): Switch the randomness in the 1FE2 ciphertexts for time step T −1 which
are hardwired in the key to true randomness.
Indistinguishability follows from security of punctured cPRF for the afore-
mentioned function family, since the remainder of the distribution only uses
the punctured key.

H(1, 6): Switch the value encoded in the 1FE2 ciphertexts for time step T − 1
which are hardwired in the key to correspond to b = 1.
Indistinguishability follows from security of 1FE2. Formally, we do a reduction
which plays the security game against the 1FE2 challenger and simulates the
TMFE adversary. The reduction simulates 1FE1 itself and receives the 1FE2

public and function keys from the challenger. The only difference between the
two hybrids is the 1FE2 ciphertext for time step T − 1 which is embedded in
the function key as received from the 1FE2 challenger.

H(1, 7): Switch randomness back to PRF randomness in the ciphertext hard-
wired in key, using the punctured key for all but the hardwired ciphertext.
Indistinguishability follows from security of cPRF as discussed above.

H(1, 8): Switch the punctured root key to the normal root key.
Indistinguishability follows from security of 1FE1 as discussed above.

496 S. Agrawal and M. Maitra

H(2, 1): Switch ciphertext in slot 1 for target T −1 to be for b = 1. Slot 2 remains
b = 0. Set mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.
Indistinguishability follows from security of 1FE1, since the decryption values
in both hybrids are exactly the same.

H(2, 2): Hardwire key with SKE encryption of 1FE2 ciphertext for time step T −2
and bit b = 0 (same as hybrid (1, 2) but for T − 2).
Indistinguishability follows from security of SKE as above.

H(2, 3): Set mode-trap1 = 1 with target T−1, mode-trap2 = ⊥, and mode-trap3 =
1 with target T − 2.
Indistinguishability follows from security of 1FE1, since the decryption values
in both hybrids are exactly the same.

H(2, 4): Switch normal root key to punctured key at point (T − 2‖key-id).
Indistinguishability follows from security of 1FE1 as discussed above.

H(2, 5): Switch randomness to true in the ciphertext hardwired in key.
Indistinguishability follows from security of cPRF as discussed above.

H(2, 6): Switch hardwired 1FE2 ciphertext for step T − 2 to correspond to bit
b = 1.
Indistinguishability follows from security of 1FE2.

H(2, 7): Switch randomness back to use the PRF in the ciphertext hardwired in
key.
Indistinguishability follows from security of cPRF as discussed above.

H(2, 8): Switch punctured root key to normal root key.
Indistinguishability follows from security of 1FE1 as discussed above.

H(3, 1): Intuitively, we slide the trapdoor left by one step, i.e. change target time-
steps to T − 2 and T − 3 in the ciphertext. Now slot 1 for T − 2 corresponds
to b = 1 and slot 2 for T − 3 to b = 0. Set mode-real = mode-trap3 = ⊥ and
mode-trap1 = mode-trap2 = 1.
Indistinguishability follows from security of 1FE1, since the decryption values
in both hybrids are exactly the same. Note that now slot T − 1 is redundant,
since T − 2 ciphertext is already switched to b = 1.
Hybrid H(3, i) will be analogous to H(2, i) for i ∈ [8].
As we proceed left in the execution chain one step at a time, we reach step
ℓ where ℓ = |w|, i.e. time steps for which 1FE1 ciphertexts are provided by
the encryptor. At this point we will hardwire the ReRand key with symbol
ciphertexts for ℓ time steps, one at a time, and the Next key for the state
ciphertexts9. Moreover, we must now add an additional hybrid in which the
challenge 1FE1 ciphertext at position ℓ contains the message bit corresponding
to b = 1; intuitively, we must switch the bit before we slide the trapdoor since
the ciphertext for this position is not generated by decrypting the previous
ciphertext. In more detail, in H(T − ℓ, 8), analogously to hybrid (1, 8), the
T − (T − ℓ) = ℓth bit hard-wired in the trapdoor is changed to 1. We now
add one more hybrid, namely:

9 There is an exception at time step 1 when both the symbol ciphertext and the start
state ciphertexts are hardwired in the ReRand key.

FE and iO for Turing Machines from Minimal Assumptions 497

H(T − ℓ, 9) : In this hybrid, we modify the 1FE1 challenge ciphertext in position
ℓ as follows: the encoded message is changed corresponding to b = 1 and flag
mode-real = 1. The other flags mode-trap1 = mode-trap2 = mode-trap3 = ⊥.
Note that all ciphertexts previous to time step ℓ remain unchanged, and out-
put their corresponding symbol ciphertexts correctly. The Next circuit outputs
the state ciphertext for time step ℓ corresponding to bit b = 1. The only dif-
ference between this hybrid and the previous one is that here we use the real
mode to output the symbol ciphertext for b = 1 whereas previously we used
the trapdoor mode to output the same symbol ciphertext. Hence, decryption
values in both hybrids are exactly the same, and indistinguishability follows
from security of 1FE1.
Finally in H(T − 1, 9), the entire chain has been replaced to use b = 1 and
all the challenge 1FE1 ciphertexts have encoded messages corresponding to
b = 1 with mode-real = 1.

H(T): In this hybrid, all the other fields in the trapdoor data structure, excepting
mode-real are disabled and set to ⊥. This is the real world with b = 1.
Since all the encoded messages use b = 1, decryption values are all exactly
the same as in H(T − 1, 9), hence indistinguishability follows from security of
1FE1.

The formal reductions are provided in the full version [1].

Multiple Keys. We handle multiple keys by repeating the above set of hybrids
key by key. Each key carries within it an identifier key-id, and if this is less than
the key identifier encoded in the ciphertext, the bit b = 1 is used, if it is greater
then the bit b = 0 is used and if it is equal, then the above sequence of hybrids is
performed to switch from b = 0 to b = 1. To support this, the 1FE1 ciphertexts
provided by the encryptor must encode messages corresponding to both values
of b, the fields val0 and val1 in the trapdoor data structure of Fig. 6 are provided
for this purpose. Security follows by a standard hybrid argument as in [5], we
defer the formal description to the full version of the paper [1].

3.4 Constructing the cPRF

In the full version [1], we provide a construction for a cPRF F which supports punc-
turing and delegation as required; the T cPRFs Fi for i ∈ [T] may each be con-
structed similarly. To begin, note that we require the root key of F to be punctured
at a point i∗ (say). The cPRF construction for punctured PRF [17,18,36] (which
is in turn inherited from the standard PRG based GGM [32]) immediately satisfies
this constraint, so we are left with the question of delegation.

Recall that we are required to delegate T times, where T is the (polynomial)
runtime of the Turing machine on the encrypted input (please see preliminaries
in [1]), and the jth delegated key must support evaluation of points {(k‖z) :
z ∈ {0, 1}λ} for k ≥ j, except when (k‖z) = i∗. This may be viewed as the jth

key being punctured on points [1, j − 1] ∪ i∗. We show that the GGM based
construction for puncturing a single point can be extended to puncturing an

498 S. Agrawal and M. Maitra

interval (plus an extra point). Intuitively, puncturing an interval corresponds to
puncturing at most λ internal nodes in the GGM tree. In more detail, we show
that regardless of the value of j, it suffices to puncture at most λ points in the
GGM tree to achieve puncturing of the entire interval [1, j − 1]. Please see the
full version [1] for details.

4 Construction:Multi-input FE for Turing Machines

In this section we construct a multi-input functional encryption scheme for Tur-
ing machines. Our construction supports a fixed number of encryptors (say k),
who may each encrypt a string wi of unbounded length. Function keys may be
provided for Turing machines, so that given k ciphertexts for wi and a function
key for TM M , decryption reveals M(w1‖ . . . ‖wk) and nothing else. We use the
following ingredients for our construction:

1. A compact, k-input functional encryption scheme for circuits, kFE and a
compact, public-key functional encryption scheme 1FE. As before, we will
assume that the scheme 1FE is decomposable as defined in the preliminaries.

2. A symmetric encryption scheme SKE = (SKE.KeyGen,SKE.Enc,SKE.Dec).
3. A delegatable constrained pseudorandom function (cPRF), denoted by F

which supports T delegations for the function family ft : {0, 1}(k+2)·λ →
{0, 1} defined as follows. Let x, t denote integers whose binary representa-
tions are x, t of λ bits. Then,

ft(x‖z) = 1, if x ≥ t and 0 otherwise

The functionalities supported by kFE and 1FE are called Agg and Next respec-
tively, described next. Agg aggregates the inputs w1, . . . ,wk of all k parties into
one long “global” string (w1‖ . . . ‖wk), encrypted under the scheme 1FE. Since
the length of this aggregate string is unbounded, a single invocation of Agg pro-
duces an encryption of a single symbol in the string, and the function is invoked
repeatedly to produce ciphertexts for the entire string. Each ciphertext output
by the Agg scheme contains a symbol wi as well as the position of the symbol
within the global string. The encryption of the symbols (and the initial state)
also contains a global salt which Agg computes from the random salts provided in
the ciphertexts under the kFE scheme by the individual encryptors. The global
salt identifies the particular input combination that is aggregated, and serves as
input to the PRF in the Next functionality.

Our k-input CktFE scheme may be either private or public key, and will result
in the corresponding notion for k-input TMFE. Since the multi input setting for
FE is considered more interesting in the symmetric key setting (see [19] for
a discussion), we present our construction in the symmetric key setting – the
public key adaptation is straightforward.

We note that ciphertexts output by Agg, which are encryptions of the sym-
bols in the aggregate string under the 1FE scheme, are exactly the same as the
output of the ReRand function in the single input scheme of Sect. 3. Therefore,

FE and iO for Turing Machines from Minimal Assumptions 499

as before, we may have the functionality Next of the 1FE scheme mimic the
computation of the Turing machine on the global string (w1‖ . . . ‖wk). As in
the previous construction, 1FE.Dec accepts as its inputs a ciphertext decom-
posed into two components encoding the current symbol on the worktape and
the current state in the computation, both of which have been encrypted using
the same randomness, and outputs a ciphertext component corresponding to
the symbol written on the tape, as well as the next state. The global salt in the
ciphertext, along with a random nonce chosen by KeyGen are used as input to a
cPRF as before, to compute the randomness used to generate ciphertexts. This
ensures that the execution of a given machine on a given input combination is
maintained separate from any other execution, and thwarts “mix and match”
attacks, where, for instance, an attacker may try to combine a state generated
at some time step t in one execution with a symbol generated at time step t

from a different execution.
If we instantiate the underlying multi-input CktFE by the construction of

[40], we may let the arity k be poly-logarithmic in the security parameter. If we
instantiate multi-input CktFE by the construction of [33], we may support fixed
polynomial arity at the cost of worsening the assumption. Note that [33] rely on
iO while [40] rely on compact FE. Note that [10] support unbounded polynomial
arity, but from public coin DiO as discussed in Sect. 1.

4.1 Construction of Multi-input TMFE

In the following, we denote a k-input, private-key CktFE scheme by k-CktFE and
a decomposable, public key CktFE scheme by 1FE. Since our scheme supports an
a-priori fixed number of parties, say k, we assume that every user is pre-assigned
an index ind ∈ [k].

kTMFE.Setup(1λ, 1k): Upon input the security parameter 1λ and the bound 1k,
do the following:
1. Choosing the functionality for 1FE. Let 1FE be a decomposable,

public-key CktFE for the following circuit family.

Next :
((

{SYM}×{0, 1}
(k+4)λ

×Σ×Trap
)
×

(
{ST}×Q×{0, 1}

k·λ
))

→
(

C
1FE

)2
∪ {ACC, REJ, ⊥}

The tokens SYM and ST are flags denoting a symbol and a state respec-
tively of a Turing machine M which has Σ and Q as the alphabet and state
space respectively. The set {0, 1}(k+4)λ encodes in order, a random value
key-id associated with a TM M , a constrained PRF key, the current time
step in the computation, the length of the input string, each of λ bits and
a string of length k ·λ bits encoding a random value gsalt. Here, Trap is a
data structure of fixed polynomial length which will be used in the proof.
Since we do not need it in the construction, we do not discuss it here, please
see the full version [1] for its definition. The set {0, 1}k·λ encodes again a
random value gsalt associated with the message component for state. C1FE

is the ciphertext space of 1FE. ACC and REJ denote tokens when M reaches
an accepting state and a rejecting state respectively.

500 S. Agrawal and M. Maitra

2. Choosing the functionality for kFE. Let kFE be a k-CktFE for the
following circuit family.

Agg : ({SYM,SP} × {0, 1}4λ × [k] × Σ × Trap)k → C1FE ×
(
C1FE ∪ {⊥}

)

The special token SP denotes an encryption of the length of an input
string corresponding to any user. The set {0, 1}4λ encodes in order, a con-
strained PRF key, the time step of the current symbol, the input length
and a random salt each of λ bits. Σ,Trap and C1FE are as described above.

3. Choosing keys for kFE and 1FE.

Let kFE.MSK←kFE.Setup(1λ
, 1k), (1FE.PK, 1FE.MSK)←1FE.Setup(1λ

, 1
k)

4. Output MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).

kTMFE.Enc(MSK,wind, ind): Upon input the master key MSK, and message wind

of arbitrary length ℓind and an index ind ∈ [k], do the following:

1. Interpret the input MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).
2. Let wind = w1w2 . . . wℓind

. Sample saltind ← {0, 1}λ.
3. Construct the data structure Trap and set all its fields to ⊥ except a flag

Trap.mode-real = 1 which indicates that we are in the real world. The
data structure Trap is only relevant in the proof. Please see [1] for the
definition of Trap.

• Encoding Input String and Its Length

4. If ind = 1, do the following:
(a) Sample a root key for the constrained PRF F as K0 ← F.Setup(1λ).
(b) Construct the input message len1 = (SP,K0,⊥, ℓ1, salt1, 1,⊥,Trap).
(c) Encrypt ℓ1 as a special ciphertext CT1,SP = kFE.Enc(kFE.MSK, len).
(d) For i ∈ [ℓ1] do the following:

i. Construct the input message y1,i = (SYM,K0, i, ℓ1, salt1, 1, wi,

Trap).
ii. Compute the ciphertext CT1,SYM,i = kFE.Enc(kFE.MSK,yi).

5. If ind ∈ [2, k], do the following:
(a) Construct the input message lenind = (SP,⊥,⊥, ℓind, saltind, ind,⊥,

Trap).
(b) Encrypt ℓind as a special ciphertext CTind,SP = kFE.Enc(kFE.MSK,

len).
(c) For i ∈ [ℓind] do the following:

i. Construct the input message yind,i = (SYM,⊥, i, ℓind, saltind,

ind, wi,Trap).
ii. Compute the ciphertext CTind,SYM,i = kFE.Enc(kFE.MSK,yi).

6. Output CTwind
=

(
CTind,SP, {CTind,SYM,i}i∈[ℓind]

)
.

FE and iO for Turing Machines from Minimal Assumptions 501

kTMFE.KeyGen(MSK,M): Upon input the master secret key MSK and the
description of a Turing machine M , do the following. We will assume, w.l.o.g.
that the TM is oblivious (see [1] for a justification) and qst ∈ Q is the start
state of M .

1. Sample a random value rand ← {0, 1}λ.
2. Interpret MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).
3. Let SKAgg = kFE.KeyGen(kFE.MSK,Agg1FE.PK,rand,qst,⊥,⊥), where Fig. 7

defines the circuit Agg1FE.PK,rand,qst,⊥,⊥.
4. Let SKNext = 1FE.KeyGen(1FE.MSK,Next1FE.PK,rand,M ,⊥,⊥), where Fig. 9

defines the circuit Next1FE.PK,rand,M ,⊥,⊥.
5. Output the secret key as SKM = (SKAgg,SKNext).

kTMFE.Dec(SKM , {CTwi
}i∈[k]): Upon input secret key SKM and k ciphertexts

CTw1
, . . . ,CTwk

, do the following:

1. Interpret the secret key as SKM = (SKAgg,SKNext).
2. Parse CTwind

= (CTind,SP, (CTind,SYM,1, . . . ,CTind,SYM,ℓind
)) for all ind ∈ [k].

• Aggregate the ciphertexts of all users.

3. For i = 1 to k, do the following:
(a) For j = 1 to ℓi, do the following:

i. If ((i = 1) ∧ (j = 1)), invoke kFE.Dec (SKAgg, (CT1,SYM,1,

{CTn,SP}n∈[k]\{1}

))
to obtain (CTsym,1,CTst,1).

ii. If ((i = 1) ∧ (j > 1)), invoke kFE.Dec (SKAgg, (CT1,SYM,j ,

{CTn,SP}n∈[k]\{1}

))
to obtain (CTsym,j ,⊥).

iii. Else, invoke kFE.Dec
(
SKAgg,

(
CTi,SYM,j , {CTn,SP}n∈[k]\{i}

))
to

obtain (CT
sym,L̃i+j

,⊥), where L̃i =
∑i−1

m=1 ℓm.

• Execute the TM on aggregated input.

4. The aggregated sequence of ciphertexts under the Next scheme, of length
Lk =

∑k

j=1 ℓj computed above is expressed as:
((CTsym,1,CTst,1),CTsym,2, . . . ,CTsym,ℓ1 ,CTsym,ℓ1+1, . . . ,CTsym,Lk

).
5. Let t = 1. While the Turing machine does not halt, do:

(a) Invoke 1FE.Dec
(
SKNext, (CTsym,t,CTst,t)

)
to obtain:

– ACC or REJ. In this case, output “Accept” or“Reject” respec-
tively, and exit the loop.

– (CTsym,t′ ,CTst,t+1).
Note that t′ is the next time step that the work tape cell accessed at
time step t will be accessed again.

(b) Let t = t + 1 and go to start of loop.

502 S. Agrawal and M. Maitra

Fig. 7. This circuit aggregates and re-randomizes the ciphertexts provided during
encryption to use randomness derived from a cPRF. The seed for the cPRF is spec-
ified in the ciphertext for first party and the input is specified by the key. This ensures
that each ciphertext, key pair form a unique “thread” of execution.

Fig. 8. Subroutine handling the trapdoor modes in Agg. This is “active” only in the
proof.

FE and iO for Turing Machines from Minimal Assumptions 503

4.2 Correctness of Multi-input TMFE

The proof of correctness is split into two parts. In the first part we argue that,
given as input the secret key SKAgg along with k ciphertexts under the kFE

scheme, exactly one of which encodes a symbol and the other (k − 1) encode
the individual input lengths, the kFE.Dec algorithm computes a 1FE cipher-
text component of the symbol with its updated position in the global string.
By repeating this process for all symbols encoded by all users, we obtain a
sequence of 1FE ciphertext components, each containing its updated position in
the aggregated string. Additionally, each of these ciphertext components contains
a global/aggregate salt that is generated from concatenating each individual
encryptor’s randomly generated salts. This global salt identifies the particular
input combination being aggregated.

Fig. 9. Function to mimic TM computation. It reads the current symbol, state pair and
outputs an encryption of the new state and symbol to be written under the appropriate
randomness generated using a cPRF.

Correctness of the second part corresponds to the correct execution of the
Turing machine on the aggregate sequence of ciphertexts, and this is exactly
the same as in Sect. 3. As before, we maintain the invariant that at any
time step t, the input to the 1FE.Dec algorithm is a complete 1FE ciphertext
decomposed into two components corresponding to symbol and state (along
with additional auxiliary inputs), both computed with the same randomness
F.Eval(K0, (t‖rand‖gsalt)).

504 S. Agrawal and M. Maitra

Fig. 10. Subroutine handling the trapdoor modes in Next. This is “active” only in the
proof.

In more detail, we have the following. Correctness of Aggregation. For-
mally, let there be k users so that k ciphertexts {CTwind

}ind∈[k] are given
as input to kTMFE.Dec algorithm. For all ind ∈ [k], let ℓind be the
length of input string of user ind. Each ciphertext CTwind

is a sequence
(CTind,SP, (CTind,SYM,1, . . . ,CTind,SYM,ℓind

)) of ciphertexts, where the first compo-
nent CTind,SP encodes the input string length of user ind and the second compo-
nent {CTind,SYM,i}i∈[ℓind] encodes in order the i-th symbol wi of the actual input
string wind = (w1, w2, . . . , wℓind

) of the same user. These ciphertexts are gener-
ated under the kFE scheme with the master secret key kFE.MSK which supports
a k-input functionality Agg := Agg1FE.PK,rand,qst,⊥,⊥. Therefore, given secret key
SKAgg, we have:

1. Invoking kFE.Dec on the ciphertext CT1,SYM,1 encoding the first sym-
bol of w1 along with the special ciphertexts CTind,SP encoding |wind| for
ind �= 1 gives (CTsym,1,CTst,1). By correctness of kFE decryption, we have:
kFE.Dec

(
SKAgg,

(
CT1,SYM,1, {CTind,SP}ind∈[k]\{1}

))
= (CTsym,1,CTst,1).

2. Invoking kFE.Dec on the ciphertext CT1,SYM,j encoding the jth sym-
bol of w1 along with the special ciphertexts CTind,SP encoding |wind| for
ind �= 1 gives (CTsym,j ,⊥). By correctness of kFE decryption, we have:
kFE.Dec

(
SKAgg,

(
CT1,SYM,j , {CTind,SP}ind∈[k]\{1}

))
= (CTsym,j ,⊥).

3. Finally, ∀ ind ∈ [k] \ {1}, invoking kFE.Dec on the ciphertext CTind,SYM,j

encoding the jth symbol of wind along with the special ciphertexts CTind′,SP

encoding |wind′ | for ind �= ind′ computes the new global position of the symbol
in the aggregated string and outputs

(
CT

sym,L̃i+j
,⊥

)
. By correctness of kFE

decryption, we have: kFE.Dec
(
SKAgg,

(
CTind,SYM,j , {CTind′,SP}ind′∈[k]\{ind}

))
=(

CT
sym,L̃i+j

,⊥
)
, where L̃i =

∑ind−1
m=1 ℓm.

FE and iO for Turing Machines from Minimal Assumptions 505

Note that F.Eval(K0, (pos‖rand‖gsalt)) is the randomness used to compute
each of these ciphertext components, where pos refers to the global position spe-
cific to a symbol in the aggregate input string.

Correctness of TM Execution. The 1FE scheme supports the func-
tionality Next := Next1FE.PK,rand,M ,⊥,⊥. Let the newly generated and
organized sequence of ciphertexts based on time steps be as fol-
lows:

(
(CTsym,1,CTst,1) , {CTsym,i}i∈[2,Lk]

)
with Lk =

∑k

i=1 ℓi. Let w =
(w1, w2, . . . , wℓ1 , wℓ1+1, wℓ1+2, . . . , wℓ1+ℓ2 , . . . , wLk

) be the aggregated input
string and define τ = runtime(M,w). For any time step t ∈ [τ − 2], we have

1. Let t ∈ [τ − 2] \ [ℓ]. If the current work tape cell was accessed10, at some time
step t̃ < t, then CTsym,t encoding (SYM, key-id,Kt+1, t, ℓ, gsalt, σt,Trap) was
constructed at time step t̃. Note that σt may be the blank symbol β. When
t ∈ [ℓ], CTsym,t is constructed at time step t via the Agg circuit.

2. The ciphertext component CTst,t encoding (ST, qt, gsalt) at time step t was
constructed at time step t − 1 for t > 1 and at time step 1, when t = 1.

3. The randomness rt = F.Eval(Kt̃+1, (t‖rand‖gsalt)) = F.Eval(Kt, (t‖rand‖gsalt))
binds CTsym,t and CTst,t and both the encoded messages also share the same
global salt.

Thus, at any given time step t ∈ [τ − 2], we have a complete ciphertext of 1FE

which may be fed again with SKNext to 1FE.Dec in order to proceed with the
computation. Thus, the execution of 1FE.Dec at the (τ −2)th time step provides
the complete pair (CTsym,τ−1,CTst,τ−1). By the correctness of 1FE scheme again,
at time step t = τ − 1, invoking 1FE.Dec(SKNext, (CTsym,τ−1,CTst,τ−1)) outputs
either “Accept” or “Reject” by simulating the execution of M for the final time
step τ inside the function Next, thus correctly outputting M(w).

4.3 Proof of Security for Multi-input TMFE

Security of the above construction follows the same blueprint as the proof in
Sect. 3 except that instead of single input functionality ReRand, we now use a k-
input functionality Agg to aggregate and rerandomize the inputs. We emphasize
that the outputs produced by the Agg functionality are exactly the same as
the outputs produced by ReRand functionality in Sect. 3: namely a sequence
of 1FE ciphertexts encoding the symbol and global position, computed using
randomness derived from a cPRF. Hence, the chief new ingredient in the security
proof is the security of Agg functionality, which is derived from the security of
the kFE scheme.

10 We assume that every time a cell is accessed, it is written to, by writing the same
symbol again if no change is made.

506 S. Agrawal and M. Maitra

Formally, we argue that:

Theorem 2. Assume that the k input FE for circuits kFE satisfies standard
indistinguishability, and the single input FE for circuits 1FE satisfies distribu-
tional indistinguishability. Assume that the cPRF is secure according to defini-
tion. Then, the above construction of k input kTMFE satisfies standard indistin-
guishability.

The proof follows the outline of the single input case, except that now we
must additionally keep track of multiple execution threads corresponding to
various combinations of ciphertexts across multiple users, i.e. various “global
salt” values. In more detail, if each of k users makes Q ciphertext requests, then
we have Qk total possible combinations of ciphertexts, each yielding a different
execution thread per key. Note that each of the Qk combinations is identified
with a unique“global salt”. We will assume w.l.o.g that there is a lexicographic
ordering on all the global salt values; this can be easily ensured by associating
a counter value with each random salt. We do not explicitly include this for
notational brevity.

In the single input case, we replaced the execution chain of a machine over
an input string from b = 0 to b = 1, step by step, and enumerated over all keys.
Now, we again replace an execution chain step by step as in the single input
case, but additionally enumerate over all Qk combinations for each key, as well
as over all keys as before. The number of hybrids grows multiplicatively by Qk.
Details are again deferred to in the full version [1].

5 Indistinguishability Obfuscation for Turing Machines

In this section we construct indistinguishability obfuscation for Turing machines
with bounded length input, i.e. the input length n = n(λ) is any fixed polynomial
in the security parameter. To support inputs of length n, we need an (n+1)-ary
miFE for Turing machines denoted as (n+1)-TMFE; we instantiate this with our
construction from Sect. 4.

5.1 Construction

Let M = {Mλ}λ∈N denote an ensemble of Turing machines with alphabet Σλ =
{0, 1}. Let Encode = {Encodeλ : Mλ → Σ∗

enc}λ∈N be an ensemble of encoding
schemes for M on alphabet Σenc such that for any M ∈ Mλ,Encodeλ (M) =
〈M〉. Further, let U = {Uλ}λ∈N denote the set of Universal Turing machines
parameterized by the security parameter with alphabet ΣU = Σenc ∪ Σλ such
that for all λ ∈ N, for any M ∈ Mλ and any x = (x1, . . . , xn) ∈ Σn

λ , Uλ(x, 〈M〉)
takes x and an encoding 〈M〉 of M , simulates M on x and outputs M(x).

Let (n+1)-TMFE denote the (n + 1)-ary multi-input functional encryption
scheme for Turing machines with alphabet ΣU . We construct an ensemble of
indistinguishability obfuscators iO = {iOλ}λ∈N with iOλ = (iO.Obf, iO.Eval) for
Mλ with inputs x ∈ Σn

λ as follows.

FE and iO for Turing Machines from Minimal Assumptions 507

iO.Obf(1λ, 1n,M): On input the security parameter λ, a bound n ∈ N and a
Turing machine M ∈ Mλ, do the following:
1. Compute the encoding of M as Encodeλ (M) = 〈M〉.
2. Compute a master secret key MSK ← (n+1)-TMFE.Setup (1λ, 1n+1).
3. Compute the secret key for machine Uλ as SKU ←

(n+1)-TMFE.KeyGen(MSK,Uλ).
4. For i ∈ [n], compute the encryptions CTb

i = (n+1)-TMFE.Enc(MSK,

(b, i)), b ∈ Σλ.
5. Compute the encoding of M as CTn+1 = (n+1)-TMFE.Enc(MSK, (〈M〉,

n + 1)).

6. Output the obfuscated machine as M̃ = (SKU,(
{CTb

i}i∈{1,...,n},b∈Σλ
,CTn+1

))
.

iO.Eval(M̃,x): On input the obfuscated machine M̃ and an input x ∈ Σn
λ , do

the following:

1. Parse M̃ =
(
SKU,

(
{CTb

i}i∈{1,...,n},b∈Σλ
,CTn+1

))
and x = (x1, . . . , xn).

2. Compute and output (n+1)-TMFE.Dec (SKU, (CTx1
1 , . . . ,CTxn

n ,CTn+1)).

Correctness is directly followed by the correctness of (n+1)-TMFE scheme.
Since the (n+1)-TMFE we use is compact, the obfuscation size obtained by the
above scheme is poly(λ, |U|, |M |, n). In the full version [1], we show that our
construction is secure:

Theorem 3. Assume that (n+1)-TMFE is a 1-key, 2-ciphertext selectively
secure (n+1)-ary multi-input functional encryption scheme for Turing machines
which satisfies standard indistinguishability. Then the construction in Sect. 5.1
is a secure indistinguishability obfuscator for the Turing machines with bounded
input length n.

Acknowledgement. We thank Vinod Vaikuntanathan for suggesting the generic
transformation from FE to decomposable FE.

A Construction: Decomposable FE for Circuits

Given any single-input circuit FE scheme 1FE satisfying standard indis-
tinguishability based security, a projective garbled circuit scheme GC =
(GCirc,GInp,GEval) with indistinguishability based security [35] supporting a
circuit class C = {Cλ}λ∈N with n-bit inputs, a simple PRF F = (F.Setup,F.Eval)
and a symmetric encryption scheme SYM, we can construct a single-input decom-
posable FE scheme DFE supporting the circuit class C. We note that projective
garbled circuit schemes satisfying indistinguishability based security are implied
from one-way functions [35].

DFE.Setup(1λ, 1n): On input the security parameter λ and input message size
n, do the following:

508 S. Agrawal and M. Maitra

1. Generate (1FE.PK, 1FE.MSK) ← 1FE.Setup(1λ, 12λ+log n+2).
2. Output (PK,MSK) = (1FE.PK, 1FE.MSK).

DFE.Enc(PK,x): On input the public key PK and a message x = (x1, . . . , xn) of
length n = |x|, do the following:
1. Sample a PRF key K ← F.Setup(1λ) and set a flag mode = 0.
2. Compute CTxi

= 1FE.Enc(PK, (K,0, i, xi,mode)),∀i ∈ [n] and output
CTx = {CTxi

}i∈[n].
DFE.KeyGen(MSK, C): On input the master secret key MSK and a circuit C ∈

Cλ, do the following:
1. Sample a random salt ← {0, 1}λ, CTi ← {0, 1}ℓ(λ),∀i ∈ [0, n].

2. Output SK
Ĉ

= 1FE.KeyGen(MSK, ĈC,salt,{CTi}i∈[n],CT0
), where ĈC,salt,

{SYM.CTi}i∈[n],SYM.CT
C̃

is a circuit described in Fig. 11.
DFE.Dec(SK

Ĉ
,CTx): On input a function key SK

Ĉ
and a decomposed ciphertext

CTx = {CTxi
}i∈[n], do the following:

1. For i = 1, invoke 1FE.Dec(SK
Ĉ

,CTx1
) to obtain a pair (ℓ1,x1

, C̃).
2. For all i ∈ [2, n], invoke 1FE.Dec(SK

Ĉ
,CTxi

) to obtain (ℓi,xi
,⊥).

3. Note that x̃ = {ℓi,xi
}i∈[n] represents the labels corresponding to the gar-

bled input underlying CTx generated as outputs of Ĉ, while C̃ represents
the garbled circuit for C.

4. Run GEval(C̃, x̃) to get y.

Fig. 11. Functionality ĈC,salt,{SYM.CTi}i∈[n],SYM.CT
C̃

Correctness. We have by correctness of 1FE.Dec that it outputs the garbled
input x̃ and the garbled circuit C̃ correctly. The correctness of GEval implies
that decryption recovers C(x) as desired.

The proof of security is provided in the full version [1].

FE and iO for Turing Machines from Minimal Assumptions 509

References

1. Agrawal, S., Maitra, M.: FE and IO for turing machines from minimal assump-
tions. Cryptology ePrint Archive, Report 2018/ (2018). http://www.cse.iitm.ac.
in/∼shwetaag/research/tm-mife-full.pdf

2. Agrawal, S., Singh, I.P.: Reusable garbled deterministic finite automata from lWE.
In: ICALP (2017)

3. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 32

4. Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegating RAM
computations with adaptive soundness and privacy. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 3–30. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 1

5. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

6. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation for turing
machines: constant overhead and amortization. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 252–279. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 9

7. Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 125–153. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49096-9 6

8. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 6

9. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. SIAM
J. Comput. 43(2), 905–929 (2014)

10. Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryp-
tion for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 2

11. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

12. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: STOC (2015)

13. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 15

14. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding
a nash equilibrium. In: 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 1480–1498. IEEE (2015)

15. Bitansky, N., Vaikuntanathan, V.; Indistinguishability obfuscation from functional
encryption. In: FOCS (2015)

http://www.cse.iitm.ac.in/~shwetaag/research/tm-mife-full.pdf
http://www.cse.iitm.ac.in/~shwetaag/research/tm-mife-full.pdf
https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-53644-5_1
https://doi.org/10.1007/978-3-662-53644-5_1
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-319-63715-0_9
https://doi.org/10.1007/978-3-319-63715-0_9
https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/978-3-662-48797-6_2
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/978-3-662-53644-5_15

510 S. Agrawal and M. Maitra

16. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

17. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 15

18. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

19. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 30

20. Canetti, R., Chen, Y., Holmgren, J., Raykova, M.: Succinct adaptive garbled
RAM. Cryptology ePrint Archive, Report 2015/1074 (2015). https://eprint.iacr.
org/2015/1074

21. Canetti, R., Holmgren, J.: Fully succinct garbled RAM. In: Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, pp. 169–178.
ACM (2016)

22. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-
cation of iterated circuits and RAM programs. In: Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015 (2015)

23. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 19

24. Carmer, B., Malozemoff, A.J., Raykova, M.: 5Gen-C: multi-input functional
encryption and program obfuscation for arithmetic circuits. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 747–764. ACM (2017)

25. Chen, Y.C., Chow, S.S., Chung, K.M., Lai, R.W., Lin, W.K., Zhou, H.S.:
Computation-trace indistinguishability obfuscation and its applications. IACR
Cryptology ePrint Archive, 2015 (2015)

26. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: Proceedings of the Forty-Eighth Annual
ACM symposium on Theory of Computing, pp. 1115–1127. ACM (2016)

27. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013). http://eprint.iacr.org/

28. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5 20

29. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. Technical report, Cryptology ePrint Archive, Report
2016/102 (2016). http://eprint.iacr.org/2016/102

30. Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption with poly-
nomial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 419–442.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 16

https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-49896-5_30
https://eprint.iacr.org/2015/1074
https://eprint.iacr.org/2015/1074
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
http://eprint.iacr.org/2016/102
https://doi.org/10.1007/978-3-662-53644-5_16

FE and iO for Turing Machines from Minimal Assumptions 511

31. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM compu-
tation. In: 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS (2014)

32. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

33. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

34. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

35. Jafargholi, Z., Scafuro, A., Wichs, D.: Adaptively indistinguishable garbled circuits.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 40–71. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 2

36. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & #38; Communications Security, CCS 2013 (2013)

37. Kitagawa, F., Nishimaki, R., Tanaka, K.: Indistinguishability obfuscation for all
circuits from secret-key functional encryption. IACR Cryptology ePrint Archive
2017, 361 (2017)

38. Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key functional
encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 603–648. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 20

39. Kitagawa, F., Nishimaki, R., Tanaka, K.: Simple and generic constructions of suc-
cinct functional encryption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS,
vol. 10770, pp. 187–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76581-5 7

40. Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 5

41. Koppula, V., Lewko, A.B., Waters,B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015 (2015)

42. Li, B., Micciancio, D.: Compactness vs collusion resistance in functional encryption.
In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 443–468. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 17

43. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

44. Lin, H., Pass, R., Seth, K., Telang,S.: Output-compressing randomized encodings
and applications. In: TCC-A (2016)

45. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 21

46. Liu, Q., Zhandry, M.: Decomposable obfuscation: a framework for building appli-
cations of obfuscation from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.)

https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-319-78375-8_20
https://doi.org/10.1007/978-3-319-78375-8_20
https://doi.org/10.1007/978-3-319-76581-5_7
https://doi.org/10.1007/978-3-319-76581-5_7
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-662-53644-5_17
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21

512 S. Agrawal and M. Maitra

TCC 2017. LNCS, vol. 10677, pp. 138–169. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70500-2 6

47. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38348-9 42

48. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010, 556 (2010)

49. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

50. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014). http://eprint.iacr.org/2013/454.pdf

https://doi.org/10.1007/978-3-319-70500-2_6
https://doi.org/10.1007/978-3-319-70500-2_6
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
http://eprint.iacr.org/2013/454.pdf

	FE and iO for Turing Machines from Minimal Assumptions
	1 Introduction
	2 Preliminaries
	2.1 Definitions: FE for Circuits
	2.2 Definitions: FE for Turing Machines
	2.3 Constrained Pseudorandom Functions

	3 Construction: Single Input FE for Turing Machines
	3.1 Construction
	3.2 Correctness and Efficiency of Single Input TMFE
	3.3 Proof of Security for Single Input TMFE
	3.4 Constructing the cPRF

	4 Construction: Multi-input FE for Turing Machines
	4.1 Construction of Multi-input TMFE
	4.2 Correctness of Multi-input TMFE
	4.3 Proof of Security for Multi-input TMFE

	5 Indistinguishability Obfuscation for Turing Machines
	5.1 Construction

	A Construction: Decomposable FE for Circuits
	References

