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Abstract: The effect of Fe and Mg-codoping on the crystal structure, optical and dielectric properties
of bismuth tantalate-based pyrochlores has been studied. Samples of Bi2MgxFe1−xTa2O9.5−∆ (x ≤ 0.7)
are characterized by a porous dendrite-like microstructure. Fe,Mg-codoped bismuth tantalate py-
rochlores are thermally stable up to a temperature of 1140 ◦C (x = 1). The Bi2Mg0.5Fe0.5Ta2O9.5−∆ ther-
mal expansion coefficient increases uniformly and weakly from 3.6 to 9.3 × 10−6 ◦C−1 (30–1050 ◦C).
The unit cell parameter of solid solutions increases uniformly from 10.5009(1) Å (x = 0.3) up to
10.5225(7) Å (x = 0.7). The structural parameters of disordered pyrochlore are determined by the
Rietveld method (sp. gr. Fd3m:2 (227), Z = 8). According to near edge X-ray absorption fine structure
and X-ray photoelectron spectroscopy data, ions in solid solutions are in the charge states Bi (+3),
Mg (+2), Fe (+3), Ta (+5-δ). The Mössbauer spectrum is represented by a symmetric doublet with
parameters IS = 0.365 ± 0.0020 mm/s, QS = 0.604 ± 0.034 mm/s, related to Fe3+ ions in regular axial
octahedral positions. The samples exhibit the properties of dielectrics. The permittivity and the
tangent of dielectric losses at 20 ◦C increases with the growth of iron content in the samples in the
range of 28.5–30.5 and 0.001 (1 MHz). The width of the band gap of the obtained materials for direct
allowed electronic transitions is in the range of 2.16(5)–2.41(5) eV. The studied samples satisfy the
condition of efficient conversion of solar energy into an electrical one and are promising as catalysts
and light-absorbing elements for solar panels.

Keywords: pyrochlore; Fe and Mg-codoping; XPS; NEXAFS; Mössbauer spectroscopy; dielectric
properties

1. Introduction

Compounds with a pyrochlore-type structure have been attracting the close attention
of scientists for many years. These compounds are of great interest due to a wide range
of practically useful properties. They are known as photocatalysts, dielectrics, ionic and
metallic conductors and exhibit ferro- and ferrimagnetism, giant magnetoresistance, su-
perconductivity and spin glass state [1–5]. Oxide pyrochlores are described by the general
formula A2B2O7 with a combination of tri-and quadri- (A3+

2B+4
2O7) or di- and pentavalent

elements (A2+
2B+5

2O7) in cationic sublattices A and B [6,7]. Such a diverse composition of
compounds of this structural type is due to the crystal lattice tolerance to substitutions of
cations of both sublattices and to defects in the anionic sublattice. The face-centered cubic
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structure of pyrochlores consists of two independent and interpenetrating B2O6 and A2O’
sublattices. The cationic sublattice B2O6 is formed by octahedra connected at the apex of
the angle [BO6]. The A2O’ sublattice has an anticrystobalite structure formed by tetrahedra
[O’A4]. Relatively small cations (Ti4+, Hf4+, Ta5+, Sb5+, Nb5+) occupy cationic sites B, and
large A ions (Ca2+, Bi3+, Pb2+) are located in the octahedron formed by oxygen atoms of
the A2O’ and B2O6 sublattices [8–11]. The flexibility of the pyrochlore crystal structure to
substitutions of cations of both sublattices and to vacancies in the anionic sublattice makes
it possible to significantly vary the composition of compounds and obtain hundreds of
compounds of this structural type with various functional properties [12–16].

To describe the stability of the resulting compositions, the concept of “pyrochlore
stability field” [6] is used, based on the ratio of cationic radii. The range of values rA/rB =
1.46–1.80 for A3+

2B4+
2O7 and 1.40–2.20 for A2+

2B5+
2O7 limits the stability of pyrochlores.

For pyrochlore containing bismuth (III) ions in A-sites and tantalum(V) in B-ones, the
ionic radii ratio rA/rB gives a large value equal to 1.83, where r(Bi3+) = 1.17 Ǻ (c.n. = 8);
r(Ta5+) = 0.64 Ǻ (c.n. = 6). For this reason, bismuth tantalate with an equimolar amount of
bismuth (III) and tantalum(V) ions does not form a pyrochlore structure and crystallizes
in the BiTaO4 structural type [17]. The structure of pyrochlore can be stabilized with an
equal ratio of Bi (III) and Ta(V) atoms by doping with ions which ionic radius is smaller
than for Bi3+ (atoms of 3d elements), as it is shown in studies on triple systems Bi2O3–Ta
(Nb,Sb)2O5–MO(M2O3) [18–23]. In this case, as a rule, the largest part of the dopant atoms
is placed in the octahedral position B, making the bismuth sublattice A2O’ unfilled, which
increases the pyrochlore stability.

Chromium-, zinc-, iron- and copper-containing compounds were among the first
pyrochlores obtained on the basis of bismuth tantalum [24–28]. A distinctive feature of
such pyrochlores is the mixed placement of transition metal cations in two nonequivalent
cation sublattices A and, to a greater extent, B. This leads to the formation of a bismuth-
defective pyrochlore structure. Moreover, in [29,30] it was shown that the deficiency of
bismuth atoms in the A2O’ sublattice cannot be more than 1/3 mole percent and closer
to 1/4 due to the stereoactive 6s2 electron pair of bismuth atoms. The formation of iron-
containing pyrochlores does not satisfy the stability parameter and, for example, for the
compositions Bi2FeTaO7 and Bi2FeTa2O9.5 it is equal to 1.82, provided that Fe (III) ions are
placed in octahedral positions. In the case when some of the iron (III) ions are placed in the
bismuth position, the value of the stability parameter will be within the required interval.
The paper [25] shows the possibility of the formation of iron-containing pyrochlores of
the general composition Bi3.36Fe2.08+xTa2.56−xO14.56−x (−0.32 ≤ x ≤ 0.48). Using the data
of magnetic susceptibility, and Mössbauer and electron energy loss spectroscopy (EELS)
analysis of iron-containing pyrochlores, it was found that iron ions are in the high spin state
Fe (III), occupying mainly octahedral positions Nb/Ta/Sb Nb/Ta/Sb [22,23,25,29,31–33].
It was also found that some of the Fe (III) ions can be placed in the bismuth positions. In
particular, depending on the composition of ceramics, only 4–15% of A-sites are occupied
by Fe3+ ions in the pyrochlores of the Bi2O3-Fe2O3-Nb2O5 system [22]. For the Bi2O3–
Fe2O3–Sb2Ox and Bi1.8Fe0.2 (FeSb)O7 systems the occupation value is equal to 7–25% [23]
and 10% [34], respectively. At the same time, it was indicated in [34] that all compositions of
Bi2−xFex (FeSb)O7 (x = 0.1, 0.2, 0.3) demonstrate the state of spin glass due to the presence
of some Fe (III) ions in crystallographic positions A. It was found that for pyrochlores in
the Bi2O3-Fe2O3-Nb2O5 system, the value of the dielectric constant ε lies in the range of
141–151 and dielectric losses are close to 0.2 at a temperature of 30 ◦C and frequency of
1 MHz [35]. For pyrochlore Bi1.657Fe1.092Nb1.150O7 the dielectric constant remains high
~120 at 300 K and 1 MHz [22]. Iron-containing pyrochlores Bi3.36Fe2.08+xTa2.56−xO14.56−x
(−0.32 ≤ × ≤ 0.48) are characterized by lower values of the dielectric constant ~78–92
and the dielectric loss tangent ∼10−1 (MHz, ~30 ◦C) [25]. Meanwhile, solid solutions
Bi3.36Fe2.08+xSb2.56−xO14.56−x (0.00 ≤ × ≤ 0.64) have lower permittivity values in the range
of 24–35 and dielectric losses of the order of 10−1 at room temperature and frequency of
1 MHz [36].
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Within the work the possibility of the formation of Mg,Fe codoped bismuth tantalate
pyrochlores and the influence of magnesium ions on the structure, thermal behavior,
symmetry of the local coordination environment of iron (III) ions and optical properties of
compounds were demonstrated.

2. Experimental Section

Solid solutions of Bi2MgxFe1−xTa2O9,5±∆ (x = 0, 0.3, 0.5, 0.7) were synthesized by the
solid-phase method according to the procedure described in detail in [29]. It should be
noted that the synthesis was carried out in stages, at temperatures of 650, 850, 950, 1050 ◦C
for 10 h at each calcination stage. The precursors for the solid-phase reaction were the
oxides MgO, Bi2O3, Fe2O3, Ta2O5. The microstructure and local elemental composition of
the samples were studied by scanning electron microscopy (SEM) and energy dispersive
X-ray spectroscopy (EDS) using electron scanning microscope Tescan VEGA 3LMN, (Tescan,
Czech), combined with the energy-dispersive spectrometer INCA Energy 450, (Tescan,
Czech). X-ray photoelectron spectroscopy (XPS) analysis was performed by the Thermo
Scientific ESCALAB 250Xi X-ray spectrometer, (Thermo Fisher Scientific, USA). An X-ray
tube with Al Kα radiation (1486.6 eV) was used as a source of ionizing radiation. To
neutralize the charge of the sample, an ion-electronic charge compensation system was
used. All peaks are calibrated relative to the intensity of the C1s peak at 284.6 eV. The
experimental data were processed using the ESCALAB 250 Xi software. The near edge
X-ray absorption fine structure (NEXAFS) spectra were measured with a resolution of about
0.45 eV at the NanoPES beamline [37] of the Kurchatov Synchrotron Radiation Source (NRC
Kurchatov Institute) using the total electron yield (TEY) mode.

The crystal structure of Fe,Mg-codoped bismuth tantalate was investigated by the
powder high-temperature X-ray diffraction (HTXRD) using an X-ray diffractometer Rigaku
Ultima IV (Co Kα radiation, air atmosphere, 40 kV/30 mA, Bragg-Brentano geometry)
equipped with plastic scintillator strips detector D/teX Ultra. The correctness of 2θ at room
temperature (RT) was checked before every measurement using silicon as external standard;
the change in zero shift never exceeded±0.02◦ 2θ. The unit-cell parameters were calculated
at every temperature step by the Pawley approach and the crystal structure of Fe,Mg-doped
bismuth tantalate was refined at 25 ◦C by the Rietveld method using the Topas 5.0 software
package [38]. According to HTXRD data, the crystal structure for the Bi2Mg0.5Fe0.5Ta2O9+∆
composition was refined. The Thompson–Cox–Hastings pseudo-Voigt function was used
to describe the reflex profile. Scattering factors of neutral atoms were applied for all atoms.
The ideal structure of pyrochlore (space group Fd3m) was used as the initial structure
model. The filling of the positions was determined in accordance with the composition
stoichiometry.

For the electron spin resonance (ESR) spectroscopy of the Fe,Mg-codoped bismuth
tantalate polycrystalline samples an X-band spectrometer RadioPAN SE/X 2547 was used.
The spectra were recorded using a rectangular resonator (RX102, TE 102 mode) at RT as
the first derivative, at the high frequency modulation of 100 MHz with the amplitude
of 0.25 mT and the microwave power of 35 mW. The pyrochlore sample (45–70 mg) was
put into a thin-walled quartz test tube (internal diameter of 2.5 mm) together with the
reference sample (anthracite, singlet line g0 = 2.003, peak to peak distance ∆BPP = 0.5 mT)
in an ampoule. For each sample, the spectrum in the magnetic field range of 0–700 mT
and the reference line g0 = 2.003 in the scan range of 5 mT were separately recorded. The
intensity of the reference line served as a measure of the gain of the instrument and, when
processing spectra, was used to accurately remove background signals from the test tube
and ampoule. The spectra were normalized to the reference line intensity and then to 60 mg
of the sample. The ESR spectra were recorded with an X-band radiospectrometer SE/X-2547
(RadioPAN) in the Shared Services Center “Geonauka” at the Institute of Geology FRC
Komi SC UB RAS.

In order to study electrical properties, metallic Ag electrodes were applied onto both
sides of the ceramic discs and sintered at 650 ◦C for 1 h. The measurements were carried out
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with an E7-28 impedancemeter (frequency range of 25–107 Hz) at temperatures from 25 up
to 450 ◦C. The thickness and diameter of the studied disk-shaped sample were 1.7–2.3 mm
and 14.2–14.3 mm, respectively.

The 57Fe Mössbauer spectra were obtained using an Mössbauer spectrometer Wissel
(Wissel, Germany, Starnberg) at the rates of −11–+11 mm/s at RT. The 6 × 108 Bq 57Co in
chrome matrix (Ritverc GmbH, St. Petersburg, Russia) at RT was used. To eliminate the
texturing effects in the spectra, the samples were prepared in the form of finely ground
powder. The duration of spectrum accumulation was about 270 h. The isomeric shift was
determined relative to α-Fe.

3. Results and Discussion
3.1. Thermal Behavior, Morphology and Crystal Structure

According to the X-ray phase analysis data, it was found that samples of the composi-
tion Bi2MgxFe1−xTa2O9.5−∆ (x = 0.3, 0.5, 0.7, 1.0) crystallize in cubic syngony. The analysis
of reflection loss confirmed that the symmetry of the crystal structure is cubic with the
space group Fd3m. It should be noted that the samples of this series were synthesized twice.
On the X-ray diffraction patterns of the first series of samples (Figure S1) an admixture of
the bismuth orthotantalate was detected, the amount of which decreased with increasing
the iron content. The content of bismuth orthotantalate was assessed from X-ray diffrac-
tion patterns. For the Bi2MgxFe1−xTa2O9.5−∆ (x = 0.7) sample with the highest content
of bismuth orthotantalate, the amount of impurity is no more than 4.86 mass. percent
(Figure S2).

The appearance of an impurity and its dependence on the concentration of iron in
the samples may be associated with the tendency of Mg (II) ions to be located in two
cationic positions of bismuth (III) and tantalum (V), which weakens with an increase in
iron and a decrease in magnesium content. Apparently, magnesium ions, being distributed
in the Ta(V) positions and having a smaller charge and a larger ionic radius, are capable
of causing distortions in the pyrochlore crystal structure due to oxygen vacancies. In
order to reduce the degree of stress of the crystal structure, some of the magnesium ions
are placed in positions Bi (III) and to create vacancies in bismuth positions, bismuth
orthotantalate is released as an impurity. A similar reaction was observed in the case of
cobalt-containing pyrochlore [30]. With a decrease in the content of Mg (II) ions in the
samples, the stresses of the octahedral frame become weaker and the need for such a
process disappears, which can be seen in the experiment. The repeated synthesis of a series
of preparations is performed more efficiently. An intermediate and longer homogenization
was performed. As a result, pure preparations of solid solutions that do not contain
bismuth orthotantalate were synthesized (Figure 1). Based on this, one can conclude that
the absence of impurities is due to careful and repeated homogenization of the preparations.
Apparently, homogenization contributed to the reduction in local stresses of the structure
caused by heterovalent substitution and uniform distribution of ions in the structure,
including oxygen vacancies.

With increasing magnesium concentration, the unit cell parameter increases almost
uniformly from 10.5009 ± 0.0001 Å (x = 0.3) up to 10.5225 ± 0.0007 (x = 0.7). The concentra-
tion dependence is almost linear and obeys Vegard’s law quite well (Figure 1) [39]. This
fact indicates the formation of a continuous series of solid solutions and the distribution of
iron and magnesium ions in the same system of crystallographic positions.
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It should be noted that the unit cell parameters previously determined for the ex-
treme terms of the series of the studied solid solution Bi1.5Mg0.75−xFexTa1.5O7±∆ are
a = 10.4871(2) Å (x = 0.75) [29] and a = 10.54607 Å (x = 0) [40], which is in good agree-
ment with the parameters of iron- and magnesium-containing solid solutions. The cal-
culated parameters of the solid solution cell are in satisfactory agreement with the cell
constant for the border compositions of solid solutions Bi2FeTa2O9.5 (a = 10.4871 Å) and for
Bi2MgTa2O9 (a = 10.5461 Å), and are also close to the values given in [25] for iron-containing
pyrochlores based on bismuth tantalate Bi3.36Fe2.08+xTa2.56−xO14.56−x (−0.32 ≤ × ≤ 0.48)
(10.4979–10.5033 Å) and bismuth niobate (Bi1.721Fe0.190(Fe0.866Nb1.134)O7) a = 10.508 Å and
Bi3.36Fe2.08+xNb2.56−xO14.56−x (−0.24 ≤ × ≤ 0.48), for which the parameter varies from
10.5071(4) to 10.5107(7) Å [22,35]. The proximity of the polarization properties and ion radii
of Fe (III) and Ta(V) explains the tendency of Fe (III) ions to occupy octahedral positions,
repeatedly proven by physicochemical analysis methods [41–43].

Based on powder data, using the software package Topas 5.0, the crystal structure was
refined for the compositions Bi2MgxFe1−xTa2O9.5−∆ (x = 0.5, 0.3). The ideal structure of
pyrochlore (sp. gr. Fd3m) served as the initial structure model. The best agreement between
the experimental and calculated data was obtained for the disordered structure model, in
which the Bi atoms are displaced from the highly symmetrical (16d) positions to the (96g)
positions. Tantalum(V) and iron ions are located in the same system of crystallographic
positions (16b). The oxygen atoms are disordered and are located in two crystallographic
positions, one of which (48f) is completely occupied, the other (8a) is in short supply
and filled by 56 (66)%, respectively. For example, the stoichiometric formula of the nom-
inal composition Bi2Mg0.5Fe0.5Ta2O9+∆ (or the normalized formula to 7 oxygen atoms
Bi1.4Mg0.35Fe0.35Ta1.4O6.65), determined as a result of structure refinement, corresponds to
the composition with a deficient sublattice of bismuth cations—Bi1.38Fe0.34Mg0.32Ta1.34O6.69.
Table 1 shows the results of the refinement of the pyrochlore structure for the compositions
Bi2MgxFe1−xTa2O9.5−∆ (x = 0.5, 0.3) by the Rietveld method in the space group Fd3m:2 (227).

The experimental, calculated, and difference diffraction patterns of Bi2Mg0.3Fe0.7Ta2O9.5−∆
are shown in Figure 2. Atomic and geometric parameters of Bi2MgxFe1−xTa2O9.5−∆
(x = 0.5, 0.3) are presented in Tables 1 and 2, respectively.
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Table 1. Parameters of atoms in the Bi2MgxFe1−xTa2O9.5−∆ (x = 0.5; 0.3).

x = 0.5

Atom Wyckoff Site x y z SOF Biso, Å2

Bi 96g 0 −0.02489(10) 0.02489(10) 0.1146(7) 1.26(6)
Ta 16b 0.5000 0.5000 0.5000 0.67(6) 0.60(3)
Fe 16b 0.5000 0.5000 0.5000 0.17(6) 0.60(3)
Mg 16b 0.5000 0.5000 0.5000 0.16(6) 0.60(3)
O1 48f 0.1250 0.1250 0.4302(4) 1 1.78(15)
O2 8a 0.1250 0.1250 0.1250 0.56(3) 1.78(15)

x = 0.3

Atom Wyckoff Site x y z SOF Biso, Å2

Bi 96g 0 −0.02516(8) 0.02516(80) 0.1125(4) 0.94(5)
Ta 16b 0.5000 0.5000 0.5000 0.67(6) 0.54(2)
Fe 16b 0.5000 0.5000 0.5000 0.22(6) 0.54(2)
Mg 16b 0.5000 0.5000 0.5000 0.11(6) 0.54(2)
O1 48f 0.1250 0.1250 0.4317(3) 1 1.72(12)
O2 8a 0.1250 0.1250 0.1250 0.66(2) 1.72(12)
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weakly ordered BiO8 polyhedron vary from 2.30 to 2.99 Å (Table 3), with 4 out of 8 bonds 
noticeably shorter than the others. The asymmetry of the polyhedron of bismuth atoms is 
due to the distribution of the stereoactive 6s2 pair of bismuth ions. 

  

Figure 2. Experimental (blue circles), calculated (solid red line) and difference (gray line) XRD
patterns of Bi2Mg0.3Fe0.7Ta2O9.5−∆.

Table 2. Crystallographic data of the Bi2MgxFe1−xTa2O9.5−∆.

Index x x = 0.5 x = 0.3

a (Å) 10.51036(3) 10.49929(4)
α, β, γ (◦) 90, 90, 90

V (Å 3) 1161.053(11) 1157.389(12)
Dcalc (g/cm3) 7.57(2) 7.58(1)

RB 0.63 0.67
Rwp
Rp

Rexp
GOF

3.16
2.26
2.16
1.46

3.68
2.71
2.14
1.72

According to the simulation results, the tantalum/iron atoms form a regular TaO6
octahedron with a Ta–O bond length of ~1.9869 Å. Individual interatomic distances in the
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weakly ordered BiO8 polyhedron vary from 2.30 to 2.99 Å (Table 3), with 4 out of 8 bonds
noticeably shorter than the others. The asymmetry of the polyhedron of bismuth atoms is
due to the distribution of the stereoactive 6 s2 pair of bismuth ions.

Table 3. Selected bond lengths in the structure of Bi2MgxFe1−xTa2O9.5−∆.

Index x x = 0.5 x = 0.3

Bond Length (Å) Length (Å)

Bi1–O1 × 2 2.306(2) 2.304(2)
–O1 × 2 2.344(4) 2.350(3)
–O1 × 2 2.683(3) 2.688(2)
–O2 × 2 2.983(4) 2.987(3)

<Bi1VIII–O> 2.58 2.58

Ta1–O1 × 6 1.9959(16) 1.9898(12)
<Ta1VI–O> 2.00 1.99

As noted earlier, in the case of pyrochlores based on bismuth tantalate containing
atoms of 3d elements [29,30], the formation of a symmetric tantalum–oxygen polyhedron
is typical, and the length of the Ta–O bond in the octahedron changes depending on the
nature of the 3d atom. In the case of iron ions, the average Ta–O bond length is shorter than,
for example, for nickel compositions and the degree of distortion of the BiO8 polyhedron is
lower. Apparently, this is due to the close radii of the Fe (III) and Ta(V) ions [29], distributed
in the same system of octahedral sites, and the degree of covalence of the M–O bond (M–Fe
(III), Ta(V)).

The samples have a yellow color characteristic of iron (III) compounds, which becomes
more intense with increasing iron content (Figure 3).
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Figure 3. Photographs of the Bi2MgxFe1−xTa2O9.5−∆ (x = 0, 0.3, 0.5, 0.7) ceramics.

The microstructure of the samples is porous, formed by weakly aggregated elongated
particles (Figure 4). No significant dependence of the crystallite size on the magnesium/iron
ratio has been established. The average size of crystallites determined by the Scherrer
method for solid solutions is ∼59.6 nm, meanwhile, larger grains with a longitudinal size
of 1–2 µm were recorded by scanning electron microscopy (SEM). In some places, local
coalescence of grains with the formation of larger aggregates is observed. It can be noted
that an increase in the magnesium content in solid solutions contributes to the appearance
of a larger number of grain aggregates. The porosity of the samples according to SEM data
varies from 22 (x(Mg) = 0.7) to 28 (x(Mg) = 0.3) percent. Local quantitative analysis by
the EDS method showed that the experimental composition of the samples corresponded
to the specified one (Figure S3). Elemental mapping of the samples showed a uniform
distribution of atoms in the composition of the sample (Figure S4).
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Figure 4. SEM micrographs of the Bi2MgxFe1−xTa2O9.5−∆ ceramics at x = 0.7 (a), 0.5 (b), 0.3 (c).

The study of thermal behavior was carried out by the HTXRD method in the range of
30–1200 ◦C (Tables S1 and S2). Figure 5a shows the temperature dependence of the cubic
unit cell parameter Bi2MgxFe1−xTa2O9.5−∆ (x = 0.5) for the range 30–1200 ◦C. The unit cell
parameter a increases uniformly from 10.50183 Å (30 ◦C) to 10.57607 Å (1110 ◦C). A uniform
change in the cell constant indicates the absence of phase transformations and the thermal
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stability of pyrochlore in the considered temperature range, as was previously revealed
for pyrochlores based on bismuth tantalate containing magnesium or 3d ions [29,40,43].
Above 1100 ◦C, the thermal dissociation of the solid solution probably occurs, as shown
for Bi2FeTa2O9.5 [43]. It is interesting to note that the limiting temperature of the phase
stability of Bi2MgxFe1−xTa2O9.5−∆ (x = 0.5) decreases with an increase in the magnesium
content from 1140 ◦C (x = 0) to 1050 ◦C (x = 1), which may be due to a change the nature of
the MO (M-Fe(III), Mg(II) bond in the octahedron from covalent to ionic and the number of
oxygen vacancies destabilizing the structure.
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Fe0.5Ta2O9.5−∆.

The Figure 5b shows the temperature dependences of the thermal expansion coefficient
(TEC) for Bi2Mg0.5Fe0.5Ta2O9.5−∆ calculated as a result of approximation of the temperature
dependences of the unit cell parameters.

As can be seen from the Figure 5b, the TEC values for Bi2Mg0.5Fe0.5Ta2O9+∆ increases
uniformly and weakly from 3.6 to 9.3 × 10−6 ◦C−1 in the temperature range 30–1050 ◦C.
In this regard, iron–magnesium pyrochlores can be attributed to weakly expanding com-
pounds with isotropic thermal expansion. The average value of TEC (6.4 × 10−6 ◦C−1)
for Bi2Mg0.5Fe0.5Ta2O9.5−∆ in the studied temperature range is comparable to the thermal
expansion coefficient of compounds with a framework structure like pyrochlore [44–46],
including pyrochlores based on tantalate bismuth containing 3d ions [43]. Taking into
account that transition ions are mainly located in octahedral positions, one can speak of a
weak effect of the nature of dopants distributed in the three-dimensional cationic sublattice
B on the thermal expansion of pyrochlores.

3.2. XPS, ESR, NEXAFS and Mössbauer Spectroscopy

The studies of the electronic state of atoms in Mg,Fe-codoped bismuth tantalate
pyrochlore were carried out by NEXAFS, XPS, ESR and Mössbauer spectroscopy methods.
The chemical state of the surface of the studied samples was investigated by XPS. The
obtained XPS spectra of bismuth–magnesium tantalate, Mg,Fe-codoped bismuth tantalate
(on the example of a composition with x = 0.5) and corresponding oxides are shown in
Figure 6a–d: XPS spectra in a wide energy range of binding energies (20–1400 eV) and
spectral dependences in the region of Bi4f-, Bi5d-, Ta4f-, Ta4d-, Mg1s and Fe2p ionization
thresholds. The graphs show the results of the decomposition of spectral dependencies into
individual peaks, which were modeled by Gauss–Lorentz curves, and the background by
Shirley approximation. To study the chemical composition of the samples, only the spectra
of metals were analyzed. This is explained by the fact that in the Survey XPS spectrum
there is a C1s peak caused by surface contamination of the sample, which can give an
indefinite contribution to the intensity of the O1s peak.
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Figure 6. Survey XPS spectra of Bi2MgTa2O9 and Bi2Mg0.5Fe0.5Ta2O9.5−∆ (a); Bi4f spectra (b). For
comparison, the spectra of Bi2O3 are shown; XPS spectra of tantalum and bismuth atoms (c); Mg1s
spectra (d); Ta4d spectra (e); Fe2p spectra of Bi2Mg0.5Fe0.5Ta2O9.5−∆ and of Fe2O3 (f).

It should be noted that the analyzed spectra in the main details and their energy
positions coincide with the previously obtained spectra for the Bi2MTa2O9 (M-Co,Ni,Fe),
Bi2MgTa2O9 pyrochlores [29,30,40,43]. Therefore, it is sufficient to present an analysis of
the spectra for one composition at x = 0.5. The energy positions of the Bi2MgTa2O9 (1) and
Bi2Mg0.5Fe0.5Ta2O9+∆ (2) XPS spectra features are given in Table 4.

Table 4. Energy positions of the components of the XPS spectra of Bi2MgTa2O9 (1) and
Bi2Mg0.5Fe0.5Ta2O9.5−∆ (2).

Peak
Energy (eV)

1 2

Bi4f7/2 158.99 159.03
Bi4f5/2 164.31 164.35
Bi5d5/2 25.83 26.11
Bi5d3/2 28.85 29.08
Ta4f7/2 25.39 25.66
Ta4f5/2 27.29 27.56
Ta4d5/2 229.57 229.78
Ta4d3/2 241.32 241.44

Mg1s 1302.99 1303.19
Fe2p3/2 710.47
Fe2p1/2 724.06
Fe2p sat 718.92
Fe2p sat 733.10

Comparison of the observed features with chemical states was carried out on the basis
of [47,48]. We note only some features of the newly obtained spectra. First of all, doping
with iron ions does not significantly change the spectral characteristics of bismuth, tantalum
and magnesium ions (Figure 6a–d). Consequently, the electronic state of these ions remains
unchanged and corresponds to the ions Mg (II), Bi (III). In the Ta4f and Ta5p spectra of
tantalum atoms, the energy position of the peaks has a characteristic shift towards lower
energies compared to the binding energy in pentavalent tantalum oxide Ta2O5, which is
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characteristic in the case of a decrease in the effective positive charge. The energy shift
∆E in the Ta4f and Ta5p spectra is equal to 0.5 eV, and near the Ta5d edge—to ~1 eV. This
suggests that tantalum atoms can have the identical effective charge smaller than five
+(5-δ). Apparently, the observed shift is due to the substitution of tantalum positions with
magnesium (II) and iron (III) ions with a lower effective charge. Since any change in the
chemical environment of an element affects the spatial redistribution of the charge of its
valence electrons, the binding energy of the electrons is consequently changed. The XPS
Fe2p spectra of Bi2Mg0.5Fe0.5Ta2O9+∆ (Figure 6d) demonstrate two wide bands Fe2p1/2
and Fe2p3/2 and their satellites with a characteristic binding energy of 710.47 eV (Fe2p3/2),
724.06 eV (Fe2p1/2) (Table 4). The coincidence of the Bi2Mg0.5Fe0.5Ta2O9+∆ and Fe2O3 oxide
spectra by the number and energy positions of the main peaks suggests that iron atoms
have an effective charge of +3.

A similar conclusion about the charge state of Fe3+ iron atoms in Bi2Mg0.5Fe0.5Ta2O9+∆
follows from the analysis of NEXAFS Fe2p3/2 spectra of ceramics and iron oxides shown in
Figure 7. In the spectrum there are two broad lines at 707.5 eV and 709 eV, which correlate
well with the spectrum of iron in iron (III) oxide in terms of the energy position and shape
of the lines. Iron-containing pyrochlore Bi2FeTa2O9.5 has a similar spectrum shape [29,43].
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Figure 7. NEXAFS Fe2p spectra of Bi2Mg0.5Fe0.5Ta2O9.5−∆ and iron oxides FeO and Fe2O3.

The state of iron (III) ions is confirmed by the data of the ESR spectrum of Bi2Fe0.5Mg0.5
Ta2O9.5−∆, in which there is an intense dipole-broadened band from Fe3+ ions, split into
two components with g ~2.1 and 2.01 with widths of about 80 and 20 mT, respectively.
Figure 8 shows for comparison two spectra normalized to one microwave and one gain.
They are completely aligned. The spectrum of Bi2FeTa2O9.5 is naturally wider than the
spectrum of iron in Bi2Fe0.5Mg0.5Ta2O9.5−∆ due to the iron content. The vertical line in the
figure shows the position of the reference signal with g = 2.003.

The study of the nature of the local environment and the degree of oxidation of iron
ions was carried out by the nuclear-gamma-resonance (NGR) method. The Mössbauer
spectrum of the Bi2Mg0.5Fe0.5Ta2O9+∆ compound is shown in Figure 9, more precisely the
paramagnetic part (−4–+4 mm/s) of the full spectrum. About 100% of the area of the
spectrum paramagnetic part falls on a symmetrical Fe3+ doublet with a chemical shift IS
~0.144 ± 0.009 and a quadrupole splitting QS ~0.600 ± 0.014 mm/s.
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According to the data of literature sources and X-ray spectroscopy, the doublet is asso-
ciated with Fe3+ ions in regular axial octahedral positions Ta5+O6 + V[O2−]→ Fe3+O6. This
assumption does not contradict the results of studies of the NGR spectra of iron-containing
compounds in which Fe (III) ions are in octahedral coordination [29,31–34,41]. In particular,
for pyrochlore Bi2FeNbO7, the parameters of the Mössbaur spectrum of Fe (III) ions occu-
pying octahedral B positions were determined: IS = 0.27 mm/s, QS = 0.66 mm/s [49]. For
pyrochlores formed in the Bi–Fe–W–O system, the parameters of the Mössbaur spectrum
for octahedral positions are IS = 0.38 mm/s, QS = 0.54 mm/s [31]. The Mössbaur spectrum
of pyrochlore Bi1.8Fe0.2(FeSb)O7 exhibits two doublets with parameters IS = 0.38 mm/s,
QS = 0.54 mm/s and IS = 0.32 mm/s, QS = 1.87 mm/s, assigned to Fe ions (III) in octahedral
positions of antimony (90%) and 8-fold positions of bismuth (10%), respectively [32]. Our
NGR data do not contradict the results of X-ray diffraction analysis on the presence of iron
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(III) ions in octahedral positions. The assumption that Fe (III) ions replace Bi (III) positions
is not supported by the spectrum parameters. Otherwise, an asymmetric signal should
appear in the spectrum, described by a doublet with a large quadrupole splitting [31–33],
which contradicts our spectrum. It should be noted that the NGR spectrum of iron (III)
in Bi2Mg0.5Fe0.5Ta2O9.5−∆ is similar to the spectrum of pyrochlore Bi2FeTa2O9.5, which
does not contain magnesium ions [40]. For them, a signal is observed with practically the
same quadrupole splitting QS = 0.575 ± 0.010 and 0.604 ± 0.034 mm/s and close chemical
shift IS ~ 0.378 ± 0.005 and 0.365 ± 0.0020 for Bi2Mg0.5Fe0.5Ta2O9.5−∆ and Bi2FeTa2O9.5,
respectively. The shift of the signal to strong fields can be associated with the greatest
imperfection of the polyhedral environment of the Fe (III) ions in Bi2Mg0.5Fe0.5Ta2O9.5−∆
due to the heterogeneous replacement of Ta(V) ions by Mg (II) and Fe (III) ions.

Thus, according to near edge X-ray absorption fine structure (NEXAFS) and X-ray
photoelectron spectroscopy (XPS) data, Mössbauer spectroscopy study and ESR, iron ions
in solid solutions are in the charge state Fe (+3). The Mössbauer spectrum is represented by
a symmetric doublet with parameters IS = 0.365(2) mm/s, QS = 0.60(3) mm/s, related to
Fe3+ ions in regular axial octahedral positions.

3.3. Dielectric and Optical Properties

For samples of solid solutions Bi2MgxFe1−xTa2O9.5−∆ (x = 0.7, 0.5, 0.3) at room tem-
perature, the electrical characteristics were studied—the permittivity and dielectric loss
tangent in the frequency range 25 Hz–10 MHz (Figure 10) depending on the ratio magne-
sium/iron(III).
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the Bi2MgxFe1−xTa2O9.5−∆ at 20 ◦C.

Measurements of the electrical properties at room temperature (20 ◦C) showed that the
permittivity of the samples is practically independent of frequency and exhibits low values
ε ≈ 28.5–30.5 (υ > 102 Hz). In the low-frequency range, the dielectric constant slightly
increases by 1–2 units, reaching for x(Mg) = 0.3, values over 32 at 25 Hz. The dielectric
loss tangent exhibits a similar course of dependence. Above 103 Hz, the loss tangent for
all samples does not change and has low values of 0.001 (106 Hz). For samples x = 0.5 and
0.7, no noticeable frequency dependence is observed. The exception is the sample with
x(Mg) = 0.3, which is characterized by a sharp increase in the dielectric loss tangent at low
frequencies. This behavior may be related to the absorption of water by the sample and the
tendency of Fe–doped bismuth tantalate pyrochlore [29] to conduct protons. For this reason,
the permittivity of a sample with x(Mg) = 0.3 takes on intermediate values of ~29.2 between
the values of ε ≈ 28.5 (x(Mg) = 0.5) and 30.5 (x(Mg) = 0.7). It should be noted that the
permittivity of Fe,Mg-codoped bismuth tantalates is 1.5 times higher than for magnesium-
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containing pyrochlores of the same composition [29]. More precisely, for Bi2MgTa2O9 at
room temperature and a frequency of 1 MHz, the permittivity and dielectric loss tangent
are 20 and 2·10−3, respectively. As can be seen from the figure, the dielectric permittivity
of the samples depends on the magnesium/iron ratio and takes on the higher values, the
more magnesium (II) ions in the samples. This fact conditionally contradicts the concept of
the influence of atomic polarizability (α (Mg (II)) = 1.32 Å3, α (Fe (III)) = 2.29 Å3) [25,29].
We have already stated earlier [29] that for polycrystalline materials the influence atomic
polarizability on the permittivity secondarily. The grain boundary area has a significant
influence on the permittivity. The larger the area, the higher the permittivity. This is
achieved by the smaller ceramic grain size. It should be expected that the effect of atomic
polarizability will be of paramount importance in the case of single crystals. Studying the
microstructure Fe,Mg–codoped bismuth tantalate pyrochlore, we previously noted that an
increase in the magnesium content leads to grain intergrowth and a decrease in porosity, a
decrease in the area of grain boundaries. This explains why magnesium pyrochlores have
an increased dielectric constant. It can be assumed that the dielectric constant, in addition
to microstructure, the adsorbed o sample water, as observed for a sample with x(Mg) = 0.3.
Apparently, the permittivity increases with increasing sample moisture. The dielectric loss
tangent also depends on the ceramic microstructure. The value of the dielectric loss tangent
is the lower, the smaller the grain size [29]. In general, the electrical properties of the sample
are typical of dielectrics with medium permittivities and low dielectric losses. Having
highly porous and fine-grained Fe,Mg–codoped bismuth tantalate pyrochlore ceramics, we
investigated its optical properties. Diffuse reflectance spectra of Bi2MgxFe1−xTa2O9.5−∆
(x = 0.7, 0.5, 0.3) solid solution samples are shown in Figure 11.
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The band gap (Eg) of the obtained materials for direct allowed electronic transitions
was calculated from the data of the diffuse reflectance spectrum and is in the range of
2.28(5)–2.62(5) eV [49]. All studied samples have a yellow color, the intensity of which
increases with an increase in the content of iron (III). This indicates a significant reflection
of visible light in the yellow and longer wavelength region of the spectrum. All samples
demonstrate a pronounced absorption peak at about 475 nm (~2.63 eV), indicating the
presence of iron ions in the trivalent state (Fe3+) with distorted octahedral symmetry [36,37].
Calculations showed that the measured energies of direct allowed electronic transitions,
which determine the edge of the absorption band of light quanta, are in the range of 2.28(5)–
2.62(5) eV. In this case, with an increase in the iron content in the samples, the band gap
decreases, which leads to the convergence of the VZ valence band and the conduction
band. A similar effect of doping with iron on the band gap of pyrochlores in the systems
Bi2O3–Fe2O3–TeO3, Bi-Fe-W-O was noted in [19,31]. The underestimated values of the
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band gap in the studied pyrochlores can be a consequence of the Stark effect, as well as
the small grain sizes of ceramics. It is interesting to note that the band gap of the studied
ceramics correlates with the energy of solar radiation reaching the Earth’s surface and
having a maximum intensity (2.1–2.5 eV). In this regard, the obtained samples satisfy the
condition for efficient conversion of solar energy into electrical energy and are promising
as light-absorbing elements for solar batteries.

4. Conclusions

In the work, a continuous series of Bi2MgxFe1−xTa2O9.5−∆ solid solutions synthesized
by the solid-phase method was characterized. It has been shown that in the case of
insufficient homogenization of preparations during the synthesis, an admixture of bismuth
orthotantalate appears. If the thermal stability of the samples is higher, the higher the
content of iron ions is. Iron–magnesium pyrochlores are characterized by weak and uniform,
isotropic expansion. The average value of TEC in the temperature range of 30–1050 ◦C is
6.4 × 10−6 ◦C−1. Solid solutions are characterized by a disordered pyrochlore structure
(sp. gr. Fd3m:2, Z = 8), in which iron (III) and tantalum(V) ions share octahedral positions
16b, bismuth ions are displaced to 96g positions. The microstructure of the samples is
porous, dendrite-type. According to X-ray spectroscopy, bismuth, tantalum and iron ions
are in the charge state Bi (+3), Ta(+5-δ), Fe (+3). The Mössbauer spectrum is represented
by a symmetric doublet with IS = 0.378 ± 0.005, QS = 0.575 ± 0.010 mm/s, associated
with Fe3+ ions in regular axial octahedral positions of tantalum. The samples exhibit
typical properties for dielectrics. The band gap of the studied ceramics (2.28(5)–2.62(5) eV)
correlates with the energy of solar radiation reaching the Earth’s surface and having a
maximum intensity.
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