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ABSTRACT 

In the present work, a finite element model is developed to analyze the response of isotropic and orthotropic beams, a 
common structural element for aeronautics and astronautic applications. The assumed field displacements equations of 
the beams are represented by a first order shear deformation theory, the Timoshenko beam theory. The equations of 
motion of the beams are derived using Hamilton’s principle. The shear correction factor is used to improve the obtained 
results. A MATLAB code is constructed to compute the natural frequencies and the static deformations for both types 
of beams with different boundary conditions. Numerical calculations are carried out to clarify the effects of the thick- 
ness-to-length ratio on both the Eigen values and the deflections of the beams due to the applied mechanical load. The 
obtained results of the proposed model are compared to the available results of other investigators, good agreement is 
generally obtained. 
 
Keywords: Finite Element Method; Timoshenko Beam Theory; Composite Materials Mechanics; Static and  
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1. Introduction 

The current trend of aeronautics and astronautic design is 
to use large, complex, and light-weight structures ele- 
ments. These structures are commonly having low-fre- 
quency fundamental vibration modes in addition to fab- 
ricate by graphite-epoxy to satisfy the requirements of 
minimum weight and low thermal distortion. Because of 
that several researchers are interested to solve the beam 
structures by different theories. 

Yuan and Miller [1], proposed finite element model 
for laminated composite beams with separate rotational 
degrees of freedom for each lamina. The shear deforma- 
tion is included in the model but the interfacial slip or de- 
lamination is not included. Their element can be used 
even for short beams with many laminas. The model re- 
sults was compared with those of other theoretical and 
experimental investigations and found reasonable. 

Chandrashekhara and Bangera [2], developed finite 
element model based on a higher-order deformation the- 
ory with Poisson’s effect is incorporated. They conclud- 
ed the following: 1) The shear deformations decrease the 
natural frequencies of the beam; 2) The natural frequen- 
cies increase with the increase of the number of beam 
layers; 3) The clamped-free boundary condition exhibits 

the lowest frequencies; 4) The increase of fiber orienta- 
tion angle decreases the natural frequency; and 5) the 
natural frequency decreases by increasing the material 
anisotropy. 

Friedman and Kosmatka [3], developed two-node Ti- 
moshenko beam element using Hamilton’s principal. The 
resulting stiffness matrix of their model was exactly in- 
tegrated and it was free of “shear-locking”, and it was in 
agreement with the exact Timoshenko beam stiffness 
matrix. Their element was exactly predicting the dis- 
placement of short beam subjected to distributed loads 
and also predicted the natural frequencies. 

Lidstrom [4], derived an equilibrium formulation of 
3D beam element using the energy derivatives. His for- 
mulation contains the coupling terms between translation 
and twist, also between translational bending and elonga- 
tion. A three node element was introduced in such model. 
Also condensed two node version of the element has 
been analyzed. He found that two-node system was less 
numerically stable than the proposed three-node system. 

Bhate et al. [5], proposed a refined flexural theory for 
composite beam based on the potential energy concept. 
The warping effect is included in their formulation; 
however the shear correction coefficient was eliminated. 
They found that their theory is established for short 
composite beams where cross-sectional warping is pre- 
dominant. *Corresponding author. 
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Nabi and Ganesan [6], studied the free vibration char- 
acteristics of composite beams using finite element mo- 
del based on a first-order deformation theory including 
bi-axial bending as well as torsion. They studied the ef- 
fect of shear-deformation, beam geometry, and bound- 
ary conditions on the natural frequencies. They con- 
cluded that the natural frequencies are 1) Decrease with 
the increase of fiber orientation angle; 2) Increase with 
the increase of the beam length to height ratio for all fi- 
ber orientation angles; 3) Also have the lowest value in 
case of clamped-free boundary conditions 

Armanios and Badir [7], evaluated analytically the ef- 
fect of elastic coupling mechanisms on vibration behave- 
ior of thin-walled composite beams. Good agreement 
was found between their results and those developed by 
Giavotto et al. (1983) [8], and Hagodes et al. (1991) [9], 
based on finite element technique, and the experimental 
measurements obtained by Chandra and Chopra [10]. 

Rao and Ganesan [11], investigated a Harmonic re- 
sponse of tapered composite beams using finite element 
model based on a higher order shear deformation theory. 
The uniaxial bending and the Poisson ratio effect were 
considered and the interlaminar shear stresses were ne-
glected. The effect of in-plane inertia and rotary inertia 
were also considered in their formulation of the mass 
matrix. A parametric study is done of the influence of 
anisotropy, taper profile and taper parameter. They found 
that the transversal displacement is higher than that of a 
uniform beam. For the taper parameter effect, they de-
duced that the frequency decreases with increase thick-
ness variations and vise-verse. 

Khdeir and Reddy [12], presented an exact solution of 
the governing equations for the bending of laminated 
beams. They used the classical, the first-order, the sec- 
ond-order, and the third-order beam theories in their 
analysis. They studied the effect of shear deformation, 
number of layers, and the orthotropic ratio on the static 
response of composite beams. They found large differ- 
ences between the predicted deflections by the classical 
beam theory and the higher order beam theories, espe- 
cially when the ratio of beam length to its height was low 
due to the shear deformation effects. 

Yildirim et al. [13], studied the in-plane free vibration 
of laminated beams based on the transfer matrix method. 
They considered rotary inertia, shear, and extensional 
deformation effects on the Timoshenko’s beam analysis. 
Good predictions are obtained and compared to other 
reporters for different modes of the natural frequencies. 

Chakraborty et al. [14], proposed a refined looking 
free first order shear deformable finite element model to 
solve free vibration and wave propagation problems in 
laminated composite beam. They developed element, that 
its shape functions is dependent not only on the length of 

the element, but also on its material and cross-sectional 
properties. The developed stiffness matrix is exact while 
the mass distribution is approximate. Rotary inertia and 
effect of geometric and material asymmetry is taken into 
account. They named the model as refined first order 
deformable element (RFSDE). 

Eisenberger [15], proposed exact stiffness coefficients 
for isotropic beam using a simple higher order theory, 
which include cubic variation of the axial displacements 
over the cross-section of the beam. Their model had three 
degrees of freedom at each node, one transverse displace- 
ment and two rotations. They compared their model re- 
sults with Bernoulli-Euler and Timoshenko beam models 
and found acceptable. 

Lee and Schultz [16], studied the free vibration of Ti- 
moshenko beams and axi-symmetric Mindlin plates. The 
analysis was based on the Chebyshev pseudospectral me- 
thod, which has been widely used in the solution of fluid 
mechanics problems. Different boundary conditions of Ti- 
moshenko beams were treated, and numerical results were 
presented for different thickness-to-length ratios. 

Subramanian [17], proposed free vibration analysis of 
composite beams using Finite elements based on two 
higher order shear deformation theories. The difference 
between the two theories is that the first theory assumed 
a non-parabolic variation of transverse shear stress across 
the thickness of the beams whereas the second theory 
assumed parabolic variation. The comparison study 
showed that natural frequencies predict by his model 
were better than those obtained by other theories and the 
considered finite elements. 

Simsek and Kocaturk [18], studied the free vibration 
of isotropic beams based on the third-order shear defor- 
mation theory. The boundary conditions are satisfied 
using Lagrange multipliers which reduced the solution of 
a system of algebraic equations. A trial functions for the 
deflections and rotations of the cross-section of the beam 
are expressed in polynomial form. Their results are 
compared with the previous results based on CBT and 
FSDT. 

Jun et al. [19], proposed dynamic finite element model 
for beams based of first-order shear deformation theory. 
They introduced the influences of Poisson effect, cou- 
plings among extensional, bending and torsion deforma- 
tions, shear deformation and rotary inertia in their for- 
mulation. Their obtained results are compared to those 
previously published and founded in good accuracy. 

Lee and Janga [20], presented spectral element model 
for axially loaded bending-torsion coupled composite 
beam based on the first-order shear deformation theory, 
Timoshenko beam model. They found that the use of 
frequency-dependent spectral element matrix i.e. exact 
dynamic stiffness matrix, provide extremely accurate 
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solutions, while reducing the total number of degrees- 
of-freedom to resolve the computational and cost prob- 
lems. 

Nguyen et al. [21], presented full closed-form solution 
of the governing equations of two-layer composite beam. 
Timoshenko’s kinematics assumptions are considered for 
both layers and the shear connection is modeled through 
a continuous relationship between the interface shear 
flow and the corresponding slip. They derived the “ex- 
act” stiffness matrix using the direct stiffness method. 
They found that the effect of shear flexibility on the de- 
flection is generally more important for composite beams 
characterized by substantial shear interaction. 

Lina and Zhang [22], proposed a two-node element 
with only two degrees of freedom per node for finite 
element analyses of isotropic and composite beams. 
Their model was based on Timoshenko theory. They 
concluded that their proposed model is accurate and 
computationally efficient for analysis of isotropic and 
composite beams. 

Kennedya et al. [23], presented Timoshenko beam 
theory for layered orthotropic beams. The proposed the- 
ory yields Cowper’s shear correction for single isotropic 
layer, while for multiple layers new expressions for the 
shear correction factor are obtained. The body-force cor- 
rection was shown to account for the difference between 
Cowper’s shear correction and the factor originally pro- 
posed by Timoshenko. Numerical comparisons between 
the theory and finite-elements results showed good agree- 
ment. 

In the present work, a finite element model is proposed, 
based on first order shear deformation theory, Timo- 
shenko beam theory, with a shear correction factor, to 
predict the static responses and dynamic characteristics 
of advanced isotropic and orthotropic beams for different 
boundary conditions and different length to thickness 
ratio due to different applied loads. The structure outline 
of the present work can be drawn for both isotropic and 
orthotropic beams as follows: 

1) Theoretical formulation using the Timoshenko the- 
ory. 

2) Finite element formulation to obtain the structure 
equation of motion. 

3) The model validation and parametric studies which 
contain the items: 

a) Model convergence for both deflection and eigen- 
values. 

b) Static deformation of the beam. 
c) Dynamic characteristics of the beam. 
d) Model predictions analysis and conclusions. 

2. Theoretical Formulation 

The displacements field equations of the beam are as- 
sumed as follows [12]: 
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where ,  and  are the displacements field equa- 
tions along the coordinates

u v w
,x y and , respectively,  

and 0  denote the displacements of  a point 
z 0u

w  , ,0x y  
at the mid plane,  x   x  and  x  are the rota- 
tion angles of the cross-section as shown in Figure 1. 

By selecting the constant values of Equation (1) a as: 

0 0,c   1 1,c   2 0,c   3 , the displacements field 
equations for first-order theory (FOBT) at any point 
through the thickness can be expressed as [24]: 
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The strain-displacement relationships are obtained by 
differentiating the assumed displacement field equations, 
Equation (2), as follows: 
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The strains at any point through the thickness of the 
beam can be written in matrix form as: 

xx xx

xz

xx

xz x

z
  
   z
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The components xx   xz   and xx are the reference 
surface extensional strain in the x-direction, in-plane 
shear strain, and curvature in the x-direction, respec- 
tively. 

 

The generalize stress strain relationship is given by [25]: 

ij ijkl klc                (5) 

where, , 1, ,i j 6  ; and . 1, ,3k  
The plane stress approximations are made by setting 

the stress component in the transverse direction 33 0  , 
and eliminate the corresponding strain 33  from the 
constitutive relation, Equation (5) as follows [25]: 
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related to the engineering constants for two material 
cases such as: 


Case I: Isotropic Beam 
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where;  , G, and E   are the material properties. 
where, are the reduced stiffness components which  ijQ Case II: Orthotropic Beam 
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3. Energy Formulation where; i  is the modules in E ix  direction,  ijG i j  
are the shear modules in the i jx x  plane, and ij  are 
the associated Poisson’s ratios. 

The kinetic energy of the beam structure is given by [6]: 

Thus the transformed stress-strain relationship can be 
written as: 
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where, ρ is the mass density of the material of the beam. 
The internal strain energy  for the beam structure 

is represented by [12]: 
U
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          (11) 

And the work done due to external loads is represented 
by [24]: 

where, ijQ , are the transformed reduced stiffness com- 
ponents [25]. 
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tionship can be reduced to: 
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          (9a) Case I: Isotropic beam 

By substituting Equations (9a), and (9b) into Equa- 
tion (11), the internal strain energy is represented by: where; sk  is the shear correction factor and the coeffi- 

cients in Equation (9a) are given by: 
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By inserting Equations (3a), and (3b) into Equation 

(13), one can obtain: Case II: Orthotropic Beam 
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Case II: Orthotropic Beam 
By substituting Equation (9a) in Equation (11), the internal strain energy of the composite beam is represented by: 
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By inserting Equations (3a), and (3b) into Equation (16),  

one can obtain: 
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And performing the integration through the thickness, the internal strain energy for anisotropic beam is represented by: 
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where, , ,ij ijA B and  are the laminate extensional, coupling, and bending stiffness coefficients and they are given 
by [25]: 
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4. Finite Element Formulation 

In the present model the proposed element has five nodes 
with nine degrees of freedom representing the deforma- 
tions  and , ,u w x  as shown in the Figure 2. 

A cubic shape functions are used to represent the axial 
displacement u , quadratic shape functions for the trans- 
verse displacement w , where the rotation x  is repre- 
sented by a linear shape functions, this will result a nine 
by nine stiffness matrix with different degrees of freedom 
at different nodes [24]. From these selections we have: 
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quadratic quadratic

d d
o ou w

x x
   
 

 

Which satisfied the constrains, shear strain  
0 constantxz  , and membrane strain , to avoid 

the error in the finite element analysis which is known as 
shear Locking due to un-accurately models the curvature 
present in the actual material under bending, and a shear 
stress is introduced. The additional shear stress in the 
element causes the element to reach equilibrium with 
smaller displacement, i.e., it makes the element appear to 
be stiffer than it actually is and gives bending displace- 
ments smaller than they should be. The axial displace- 
ment at the mid-plane  is expressed as the following: 

0xx 

0u
4

4
0ou

x





                 (20) 

By solving the previous equation and imposing the 
boundary conditions, the axial displacement can be rep- 
resented as: 

 
4

1 1 2 2 3 3 4 4
1

o j
j

u x u u u u u j    


           (21) 

where the cubic shape functions j  are found to be [26]: 
3 2
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x x x

L L L









              
     
            
     

             
     

        
   

        (22) 

 
The transversal displacement is represented as: w

3

3
0ow

x





                 (23) 

By solving the above equation and applying the 
boundary conditions to determine the unknown constants, 
the transversal displacement  can be expressed in 
terms of the nodal displacement as: 

w

 
z

x
ow

ou  

xz
x  

odw

dx
  

odw

dx


 

Figure 1. Deformed and un-deformed shape of Timoshenko 
beam [24]. 
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Figure 2. Element nodal degrees of freedom. 
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where, the quadratic interpolation shape functions are 
given by [26]: 
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2
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x x
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        
   

       
   
        
   

         (25) 

The rotation angle x  is expressed as: 
2

2
0x

x





                 (26) 

Similarly; by solving Equation (26) and applying the 
boundary conditions, the rotation angle is given by: 

 
2

1 1 2 2
1

x x x xj
j

x

where the Linear interpolation shape functions j  have 
the form [27]: 

1 1
x

L
   , and 2

x

L
             (28) 

5. Variational Formulation 

The mathematical statement of Hamilton’s principle can 
be expressed as [3]: 

  
2

1

d 0
t

t

T U W t               (29) 

where,   denote the first variation,  and 2t  are two 
arbitrary time variables except that at 1 , and 2

1t
t t t t , 

all variation are zero. The advantage of this method is 
that it accounts for the physics of the entire structure si- 
multaneously. Starting with the first integral and assume 
that each layer of the present composite beam model has 
the same vibration speed. 

Thus the first variation of the kinetic energy Equation 
(10) is expressed as: 

 d
v

T u u w w        v



           (30) 

j      


           (27) 
By inserting Equation (2) into Equation (30) yields: 

  2 dT T T T T
o o o x x o x x o o

v

T u u z u z u z w w                    v                 (31) 

By substituting the shape functions Equations. (21), (24), and (27) in Equation (31) the components of the element 
mass matrix can be expressed by: 

     

     

       

11 0 12 13 1
0 0

21 22 0 23 31 1
0 0

2
32 33 2 0 1 2

0

d 1, , 4 0 d 1, , 4 and 1,2

0 d 1, ,3 0 d 1, 2 and 1, , 4

0 d 1,2 and , , 1, , d

L L
T T

i i i j

L L
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i i i j
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M M I x i I I I z z A

   
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        

         

   

 

 

 

 

        (32) 

where, iI is the mass moment of inertia. 
By inserting Equations (22), (25), and (28) into Equa- 

tion (32) and perform the integrating, the element mass 
matrix is obtained, and given in Appendix A. 

The first variation of the external work Equation (12) 
takes the form: 

 
0 0

d d
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a o x t o i oW f u z x f w x P w       

By inserting the shape functions Equations. (21), (24), 
and (27) into Equation (33), one can obtain: 
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0 0

0

d d

d

L L

a i oi a i xi

L

t i oi i

W f u x f z

f w x P

    

 

 

 

 


        (34) 

Thus, the elements of the load vector are as follows: 

11 1 12 2 13 3 14 4 21 1 1
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22 2 2 23 3 3 31 1 32 2
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d d d d
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By substituting Equations (22), (25), and (28) in Equa- 

tion (35) and perform the integrating, the element load 
vector can be obtained and given in Appendix A. 

Case I: Isotropic beam: 
By taking the variation of Equation (15), one can ob-

tain: 
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        (36) 

By substituting Equations (21), (24) and (27) in Equation (36) yields: 
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Equation (37) defines the elements of the stiffness matrix as follows: 
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(38) 

By inserting Equation (22), (25) and (28) into Equa- 
tion (38), and perform the integration, the element stiff- 
ness matrix for isotropic Timoshenko Beam is obtained 

and given in Appendix A. 
Case II: Orthotropic Beam: 

By taking the variation of Equation (18), one can obtain: 
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       (39) 

By inserting Equations (21), (24) and (27) into Equa-
tion (39) yields the form given in Equation (40): 

The element stiffness matrix can be deduced from 
Equation (40) as shown in Equation (41): 
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By substituting Equation (22), (25) and (28) in Equa- 
tion (41) and perform the integration, the element stiff- 
ness matrix of anisotropic Timoshenko beam is obtained 
and given in Appendix A. 

6. Equation of Motion 

The system equation of motion is given in matrix form as 
[11]: 

       M q K q F             (42) 

where
 
 M  is the global mass matrix,  is the sec- 

ond derivative of the nodal displacements with respect to 
time, 

 q

 K  is the global stiffness matrix,  q  is the 
nodal displacements vector and  F  is the global nodal 
forces vector. 

7. Numerical Example and Discussion 

A MATLAB code is constructed to perform the analysis 
of isotropic and orthotropic beams using the present fi- 
nite element model. The model is capable of predicting 
the nodal (axial and transversal) deflections and the fun- 
damental natural frequency of the beam. The model in- 
puts are the materials and geometric properties of the 
beams. The shear correction factor is taken as k = 5/6, 
and the following boundary conditions of the beams are 
considered as follows: 

Simply-supported edge: 0,u   and . 0w 
Clamped edge: , , and 0u  0w  0x  . 
The model validation is performed by checking the 

convergences for deflection and eigen-values, static de- 

flections and dynamic characteristics for both isotropic 
and orthotropic beams. 

Case I: Isotropic beam results 
1) Model Convergences 
The convergence of the present model is checked for 

the aluminum beam with the material and geometric 
properties given in Table 1. The beam is subjected to 
uniform distributed load of intensity 1 N/m. The obtained 
results are shown in Figure 3, which presents the effect 
of number of element on the normalized transversal tip 
deflection of a cantilever beam, with length to height 
ratio (L/h) of 10, The normalized deflection is given as; 

210 yyw w EI L 4 . It can be seen from the figure that the 
model predictions are start to converge at reasonable 
number of elements. 

The convergence of the Eigen values is checked for 
two cases of the beam boundary conditions clamped-free 
and clamped-clamped where the dimensionless frequency 

  is defined as: 2 2
i i

m
L

EI
   , and  is the mass 

per unit length of the beam. 

m

a) Clamped-free aluminum beam with the properties 
given in Table 1. The obtained dimensionless first natu- 
ral frequency is conversing by increasing the number of 
elements as shown in Figure 4. 

b) Clamped-Clamped aluminum beam with the prop- 
erties: Poisson’s ratio 0.3   thickness to length ratio 
is h/L=0.01, and the number of elements are chosen from 
10 to 40. The obtained normalized natural frequencies 
are presented in Table 2 for different number of ele-  
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Figure 3. Normalized transversal tip displacements vs. 
number of elements of cantilever aluminum beam. 
 
Table 1. Material and geometric properties for aluminum 
beam. 

Property Aluminum Unit 

E  68.9 GPa 

V  0.25 - 

G 27.6 GPa 
  2769 (kg/m3) 

Length, L 0.1524 (m) 

Width, b 0.0254 (m) 

Height, h 0.01524 (m) 

 
ments “NE”. The obtained results are found reasonable 
and compared with the predictions given by [16], which 
used different numbers of collocation points to determine 
the size of the problem in their studies It is clear from 
Figure 4 and Table 2 that as the number of elements 
increase the natural frequency decreases for the first and 
other modes. 

2) Static Validation 
Example (1): 

A cantilever isotropic beam with cross-section dimen- 
sions , , and 1h b  1E  1   are used in the valida- 
tion in order to compared with other references. The 
beam is subjected to transverse uniform distributed loads 
with intensity  up to 10 N/m, and with different 
values of length to thickness ratio L/h = 4, 10, 20, 50, 
and 100. In the present example, the shear correction 
factor is taken as 

1tf 

5 6sk   and number of elements, NE 
= 33, are taken in the proposed model in order to com- 
pare the results to other references. The obtained results 
are presented and in Table 3(a)-(e) and compared to [3], 
where the Timoshenko–based tip deflection  

is given as:  
4

1
8

t
t

yy

f L
W

EI
  ,  

2
1

12 11
5

h      
 

and its shear correction factor is 
 10 1

12 11sk







. Also 

compared with the known Euler formula for max tip de- 

flection, 4
max 8t yW f L EI y . 

It is shown from the previous tables that for L/h less 
than 20 the proposed model gives results more accurate 
then the exact formula of Timoshenko and Euler beams. 
For L/h greater than 20 the values of the obtained results 
are start to be less than Timoshenko based solution and 
gradually get closer to Euler solution. 

Example (2): 
A cantilever beam with the following properties: 

29000E  , 1b  , 0.3   subjected to tip load 
100P   as given by [15]. It is shown from the obtained 

results given in Table 4 the following: 1) the model ac- 
curacy is in between the HSDT and the finite element 
and other different solutions; 2) also the effect of the 
shear correction factor on the obtained results. 

3) Dynamic Validation 
The free vibration validation is performed for the alu- 

minum beam with material properties given in Table 1. 
The obtained results are given in Table 5. to Table 7. for 
beams with different boundary conditions with NE = 35 
and the ratio h/L = 0.002 to 0.2. The obtained dimen- 
sionless frequencies   are compared with the previ- 
ously published results of CBT [28], FSDT [29], TSDT 
[18], and CPM [16]. 

For clamped-clamped beam, Table 5(a) shows the 
following for the first five modes: 

1) For h/L = 0.2, the present model results are better 
than TODT but less than FSDT, and CPM. 

2) For h/L less than or equal 0.1, the present model is 
less than all other theories. 

Table 5(b) shows the following for the next five 
modes (6 - 10): 
 

2
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Figure 4. Non-dimensional first natural frequency vs. num-
er of elements of cantilever aluminum beam. b 
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Table 2. Convergence test of the non-dimensional frequency   of clamped-clamped aluminum beam with the number of 
elements. 

Mode NE = 10 NE = 15 NE = 20 NE = 25 NE = 30 NE = 35 NE = 40 

1 4.7782 4.7502 4.7406 4.7362 4.7338 4.7324 4.7314 

2 8.0324 7.9274 7.8918 7.8755 7.8667 7.8615 7.8580 

3 11.4368 11.1751 11.0883 11.0489 11.0277 11.0150 11.0068 

4 15.0259 14.4920 14.3190 14.2411 14.1994 14.1745 14.1584 

5 18.8565 17.8984 17.5937 17.4580 17.3856 17.3424 17.3146 

6 22.9619 21.4145 20.9217 20.7043 20.5890 20.5203 20.4762 

7 27.2381 25.0601 24.3123 23.9850 23.8122 23.7098 23.6439 

8 31.0663 28.8515 27.7749 27.3049 27.0581 26.9122 26.8186 

9 32.9891 32.7919 31.3183 30.6690 30.3294 30.1291 30.0011 

10 46.6536 32.9891 32.9891 32.9891 32.9891 32.9891 32.9891 

11 57.1389 36.8493 34.9500 34.0819 33.6285 33.3621 33.1919 

12 65.2975 40.9061 38.6739 37.5477 36.9581 36.6123 36.3920 

13 65.3674 44.6623 42.4870 41.0701 40.3205 39.8813 39.6018 

14 65.9788 46.6536 46.3727 44.6510 43.7176 43.1701 42.8222 

15 73.7684 47.5118 46.6536 46.6536 46.6536 46.4798 46.0535 

16 80.8143 57.1388 50.2883 48.2902 47.1511 46.6536 46.6536 

17 84.5794 65.9782 54.1445 51.9835 50.6216 49.8114 49.2964 

18 87.3015 73.7661 57.1388 55.7200 54.1291 53.1652 52.5511 

19 89.2551 80.1672 57.7730 57.1388 57.1388 56.5415 55.8179 

20 93.3538 80.1711 60.8863 59.4787 57.6717 57.1388 57.1388 

21 94.5830 80.8072 63.0643 63.2219 61.2454 59.9399 59.0968 

22 99.0611 87.2829 65.9782 65.9782 64.8425 63.3593 62.3876 

23 99.9947 93.3119 73.7659 66.8859 65.9782 65.9782 65.6899 

24 104.6635 98.9770 80.8066 70.3684 68.4508 66.7974 65.9782 

25 105.3547 102.1423 87.2813 73.5113 72.0505 70.2507 69.0028 

 
1) For h/L equal to or grater than 0.1, the present 

model is gives more accurate results than all theories by 
significant values, and this difference increase by in- 
creasing the mode number. 

2) For all modes as the ratio h/L increases the natural 
frequencies decreases. 

Table 6(a) shows the first five modes of Free-Free 
beam it is clear that: 

1) As long as h/L less than or equal to 0.05 the ob- 
tained results are closed to CBT and CBM theories. 

2) For h/L greater than or equal to 0.05 the model re- 
sults are better than other theories. 

Table 6(b) shows the next five modes (6 - 10), for F-F 
beam as long as h/L less than 0.05 the proposed model 
gives less accuracy than CPM and CBT theories. For the 
ratio L/h less than or equal 0.05 the model results are 
better than CPM theory. 

It seen from Table 7(a) for the first five modes of the 

S-S beam the proposed model gives results closer to all 
other theories for all values of h/L. 

Table 7(b) shows the modes 6 to 10 for S-S beam it is 
clear that as long as h/L less than or equal to 0.02, the 
proposed model gives results closed to other theories. For 
the ratio h/L greater than or equal 0.05 the model results 
are better than all other theories with remarkable values. 

CASE II: Orthotropic Beam Results 
a) Model convergences 
The convergence of the present model is checked for the 

orthotropic beam with the material properties given as; 

1 2 25,E E   13 12 20.5 ,G G E   23 2  0.2 ,G E 1  , 
and 12 0.25  . A cantilever composite beams with dif- 
ferent orientation angles [45/-45/45/-45], [30/50/30/50], 
and [0/90/0/90] with length to height ratio (L/h) is equal to 
10, are used. The beam is subjected to uniform distrib- 
uted load t  of intensity 1 N/m. Figure 5 shows the ef- 
fect of number of element on the normalized transversal  

f
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Table 3. (a) Transverse tip deflection of isotropic cantilever beam for different values of applied loads (L/h = 4); (b) Trans- 
verse tip deflection of isotropic cantilever beam for different values of applied loads (L/h = 10); (c) Transverse tip deflection 
of isotropic cantilever beam for different values of applied loads (L/h = 20); (d) Transverse tip deflection of isotropic cantile- 
ver beam for different values of applied loads (L/h = 50); (e) Transverse tip deflection of isotropic cantilever beam for dif- 
ferent values of applied loads (L/h = 100). 

(a) 

ft Proposed Model Exact Timoshenko [3] Euler Theory 

1 408.8425 408.8400 384 

2 817.6849 816.9600 768 

3 1.2265e+003 1.2254e+003 1152 

4 1.6354e+003 1.6339e+003 1536 

5 2.0442e+003 2.0424e+003 1920 

6 2.4531e+003 2.4509e+003 2304 

7 2.8619e+003 2.8594e+003 2688 

8 3.2707e+003 3.2678e+003 3072 

9 3.6796e+003 3.6763e+003 3456 

10 4.0884e+003 4.0848e+003 3840 

(b) 

ft Proposed Model Exact Timoshenko [3] Euler Theory 

1 1.5151e+004 1.5153e+004 1.5000e+004 

2 3.0303e+004 3.0306e+004 3.0000e+004 

3 4.5454e+004 4.5456e+004 4.5000e+004 

4 6.0606e+004 6.0612e+004 6.0000e+004 

5 7.5757e+004 7.5765e+004 7.5000e+004 

6 9.0908e+004 9.0918e+004 9.0000e+004 

7 1.0606e+004 1.06071e+005 1.0500e+005 

8 1.2121e+005 1.21224e+005 1.2000e+005 

9 1.3636e+005 1.36377e+005 1.3500e+005 

10 1.5151e+005 1.51530e+005 1.5000e+005 

(c) 

ft Proposed Model Exact Timoshenko [3] Euler Theory 

1 2.4055e+005 2.40612e+005 2.4000e+005 

2 4.8110e+005 4.81224e+005 4.8000e+005 

3 7.2165e+005 7.21836e+005 7.2000e+005 

4 9.6220e+005 6.92448e+005 9.6000e+005 

5 1.2028e+006 1.203060e+006 1.2000e+005 

6 1.4433e+006 1.443672e+006 1.4400e+005 

7 1.6839e+006 1.684284e+006 1.6800e+005 

8 1.9244e+006 1.924896e+006 1.9200e+005 

9 2.1650e+006 2.165508e+006 2.1600e+005 

10 2.4055e+006 2.406120e+006 2.4000e+005 

(d) 

ft Proposed Model Exact Timoshenko [3] Euler Theory 

1 9.3760e+006 9378825 9.3750e+006 

2 1.8752e+007 18757650 1.8750+007 

3 2.8128e+007 28136475 2.8125e+007 

4 3.7504e+007 37515300 3.7500e+007 

5 4.6880e+007 46894125 4.6875e+007 

6 5.6256e+007 56272950 5.6250e+007 

7 6.5632e+007 65651775 6.5625e+007 

8 7.5008e+007 75030600 7.5000e+007 

9 8.4384e+007 84409425 8.4375e+007 

10 9.3760e+007 93788250 9.3750e+007 
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(e) 

ft Proposed Model Exact Timoshenko [3] Euler Theory 

1 1.4997e+008 1.5002e+008 1.5000e+008 

2 2.9994e+008 3.0003e+008 3.0000e+008 

3 4.4991e+008 4.5005e+008 4.5000e+008 

4 5.9988e+008 6.0006e+008 6.0000e+008 

5 7.4985e+008 7.5008e+008 7.5000e+008 

6 8.9982e+008 9.0009e+008 9.0000e+008 

7 1.0498e+009 1.0501e+009 1.0500e+009 

8 1.1998e+009 1.2001e+009 1.2000e+009 

9 1.3497e+009 1.3501e+009 1.3500e+009 

10 1.4997e+009 1.5002e+009 1.5000e+009 

 
Table 4. Transverse tip deflection of isotropic cantilever beam compared with other theories. 

L h 
Proposed Model 

5 6sk   Timoshenko Theory*
Timoshenko Theory 

5 6sk   Euler Theory HSDT [15] FE [28] 
Elasticity Solution 

[15] 

160 32.8307 32.8355 32.8382 32.6948 32.8376 32.823 32.8741 

80 4.1576 4.1572 4.1586 4.0868 4.1587 4.1567 4.17650 

40 0.5466 0.5460 0.5467 0.5109 0.5461 0.54588 0.555683 

12 

12 

0.0245 0.0243 0.0246 0.0138 0.02395 0.02393 0.0272414 

160 5.6485e004 5.6498e004 5.6498e004 5.6497 56498.3 56444.0 56498.7 

80 7.0613e003 7.0629e003 7.0629e004 7.0621 7062.93 7056.3 7063.14 

40 

1 

882.9863 883.1807 883.1890 882.7586 883.188 883.188 883.297 

12  23.9581 23.9611 23.9636 23.8345 23.9630 23.9630 23.9959 

*Shear correction factor is: 
 10 1

12 11sk





 . 

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Figure 5. Normalized transverse tip deflections vs. number 
of elements of cantilever composite beams. 
 
tip deflection of beams which is given as: 

2 2 4
2 10 tW wAE h f L , where  is the actual transversal 

deflection. It can be seen that the model predicttions are 
start to converge at reasonable number of elements for the 
different beams with different orientation angles. 

w

In case of free vibration, the convergences of the 
natural frequencies of orthotropic beams with the same 
properties given above in this section are checked for two 
cases. The dimensionless frequency   is defined as: 

2
2i i L

EIh

   

1) First case: Clamped-free beam with different orient- 
tation angles [45/-45/45/-45], [30/50/30/50], and [0/90/ 
0/90]. The obtained results of the dimensionless first 
natural frequency are shown in Figure 6 for different 
number of elements. 

2) Second Case: Clamped-free and clamped-clamped 
composite beams with stacking sequences [45/-45/45/ 
-45], with number of elements changed from 10 to 40. 
The obtained results are presented in Tables 8 and 9. 

It is clear from Figure 6, Tables 8 and 9 that as the 
number of elements increases the natural frequency de- 
creases until it reaches a constant value. 

b) Static Validation 
To check the validity of the model for orthotropic 

beam, two layer [0/90], three layer [0/90/0], four layer 
[0/90/0/90] and 10-layer [0/90/0/90..] lay-up are consid- 
red with material properties given above (case II:  e 
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Table 5. (a) Non-dimensional frequency ω  of clamped-clamped aluminum beam (Modes: 1 - 5); (b) Non-dimensional fre- 
quencyω of clamped-clamped aluminum beam (Modes: 6 - 10). 

(a) 

Method h/L 1  2  3  4  5  

Present Model 4.7340 7.8675 11.0301 14.2049 17.3960 

CBT 4.7300 7.8532 10.9956 14.1372 17.2788 

FSDT 4.7299 7.8529 10.9949 14.1358 17.2765 

TSDT 4.7299 7.8529 10.9949 14.1359 17.2766 

CPM 

0.002 

4.7299 7.8529 10.9955 14.1359 17.2766 

Present Model 4.7336 7.8662 11.0268 14.1982 17.3842 

FSDT 4.7296 7.8516 10.9916 14.1293 17.2650 

TSDT 4.7296 7.8516 10.9917 14.1294 17.2652 

CPM 

0.005 

4.7296 7.8516 10.9917 14.1294 17.2651 

Present Model 4.7324 7.8615 11.0150 14.1745 17.3424 

FSDT 4.7283 7.8468 10.9799 14.1061 17.2244 

TSDT 4.7284 7.8569 10.9801 14.1064 17.2249 

CPM 

0.01 

4.7284 7.8469 10.9800 14.1062 17.2246 

Present Model 4.7275 7.8426 10.9684 14.0818 17.1811 

FSDT 4.7234 7.8281 10.9339 14.0154 17.0675 

TSDT 4.7235 7.8283 10.9345 14.0167 17.0696 

CPM 

0.02 

4.7235 7.8281 10.9341 14.0154 17.0679 

Present Model 4.6937 7.7169 10.6705 13.5167 14.7532 

FSDT 4.6898 7.7035 10.6399 13.4611 16.1586 

TSDT 4.6902 7.7052 10.6447 13..4703 16.1754 

CPM 

0.05 

4.6899 7.7035 10.6401 13.4611 16.1590 

Present Model 4.5830 7.3419 9.8776 10.4321 12.1804 

FSDT 4.5795 7.3312 9.8559 12.1453 14.2323 

TSDT 

0.1 

4.5820 7.3407 9.8810 12.1861 14.3018 

(b) 

Method h/L 6  7  8  9  10
 

Present Model 20.6067 23.8404 27.1006 30.3908 33.7147 

CBT 20.4204     

FSDT 20.4166     

TSDT 20.4170     

CPM 

0.002 

20.4168 23.5567 26.6960 29.8348 32.9729 

Present Model 20.5876 23.8115 27.0587 30.3324 33.6356 

FSDT 20.3983     

TSDT 20.3989     

CPM 

0.005 

20.3985 23.5292 26.6567 29.7808 32.9009 

Present Model 20.5203 23.7098 26.9122 30.1291 32.9891 

FSDT 20.3336     

TSDT 20.3350     

CPM 

0.01 

20.3338 23.4325 26.5192 29.5926 32.6514 
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Present Model 20.2636 23.3268 23.3271 26.3697 29.3897 

FSDT 20.0866     

TSDT 20.0911     

CPM 

0.02 

20.0868 23.0682 26.0086 28.9052 31.7558 

Present Model 16.2480 18.8621 20.8641 21.3612 23.7503 

FSDT 18.7316     

TSDT 18.7573     

CPM 

0.05 

18.7318 21.1825 23.5168 25.7421 27.8662 

Present Model 14.2830 14.7532 16.2164 18.0075 18.0689 

FSDT 16.1478     

TSDT 16.2373     

CPM 

0.1 

16.1487 17.9215 19.5723 21.1185 22.5735 

Present Model 10.4321 11.3672 12.6631 12.7766 13.4580 

FSDT 12.6357     

TSDT 12.8563     

CPM 

0.2 

12.6402 13.4567 13.8101 14.4806 14.9383 

 
Table 6. (a) Non-dimensional frequency ω  of Free-Free aluminum beam (Modes: 1 - 5); (b) Non-dimensional frequency ω  
of Free-Free aluminum beam (Modes: 6 - 10). 

(a) 

Method h/L 1  2  3  4  5  
Present Model 4.7340 7.8675 11.0301 14.2049 17.3960 

CBT 4.7300 7.8532 10.9956 14.1372 17.2788 
CPM 

0.002 
4.7300 7.8530 10.9952 14.1362 17.2770 

Present Model 4.7336 7.8662 11.0268 14.1982 17.3842 
CPM 

0.005 
4.7298 7.8521 10.9928 14.1311 17.2678 

Present Model 4.7324 7.8615 11.0150 14.1745 17.3424 
CPM 

0.01 
4.7292 7.8490 10.9843 14.1311 17.2350 

Present Model 4.7275 7.8426 10.9684 14.0818 17.1811 
CPM 

0.02 
4.7265 7.8367 10.9508 14.0426 17.1078 

Present Model 4.6937 7.7169 10.6705 13.5167 14.7532 

CPM 
0.05 

4.7087 7.7540 10.7332 13.6040 16.3550 

Present Model 4.5830 7.3419 9.8776 10.4321 12.1804 

CPM 
0.1 

4.6484 7.4971 10.1255 12.5076 14.6682 

Present Model 4.2444 6.4238 7.3766 8.2949 9.9175 

CPM 
0.2 

4.44958 6.80257 8.7728 10.4094 11.7942 

(b) 

Method h/L 6  7  8  9  10
 

Present Model 20.6067 23.8404 27.1006 30.3908 33.7147 

CBT 20.4204 23.5619 26.7035 29.8451 32.9869 

CPM 

0.002 

20.4168 23.5567 26.6960 29.8348 32.9729 

Present Model 20.5876 23.8115 27.0587 30.3324 33.6356 

CPM 
0.005 

20.3985 23.5292 26.6567 29.7808 32.9009 

Present Model 20.5203 23.7098 26.9122 30.1291 32.9891 

CPM 
0.01 

20.3338 23.4325 26.5192 29.5926 32.6514 

Present Model 20.2636 23.3268 23.3271 26.3697 29.3897 

CPM 
0.02 

20.0868 23.0682 26.0086 28.9052 31.7558 

Present Model 16.2480 18.8621 20.8641 21.3612 23.7503 

CPM 
0.05 

18.7318 21.1825 23.5168 25.7421 27.8662 

Present Model 14.2830 14.7532 16.2164 18.0075 18.0689 

CPM 
0.1 

16.1487 17.9215 19.5723 21.1185 22.5735 

Present Model 10.4321 11.3672 12.6631 12.7766 13.4580 

CPM 
0.2 

12.6402 13.4567 13.8101 14.4806 14.9383 
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Table 7. (a) Non-dimensional frequency ω  of simply supported aluminum beam (Modes: 1 - 5); (b) Non-dimensional fre- 
quency ω  of simply supported aluminum beam (Modes: 6 - 10). 

(a) 

Method h/L 1  2  3  4  5  
Present Model 3.9682 6.2870 9.8995 12.5967 16.0886 

CBT 3.1415 6.2831 9.4247 12.5664 15.7080 

FSDT 3.1415 6.2831 9.4244 12.5656 15.7066 

TSDT 3.1415 6.2831 9.4244 12.5656 15.7066 

CPM 

0.002 

3.1415 6.2831 9.42449 12.5657 15.7066 

Present Model 3.9680 6.2859 9.8972 12.5878 16.0785 

FSDT 3.1415 6.2826 9.4229 12.5621 15.6996 

TSDT 3.1415 6.2826 9.4229 12.5621 15.6996 

CPM 

0.005 

3.1458 6.2826 9.4229 12.5621 15.6997 

Present Model 3.9675 6.2820 9.8890 12.5560 16.0428 

FSDT 3.1413 6.2810 9.4176 12.5494 15.6749 

TSDT 3.1413 6.2810 9.4176 12.5494 15.6749 

CPM 

0.01 

3.1413 6.28106 9.4176 12.5494 15.6749 

Present Model 3.9651 6.2665 9.8568 12.4255 15.9031 

FSDT 3.1405 6.2747 9.3962 12.4993 15.5784 

TSDT 3.1405 6.2747 9.3963 12.4994 15.5784 

CPM 

0.02 

3.1405 6.2747 9.3963 12.4994 15.5784 

Present Model 3.9492 6.1615 9.6476 11.3774 14.0499 

FSDT 3.1349 6.2313 9.2553 12.1812 14.9926 

TSDT 3.1349 6.2313 9.2554 12.1816 14.9935 

CPM 

0.05 

3.1349 6.2313 9.2553 12.1813 14.9926 

Present Model 3.8954 5.8274 8.7928 9.0629 11.9071 

FSDT 3.1156 6.0906 8.8404 11.3430 13.6131 

TSDT 3.1156 6.0908 8.8414 11.3463 13.6207 

CPM 

0.1 

3.1156 6.0906 8.8405 11.3431 13.6132 

Present Model 3.7163 4.9163 6.7096 7.7592 8.9972 

FSDT 3.0453 5.6715 7.8394 9..6569 11.2219 

TSDT 3.0454 5.6731 7.8469 9..6769 11.2625 

CPM 

0.2 

3.0453 5.6715 7.8395 9.6570 11.2220 

(b) 

Method h/L 6  7  8  9  10
 

Present Model 18.9519 22.4051 25.3759 28.8340 31.8919 

CBT 18.8496     

FSDT 18.8471     

TSDT 18.8472     

CPM 

0.002 

18.8473 21.9875 25.1273 28.2666 31.4053 

Present Model 18.9210 22.3771 25.2969 28.7725 31.7125 

FSDT 18.8351     

TSDT 18.8352     

CPM 

0.005 

18.8352 21.9684 25.0988 28.2261 31.3498 

Present Model 18.8040 22.2776 24.9347 28.5501 30.1074 

FSDT 18.7925     

TSDT 18.7926     

CPM 

0.01 

18.7926 21.9011 24.9988 28.0845 31.1568 

Present Model 18.1912 21.8533 25.6010 27.5289 31.0944 

FSDT 
0.02 

18.6280     
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Continued 

TSDT 18.6283     

CPM 
 

18.6282 21.6443 24.6227 27.5599 30.4533 

Present Model 15.0310 18.1814 18.7506 21.2668 22.4366 

FSDT 17.6802     

TSDT 17.6829     

CPM 

0.05 

17.6810 20.2447 22.6862 25.0111 27.2263 

Present Model 12.5912 14.4335 15.4982 16.8029 17.7914 

FSDT 15.6769     

TSDT 15.6938     

CPM 

0.1 

15.6790 17.5705 19.3142 20.9325 22.4441 

Present Model 9.8280 11.0553 11.4174 12.7520 12.9442 

FSDT 12.5971     

TSDT 12.6723     

CPM 

0.2 

12.6022 13.0323 13.4443 13.8433 14.4378 

 
Table 8. Convergence Test of the Non-dimensional frequency ω  of clamped-free composite beam [45/-45/45/-45] for dif- 
ferent number of elements. 

Mode NE = 10 NE = 15 NE = 20 NE = 25 NE = 30 NE = 35 NE = 40 

1 0.2720 0.2717 0.2716 0.2716 0.2715 0.2715 0.2715 

2 1.5491 1.5394 1.5361 1.5345 1.5337 1.5331 1.5328 

3 3.8246 3.7821 3.7673 3.7604 3.7567 3.7544 3.7530 

4 4.3568 4.3472 4.3441 4.3427 4.3419 4.3415 4.3412 

5 6.8480 6.7114 6.6646 6.6432 6.6316 6.6246 6.6201 

6 9.7855 9.5498 9.4668 9.4283 9.4074 9.3948 9.3867 

7 11.9164 11.8383 11.8098 11.7961 11.7884 11.7837 11.7807 

8 13.4154 12.9864 12.8371 12.7686 12.7315 12.7093 12.6949 

9 16.9935 16.4852 16.2544 16.1445 16.0843 16.0479 16.0242 

10 17.3572 17.0537 16.9822 16.9491 16.9308 16.9196 16.9123 

11 21.2396 20.3714 20.0318 19.8733 19.7871 19.7352 19.7015 

12 21.5198 21.1988 21.0674 20.9990 20.9594 20.9345 20.9180 

13 25.4546 24.3363 23.8845 23.6753 23.5625 23.4949 23.4512 

14 25.5765 25.1350 24.9122 24.7934 24.7237 24.6797 24.6504 

15 29.1905 28.3194 27.7288 27.4553 27.3083 27.2205 27.1640 

16 29.7930 29.0617 28.7242 28.5422 28.4350 28.3672 28.3218 

17 33.0389 32.3121 31.5622 31.2100 31.0205 30.9074 30.8345 

18 35.0675 33.0663 32.5801 32.3165 32.1612 32.0628 31.9969 

19 38.3174 36.0922 35.2609 34.8451 34.6177 34.4811 34.3928 

20 39.4415 37.1951 36.5094 36.1401 35.9230 35.7857 35.6938 

21 40.5941 38.6790 38.2294 37.9383 37.7590 37.6444 37.5676 

22 43.6655 40.9089 40.1104 39.7272 39.5226 39.3901 39.2937 

23 45.9351 41.4887 40.5512 40.0367 39.7497 39.5847 39.4873 

24 46.7479 44.4977 43.5452 42.9445 42.6051 42.3981 42.2631 

25 48.8336 45.6517 44.6932 43.9949 43.5922 43.3418 43.1761 
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Table 9. Convergence Test of the Non-dimensional frequency ω  of clamped-clamped composite beam [45/-45/45/-45] for 
different number of elements. 

Mode NE = 10 NE = 15 NE = 20 NE = 25 NE = 30 NE = 35 NE = 40 

1 1.5729 1.5583 1.5533 1.5509 1.5497 1.5489 1.5484 

2 3.8328 3.7683 3.7463 3.7362 3.7308 3.7275 3.7253 

3 6.6584 6.5004 6.4466 6.4220 6.4087 6.4007 6.3955 

4 8.0017 7.9948 7.9918 7.9903 7.9894 7.9889 7.9886 

5 9.8815 9.5910 9.4920 9.4466 9.4222 9.4075 9.3979 

6 12.8693 12.5052 12.3672 12.3020 12.2664 12.2448 12.2307 

7 14.4732 14.3429 14.3069 14.2915 14.2835 14.2787 14.2756 

8 16.4714 15.8920 15.6705 15.5659 15.5085 15.4738 15.4512 

9 19.1131 18.9127 18.8466 18.8159 18.7991 18.7889 18.7823 

10 20.2369 19.4491 19.1301 18.9778 18.8941 18.8433 18.8102 

11 23.3548 22.9878 22.7437 22.5351 22.4201 22.3502 22.3047 

12 24.1391 23.1764 22.8551 22.7910 22.7550 22.7329 22.7184 

13 27.5397 26.9554 26.4557 26.1808 26.0290 25.9368 25.8768 

14 27.9391 27.0202 26.7222 26.6072 26.5422 26.5019 26.4753 

15 30.4178 30.9370 30.2242 29.8713 29.6760 29.5574 29.4801 

16 32.3233 30.9640 30.5898 30.4038 30.2981 30.2325 30.1890 

17 36.5307 34.9088 34.0405 33.5978 33.3517 33.2020 33.1045 

18 38.9175 35.0795 34.5157 34.2330 34.0723 33.9725 33.9064 

19 41.3899 38.8894 37.8856 37.3452 37.0424 36.8576 36.7371 

20 42.6706 39.3305 38.5317 38.1201 37.8867 37.7421 37.6464 

21 44.4803 41.4014 41.3918 41.1277 40.7610 40.5364 40.3896 

22 46.3000 42.8597 41.7755 41.3862 41.3801 41.3692 41.3413 

23 50.0105 43.6673 42.6605 42.0841 41.7603 41.5674 41.4607 

24 52.1104 46.6610 45.7004 44.9406 44.5058 44.2382 44.0628 

25 55.4025 47.3440 46.9088 46.1264 45.6792 45.4038 45.2225 
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Figure 6. Non-dimensional first natural frequency vs. number of elements of cantilever composite beams. 
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orthotropic beam). Different length to height ratio L/h = 
5, 10, and 50 are used to validate the proposed model. 
All laminas are assumed to be of the same thickness and 
made of the same materials. The number of elements is 

taken equal to 33. The mid span deflection is chosen in 
the validation in order to compare the obtained results 
with different theories reported in [12] and [14]. These 
predictions are given in Tables 10-12. 

 
Table 10. (a) Non-dimensional mid-span deflection of symmetric cross-ply beams [0/90/0] for various boundary conditions; (b) 
Non-dimensional mid-span deflection of anti-symmetric cross-ply beams [0/90] for various boundary conditions. 

(a) 

L/h Theory S-S C-S C-C C-F 

Present Model 2.4240 2.1814 1.8540 6.2792 

HOBT* 2.412 1.952 1.537 6.824 

SOBT* 1.896 1.655 1.379 5.948 

FOBT* 2.146 1.922 1.629 6.698 

RFSDT** 2.145 1.921 1.629 6.693 

5 

CBT* 0.646 0.259 0.129 2.198 

Present Model 1.1383 0.7825 0.5694 2.4221 

HOBT 1.096 0.740 0.532 3.455 

SOBT 0.959 0.622 0.442 3.135 

FOBT 1.021 0.693 0.504 3.323 

RFSDT 1.020 0.693 0.504 3.321 

10 

CBT 0.646 0.259 0.129 2.198 

Present Model 0.7268 0.3077 0.1584 1.1878 

HOBT 0.665 0.280 0.147 2.251 

SOBT 0.659 0.273 0.142 2.235 

FOBT 0.661 0.276 0.144 2.243 

RFSDT 0.660 0.276 0.144 2.242 

50 

CBT 0.646 0.259 0.129 2.198 

*Reference [12]. **Reference [14]. 

(b) 

C-F C-C C-S S-S Theory L/h 

17.1281 2.3750 3.3341 5.0418 Present Model 

15.279 1.922 2.863 4.777 HOBT* 

15.695 2.124 3.035 4.800 SOBT* 

16.436 2.379 3.320 5.036 FOBT* 

16.496 2.381 3.324 5.048 RFSDT** 

11.293 0.664 1.329 3.322 CBT* 

5 

13.1942 1.0905 1.8520 3.7560 Present Model 

12.343 1.005 1.740 3.688 HOBT 

12.400 1.032 1.764 3.692 SOBT 

12.579 1.093 1.834 3.750 FOBT 

12.607 1.094 1.835 3.751 RFSDT 

11.293 0.664 1.329 3.322 CBT 

10 

11.9354 0.6794 1.3677 3.3446 Present Model 

11.337 0.679 1.346 3.336 HOBT 

11.338 0.679 1.346 3.336 SOBT 

11.345 0.681 1.349 3.339 FOBT 

11.413 0.686 1.356 3.353 RFSDT 

11.293 0.664 1.329 3.322 CBT 

50 

*Reference [12]. **Reference [14]. 
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Table 11. Comparison of natural frequencies (kHz) of simply supported   
00 composite beams. 

L/h  Frequency (kHz) 

Mode Present Model FSDT [30] CLT [14] RFSDT [14] 

1 0.0506 0.051 0.051 0.051 

2 0.2018 0.203 0.203 0.202 

3 0.4519 0.457 0.457 0.453 

4 0.7982 0.812 0.812 0.802 

120 

5 1.2373 1.269 1.269 1.248 

1 0.7504 0.755 0.813 0.755 

2 2.5244 2.548 3.250 2.563 

3 4.6758 4.716 7.314 4.816 

4 6.9148 6.960 13.00 7.283 

15 

5 9.1529 9.194 20.32 9.935 

 
Table 12. Comparison of non-dimensional natural frequencies of symmetrically laminated cross-ply and angle-ply beams 
under various boundary conditions. 

 [0/90/90/0] [45/-45/-45/45] 

Boundary  
Condition 

Present Model
FSDT Exact 

[2-30] 
RFSDT [14] HSDT [2] Present Model

FSDT Exact 
[2-30] 

RFSDT [14] HSDT [2]

S-S 2.4864 2.4978 2.507 2.5023 0.9033 1.5368 1.526 0.8295 

C-C 4.5817 4.6602 4.606 4.5940 1.9823 3.1843 3.170 1.8472 

C-S 3.5084 3.5446 3.533 3.5254 1.3902 2.3032 2.289 1.2855 

C-F 0.9196 0.9231 0.925 0.9241 0.3244 0.5551 0.551 0.2965 

 
It is shown in Table 10(a) that the non-dimensional 

mid-span deflections of symmetric cross-ply beams are 
better than CBT, FSDT and HSDT theories for all L/h 
ratios, however for C-F case it is better than CBT only 
and poor than FSDT and HSDT theories, known that the 
a few seconds are taken to complete the single run of the 
code. 

It is shown in Table 10(b) that the non-dimensional 
mid-span deflections of symmetric cross-ply beams are 
better than all theories for all values of L/h ratios, for the 
various proposed boundary conditions. Large differences 
between the results of the refined theories and the classi- 
cal theory are noted, especially when the L/h ratio de- 
creases (L/h less than or equal to 5), indicating the effect 
of shear deformation. It is seen that the symmetric 
cross-ply stacking sequence gives a smaller response 
than those of anti symmetric ones. The obtained results 
by the present model are close to the predictions of 
FOBT theory and the RFSDT reported in [12] and [14]. 

c) Dynamic Validation 
To check the free vibration validity of the present 

model, An AS/3501-6 graphite/epoxy composite used in 
the analysis with the following properties: 

1 144.80 GPaE  , , ,  2 9.65 GPaE  23 3.34 GPaG 

13 12 4.14 GPaG G  , 12 0.3v  , and  
31389.23 Kg m  . The beam length to height ratio is 

15L h  . The non-dimensional fundamental natural fre-  

quency is given by:
  2

1L E h   2 , where   and  

  are the free natural frequency and mass of the mate-
rial of the beam, respectively. All laminas are assumed to 
be of the same thickness and made of the same materials. 
The obtained results are given in Tables 11-13, and they 
compared with different theories reported in [2], [14], 
and [30]. 

Table 11 shows the comparisons of the first five natu-
ral frequencies of a long thin (L/h = 120) and a short 
thick (L/h = 15) simply supported unidirectional  00  
composite beam. It seen that the proposed element pre- 
diction are better than the results obtained from the 
RFSDT [14], which used the same assumed displacement 
equations as the present model, but its element has two 
nodes with total six degrees of freedom. Also the present 
model predictions are in good agreement with the avail- 
able results for both thin and thick beams. 

Table 12 shows the comparison of the non-dimen- 
sional natural frequencies of symmetrically laminated 
cross-ply [0/90/0/90] and angle-ply [45/-45/45/-45] beams 
for various boundaries. For cross-ply the obtained results 
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are much closed to the results obtained by other methods 
(exact FSDT, RFSDT, and HSDT). For angle-ply the 
obtained results are much closer to the results of [6] us- 
ing HSDT with FE, and deviate from the results of the 
exact solution [30] which reported in [2], and the results 
obtained from RFSDT [14]. 

Table 13 shows the first five natural frequencies for 
different un-symmetrically lamination in comparison 
with [2], good agreement is found. 

The effect of the boundary conditions on the first five 
natural frequencies of anti-symmetric angle ply beams is 
shown in Table 14. The obtained results from the present 
model for different boundary conditions are much closed 
to the results of [2], which used HSDT. 

8. Conclusions 

The following conclusions have been drawn: 
1) Finite element model has been obtained for static 

deformation and free vibration analysis of isotropic and 
orthotropic beams based on first order shear deformation 
theory, Timoshenko beam theory. 

2) Various results have been presented to show the ef- 
fect of number of elements, boundary conditions, length 
to thickness ratio L/h, material properties, number of 

layers, and ply orientation, on the static deflection and 
natural frequency of the proposed models. 

3) The proposed model is valid to decrease the error 
due to un-accurately modeling of the curvature present in 
the actual material under bending which known as shear 
Locking. 

4) The code running time is around few second for 
both deflection and natural frequency calculation using 
number of elements equal 33 on PC Pentium 3. 

5) The model results are converging at small number 
of elements for deflection and natural frequency for iso- 
tropic and orthotropic beams. 

6) In case isotropic beam subjected to uniform distrib- 
uted loads the static analysis shows that for length to 
thickness ratio L/h less than 20 the proposed model gives 
more accurate results than the exact formula of Ti- 
moshenko and Euler beams. For L/h greater than 20 the 
obtained results values are start to be less than Ti- 
moshenko based solution and get gradually closer to 
Euler solution. 

7) Also for isotropic beam subjected to concentrated 
tip load the model accuracy is in between the HSDT, the 
finite element and other different solutions. Also the 
shear correction factor affects the obtained results. 

 
Table 13. Effect of ply orientation angles on the non-dimensional natural frequencies of un-symmetric clamped-clamped 
beams. 

[30/50/30/50] [45/-45/45/-45] [0/90/0/90] 

Ref. [2] Present Model Ref. [2] Present Model Ref. [2] Present Model 
Mode 

2.2526 2.5785 1.9807 1.9823 3.7244 3.6892 1 

5.8624 6.4915 5.2165 5.1365 8.9275 8.7141 2 

10.7609 11.5440 9.6912 9.3709 15.3408 14.7975 3 

11.9506 17.2278 10.5345 14.2009 22.3940 21.3950 4 

16.5747 19.9716 15.0981 14.9973 24.3155 28.3580 5 

 
Table 14. Effect of boundary conditions on the non-dimensional natural frequencies of anti-symmetric laminated angle ply 
beams [45/-45/45/-45]. 

Mode number 

5 4 3 2 1 
Beam Type Method 

9.5140 7.5737 5.1413 1.9497 0.3244 Present Model 

9.2162 5.3660 4.9163 1.8156 0.2962 
C-F 

Ref. [2] 

14.8566 12.1458 7.3364 3.4642 0.9033 Present Model 

11.9145 10.7449 7.0148 3.2334 0.8278 
S-S 

Ref. [2] 

14.8797 13.2232 8.3468 4.2774 1.3902 Present Model 

13.0579 10.7449 8.0261 4.0139 1.2786 
S-C 

Ref. [2] 

13.3071 8.5410 7.4965 4.2810 1.3919 Present Model 

13.3136 8.1608 5.3660 4.0653 1.2883 
S-F 

Ref. [2] 

14.9973 14.2009 9.3709 5.1365 1.9823 Present Model 

14.1999 10.7449 9.0601 4.8472 1.8298 
C-C 

Ref. [2] 
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8) In case isotropic beam, generally, for small value of 

L/h (h/L equal to or greater than 0.05), the model results 
are better than all other theories CBT, exact FSDT 
(EFSDT), CPT, and HSDT for various boundary condi- 
tions. However, for the ratio L/h greater than a value 
around 20, generally, the model results were closer to the 
results of other theories. 

9) For cross-ply orthotropic composite beams the ob- 
tained deflections are better than all other theories for all 
values of L/h and for all boundary conditions, except 
(C-F) case, the EFSDT and HSDT were better. However, 
for angle-ply beams the proposed model is better than all. 

10) For cross-ply and angle-ply orthotropic composite 
beam the natural frequency are accepted in compared 
with EFSDT and HSDT, and better than RFSDT. 

11) The model gives natural frequency of composite 
beam better than EFSDT and HSDT for S-S, S-F, C-C 
boundary conditions, and it were closer to these theories 
for other C-F and S-S boundary conditions. 
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Appendix A 

The element mass matrix for the Timoshenko Beam: 

2 2

8 13 33 3 19
0 0 0
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         (A-1) 

where; bhm   

The element stiffness matrix for orthotropic Timoshenko Beam: 
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(A-2) 

The element load vector: 
'

1 2 3

3 2 3
0 0

8 6 8 3 8 8 6
a t a t a a tf L f L f L f L f L f L f L

F P P P
      

                     (A-3) 
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The element stiffness matrix for isotropic Timoshenko Beam is: 
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where; A bh  
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Nomenclature 

Symbol Definition 

A  Beam cross section area. 

ijA  Elements of extensional stiffness matrix. 

ijB  Elements of coupling stiffness matrix. 

b Width of beam. 

ijklC  Elastic constants. 

1c , ,  and  2c 3c 4c Constant coefficients. 

ijD  Elements of bending stiffness matrix. 

E Young’s modulus. 

1E  Young’s modulus in the fiber direction. 

2E  Young’s modulus in the transversal direction to the fiber. 

af , tf  Axial and transversal forces. 

G Shear modulus. 

h Thickness of beam. 

 K  Element stiffness matrix. 

k  Layer number in the laminated beam. 

L Length of beam. 

 M  Element mass matrix. 

m Mass per unit length of the beam. 

N  Total number of layers of the laminated beam. 

NE Number of elements. 

ijQ  Components of the lamina stiffness matrix. 

q  and  q Generalized nodal displacements and its second derivative. 

T  Kinetic energy. 

U  Internal strain energy for the structure. 

, ,u v w  Displacements of any point in the x-, y-, and z directions. 

1 2 3 4, , andu u u u  Axial displacements at the boundaries of beam element. 

u , ,  v w Reference surface displacements along x-, y-, and z- axes. 

W  Work done due to external loads. 

1 2 3, ,andw w w  Transversal displacements at the boundaries of beam element. 

xy   Reference surface Transversal shear strain in x-z plane. 

xz  Transversal shear strain in x-z plane. 

x , y , z  Linear strains in the x-,y-, and x-directions. 

x
 , y

  Reference surface extension strains in x-, & y- directions. 

i  Transversal displacement shape functions. 

x
 ,  y

 Reference surface curvatures in the x-, and y-directions. 

i  Axial displacement shape functions. 

  Mass of the structure material. 

x  Normal stress in the x-direction. 

xz  Shear stress in the x-z plane. 
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  Natural frequency of the structure. 

x  Angle of rotation. 

1 2and   Rotation angles at nodes. 

1 2and   Electrical potential shape functions. 

i  Rotation displacement shape functions. 

HSDT Third-order shear deformation theory. 

SSDT Second-order shear deformation theory. 

FSDT First-order shear deformation theory. 

RFSDT Refined first-order shear deformation theory. 

CBT Classical beam theory. 

 
 
 
 
 
 
 
 
 
 
 


