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FE MODELING OF STRAIN LOCALIZATION IN SOFT ROCK

By Ronaldo I. Borja,1 Richard A. Regueiro,2 and Timothy Y. Lai3

ABSTRACT: A finite-element (FE) model of localized deformation in soft rock taking a strong discontinuity
approach is presented. The model is formulated within the context of rate-independent, nonassociated Drucker-
Prager plasticity with nonlinear cohesion hardening/softening. Strain localization is modeled as a jump in the
displacement field and simulated within the framework of the FE method using the standard Galerkin approx-
imation. The model is used to simulate the load-displacement behavior of Gosford sandstone deforming in plane
strain, focusing on the prediction of the stress levels necessary to initiate strain localization, based on the strong
and weak discontinuity criteria (jumps in displacement and strain, respectively), and on the demonstration of
mesh-independence of the FE solutions in the bifurcated state. For the sandstone, the onset of weak discontinuity
is detected first, before the onset of strong discontinuity, suggesting a possible coupling of the two types of
discontinuities in the strain-softening regime.

INTRODUCTION

Strain localization is a ubiquitous feature of geologic ma-
terials undergoing nonhomogeneous deformation. In rocks, the
zone of localized deformation is generally referred to as either
a fault, shear band, rupture zone, or simply a failure plane,
and is best explained by either fracture mechanics (Horii and
Nemat-Nasser 1982; Ashby and Hallam 1986) or bifurcation
theory (Rudnicki and Rice 1975). Localized deformation is
typically followed by a reduction in overall strength of the
material body as loading proceeds (Read and Hegemier 1984).
It is therefore of considerable interest and importance to be
able to predict when a shear band forms and how this narrow
zone of discontinuity is oriented within the rock material.

Much experimental work has been conducted to understand
the inception of localized deformation in soil and rock by re-
lating the microscopic behavior (e.g., microcracking in brittle
rocks, mineral particle rolling and sliding in granular soils, and
mineral particle rotation and translation in the cement matrix
of soft rocks such as sandstone) to the macroscopic behavior
via overall load-displacement curves (Santarelli and Brown
1989; Wawersik et al. 1990; Ord et al. 1991; Borja and Wren
1995a,b; Labuz et al. 1996; Wren and Borja 1997; Borja et al.
1998). This paper does not focus on this microscopic-macro-
scopic connection but instead attempts to numerically model
localized deformation from the macroscopic standpoint. To
this end, we use the finite-element (FE) method and present a
model that is objective with respect to mesh refinement and
insensitive to mesh alignment. We then use this model to pre-
dict the onset of localization in frictional materials exemplified
by soft rocks and trace the orientation and progression of the
shear bands, including the subsequent softening response fol-
lowing strain localization.

Various approaches have been proposed to circumvent the
problem of mesh dependence in FE modeling of strain local-
ization phenomena: length-scale incorporated in the plastic
evolution equations (Pietruszczak and Mróz 1981); nonlocal
approach (Bazant and Pijaudier-Cabot 1988; Adachi et al.
1991); adaptive remeshing (Zienkiewicz et al. 1995); the weak
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discontinuity approach (Rudnicki 1977; Ortiz et al. 1987); el-
ement breaking (Wan et al. 1990); and the strong discontinuity
approach (Larsson et al. 1993; Simo et al. 1993; Armero and
Garikipati 1995; Regueiro et al. 1998; Regueiro and Borja
1999; Borja and Regueiro 2000). This paper takes the strong
discontinuity approach to model localized deformation in fric-
tional materials. The approach relies on the hypothesis of a
discontinuous displacement field, which naturally leads to a
shear band of zero thickness. In particular, we will use the
model by Borja (2000), Borja and Regueiro (2000), and Re-
gueiro and Borja (1999, 2000) for computational modeling of
shear band formation in soft rocks. This model is formulated
within the context of nonassociated Drucker-Prager plasticity
and lately has been implemented within the framework of the
standard Galerkin approximation (Borja 2000). The resulting
model is demonstrably objective with respect to mesh refine-
ment and insensitive to mesh alignment.

Plane strain-stress conditions are most commonly encoun-
tered in geotechnical engineering. However, plane strain com-
pression tests of soft rocks, herein defined as rocks with un-
confined compressive strengths below 35 MPa (Labuz and
Papamichos 1991), are uncommon because of the limitation
of existing laboratory testing apparatus. Essential features of
plane strain compression apparatus for rocks include either a
stiff frame design or more expensive hydraulic active systems
and the absence of kinematic constraints that inhibit the free
formation of a shear band on the plane of loading. Quite re-
cently, some high-quality test results from plane strain com-
pression tests of soft rocks have been reported in the literature
(Labuz and Papamichos 1991; Ord et al. 1991; Yumlu and
Ozbay 1995; Labuz et al. 1996). In this paper, we will use the
compression test results reported by Ord et al. (1991) for Gos-
ford sandstone to illustrate the capabilities of the model to
simulate the localization phenomena in a plane strain setting.

LOCALIZATION MODEL

Typical behavior of rocks subjected to monotonic uniaxial
compression can be summarized with the aid of the stress-
strain curve shown in Fig. 1. The stress-strain curve divides
into four regions (Jaeger and Cook 1976): (1) OA, in which it
is slightly concave upwards; (2) AB, a nearly linear portion;
(3) BC, in which it is concave downwards, reaching a maxi-
mum at C; and (4) a falling region CD. In the first two regions,
OA and AB, the behavior is very nearly elastic, while in the
third region BC, irreversible plastic deformations are induced
in the rock. The region CD is characteristic of brittle behavior,
but this portion is usually obscured by the instability of the
machine-specimen system after violent failure very near to the
point C. A similar description may be made of the stress-strain
curve for rocks subjected to a positive confining pressure, with
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FIG. 2. Typical Axial Stress–Volumetric Strain Curve for Rock
under Uniaxial Compression (after Jaeger and Cook 1976)

FIG. 1. Typical Stress-Strain Curve for Rock under Uniaxial
Compression (after Jaeger and Cook 1976)

the additional feature that the failure strength at point C tends
to increase as the confining pressure increases (Handin 1966).

Rocks generally exhibit a compactive behavior during the
initial portion of the stress-strain curve, but throughout much
of the plastic region BC, and especially the rest of the falling
region CD, they exhibit pervasive dilatancy as open micro-
cracks form within the rock specimens (Brace et al. 1966;
Cook 1970). This implies an increase in volume during com-
pression relative to the behavior of a linear, elastic material.
This typical volume change behavior is shown in Fig. 2. There
is sufficient evidence that dilatant behavior also manifests in
plane strain-stress conditions and is not restricted to the uni-
axial or biaxial stress cases alone (Ord et al. 1991; Yumlu and
Ozbay 1995).

Motivated by these observations, we now turn to the mod-
eling aspect and illustrate the role of the proposed localization
model in interpreting the stress-strain responses of soft rock
specimens deforming in plane strain. Although the theory is
quite general, we will consider a more specific nonassociated
Drucker-Prager plasticity model to interpret the experimental
responses of these materials. In the Drucker-Prager plasticity
model, the yield surface is a right circular cone in principal
stress space and contains the elastic region represented by por-
tions OA and AB of the stress-strain curve shown in Fig. 1.
At initial yield denoted by point B, the yield surface hardens
by allowing the cohesion to increase nonlinearly with effective
plastic strain up until point C. This type of hardening is termed
‘‘cohesion hardening’’ by Vermeer and de Borst (1984). Some-
where near point C, the specimen undergoes strain localization

predicted by a localization condition, and so a jump in the
displacement field is introduced to capture the discontinuity or
slip along the shear band.

The following section presents the continuum and discrete
versions of the proposed localization model. To provide a ref-
erence point of view for subsequent discussion, a weak dis-
continuity type of formulation is first briefly summarized.
Then, the proposed strong discontinuity type of formulation is
presented and compared with the weak discontinuity model.
For a more rigorous mathematical treatment of the strong dis-
continuity model applied to cohesive/frictional material, the
reader is referred to Borja and Regueiro (2000) and Borja
(2000).

Weak Discontinuity Formulation

Let us consider an initially homogeneously deforming elas-
toplastic continuum defined by a yield function F and a plastic
potential function Q. The rate-constitutive equation for this
continuum is given by

ep ˙ṡ = c ε (1)ij ijkl kl

where = Cauchy stress rate tensor; = small strain rate˙ ˙s εij kl

tensor; and = rank-four elastoplastic tangential moduli ten-epc ijkl

sor given explicitly by the well-known expression

1 ­Q ­F ­F ­Qep e e e ec = c 2 c c ; x = c 1 Hijkl ijkl ijpq rskl ijklS Dx ­s ­s ­s ­spq rs ij kl

(2)

in which = rank-four elastic moduli tensor; and H = plasticec ijkl

modulus. Throughout this paper, the Einstein convention is
used for repeated indices.

The idea in the classical weak discontinuity type of for-
mulation is to consider the occurrence of a jump in the strain
field across a certain narrow zone of intense straining, called
shear band (Rudnicki and Rice 1975). Thus, the total strain
inside the shear band is equal to the homogeneous strain out-
side the shear band plus a jump in the strain field represented
by the symmetric component of the dyadic tensor gknl, where
gk = element of the jump vector g, and nl = element of unit
vector n perpendicular to the shear band. Since the equations
of continuing equilibrium require that the traction vector out-
side the shear band be equal to the traction vector inside the
shear band, then

ep ep˙ ˙n c ε* = n c [ε* 1 sym(g n )] (3)i ijkl kl i ijkl kl k l

where is the homogeneous strain field just outside theε̇*kl

shear band; and ‘‘sym’’ denotes the symmetric component of
a tensor. For a nontrivial solution gk ≠ 0 to exist, we require
that

ep epdet(n c n ) = det(a ) = 0 (4)i ijkl l jk

where is the elastoplastic acoustic tensor. Eq. (4) is a nec-epajk

essary condition for the onset of a jump discontinuity in the
strain field and states that for some orientation n, a jump in
the strain field is possible, provided that the determinant of
the acoustic tensor vanishes for this particular orientation. A
well-known problem with the weak discontinuity formulation,
however, lies in the difficult characterization of the response
following the emergence of the shear band, since conventional
rate-independent elastoplastic models do not provide a char-
acteristic length scale to allow continuation of the solution
beyond the point of localization.

Strong Discontinuity Formulation

Let us consider the same elastoplastic continuum described
in the previous section, but now assume a jump discontinuity
in the displacement field u of the form
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FIG. 3. Definition of Surface of Discontinuity

1 if x [ V1u = ū 1 [u]H (x); H (x) = (5)6 6 H0 if x [ V2

where H6 = Heaviside function, ū = continuous part of u and
[u] = displacement jump discontinuity on the surface 6 sep-
arating the subdomains V1 and V2 of an initially continuous
body V (Fig. 3). The associated total strain rate tensor result-
ing from this discontinuous displacement field is the symmet-
ric component of the displacement gradient tensor, which can
be written in compact form as (Simo et al. 1993)

˙ ˙ε = ε* 1 sym([u̇ ]n )d (6)kl kl k l 6

where = = nonsingular part of = ve-˙̄˙ ˙ε* sym(­u /­x ) ε ; [u̇]kl k l kl

locity jump vector; nk = element of unit vector n perpendicular
to the surface 6 and pointing in the direction of V1; and d6

= Dirac delta function on the surface 6. The deformation de-
scribed by (5) has the physical significance that the zone of
intense shearing has a characteristic thickness of zero.

The rate-constitutive equation for the continuum is given by

­Qe˙ ˙s = c ε* 1 sym([u̇ ]n )d 2 l (7)ij ijkl kl k l 6F G
­skl

Now, since the stresses are bounded, (7) will be meaningful
only if the consistency parameter l takes the form l = ldd6,
where ld > 0 is a real number, which implies that plasticity is
concentrated to the surface of discontinuity (Simo et al. 1993).
Under this condition, the equations of continuing equilibrium
require that the traction vector outside the band be equal to
the traction vector inside the band, or

e e ep˙ ˙n c ε* = n c ε* 1 n C sym([u̇ ]n )d (8)i ijkl kl i ijkl kl i k l 6

where = elastic–perfectly plastic tangential moduli tensorepCijkl

given by the expression

1 ­Q ­F ­F ­Qep e e e eC = c 2 c c ; X = c (9)ijkl ijkl ijpq rskl ijklS DX ­s ­s ­s ­spq rs ij kl

For a nontrivial solution [u̇k] ≠ 0 to exist, we require that
ep epdet(n C n ) = det(A ) = 0 (10)i ijkl l jk

where = elastic–perfectly plastic acoustic tensor. Eq. (10)epAjk

is a necessary condition for the emergence of a jump discon-
tinuity in the displacement field and has a meaning analogous
to but not the same as the condition for the emergence of a
jump discontinuity in the strain field.

A comparison between conditions (4) and (10) is in order.
First, since x ≠ X unless H = 0 for the case of perfect plasticity,
then ajk ≠ Ajk, and so conditions (4) and (10) generally occur
at two different states of stress. Furthermore, since is pos-ec ijkl

itive-definite, and
e p e pa = a 2 a ; A = A 2 A (11)jk jk jk jk jk jk

where = etc., then both det(ajk) and det(Ajk) ap-e ea n c n ,jk i ijkl k

proach zero from the positive side (Runesson et al. 1991).

Therefore, it follows that if localization takes place in the hard-
ening regime where H > 0 (which is possible for the case of
nonassociated plasticity), then the onset of displacement jump
will theoretically precede the onset of strain jump. Conversely,
if localization takes place in the softening regime where H <
0, then the onset of strain jump will precede the onset of dis-
placement jump. Finally, it must be noted that, although the
localization condition for the emergence of a displacement dis-
continuity does not explicitly contain the continuum plastic
modulus H, the determinant expression (10) is still a function
of the stress state, which in turn depends on the value of the
plastic modulus used to predict that particular stress state, and
so the determinant expression for predicting the onset of dis-
placement jump is not completely independent of H.

Model for Bifurcated Response

The main reason for advocating the strong discontinuity for-
mulation in this paper is that this approach allows continuation
of the solution beyond the point of bifurcation. However, a
key point to remember in modeling the bifurcated response is
that, once the element has localized, both the continuum yield
and plastic potential functions are replaced by a different set
of yield and plastic potential functions reflecting the consti-
tutive response of the damaged element due to yielding on the
band. It is therefore important to formulate an appropriate
damage model that captures the bifurcated response of the ma-
terial. To this end, let us consider a damage model defined by
a yield function G of the form

G = sym(n t )s 2 [c 2 (n n )s tan f] = 0 (12)i j ij i j ij

where tj = component of unit vector t tangent to the band; c
= cohesion intercept; and f = mobilized friction angle devel-
oped on the surface of discontinuity. Eq. (12) has the physical
significance that yielding on the band occurs when the re-
solved tangential shear stress reaches a certain maximum
value, and that this maximum value varies linearly with the
normal component of the compressive stress acting on the slip
surface. If f = 0, then we recover a yield criterion analogous
to crystal plasticity theory in which the shear band corresponds
to a potential crystallographic slip plane (Borja and Wren
1992, 1993).

Similarly, the kinematics of strong discontinuity presented
in (5) may be assumed at postlocalization, leading to a rate-
constitutive equation of the form analogous to (7) as

­Re ˙˙ ˙s = c ε* 1 z sym(m n )d 2 l (13)ij ijkl kl k l 6F G
­skl

where = magnitude of the jump rate vector [u̇k]; mk = com-ż
ponent of unit vector in the direction of the jump rate vector;
and R = plastic potential function in the damaged state. As
before, we require that l = ldd6, since the stresses must be
bounded, which in turn results in the flow rule for the slip
tensor of the form

­R ­R
ż sym(m n ) = l ⇒ } sym(m n ) (14)k l d k l

­s ­skl kl

Eq. (14) guarantees that the stresses are bounded everywhere,
even on the band, and allows the shear band to evolve in the
bifurcated state.

It is useful to compare the gradient tensors derived from the
yield function G and the plastic potential function R, since
together they describe the response of the continuum in the
damaged state. Taking the stress gradient of G from (12) gives

­G
} sym(m n ); m = t 1 n tan f (15)k l k k k

­skl
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FIG. 4. Construction of Gradient Tensors: (a) Gradient of Yield
Function G; (b) Gradient of Plastic Potential R

For planar deformation, Fig. 4(a) shows how this gradient ten-
sor is constructed from the unit normal vector n and the vector
m (note that \m\ = ≠ 1, unless f = 0). The vector21 1 tan fÏ
m = t 1 n tan f is seen to make an angle of f relative to the
surface of discontinuity. In contrast, Fig. 4(b) shows that the
slip tensor is constructed from the unit vectors n and m, where
the latter vector makes an angle of c relative to the band and
defines the instantaneous direction of the displacement jump
increment. If the mobilized friction angle f is equal to the
dilation angle c, then the two gradient tensors are parallel and
the flow rule is associative at postlocalization. However, this
is generally not the case since c is determined from the bi-
furcation analysis whereas f is a prescribed parameter defining
the postlocalization constitutive response.

Continued yielding on the band is possible provided that the
damage model satisfies the consistency condition

­Re ˙˙ ˙G = sym(m n )c ε* 1 z sym(m n )d 2 l 2 Hl = 0i j ijkl kl k l 6F G
­skl

(16)

where H = softening modulus in the damaged state. Following
the same argument used in the previous section, we conclude
that since l = ldd6, then H21 = where Hd < 0 is the21H d ,d 6

softening modulus on the band, i.e., both l and H must be
treated as singular distributions (Stakgold 1998). Thus, the
consistency condition reduces to

e ˙sym(m n )c ε* 2 H l = 0 (17)i j ijkl kl d d

Alternately, since } ld from the flow rule (14), then a soft-ż
ening modulus = < 0 may be defined on the band,˜ ˙H H l /zd d d

in which case the consistency condition (17) can be written in
the alternative form (Borja and Regueiro 2000)

e ˜ ˙˙sym(m n )c ε* 2 H z = 0 (18)i j ijkl kl d

where = magnitude of the slip rate.ż
The model described above has been implemented into a

FE code using the standard Galerkin formulation (Borja 2000).
For the case of piecewise constant stress interpolation, the
standard Galerkin approximation has been shown to be equiv-
alent to the assumed enhanced strain FE approximation pre-
sented by Borja and Regueiro (2000) and leads to a solution
for the bifurcated response that is independent of mesh refine-
ment and insensitive to mesh alignment. The following section
describes how the model is used to interpret the mechanical

behavior of a soft rock subjected to plane strain compression.
The simulations include prediction of the onset of localization
and the evolution of the shear band. For simplicity, we restrict
the development to quasi-static problems under the assumption
of infinitesimal deformation. Furthermore, only plane strain
deformation is considered, and discussion is restricted to con-
stant-strain triangular (CST) elements.

NUMERICAL SIMULATIONS

In this section we will use the proposed model to simulate
the behavior of a soft rock under plane strain compression,
focusing on the experiments on Gosford sandstone described
by Ord et al. (1991). The goal of the simulations is not to
demonstrate that the model provides accurate predictions of
the load-displacement responses per se, but to show how the
model may be used to interpret the stress-strain behavior ex-
hibited by the rock specimens within the context of the local-
ization phenomena. In fact, the idea of the simulations is pre-
cisely to provide the model the flexibility to capture the
stress-strain responses exhibited by the rock specimens as
closely as possible, identify the instant at which the model
predicts the formation of a shear band, and then use these
results to infer the cause of the softening response exhibited
by the rock specimens. Obviously, the simulations will neces-
sitate a specific form of the constitutive model and the as-
sumption of the material parameter values; it turns out that,
for the sandstone examples, we can sufficiently constrain the
boundary value problem to allow the model to generate mean-
ingful solutions.

For the constitutive model in the prelocalization regime, we
assume a nonassociated Drucker-Prager plasticity theory with
cohesion hardening/softening (Borja and Regueiro 2000).
Here, the yield function F and its gradient with respect to sij

take the form

3 ­F 13F = s s 2 3(a 2 b ) = 0; = n̂ 1 bdÎ Ïij ij p ij ijÎ2 ­s 2 3ij Ï
(19)

where a, b = model parameters; p = skk/3 = mean normal
stress; n̂ij = sij = sij = pdij = deviatoric components / s s ;Ïij kl kl

of sij; and dij = Kronecker delta. The plastic potential function
Q is assumed to have a stress gradient of the form

­Q 3 1
= (20)n̂ 1 bdÎ ij ij­s 2ij 3Ï

where b = dilatancy parameter. Clearly, b = b implies asso-
ciated plasticity.

The procedure followed in the analyses goes as follows.
First, we construct different FE meshes for the rock specimens
deforming homogeneously. Requiring the meshes to deform
homogeneously ensures that all of the elements will satisfy the
localization criterion at the same time, and that the initiation
of the bifurcated response will take place at the same stress
state regardless of the mesh. No weak element is introduced,
and no specific band-tracing algorithm is employed, other than
having all the elements on a potential shear band traced si-
multaneously. For a homogeneously deforming specimen, the
bifurcation analysis yields two possible shear band orientations
and an infinite number of shear band positions; of these, one
of the two orientations is chosen and one shear band position
is traced. Although there are an infinite number of possible
shear bands, the load-displacement curves generated by the
model should be the same, regardless of the shear band cho-
sen, in order for the solution to be meaningful. Indeed, results
of the numerical examples demonstrate that this is the case, in
addition to all the meshes providing identical results to ma-
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FIG. 6. FE Meshes for Sandstone Example Demonstrating
Mesh-Independence of FE Solutions: (a) Regular Unstructured
Mesh; (b) Irregular Mesh; (c) Regular Unstructured Finer Mesh;
(d) Regular Unstructured Mesh with Higher Band Position; (e) Ir-
regular Mesh with Second Band Orientation; (f) Irregular Mesh
Equivalent to (e). Shaded Region Represents Traced Elements
while Solid Curve Represents Actual Shear Band on Rock Spec-
imen

FIG. 5. Rock Specimen Dimensions and Irregular FE Mesh for
Sandstone Example

chine precision demonstrating mesh-independence of the FE
solutions.

Model Parameters for Gosford Sandstone

Gosford sandstone is a medium-grained cemented rock from
the larger Triassic Hawkesbury sandstone unit of the Sydney
Basin, Australia. The plane strain compression apparatus used
in the experiments can accommodate rocks with uniaxial com-
pressive strengths of up to 70 MPa, while allowing sponta-
neous formation of shear bands in the specimens. The loading
area of the specimen is about 80 3 40 mm, and the plane
strain surface is also 80 3 40 mm. Figs. 5 and 6 show the
specimen dimensions and the FE meshes used in the numerical
simulations. The FE meshes shown in Fig. 6 include two reg-
ular unstructured meshes of different resolution, in which the
elements are defined by regular triangulation (CST) with the
element sides not necessarily aligned to the potential shear
band, and a completely irregular mesh of CST elements that
considers two possible shear band orientations. A higher shear
band position is also considered with the regular unstructured
mesh. By considering these different meshes, we can demon-
strate the objectivity of the solutions with respect to mesh
refinement and alignment.

Ord et al. (1991) reported results for 11 experiments, five
of which involved rock failure by shear banding (see Table 1
of their paper). Of these five experiments, we will focus our
simulation on experiment RAO636, corresponding to a spec-
imen tested at a confining pressure of 20 MPa, and on
RAO627, corresponding to a confining pressure of 10 MPa.
Like most of the other specimens tested, these two specimens
exhibited load-displacement curves that clearly show the four
regions of loading defined in Fig. 1.

The measured elastic Young’s moduli for the sandstone vary
from a low of 12.1 GPa to a high of 18.3 GPa, with values
tending to increase with higher confining pressures. As men-
tioned previously, our approach involves capturing the load-
displacement curves as closely as possible, and for experi-
ments RAO636 and RAO627, the best-fit initial tangential
moduli to the load displacement curves are provided by values
of Young’s moduli of E = 17.2 and 10.5 GPa, respectively.
The initial, slightly concave elastic portions of the load-dis-
placement curves have been ignored.

Ord et al. (1991) also reported values of Poisson’s ratio n
varying from 0.24 to 0.40 for all the sandstone specimens. For
experiment RAO636, the specimen has a Poisson’s ratio of n
= 0.30, while for experiment RAO627, the specimen has n =
0.40. These values of E and n used in the simulations are
comparable to those reported by Haas (1981).

The Drucker-Prager parameters a and b were estimated by
identifying the point on the experimental stress-strain curve at

which the response begins to deviate from a straight line. A
linear regression of the stress-strain curves for the five exper-
iments that resulted in failure by shear banding yields a =
13.5 MPa and b = 0.49. As for the dilatancy parameter b, Ord
et al. (1991) reported an average value of the continuum di-
latancy angle c = 207 prior to peak stress for the intact sand-
stone; assuming that the dilatancy parameter b varies with the
continuum dilatancy angle in the same way that the Drucker-c̄
Prager parameter b varies with the continuum friction angle

(Vermeer and de Borst 1984), we obtain b = 0.35 for thef̄
sandstone.

All of the Drucker-Prager model parameters have now been
determined for the sandstone except for the continuum plastic
modulus H, which we will use in the simulations to capture
the observed nonlinear load-displacement response. In order
to allow the solution to freely capture the nonlinear hardening/
softening response, we assume an expression for the plastic
modulus H of the form

t

p p p˙H = H 1 H g $ H ; g = g dt (21)0 1 2 E
0

where = = effective deviatoric plastic strain rate;p p p 1/2ġ (2ė ė /3)ij ij

= 2 = deviatoric component of plastic strain ratep p p˙ ˙ė ε ε d /3ij ij kk ij

tensor H0 > 0 is the initial hardening modulus; H1 < 0 ispε̇ ;ij

the rate of degradation of H with effective plastic strain; and
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FIG. 8. Variation of Continuum-Effective Plastic Strain and
Plastic Modulus with Vertical Displacement: ConfiningPressure
= 20 MPa

FIG. 7. Load-Displacement Curves for Gosford Sandstone
Tested at Confining Stress of 20 MPa

H2 < 0 is the softening cutoff parameter introduced to ensure
that the quantity x defined in (2) is always greater than zero.
Values of the moduli parameters for the two test problems are
reported in the discussions that follow.

Results of Simulations

For experiment RAO636, in which the specimen was sub-
jected to a confining stress of 20 MPa, the values H0 = 0.6
GPa; H1 = 2125.0 GPa; and H2 = 21.5 GPa provide a best-
fit curve to the nonlinear load-displacement response of the
sandstone. The load-displacement curves predicted by the
meshes of Fig. 6 are shown in Fig. 7, along with the experi-
mental curve obtained by Ord et al. (1991). The responses
predicted by all of the FE meshes are the same, and in fact
are all identical to machine precision, demonstrating objectiv-
ity of the FE solutions with respect to mesh refinement and
insensitivity to mesh alignment. The onset of plasticity is de-
tected at point A in Fig. 7, and the plastic modulus H changes
in sign well within the rising part of the load-displacement
curve at point B. That the curve is still rising when H is already
negative may be explained from the dependence of the yield
function on the mean normal stress. The model detects the
onset of weak discontinuity at point C, based on the satisfac-
tion of (4), but ignores this aspect of the solution and later
detects the onset of strong discontinuity at point D, based on
the satisfaction of the determinant condition (10). This result
agrees with the point made earlier that the onset of weak dis-
continuity precedes the onset of strong discontinuity when the
localization takes place within the region where H < 0.

Beyond point D, the FE solution is enhanced by introducing
a displacement jump mode to capture the accelerated softening
response. Fig. 7 shows two such possible postlocalization re-
sponses depending on the value of the band softening param-
eter For postlocalization analysis, a value of f = 307 wasH̃ .d

assumed for the mobilized friction angle on the surface of
discontinuity [see (12)]. If the displacement jump mode had
not been introduced and the specimen had been assumed to
deform homogeneously all throughout the simulation, then the
load displacement curve predicted by the model would have
been as indicated by the dashed curve following point D in
Fig. 7, and any attempt to make the curve soften faster by
decreasing H further would fail since the most negative value
of H is bounded by the restriction that the quantity x in (2)
would always be greater than zero. Clearly, the accelerated
softening response exhibited by the rock specimen cannot be
captured by the standard FE solution unless some kinematical
enhancements are introduced.

It is interesting to note that the peak response exhibited by
the specimen occurred somewhere between points C and D,

which suggests that there could have been some possible cou-
pling between the emergence of the weak and strong discon-
tinuities, that is, the presence of jump in the strain field could
have altered the material response near the band and acceler-
ated the onset of displacement jump. In contrast, this coupling
would not likely occur if localization had taken place in the
hardening region since, by hypothesis, the material just outside
the band would unload elastically upon the onset of strong
discontinuity. In the present simulation, the model ignores the
presence of weak discontinuity altogether and assumes that the
rock specimen remained intact until the onset of strong dis-
continuity.

Fig. 8 shows the variation of the continuum softening mod-
ulus H and the effective plastic strain gp with vertical displace-
ment as the rock specimen deforms homogeneously. By allow-
ing the plastic modulus H to vary with gp according to (21),
the solution was able to determine objectively that the onset
of strong discontinuity would occur in the region where H is
less than zero. Note, however, that the result of this simulation
does not necessarily imply that the onset of strong disconti-
nuity would always occur in the softening region, since local-
ization in the hardening regime is also possible when the plas-
ticity model is nonassociated [see Runesson et al. (1991) and
the examples presented by Borja (2000)]. As Fig. 8 indicates,
the artificial softening cutoff parameter H2 did not play a role
in the simulation since the onset of strong discontinuity has
been detected when H is still above this cutoff value.

Fig. 9 shows the deformed meshes after the enhancements
have been introduced in the postlocalization regime, demon-
strating a sharp resolution of the discontinuity. Observe the
marked dilatancy within the localized elements (shaded gray)
exhibited by the FE solutions. The model predicts a shear band
orientation of 56.37 relative to the horizontal axis, based on
the weak discontinuity criterion (point C in Fig. 7) and 57.47
based on the strong discontinuity criterion (point D in Fig. 7).
The small discrepancy between the two angles is due to the
difference in the states of stress at which the two localization
conditions have been detected. The corresponding dilatancy
angle c defining the instantaneous direction of the incremental
displacement jump is 22.67 [Fig. 4(b)]. Note that the dilatancy
angle c is not the same as the continuum dilatancy angle c̄
used to define the Drucker-Prager parameter b—the former
pertains to the dilatancy angle on the band in the damaged
state, whereas the latter pertains to the plastic volumetric re-
sponse of the intact continuum. Identical load-displacement
responses are generated by choosing a higher shear band po-
sition, as well as by assuming the second shear band orienta-
tion.

It is interesting to see how the shear band orientation at the
onset of strong discontinuity is influenced by the parameters
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FIG. 9. Deformed Meshes for Sandstone Example Demon-
strating Sharp Resolution of Discontinuity: (a) Regular Unstruc-
tured Mesh; (b) Irregular Mesh; (c) Regular Unstructured Finer
Mesh; (d) Regular Unstructured Mesh with Higher Band Posi-
tion; (e) Irregular Mesh with Second Band Orientation; (f) Irreg-
ular Mesh Equivalent to (e)

FIG. 11. Load-Displacement Curves for Gosford Sandstone
Tested at Confining Stress of 10 MPa

FIG. 10. Axial Strain versus Lateral Strain for Gosford Sand-
stone

b and b of the Drucker-Prager model. Assuming that the pa-
rameters b and b are related to the respective continuum fric-
tion and dilatancy angles, and via the relationships¯¯ c,f

¯ ¯6 sin f 6 sin c
b = ; b = (22)¯ ¯3(3 1 sin f) 3(3 1 sin c)Ï Ï

then we have = 307 and = 207, corresponding to the values¯ ¯f c
of b and b used in the simulation. We see that the shear band
orientation of 57.47 determined from the localization analysis
is closer to the value given by the expression 457 1 1¯(f

= 57.57, an approximate relationship proposed by Arthurc̄)/4
et al. (1977), than to the values provided by either the ex-
pression 457 1 = 607 or the expression 457 1 = 557.¯ ¯f/2 c/2
The actual shear band reported by Ord et al. (1991) for this
experiment is sketched in Fig. 6, along with the traced ele-
ments (shaded gray) predicted by the FE model.

Fig. 10 superimposes the axial strain–lateral strain curve
predicted by the model with the experimental curve for another
Gosford sandstone specimen tested by Ord et al. (1991) at a
confining pressure of 15 MPa (experiment RAO640). It was
not possible to use the corresponding curve for the 20 MPa-
confining stress case because the figure reported by Ord et al.
for this experiment had no labels; but for rock materials, this
small difference in the confining stresses should not have
much impact on the volumetric response. For purposes of def-
inition, the predicted axial strain is equal to the axial displace-
ment divided by the original sample height of 80 mm (nominal
strain definition), while the lateral strain is equal to the dif-
ference in lateral displacements of the two vertical faces of

the specimen divided by the original sample width of 40 mm.
Note that the sum of the lateral strain and axial strain in this
case does not necessarily represent the total volumetric strain
at postlocalization when the sample is deforming nonhomo-
geneously. Observe from the simulation curve that at the onset
of yielding, the sample dilates during compression relative to
the behavior in the elastic regime. The lateral strains predicted
by the model agree well with the experimental values.

For experiment RAO627, in which the specimen was sub-
jected to a confining stress of 10 MPa, the values H0 = 0.9
GPa; H1 = 2235.0 GPa; and H2 = 21.0 GPa provide a best-
fit curve to the nonlinear load-displacement response of the
sandstone. The load-displacement curves predicted by the
meshes of Fig. 6 are shown in Fig. 11, along with the experi-
mental curve obtained by Ord et al. (1991). Again, the re-
sponses predicted by the three meshes are identical to machine
precision, demonstrating mesh-independence of the FE solu-
tions. In this case, the rock specimen fractured to failure al-
most immediately before a weak discontinuity was detected at
point C in the softening regime, which again preceded the
strong discontinuity detected at point D. Also, the material
parameters used in the simulation reproduced the experimental
curve very well. This latter point should not be construed as
an indication of a ‘‘perfect prediction’’ since the model param-
eters have been chosen to match the experimental curve in the
first place, but rather as an affirmation that a well-calibrated
continuum model can indeed be used to infer the inception of
shear banding in this particular sandstone specimen.

Finally, Fig. 12 shows the variations of the continuum plas-
tic modulus and the effective plastic strain with vertical dis-
placement leading to localized deformation. Here, the cutoff
softening modulus of H2 = 21.0 GPa was responsible for
keeping the numerical solution stable, since without this cutoff
parameter, the solution would have diverged on the time in-
terval at which the onset of strong discontinuity had been de-
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FIG. 12. Variation of Continuum-Effective Plastic Strain and
Plastic Modulus with Vertical Displacement: ConfiningPressure
= 10 MPa

tected. The figure also indicates the satisfaction of both local-
ization criteria in the softening regime where H < 0, resulting
in the onset of weak discontinuity being detected first before
the onset of strong discontinuity.

SUMMARY AND CONCLUSIONS

A finite-element model of localized deformation in soft rock
taking a strong discontinuity approach has been presented. The
model is formulated within the context of rate-independent,
nonassociated Drucker-Prager plasticity with cohesion hard-
ening/softening. Strain localization is modeled as a jump in
the displacement field and simulated within the framework of
the finite-element method using the standard Galerkin formu-
lation. The model is used to simulate the load-displacement
behavior of Gosford sandstone specimens deforming in plane
strain. By closely following the experimental load-displace-
ment curves, it is possible to predict the onset of localized
deformation in the rock specimens. For the case studies con-
sidered in this paper, the onset of weak discontinuity has been
detected first, prior to the onset of strong discontinuity, which
could suggest a possible coupling of the two types of discon-
tinuities in the strain-softening regime. Further research is un-
der way to study the evolution of the shear bands resulting
from the coupling of these two types of discontinuities in the
strain-softening regime.
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