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Fe-N system at high pressure reveals a compound
featuring polymeric nitrogen chains
M. Bykov 1, E. Bykova 1,2, G. Aprilis 3, K. Glazyrin2, E. Koemets1, I. Chuvashova 1,3, I. Kupenko4,

C. McCammon 1, M. Mezouar 5, V. Prakapenka6, H.-P. Liermann2, F. Tasnádi7,8, A.V. Ponomareva8,

I.A. Abrikosov7, N. Dubrovinskaia 3 & L. Dubrovinsky 1

Poly-nitrogen compounds have been considered as potential high energy density materials

for a long time due to the large number of energetic N–N or N=N bonds. In most cases high

nitrogen content and stability at ambient conditions are mutually exclusive, thereby making

the synthesis of such materials challenging. One way to stabilize such compounds is the

application of high pressure. Here, through a direct reaction between Fe and N2 in a laser-

heated diamond anvil cell, we synthesize three ironnitrogen compounds Fe3N2, FeN2 and

FeN4. Their crystal structures are revealed by single-crystal synchrotron X-ray diffraction.

Fe3N2, synthesized at 50 GPa, is isostructural to chromium carbide Cr3C2. FeN2 has a mar-

casite structure type and features covalently bonded dinitrogen units in its crystal structure.

FeN4, synthesized at 106 GPa, features polymeric nitrogen chains of [N4
2−]n units. Based on

results of structural studies and theoretical analysis, [N4
2−]n units in this compound reveal

catena-poly[tetraz-1-ene-1,4-diyl] anions.
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S
ince the discovery of a single-bonded cubic nitrogen poly-
morph (cg-N)1, many experimental and theoretical studies
were dedicated to the search for high energy density

nitrogen allotropes and nitrides2–4. Polymeric nitrogen solids
have been regarded as the best high energy density materials
(HEDMs)5–7 owing to the remarkable difference in the average
bond energy between the single N–N bond (160 kJ mol−1), the
double N=N bond (418 kJ mol−1), and the triple N≡N bond
(945 kJ mol−1)8. A number of single-bonded nitrogen allotropes
were predicted to exist at pressures higher than the synthesis
pressure of cg-N9–11. However, in the absence of detailed struc-
tural information (e.g., single crystal data) about even those
single-bonded nitrogen allotropes which were reported to exist1,10

any discussion regarding organization of chemical bonding in
nitrogen-based HEDMs is difficult. Moreover, it is highly desired
to synthesize and stabilize HEDMs at pressures significantly lower
than 100 GPa, preferably close to ambient.

Numerous studies suggest that polymeric nitrogen networks
may be stabilized at lower pressures in compounds4,12,13. Theo-
retical calculations predict existence of different polynitrides MNx

(M= Li, Be, Na, Mg, Al, K, Ca, Ti, Cr, Rb, Ru, Cs, Hf, W, Re, Os
x= 3-10)14–31 featuring various polymeric nitrogen chains, N5 or
N6 rings or even more complex nitrogen networks (e.g., planar
N18 rings in KN8

23 or N10 rings in BeN4
17). The most straight-

forward experimental way to obtain these materials could be a
direct reaction between a metal, a metal nitride or an azide and
nitrogen at high-pressure high-temperature (HPHT) conditions.
Previous experiments with metals or metal nitrides and nitrogen
in a laser-heated diamond anvil cell led to the synthesis of a
variety of transition metal pernitrides MN2 (M= Pt, Ir, Pd, Os,
Rh, Ru, Co, Ti) with different structures: Pd and Pt pernitrides
have the pyrite-type structure (cubic Pa-3)32,33, IrN2 –

the baddelyite-type structure (monoclinic P21/c)33, and OsN2,
RhN2, RuN2, CoN2—the marcasite-type structure (orthorhombic
Pnnm)34–37 and TiN2—Al2Cu-type structure38. All of these per-
nitrides contain dinitrogen N–N units within their structures.
Due to the strong covalent N–N bonding, many of these com-
pounds possess exceptionally high bulk moduli suggesting
potentially high hardness, which could be further enhanced, if
more nitrogen would be incorporated into the structure31. For
this reason many of the predicted MNx compounds are often
considered not only as HEDMs, but also as possible ultra-hard
low-compressible materials30,31.

In addition, extensive high-pressure investigations of alkali-
metal azides (AN3, with A= Li, Na, K or Cs) also aimed at
nitrogen polymerization39–42. However, unambiguous structural
characterization of the obtained high-pressure phases is usually
hindered, as they suffer of a lack of crystallinity. Laser heating of
cesium azide in a diamond anvil cell (DAC) in the of excess N2 at
60 GPa led recently to the synthesis of a material interpreted as a
cesium pentazolate salt CsN5

40. Shortly after this discovery the
first pentazolate-containing complexes were isolated at ambient
pressure43. This is a good example that information about
chemistry and novel bonding of nitrogen at high-pressure may be
useful for ambient-pressure synthesis.

The major challenge in the identification of products of HPHT
synthesis is the absence of the information on both the chemical
composition and the structure. The quality of powder X-ray
diffraction data collected in DAC experiments in general is
insufficient for solving the structure ab initio. Thus, interpreta-
tions of the results are often ambiguous and rely strongly on
theoretical predictions.

Here, we overcame this methodological limitation mentioned
above. We used laser-heated diamond anvil cells for the synthesis
of ironnitrogen compounds through a direct reaction between
iron and molecular nitrogen (see Methods for details). The

reaction products were characterized using single-crystal X-ray
diffraction, and this methodology was extended to over 130 GPa.
We report three novel compounds, Fe3N2, FeN2, and FeN4. The
crystal structure of FeN4 possesses polymeric nitrogen chains that
are much desired for designing potential high energy density
materials. Moreover, our experimental results and theoretical
analysis revealed unexpectedly complex chemical bonding in the
polymeric nitrogen chains.

Results and Discussion
Synthesis and crystal structure of Fe3N2. Laser heating of Fe foil
in nitrogen medium at 50 GPa and 1900(200) K led to the for-
mation of two nitrides Fe3N2 and FeN. Iron nitride Fe3N2 is
isostructural to chromium carbide Cr3C2

44 (Fig. 1a). The struc-
ture is built of quadrilateral face-capped trigonal prisms NFe7,
which are interconnected by sharing trigonal faces and edges.
Such triangular prismatic coordination of six metal atoms about a
central nonmetal atom with additional atoms situated outside the
quadrilateral faces of the prism is very common for metal-rich
compounds containing transition metals and elements with
unfilled p levels45,46. After laser-heating at pressures above
50 GPa, this phase was no longer observed.

Synthesis and crystal structure of FeN. The phase with the
chemical composition FeN and the B8 (NiAs) structure type
(Fig. 1b) was observed at each pressure-temperature point
(Table 1). Very recently, FeN was reported in three independent
experimental studies. Clark et al. synthesized NiAs-type FeN by
heating Fe2N in the nitrogen pressure-transmitting medium
at ~12 GPa47, while Niwa et al. have obtained the same com-
pound in a direct reaction between Fe and N2 at ~35 GPa37. Our
experiments indicate that this compound has a wide stability
range and in agreement with a recent study by Laniel et al48. On
decompression, it is stable down to ambient pressure, but with
time, it transforms to zincblende-structured FeN. The
volume–pressure dependence for B8-FeN can be described with
the third order Birch–Murnaghan equation of state with V0=

34.03(1) Å3, K0= 185(14) GPa, K0′= 6.3(4) (Fig. 2a).

Synthesis and crystal structure of FeN2. The FeN2 phase was
first observed after heating at ~58 GPa. Iron diazenides with
different crystal structures (R�3m and Pnnm) were predicted by ab
initio calculations49,50. We indeed synthesized a phase with the
marcasite structure type (space group Pnnm, Fig. 1c, Table 2).
The structure of FeN2 can be described as consisting of chains of
edge-sharing FeN6 octahedra aligned along the c-axis. These
chains are interconnected through common vertices. Additional
linkage between FeN6 octahedra is provided via N–N bonds
(Fig. 1c). According to our structure refinement, the N–N dis-
tance at 58.5(5) GPa is 1.307(7) Å, and that is intermediate
between the expected bond lengths for double and single-bonded
dinitrogen units. For example, the N=N bond in [N2]2− ions in
BaN2 is of 1.23 Å at ambient conditions51, whereas the calculated
N–N bond lengths in [N2]4− in PtN2 and OsN2 at ambient
conditions are 1.41 and 1.43 Å, respectively52,53.

The compressional behavior of MN2 compounds may give an
insight on the oxidation state of the metal and on the bonding
between nitrogen atoms. Since, the compression of dinitrides is
primarily controlled by the compression of metal-nitrogen (M-N)
bonds34,35,37, the dinitrides with weaker M-N bonds are expected
to be more compressible. The strength of a M-N bond depends to
a large extent on its ionicity. Therefore, the compressibility of
M–N bonds should decrease in the following sequence: M2+

–N >
M3+

–N >M4+
–N. This trend is clearly demonstrated by the

experimental and theoretical studies. Metals that cannot
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have oxidation state larger than +2 (Ba, Sr, Ca), form
diazenides M2+[N=N]2− with the N=N distances in the range
1.2–1.24 Å54–56 and rather low bulk moduli (K0(SrN2)= 65 GPa,
K0(BaN2)= 46 GPa)51. Metals that have stable oxidation states
+ 4 (Os, Ru, Ir, Ti, Pt) form pernitrides M4+[N–N]4− with N–N
distances ~1.4 Å and are highly incompressible with very large
bulk moduli (K0(OsN2)=362 GPa52, K0(IrN2)= 428 GPa57,
K0(TiN2)= 385 GPa38, K0(PtN2)= 372 GPa32). Regarding the

known pernitrides of those transition metals, that do not readily
possess an oxidation state+ 4 (Co, Rh), they have intermediate
bulk moduli (K0(CoN2)= 216 GPa, K0(RhN2)= 235 GPa)35,37,
suggesting the oxidation state of Co and Rh to be +3. According
to our data, compressibility of FeN2 could be described with the
3rd order Birch-Murnaghan equation of state with K0= 250(16)
GPa, K0′= 4.0(5), and V0= 47.42 Å3 (Fig. 2b). Therefore, both
refined N-N distances and compressibility suggest that Fe in FeN2

b
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Fig. 1 Crystal structures of ironnitrogen compounds. Orange and blue balls show the positions of Fe and N atoms, respectively. a Fe3N2 at 50 GPa. The

structure is built of quadrilateral face-capped trigonal prisms NFe7, which are interconnected by sharing trigonal faces and edges. b FeN at 50 GPa with

NiAs structure type. c FeN2 at 58 GPa; Shown are the FeN6 octahedra, which are connected into infinite chains through common edges and aligned along

the c-axis. These chains are interconnected through common vertices. Additional linkage between FeN6 octahedra is provided via N–N bonds. d FeN4 at

135 GPa. In the structure of FeN4, each Fe atom is a member of two non-planar five-member Fe[N4] metallacycles, which are almost parallel to the (1-10)

lattice plane. Nitrogen atoms form infinite zigzag chains, running along the c-direction

Table 1 Summary of the experimental points at which laser-heating was performed

Pressure before heating (GPa) Pressure after heating Experiment’s number Temperature (K) Phases

45.2 49.6 1 1900 ± 200 Fe3N2, FeN
55.0 58.5 1 2100 ± 200 FeN2, FeN
65.1 69.6 1 2200 ± 200 FeN2, FeN
54.0 60 2 >2000 FeN2, FeN
104a 106.0 2 >2000 FeN4,FeN
130.0a 135.0 2 >2000 FeN4, FeN
105a 106.8 3 >2000 FeN4, FeN

aPressure estimated by diamond Raman peak80
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has an oxidation state+ 3. The presence of [N2]3·− radical ions is
not very likely (however, not excluded)56, and the electron count
in FeN2 can be similar to that suggested for LaN2:51 Fe3+ +
[N=N]2−+ e−, where the electron enters the conduction band.

Synthesis and crystal structure of FeN4. The synthesis of FeN4

was first performed at ~106 GPa by laser-heating in nitrogen
medium of the mixture of FeN and FeN2, obtained before in the
reaction between Fe and N2 at 60 GPa (Experiment #2 in
Table 1). The synthesis of FeN4 was reproduced in the Experi-
ment #3 by heating iron foil in nitrogen medium at 106 GPa. In
the following discussion, we will always refer to the best-quality
single-crystal XRD dataset, which was obtained at ~135 GPa. The
indexing of the diffraction pattern resulted in the triclinic unit cell
with the parameters a= 2.5089(4), b= 3.5245(13), c= 3.5409(5)
Å, α= 105.08(2), β= 110.260(14), γ= 92.03(2)° (see Table 2,
Supplementary Figs. 1–5 and Supplementary Data 4 for details).
The crystal structure of the new phase was solved and refined
resulting in the composition FeN4 (Figs. 1d, 3). In the structure of
FeN4, six nitrogen atoms coordinate each iron atom in the fol-
lowing way: each Fe atom is a member of two non-planar five-
member Fe[N4] metallacycles, which are almost parallel to the
(1-10) lattice plane (Fig. 3a, b). Two more nitrogen atoms com-
plete the distorted octahedral coordination of Fe (Fig. 3b). The
most intriguing feature of the crystal structure is displayed by
nitrogen atoms forming infinite zigzag chains, running along the
c-direction (Figs. 1d, 3).

The geometry of the polymeric nitrogen chains gives an insight
into the electron localization within the compound. The N1
atoms have only three neighboring atoms in planar triangular
geometry, whereas N2 atoms have tetrahedral coordination
(Fig. 3c). This directly suggests the sp2 hybridization of N1
atoms and sp3 hybridization of N2 atoms. Additionally, taking in
account the N1–N1, N1–N2 and N2–N2 bond distances, which at
135 GPa equal ∼1.29(5), 1.30(3), and 1.43(4) Å, respectively one
can classify the N1–N1 bonds as N=N double bonds, and the
N1–N2 and N2–N2 bonds as the single bonds. Moreover,
theoretical analysis (see below) also shows that double N1–N1
bonds have a significantly higher electron density between atoms
than single N1–N2 and N2–N2 bonds (Fig. 3d). Therefore, the
nitrogen chains in FeN4 can be considered as catena-poly[tetraz-
1-ene-1,4-diyl] anions (Fig. 3e). The tetrazene unit N2�

4 , thus,
serves as a dianionic ligand (Fig. 3e, f), which agrees with the
description of Fe atoms in the formal oxidation state +2. The
oxidation state +2 is also suggested by the results of Mössbauer
spectroscopy (Supplementary Fig. 6). The coordination scheme
of Fe atom in FeN4 perfectly matches the 18-electron rule
(6 electrons of Fe2+ plus 12 electrons from ligands). An attempt
to study FeN4 using Raman spectroscopy was not successful due
to the strong fluorescence background (Supplementary Fig. 7).

To gain a deeper insight into the bonding features of FeN4, we
have performed electronic structure calculations (see Methods).
The Bader charge analysis, which shows the charge transfer of
0.37e to N2 atoms and 0.25e to N1 atoms, is in agreement with
the proposed above bonding scheme. For understanding the
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Fig. 2 Pressure dependence of the unit cell volume of ironnitrogen compounds. a FeN, b FeN2, and c FeN4. Solid curves show the fit of the

Birch–Murnaghan equation of state to the experimental data. V0(FeN)= 34.03(1) Å3, K0(FeN)= 185(14) GPa, K0’(FeN)= 6.3(4); V0(FeN2)= 47.42 Å3,
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dynamical stability of FeN4, the phonon dispersion relations were
calculated at different volumes (Fig. 4). The vibrational
frequencies throughout the Brillouin zone are all real, in
agreement with the dynamic stability of the phase in the studied
pressure range.

We were able to decompress the sample containing FeN4

obtained in the Experiment #3 down to 22.7(2) GPa (Supple-
mentary Fig. 5); however, the crystal quality significantly
decreased and it was not possible to collect a single-crystal
diffraction dataset suitable for the reliable indexing and structure

Table 2 Crystallographic data for new iron Fe–N compounds synthesized in the present study at indicated pressures (full

crystallographic information is provided in Supplementary Data 1–4)

Fe3N2 FeN FeN2 FeN4

Experiment

Pressure (GPa) 49.6 49.6 58.5 135
Space group Pnma P63/mmc Pnnm P-1
a (Å) 5.4227(6) 2.6299(11) 4.4308(19) 2.5089(4)
b (Å) 2.6153(3) 2.6299(11) 3.7218(11) 3.5245(13)
c (Å) 10.590(11) 4.819(7) 2.4213(18) 3.5409(5)
α(°) 90 90 90 105.08(2)
β(°) 90 90 90 110.260(14)
γ(°) 90 120 90 92.03(2)
V (Å3) 150.19(16) 28.86(4) 39.93(4) 28.088(13)
Z 4 2 2 1
Fractional atomic coordinates
(x/a, y/b, z/c)

Fe1 (0.4808; 0.25; 0.5996)
Fe2 (0.1282; 0.25; 0.42774)
Fe3 (0.6881; −0.25; 0.7738)
N1 (0.7413; −0.25; 0.9549)
N2 (0.4280; −0.75; 0.7865)

Fe (0, 0, 0)
N (1/3; −1/3; ¼)

Fe (0; 0; 0)
N (−0.4025; 0.1335;
0)

Fe (0.5, 0, 0)
N1 (0.160, −0.346, −0.487)
N2 (0.060, −0.303, −0.859)

Theory

Pressure (GPa) 45.1 55.7 134.5
a (Å) 2.62 4.45 2.49
b (Å) 2.62 3.72 3.55
c (Å) 4.86 2.41 3.54
α(°) 90 90 105.1
β(°) 90 90 110.4
γ(°) 120 90 92.1
V (Å3) 28.86 39.93 28.1
Fractional atomic coordinates
(x/a, y/b, z/c)

Fe (0, 0, 0)
N (1/3; −1/3; ¼)

Fe (0; 0; 0)
N (−0.4033; 0.1314; 0)

Fe (0.5, 0, 0)
N1 (0.149, −0.344, −0.491)
N2 (0.066, −0.312, 0.138)
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refinement below 94.5 GPa. The pressure dependence of the unit
volume data (Fig. 2c) can be described with the second-order
Birch–Murnaghan equation of state with the following para-
meters: K94.5= 603(22) GPa, V94.5= 29.94(4) Å3, where K94.5 and
V94.5 are the bulk modulus and the unit cell volume at 94.5 GPa.
The bulk modulus of FeN4 at 94.5 GPa is slightly smaller than
that of FeN (K94.5(FeN)= 679 GPa). Although the attempt to
recover FeN4 was unsuccessful, according to our calculations
the compound should be dynamically stable even at ambient
pressure (Fig. 4). Therefore, there is still a chance that FeN4

stabilization can be potentially achieved through low-temperature
decompression.

Examples of transition metal complexes with tetraazadienes58,
tetraaz-2-enes59 or hexazene60,61 ligands are known, and the
longest cycle-containing chain has 11 N atoms in 1,1′-(triaz-1-
ene-1,3-diyl)bis(1H-tetrazol-5-amine)62. However, we are una-
ware about the existence of linear nitrogen chains containing
more than six nitrogen atoms, which have been reported
hitherto. Interestingly, polytetrazene-type nitrogen chains were
predicted to exist in the high-pressure phase with N2H
stoichiometry, in BeN4 and in RuN4

17,28,63. In these chains, the
ratio of the number of single to double N–N bonds (3:1) is the
same as that we found in FeN4, however the structures are
different. To the best of our knowledge, FeN4 is the first
experimentally confirmed nitrogen compound with polymeric
nitrogen chains.

To summarize, in the present work we synthesized a number of
compounds in ironnitrogen system, solved and refined their
crystal structures, and analyzed their chemical bonding. Our
results contribute to both fundamental and applied science
starting from fundamental understanding of nitrogen chemistry
to the design of novel HEDMs. The first characterized poly-
nitrogen compound is an important milestone for further
theoretical and experimental studies. It is reasonable to suggest
that compounds like FeN4 may exist in other metal-nitrogen
systems and can be metastable down to ambient pressures. Such
stabilizaiton can be potentially achieved through low-temperature
decompression or through doping. The high synthetic pressure
for FeN4 makes it hardly useful for any practical application as
a HEDM at present, although its estimated volumetric energy
density is 13–15.1 kJ cm−3 (see Supplementary Methods for
details), which is higher than that of TNT (7.2–8.0 kJ cm−3),
1,3,5-trinitroperhydro-1,3,5-triazine (RDX) (10.1 kJ cm−3), and
pentaerythritol tetranitrate (PETN) (10.6 kJ cm−3)25. However,
the information about nitrogen bonding in this compound is

important for further theoretical and experimental studies in the
field.

Methods
Experiment #1. Three pieces of iron were loaded into a BX90 diamond anvil cell
equipped with 250 µm Boehler–Almax diamonds. The cell was loaded with N2 as a
pressure transmitting medium using the gas-loading system installed at the
Bayerisches Geoinstitut. Ruby sphere was placed along with the iron pieces for
pressure determination. Fe pieces were laser-heated in the DAC at 50, 60, and
70 GPa up to 1900, 2100, and 2200 K, respectively (Table 1) using the portable
laser-heating system at the beamline P02.2 at PETRA III64. We should note here
that generally, pressure in the sample chamber increases after laser heating.
Therefore, we provide pressures before and after heating in the Table 1.

Experiments #2 and #3. A piece of iron was placed inside a 60 µm hole in a Re
gasket, preindented to the thickness of 22 µm. The sample chamber was loaded
with nitrogen, which served as a pressure-transmitting medium. We used BX90
diamond anvil cells equipped with Boehler–Almax type diamonds (culet diameter
of 120 µm). In the Expreiment#2 the laser-heating was done at 60, 106, and
135 GPa. In the Experiment #3, the sample was first heated at 106.8 GPa. We have
used the double-sided laser-heating system of the beamline ID18 of ESRF64. In the
experiment #2, we have used 57Fe as a starting material.

X-ray diffraction. The samples were studied by means of single-crystal X-ray
diffraction on the synchrotron beamlines P02.2 at DESY, Hamburg, Germany (λ=
0.2966 Å, Perkin Elmer XRD1621 flat panel detector); 13IDD at the advanced
photon source (APS), Argonne, USA (MAR165 CCD detector, λ= 0.2952 Å) and
ID27 at ESRF (λ= 0.3738 Å, Perkin Elmer XRD1621 flat panel detector). At each
pressure step, we collected the X-ray diffraction images upon continuous rotation
of the cell from –20° to+ 20° ω. At selected pressure points, we collected the data
with a narrow 0.5° scanning step in the range from −38° to +38° ω.

In the experiment #1 we determined pressure using the fluorescence line R1 of
ruby. In the experiments #2 and #3 we determined pressures using the equations of
state of hcp-Fe and/or Re.

Whereas the starting material, a polycrystalline iron foil, gives characteristic
Debye-Scherer rings in the diffraction pattern, after the laser-heating in solidified
nitrogen, we clearly observed well defined, sharp diffraction spots from multiple
grains of new high-pressure phases. Using the EwaldPro reciprocal space viewing
tool for the CrysAlisPro program65, we were able to identify the diffraction spots
belonging to certain domains, find their orientation matrices and refine the unit
cell parameters. The structures of the new phases were solved against single-crystal
diffraction data. The general procedure of the analysis of a multigrain diffraction
dataset is described in ref. 66. We provide several raw diffraction images with grain
indexing examples in the Supplementary Figs. 1–4 and Supplementary Note 1.
Further discussion regarding indexing solutions is given in the Peer Review file.

Diffraction data analysis (peak search, unit cell finding, data integration, frame
scaling etc.) was performed with CrysAlisPro software. The crystal structures were
solved using the computer program SHELXT that employs a dual-space algorithm
for the solution of a phase problem67. General output of the structure solution
program was a position of heavy iron atom, while nitrogen atoms were located
based on the analysis of residual electron density maps. Crystal structures were
refined against single-crystal diffraction data using the computer program
JANA200668 (see Supplementary Data 1–9 for structural details). The obtained
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models represent the authors’ optimum refinement of the available X-ray data. The
full diffraction data are made available online (see Data availability section). Their
complexity for processing is obvious due to the reduced data to parameter ratio,
which is characteristic for all single-crystal diffraction data sets obtained in a DAC,
and due to the presence of diffraction from numerous domains. If improvements in
data processing become available, one can use the present data for reevaluation.

Calculations. The ab-initio calculations were performed using the supercell tech-
nique and all electron projector-augmented-wave (PAW) method69 as imple-
mented in the VASP code70–72. The simulations were carried out using 4-atoms
(B8-FeN), 5-atoms (FeN4) and 6-atoms periodic (FeN2) cells. The integration over
the Brillouin zone is performed using the Gamma scheme with 29 × 29 × 29 k-
point grids for B8-FeN and 18 × 18 × 18 k-point grids for FeN2 and FeN4 struc-
tures. Gaussian smearing method was chosen with a smearing width of 0.05 eV.
The energy cutoff for the plane waves included in the expansion of wave functions
was set to 500 eV. The convergence criterion for the electronic subsystem was
chosen to be equal to 10−4 eV for two subsequent iterations, and the ionic
relaxation loop within the conjugated gradient method was stopped when forces
became of the order of 10-3 eV/Å.

The exchange-correlation energy was described using the Perdew–Wang-91
GGA functional73 augmented by including Hubbard-U corrections within the
DFT+U method following the Dudarev’s approach74. The chosen parameters
U= 4.0 eV and J= 1 eV for the Fe d states provide good agreement with the
experimental structural characteristics for all simulated systems FeN, FeN2, and
FeN4 structures (Fig. 2, Table 2). We found that FeN is magnetic and used
ferromagnetic configuration in our simulations. FeN2, and FeN4 were found to be
non-magnetic.

Bader charge analysis75 derived from topological consideration on the charge
distribution was performed using the code developed by Henkelman and
colleagues76 for 400 × 400 × 400 NG(X,Y,Z)F mesh. The phonon calculations were
carried out at T= 0 K within quasi-harmonic approximation. We used a finite
distortions approach implemented into the PHONOPY program77 combined with
Quantum Espresso (QE)78 simulations. In the QE calculations, we used plane
waves with kinetic energy up to 50 Ry for the electron wave functions while the
augmented charges were described using 500 Ry energy cut-off. With these
optimized parameters, we reproduced the results of static calculations obtained by
VASP. Converged phonon dispersions were achieved using a (4 × 4 × 4) supercell
with 320 atoms and (4 × 4 × 4) Monkhorst-Pack79 sampling of the Brillouin zone.

Data availability. The details of the crystal structure investigations may be
obtained from FIZ Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany
(fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de) on quoting the
deposition numbers CSD-434274—434277. Single-crystal X-ray diffraction dataset
for FeN4 at 135 GPa has been deposited to Figshare (https://figshare.com/) with the
accession link https://doi.org/10.6084/m9.figshare.6471092.v1. The data that sup-
port the findings of this study are available from the corresponding author upon
reasonable request.
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