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Abstract: Affective computing through physiological signals monitoring is currently a hot topic in
the scientific literature, but also in the industry. Many wearable devices are being developed for
health or wellness tracking during daily life or sports activity. Likewise, other applications are being
proposed for the early detection of risk situations involving sexual or violent aggressions, with the
identification of panic or fear emotions. The use of other sources of information, such as video or audio
signals will make multimodal affective computing a more powerful tool for emotion classification,
improving the detection capability. There are other biological elements that have not been explored
yet and that could provide additional information to better disentangle negative emotions, such
as fear or panic. Catecholamines are hormones produced by the adrenal glands, two small glands
located above the kidneys. These hormones are released in the body in response to physical or
emotional stress. The main catecholamines, namely adrenaline, noradrenaline and dopamine have
been analysed, as well as four physiological variables: skin temperature, electrodermal activity, blood
volume pulse (to calculate heart rate activity. i.e., beats per minute) and respiration rate. This work
presents a comparison of the results provided by the analysis of physiological signals in reference to
catecholamine, from an experimental task with 21 female volunteers receiving audiovisual stimuli
through an immersive environment in virtual reality. Artificial intelligence algorithms for fear
classification with physiological variables and plasma catecholamine concentration levels have been
proposed and tested. The best results have been obtained with the features extracted from the
physiological variables. Adding catecholamine’s maximum variation during the five minutes after
the video clip visualization, as well as adding the five measurements (1-min interval) of these levels,
are not providing better performance in the classifiers.

Keywords: multimodal affective computing; catecholamines; emotion classification; wearable devices

1. Introduction

Affective computing, the study, analysis, and interpretation of human emotional
reactions by means of artificial intelligence [1], has become a hot topic in the scientific
community. Possible applications include accurate neuromarketing techniques, more
efficient human-machine interfaces and new wellness and/or healthcare practices, with
innovative therapies for phobias and mental illnesses [2–6]. Recently, the prevention of
violent attacks on vulnerable people by means of the early detection of fear or panic
emotional reactions is under research in this area [7].
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In affective computing, many research areas merge to provide efficient and accurate
systems capable of classifying the emotion felt by a person. Apart from psychology,
neuroscience and physiology, other disciplines are required to automate the emotion
detection process as well as to allow in-depth data analysis and useful feedback.

Human emotions are the consequence of biochemical reactions in the brain. External
stimuli are processed in certain brain regions such as the amygdala, insula and prefrontal
cortex [8–10]. These areas activate the autonomic nervous system, which triggers physi-
ological changes as an emotional response. From the global emotional response, we can
distinguish conscious and unconscious processes. The cognitive component in the emotion
obtains a high degree of consciousness and can feedback the physiological reactions chain.

The measuring and processing of these physiological reactions allow automatizing the
emotion detection and classification process, known as affective computing. If this detection
involves several sources of information, it is known as multimodal affective computing.
Validity and corroboration issues have made physiological variables the most attractive to
researchers. Multimodal recordings commonly used are Galvanic Skin Response (GSR),
ElectroMyoGraphy (EMG) (frequency of muscle tension), Heart Rate (HR), Respiration
Rate (RR), ElectroEncephaloGraphy (EEG), functional Magnetic Resonance Imaging (fMRI),
and Positron Emission Tomography (PET) [11], even though behavioural measurements
such as facial expressions, voice, movement, and subjective self-reporting can also be useful
for experimental purposes.

In this sense, some authors have related non-external physiological variables with
emotional reactions [12]. For example, the levels of neurotransmitters in the brain or
circulating catecholamines vary depending on a person’s emotional state, affecting activity
of physiological variables. Although their measures are very invasive, the relation between
physiological variable changes and the concentration of these molecules makes them
interesting in some applications of affective computing. For example, in risk situations, this
early detection of fear or panic emotions would trigger a protection response for the person
in danger. To date, there is no study using catecholamine concentration in blood plasma for
emotion detection that includes an experimental sample in humans, just theoretical studies.

The concentration of catecholamines is usually measured in urine to diagnose or
rule out the presence of certain tumours such as pheochromocytoma or neuroblastoma
because these tumours raise the levels significantly. However, in basal conditions, the
levels are low and can be detected in blood by high-performance liquid chromatography
(HLPC) techniques.

Continuous and autonomous measurement of these molecules is not available cur-
rently, but if they prove useful, wearable analysis devices could be designed and developed,
similar to insulin micropumps [13].

In this work, a methodology and protocol are proposed to connect the elicitation
of human emotions with the variation of plasma catecholamine concentration. For this
first test, fear is chosen as the target emotion for two main reasons. On the one hand,
the relationship between neurotransmitters and stress or fear is well documented in the
literature, as they are responsible for the activation of the body’s fight or flight mechanisms.
On the other hand, the protection of women against gender-based violence has been
chosen as a target application. For this purpose, the objective is to be able to detect fear
automatically so that an alarm is triggered to protect women in danger. Although there is
already work in this area, so far only physiological variables have been used. In order to
validate if the inclusion of catecholamine plasma concentration improves the results, an
immersive virtual reality environment has been arranged to provoke realistic situations
where the volunteer could have intense emotional reactions. Continuous monitoring of
physiological variables, with a research toolkit system (for the sake of comparison with
other affective computing research works), is connected with the virtual environment,
as well as to an interface for the classification of the emotions elicited. The detection of
emotions in humans through the plasma concentration of catecholamines has been analysed
and compared with externally measured physiological variables, such as SKT, HR and
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EDA. The main obtained results are very positive with regard to physiological variables
while they are not conclusive for the levels of catecholamine concentration in blood plasma.

The main contributions of this work can be summarized as:

• The design of a methodology for plasma catecholamine concentration measurement
along with physiological variables under audiovisual stimuli for automatic fear detection.

• An experimental test involving 21 volunteers where dopamine, adrenaline and nora-
drenaline are measured along with blood volume pulse, skin temperature, galvanic
skin response, respiration rate, and electromyography.

• An analysis of the data collected, including both physiological variables and cate-
cholamine concentration separately and also combined.

• An implementation and comparison of three artificial intelligence methods for fear
detection using the measurements collected in the experimental test in order to validate
the convenience of including plasma catecholamine concentration in fear detection
systems.

The rest of this paper is organized as follows: Section 2 provides a review of the state of
the art regarding emotion theory, automatic emotion detection, and physiological response
related to catecholamines and emotion. As result, we can formulate the hypothesis of this
work. Section 3 describes the methodology used in this work for the experimental setup,
including the sample description, the design of the study, the stimuli used, the labelling
method, and the collected measurements. Section 4 presents the experimental results
(for labelling, physiological variables and catecholamine concentration). Additionally, we
present an artificial intelligence algorithm analysis in order to validate the hypothesis
formulated previously. The discussion is presented in Section 5, and finally, Section 6
concludes the work.

2. State of the Art: Emotions, Physiological Response and Affective Computing
2.1. Emotions

Emotions are fundamental for human beings since they play an important role in
individual and social behaviour and mental processes, such as decision making, percep-
tion, memory, attention, etc. [14]. However, they have been partially ignored in the past,
generally due to the difficulties they intrigue for experimental methodology.

The identification and classification of emotions for improving people’s lives have
gained interest in recent years as several fields can take advantage of the results in this
area [15–17]. such as mental health, human-machine interfaces, learning and teaching
methods, video games or neuromarketing. In psychology, emotions are described as “psy-
chological states that include three components: subjective personal experience, associated
physiological response, and behaviours” [18,19].

Within the literature and the state of the art in emotion identification and classification,
there are two trends: (1) the classification of emotions as discrete elements, and (2) their
inclusion in a continuous vector space. Within the first option, different classifications
have been proposed. The first classification was presented by Ekman [20] using six ba-
sic emotions (happiness, sadness, disgust, fear, surprise, and anger). Since then, other
classifications have been presented, adding emotions, or changing some of them [21,22].
Within the second option, we find the representation in the affective space. This consists
of the multidimensional representation (usually within two or three axes) of the emotion
so that the affective space becomes a continuous space in which every emotional state is
represented by two or three coordinates. The most lately used space [23] proposes three
dimensions (valence, arousal, and dominance). In this space, valence-pleasure (P) indicates
positive or negative emotions; arousal (A) ranges from calm to high excitement levels; and
finally, dominance (D) denotes the ability to control the emotion [24]. Several studies [25]
of emotion classification use only a 2-dimensional space (PA space) using the valence and
arousal axes previously described. That generates four quadrants in the space for locating
emotions (Q1, Q2, Q3, and Q4). Some authors [26,27] have tried to place the discrete
emotions in the quadrants according to the valence and arousal presumably experienced
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by each of them (see Figure 1a). Adding the third dimension (D) allows for differentiating
discrete emotions sharing similar values in the PA space, such as fear and anger in Q2.
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Both emotion classification systems present difficulties when applied to the auto-
matic identification of emotions and their experimental validation. On the one hand, the
use of discrete emotions is considerably biased by the sociocultural environment of the
person [28], especially the background and the country of origin. In addition, there is
reasonable dependence on the correct understanding of the description of the emotion or its
nuances when identifying it [29]. In an attempt to address this, several emotions have been
added to the list making it longer, but this also leads to problems for automatic emotion
classification methods (as they add subtle differences in the responses). On the other hand,
PAD affective space systems are often also related to the difficulty in understanding the
three classification axes.

2.2. Emotion Detection

Affective computing has emerged to shed light on the gap where technology and
emotions converge. One of the goals of this field is trying to model emotional response to a
wide variety of stimuli by evaluating emotional states. These states become measurable
regarding subjective self-reports, physiological variables and behaviour.

The main elements involved in affective computing systems are the emotions the-
ory [30] which connects human affective reactions to external stimuli, attending to intrinsic
and extrinsic factors, with externally measurable physical and physiological changes; col-
lecting data with smart sensors, first through emotion elicitation experiments in the lab and
secondly through live in-the-wild monitoring; and the generation, training and integration
of artificial intelligence algorithms in autonomous systems [3].

In affective computing, those changes are objectively measured in the person to
determine the emotion felt. External (behavioural) aspects, such as facial expression,
voice, movement, etc., are voluntary and biased through culture and society, making them
difficult to apply to user-independent emotion detection. On the other hand, physiological
changes (involuntary reactions) with an external effect (it is possible to measure them
in a non-invasive way), have been preferred [31]. Typical variables used in affective
computing include galvanic skin response, which increases linearly with a person’s level
of arousal [32,33] electromyography (frequency of muscle tension), which is correlated
with emotions of negative valence [34]; heart rate, which increases with negative valence
emotions like fear [35,36]; respiration rate(how deep and fast the breath is), which becomes
irregular with more aroused emotions like anger [37]; electroencephalography [38,39] and
functional magnetic resonance imaging [40].

All these variables differ in many aspects, some of them are ease of measurement,
which is related to how internal or external the target signal is; consciousness, because some
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variables can be consciously controlled and altered by the individual; and invasiveness,
which means that some variables can be measured with low/high invasiveness for the
individual. Many affective computing systems combine several variables in order to
increase the performance of the application integrating solutions known as multimodal
affective computing [41–43]. This allows combining several features from different sources
making the automatic detection usually more complex but also with higher accuracy.

Intelligent algorithms should be trained with these measured physiological variables
together with subjective perceived emotion during stimuli application. Among the different
available options, we can feature according to the literature [44] those used in constrained
devices as: Support Vector Machine (SVM) [45], K-Nearest Neighbours (KNN) [46] and
Ensemble Methods (ENS) [47]. For training and research purposes, there are different
databases compiling all these data for helping in the generation of affective computing
systems [48,49].

The measurement of these physiological variables with wearable devices during daily
life is associated with a high amount of noise due to interferences and users’ movements [50].
There are several works proposing solutions to eliminate or reduce this noise, through
filters, algorithms, and even, fuzzy logic [51], but these techniques are expensive in terms
of power consumption, the time required, and computation effort.

In order to try to overcome this problem, other variables could be tested in order to
validate its inclusion pertinence. Among them, catecholamines’ presence in blood plasma,
saliva or sweat could be an interesting option, even if its measurement is more invasive, as
they could be more robust against artifacts.

2.3. Chatecolamines in Emotion Detection

Since the first half of the 20th century, explanatory theories emerged to explain the
physiological changes caused by stressful stimuli that altered the body’s homeostasis.
These theories somehow evolved from the ”stress non-specificity” approach to the ”stress
specificity” approach [52]. This means that the first theories of stress regarded this response
relatively independent of the type of threat. Whether it was exposure to cold, haemorrhage
or distressing emotional encounters, the stress response would be essentially the same [53].
However, recent data and observations indicate the probable existence of a variety of
stressors with different targets and different effects on homeostasis [54]. These theories
tend to explain the stress response by considering that it has a primitive type of specificity,
with differential responses of the sympathetic nervous and adrenomedullary hormonal
systems, depending on the type and intensity of the stressor perceived by the organism and
interpreted in the light of experience [55]. The activation of the adrenomedullary hormonal
system has been linked to glucoprivation and emotional distress such as fear. There is some
evidence to confirm an accumulated association between noradrenaline and active escape,
avoidance or attack, and a link between adrenaline and passive, immobile fear [56].

Catecholamines are hormones made in nerve tissue, the brain, and the adrenal glands.
If they are found in the synapses of the nervous system, they are classified as neurotrans-
mitters, and if they are found in the bloodstream, they are classified as hormones. The
adrenal glands produce large amounts of catecholamines in response to acute stress or
elevated arousal [57]. The main catecholamines are adrenaline (epinephrine), noradrenaline
(norepinephrine) and dopamine. Catecholamines help the body to respond to stress or
fear and prepare the body for “fight or flight” reactions [58]. This reaction to states of
threat or high arousal results in a general discharge of catecholamines from three peripheral
systems: the sympathetic branch of the autonomic nervous system, the adrenomedullary
hormonal system and the autocrine/paracrine dopaminergic system. The activation of
these systems favours the secretion of catecholamines into the bloodstream, where they
trigger a cascade of physiological changes in peripheral tissues after binding to their recep-
tors. Catecholamines increase heart rate, blood pressure, respiratory rate, muscle strength,
and alertness. They also reduce the amount of blood going to the skin and intestines and
increase blood going to major organs, such as the brain, heart, and kidneys [59].
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Theoretical studies such as [12] propose that there is a direct relationship between
neurotransmitter levels (dopamine, noradrenaline, and serotonin) and emotions. In this
model, for example, fear is related to a combination of a low level of serotonin, a low level
of noradrenaline and a high level of dopamine, (see Figure 2).
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Loveheim’s study describes a theoretical framework that, if measurable, could improve
multimodal affective computing systems for the automatic identification and classification
of emotions. In fact, the study proposes to continue this research with a further experimen-
tal test that allows validating his proposal. Walker also proposes a theoretical framework
that includes cortisol (a hormone produced in the adrenal gland) as an indicator related
to fear and stress [60]. Again, this work suggested validating this framework with experi-
mental tests. There are no results for catecholamines and human emotions experiments,
although some previous tests have been performed in cats [61]. Directly measuring the
presence of neurotransmitters is very invasive and nearly impossible on a day-to-day
basis, so measuring catecholamines’ presence in blood plasma in an experimental setup
in order to confirm whether there is a relationship between this presence associated with
different emotional states is a good starting point for future developments in affective
computing research.

2.4. Hypotheses

Once the state of the art is reviewed, it can be stated that there is a lack of experimental
studies that validate the relationship and convenience of using the concentration of plasma
catecholamine in affective computing. So, in this work, the authors propose that:

• The emotional states of fear and no-fear can be discriminated through the plasma
catecholamine concentration levels

• Using catecholamine concentration level improves the results for fear detection pro-
vided by the use of solely physiological variables.

If this hypothesis is proved correct, an automatic system for early detection of emo-
tional states of fear can be implemented, reducing the effect of interferences and noise in
the measured signals. Better protection for people in dangerous situations will be provided
through the activation of early protective responses.

3. Material and Methods

In this section, we present the proposed methodology for data collection of both
physiological variables and catecholamines in an immersive environment for emotion
elicitation. Since the design of this experiment involves the extraction of blood samples
for the analysis of catecholamines in blood plasma, and the number of samples cannot be
high, fear has been chosen as the target emotion, since, as discussed in Section 2, it is highly
related to the release of catecholamines.
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In addition, some considerations have to be taken into account. As stated before, one
of the objectives of the authors is to apply multimodal affective computing to the protection
of women victims of gender-based violence. For this reason, the sample of this study is
entirely composed of women, and the proposed final application also influences the choice
of one of the audio-visual stimuli, which is directly related to gender violence.

3.1. Sample of the Study

The study population consisted of 21 volunteers, all of them apparently healthy
women. All of them were Spanish women, and healthcare workers. Study subjects were
not allowed to perform strenuous exercise, smoke, eat some foods, or take drugs or some
medicines (Table 1) at least 24 h before analysis, to avoid interference with catecholamines
measurement.

Table 1. Foods, drinks, and drugs can interfere with the analysis of catecholamines.

Food Drinks Drugs Medicines

Cocoa Coffee Amphetamine Paracetamol

Citric Fruits Tea Caffeine Phenoxybenzamine, phenothiazine

Walnuts Chocolate Nicotinic Acid Levodopa

Beans Beer Cocaine Monoamine oxidase inhibitors

Avocado, Banana Red wine Reserpine

Vanilla Pseudoephedrine

Main data of female volunteers are registered in Table 2. The mean age of the volun-
teers is 36. Only 5 of them had one child, and 13 volunteers were single. With regard to
Body Mass Index (BMI), only 4 volunteers presented values between 25 and 30, overweight
indicative. Finally, 4 volunteers are in their menopause. Some volunteers (6) were taking
treatments for chronic illnesses (hypertension, chronic pain, heart failure, ulcerative colitis,
anaemia, and diabetes).

Table 2. Characteristics of women volunteers.

Parameter Mean ± Std Deviation (SD)/Nb.

Age (year) 36.19 ± 13.43

Weight (kg) 61.20 ± 8.68

Height (cm) 164.29 ± 5.09

BMI (kg/m2) 22.75 ± 3.56

Food, drinks, drugs Citric fruits (3), coffee (11), tea (2) and alcohol (1)

Medicines reported Analgesic (5), chronic illness treatment (3), contraceptives (1),
and vitamin (1)

Stress situation 5

Intense exercise 2

The study conforms to the ethical principles outlined in the Declaration of Helsinki.
Design of the study was approved by the Research Ethics Committee (REC) of Principe de
Asturias Hospital with protocol number: CLO (LIB 10/2019). All participants received a
detailed description of the purpose and design of the study and signed informed consent
approved by the REC.

3.2. Design of the Study

The study consisted in measuring the physiological variables of a set of volunteers
while they were watching a set of 4 emotion-related videos in an immersive virtual reality
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environment. Additionally, several blood extractions were performed after the visual-
ization of three of these videos to analyse the plasma catecholamine levels (dopamine,
adrenaline, and nor-adrenaline). Besides, after every video watching, the volunteer labelled
the emotions elicited during the visualization.

Each participant fasted at least twelve hours before the experiment. Previously to the
experiment, the participant filled in a form providing information such as personality traits,
sex, age group, recent physical activity, or medication (which could alter the participant’s
physiological response), self-identified emotional loads, and mood bias (fears, phobias, or
traumatic experiences), summarized in Table 2. This information could be relevant and
informative to the emotional reactions of the participants during the experiment, affecting
their cognition, appraisal, and attention.

The experiment was designed to last globally 2 h. In Figure 3, the schedule of the
experiment is shown. After the interview, filling in the questionnaire, and signing the
informed consent, the test schedule and protocol were explained to every volunteer and
some demo was performed in relation to the virtual reality environment. Then, the sensors
for measuring the physiological variables were located. The BioSignalPlux® research
toolkit system was used to register the physiological variables evolution throughout the
study, such as forearm skin temperature, galvanic skin response, finger blood volume
pulse (BVP), trapezoidal electromyogram, and chest respiration. The system is placed
in different locations in the volunteer’s body (arm, hand, chest, and finger), (Figure 4).
These physiological signals were selected because they could be easily implemented in an
inconspicuous and comfortable wearable device, avoiding any disadvantage to the user.
There are smartwatches that already integrate BVP, GSR, and SKT sensors. Respiration and
EMG could be integrated into a patch or band. This characteristic is mandatory for this
type of application.
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Figure 4. Electrodes and sensors position for experiment.

Once explained how to handle the equipment to label each video, the nurse proceeded
to put a via in the antecubital vein to extract blood samples at different time points of the
study, at the beginning (basal point) and after each video (5 samples). Each subject watched
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four unexpected videos related to different emotions that had to be labelled according to
what she was feeling at that moment. Just after finishing each video a blood sample was
taken. After videos 2, 3 and 4, five samples were collected, separated 1 min each, to monitor
the changes in catecholamine levels, (Figure 5).
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3.3. Audiovisual Stimulus

Every subject watched four videos, two of them related to the emotion of fear, one
related to calm and the other one related to joy. The schedule is Calm Fear Joy Fear. The
order of fear-related videos is randomly set for each volunteer.

The video clips used for the experiment were selected from the UC3M4Safety Database
of audiovisual stimuli aimed to elicit different emotional reactions through an immersive
virtual reality environment [62] (see Figure 6). Most of the clips were 360-degree scenes
providing more realistic experiences.
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The Oculus™ Rift S Headset was used under an application built on Unity™ that
connects the video clips projection to the physiological monitoring system and records the
emotion labelling. The whole data recording system was initiated by the virtual reality
environment that manages both video stimuli and sensor measurement. A TCP/IP port
connection was created at the beginning of the trial to communicate with the OpenSignals
application. The information storage was divided by scenes, meaning each file contained
the information collected between two timestamps (start and end of each screen) set by the
environment, thus enabling synchronization.

The four video clips were V1, V2, V3, and V4, aimed to provoke calm, fear (gender-
based violence related), joy and fear, respectively.

• V1: “Nature”—calm
• V2: “Refugiado”—fear related to gender-based violence
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• V3: “Don’t stop me now”—joy
• V4: “Inside chamber of horrors”—general fear

These videos obtained a very good unanimity in discrete emotion, higher in the case
of women for the fear and joy clips while the mean and standard deviations in the PAD
affective space dimension are also closer than expected for fear clips and for women,
(Table 3). In this table, the discrete emotion labelled for every video is shown for the
experiment detailed in [28], as well as the three dimensions of the PAD affective space. As
it could be seen, V2 has a very high unanimity in the discrete emotion of fear in women,
and also V4. Regarding PAD variables, the dispersion and the mean are complying with
the expected ranges.

Table 3. Emotional Labelling of the video clips used in the experiment [28].

Video
Clip

Target
Emotion Duration Unanimity (Discrete)

Men Women
PAD (Mean/SD)

Men Women

V1 Calm 60 s 78% 74,4%
V: 7.3 (1.7)
A: 2.1 (1.1)
D: 6.8 (1.8)

V: 7.7 (1.7)
A: 2.0 (1.7)
D: 6.6 (2.4)

V2
Fear

Gender-based
violence

93 s 62.1% 93.2%
V: 2.5 (1.8)
A: 7.1 (1.2)
D: 4.2 (1.7)

V: 1.7 (0.7)
A: 7.7 (0.9)
D: 3.4 (1.6)

V3 Joy 101 s 71.9% 83.3%
V: 7.3 (1.6)
A: 4.6 (2.1)
D: 6.6 (2.0)

V: 7.8 (1.3)
A: 4.5 (2.2)
D: 7.2 (1.9)

V4 Fear 119 s 75.0% 84.2%
V: 2.9 (1.7)
A: 6.6 (1.7)
D: 4.3 (2.3)

V: 2.7 (1.6)
A: 6.9 (1.7)
D: 4.3 (2.2)

3.4. Labelling

In order to try to overcome the problems related to labelling method mentioned above,
in this work, we have decided to include both a discrete classification of emotions (joy,
hope, surprise, attraction, tenderness, calm, tedium, contempt, sadness, fear, disgust, and
anger), plus an indicator of emotional intensity to be able to detect more nuances, and the
classification in the PAD affective space using the SAM methodology [63] (see Figure 7). As
depicted in Figure 3, the labelling is carried out just after the blood sample collection.
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3.5. Measurement of Dopamine, Adrenaline and Noradrenaline

We have carried out the determination of catecholamines in 3 mL of plasma by high-
performance liquid chromatography (HPLC). Blood samples were collected in pre-chilled
EDTA-treated tubes, in the morning after a 12-h overnight fast and resting period. As
several samples had to be taken every few times after watching each video, a via was
placed to assist sample collection from each point of the study. Plasmas were immediately
separated, to prevent catecholamines degradation, by centrifugation at 2000× g for 15 min
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at 4 ◦C. After that, the plasma was collected in clean and pre-chilled tubes and then stored
at −80 ◦C until measured. All plasmas were properly submitted to Reference Laboratory
S.A. (L’Hospitalet de Llobregat, Barcelona, Spain) to measure by HPLC the adrenaline,
noradrenaline and dopamine in each sample.

Measurement of serotonin requires serum instead of plasma, needing the extraction of
additional 5 mL blood samples from each volunteer. Apart from the extra cost, equivalent
to measuring the other three catecholamines, the large number of samples required has
prevented the authors from analysing the evolution of serotonin concentrations during
the study.

4. Experimental Results

The experiments were performed from December 2020 to January 2021, on 12 and
9 volunteers, respectively.

4.1. Emotion Labeling

As it was already mentioned, emotional labelling is a complex task, not only because
sometimes the target emotions are not the ones that are elicited to the volunteers, but also
because of the terminology.

For that reason, at first, it is important to analyse the distribution of the labels reported
during the experiment and study how well the clips have been eliciting their target emotions.

Taking into consideration discrete classification, (Figure 8), the clip targeting general
fear emotion (V4) is the one with the highest agreement among the volunteers, 95% of them
labelled it as fear. In the case of the clips of calm (V1) and joy (V3), a unique emotion does
not obtain a clear majority; however, if the quadrants of PAD space are analysed, these
videos show 76% and 90% of agreement, respectively.
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On the other hand, V2 shows the highest dispersion, although fear is the most used
label (48%), anger (19%), and sadness (19%) represent approximately 40% of the reported
classifications. This scattering is mainly due to the scenes presented in the clip. As we have
already found in previous works [28], gender-based violence videos elicit this variety of
emotions depending on the volunteer’s perspective (first person or external).

As regards continuous labelling, independently from the dispersion found in discrete
labelling, both fear clips are represented in their theoretical ideal position in the PAD space,
low-valence, low-dominance and high-arousal corner.

The same occurs with the calm and joy clips which are placed at spots of high-valence,
medium-high dominance, and medium-low arousal, with the joy clip being slightly above
in terms of arousal.

Looking at previous results, and to observe the intercorrelation between volunteers
when classifying all the clips, the correlation coefficient is computed considering all con-
tinuous reported labels. As result, a high positive relationship is obtained between all the
volunteers, except for V002 and V005, who barely correlate with the rest, Figure 9. These
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results allow us to check that the emotions elicited are not only close to the original target
(at least in the quadrant) but also inter-volunteer.
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4.2. Physiological Variables

From the physiological variables measured, the authors extracted features from the
forearm skin temperature, skin conductance (GSR), finger blood volume pulse (BVP), and
respiration. These variables have been measured throughout the whole experiment for
every volunteer. First, a global analysis of the whole group of volunteers was carried
out, for every video clip watched and, consequently, for every emotion. Later, temporal
evolution of every physiological variable was also performed to find patterns of evolution
during the visualization of the different emotion-related video clips.

4.2.1. Median and Quartile Distribution of Extracted Features per Video Clip

This analysis has been performed on the measurements from all the volunteers, con-
sidering the target labels of emotion, normalizing every volunteer with respect to their
own values.

Although Clip 2 (V2) and Clip 4 (V4) have the same fear label, V2 includes gender-
based violence and the emotional reactions are very different from the reactions on V4, as it
has been detailed in the previous section.

The extracted features from the physiological variables are Inter-Bit-Interval (IBI) and
Heart Rate Variability (HRV) extracted from BVP, which are very related to the degree of
arousal, and the phasic peaks of GSR and the mean of GSR, which have been identified with
the variables that work better for artificial intelligent algorithms in affective computing.
These features are computed in 60 s windows.

As it can be observed in the Figure 10, the median and quartile distribution (box
plots) IBI (a) and HRV (d) are the physiological features that better differentiate fear-related
emotions, while the mean (c) and peaks (b) of GSR are clearly different for fear emotions
(V4). Even, gender-based violence (V2) reactions are not distinguishable from calm or joy
in terms of median values.



Sensors 2022, 22, 4023 13 of 27

Sensors 2022, 22, x FOR PEER REVIEW 13 of 28 
 

 

respiration. These variables have been measured throughout the whole experiment for 
every volunteer. First, a global analysis of the whole group of volunteers was carried out, 
for every video clip watched and, consequently, for every emotion. Later, temporal evo-
lution of every physiological variable was also performed to find patterns of evolution 
during the visualization of the different emotion-related video clips. 

4.2.1. Median and Quartile Distribution of Extracted Features per Video Clip 
This analysis has been performed on the measurements from all the volunteers, con-

sidering the target labels of emotion, normalizing every volunteer with respect to their 
own values. 

Although Clip 2 (V2) and Clip 4 (V4) have the same fear label, V2 includes gender-
based violence and the emotional reactions are very different from the reactions on V4, as 
it has been detailed in the previous section. 

The extracted features from the physiological variables are Inter-Bit-Interval (IBI) and 
Heart Rate Variability (HRV) extracted from BVP, which are very related to the degree of 
arousal, and the phasic peaks of GSR and the mean of GSR, which have been identified 
with the variables that work better for artificial intelligent algorithms in affective compu-
ting. These features are computed in 60 s windows.  

As it can be observed in the Figure 10, the median and quartile distribution (box 
plots) IBI (a) and HRV (d) are the physiological features that better differentiate fear-re-
lated emotions, while the mean (c) and peaks (b) of GSR are clearly different for fear emo-
tions (V4). Even, gender-based violence (V2) reactions are not distinguishable from calm 
or joy in terms of median values.  

  
(a) (b) 

  
(c) (d) 

Figure 10. Normalized physiological features per video. (a) IBI. (b) number of phasic GSR peaks. (c) 
mean of GSR. (d) HRV rmssd. Figure 10. Normalized physiological features per video. (a) IBI. (b) number of phasic GSR peaks.

(c) mean of GSR. (d) HRV rmssd.

The statistical analysis ANOVA on the features extracted from the physiological
variables has provided some differences in the effect of different emotions elicited. In
Table 4, the p-values for the comparison between videos are shown. We have observed
significant values for the comparison between the effect of video clip V1 (calm) and video
clips V2 and V4, for the mean of GSR. Additionally, there are significant differences in the
effect of V1 and V4 for the IBI, and V3 and V4 for the number of peaks of GSR.

Table 4. p-values results from Kruskal-Wallis one-way ANOVA test for physiological data grouped
by video clip.

Group A Group B GSR_mean GSR_npeaks HRV IBI

V1 V2 0.22291 0.99970 0.63272 ** 0.00155

V1 V3 1 0.75762 0.97703 0.66276

V1 V4 ** 1.82 × 10−7 0.03096 0.07931 ** 0.00119

V2 V3 0.22578 0.70152 0.86245 0.06034

V2 V4 * 0.00163 0.04035 ** 0.00196 0.99989

V3 V4 ** 1.89 × 10−7 ** 0.00111 0.02655 0.05052
NOTE: Significant codes: ‘**’ 0.001 ‘*’ 0.01 ‘ ’ 0.05.

4.2.2. Temporal Evolution of Physiological Variables

Temporal evolution analysis provides information about the evolution of the emo-
tional state during the video. It should be noted that videos are labelled according to
the prevailing emotion, but the same video could elicit more than one emotion, and the
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intensity could be non-homogeneous. This is a limitation of this type of experiment where
continuous labelling is not possible. The result is dispersion/noise in the data, hindering
their classification and modelling. Figure 11 shows the mean evolution of the four features
used in the previous section.
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The four videos present a high variation of the selected features, especially V4. These
variations correlate with scenes in the videos. In Figures 12 and 13, details on the scenes
of both videos, V2 and V4, related to the fear emotion, are provided. As it could be seen,
the most intense period of stress-fear in V2 is between seconds 32 and 58 when the boy is
trying to open the bathroom’s door. In Figure 11, features extracted from physiological
variables present a very different behaviour in this period of time that, in some cases, it
is maintained untill the end of the video due to the empathizing effect with the escaping
mother and boy. Until they discover the aggressor is not in the lift, second 90, the climax is
maintained.
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Figure 13. V04 main stressful events. “Chamber of horrors” Inside 360 VR Prod 2018. Available
at [62].

With regard to V4, all the scenes are stressful but peak instants are when lights go
off (seconds 38 and 88) and there are screams or sudden hits/blows (seconds 12, 22, 63,
and 105). The worst moment is when two people appear suddenly in front of the viewer,
no-faced, with loud music and screams (105); all features show a change of behaviour
around this final scare that has been under preparation right from second 63.

4.3. Catecholamine Concentration

The concentration of adrenaline, dopamine and nor-adrenaline catecholamines, has
been measured as detailed in Section 3, with the HPLC technique. In Table 5 the concentra-
tion values for these catecholamines are detailed per volunteer. A global analysis of these
values has been performed to determine the relationship between the emotional reaction
and these concentrations. First, the box plots of mean and quartile for every video clip were
obtained, Figure 14. Second, to analyse the temporal evolution of these concentrations,
temporal graphs were plotted, in Figures 15 and 16.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 28 
 

 

4.3.1. Catecholamine Concentration and Quartile Distribution 
Data was collected per video clip, normalized per volunteer, and mean values were 

calculated for all the volunteers.  
The obtained values do not show differences in catecholamine concentrations for dif-

ferent emotion-related video clips, especially for adrenaline and dopamine. Furthermore, 
for these catecholamines (A and DA), the gender-based violence fear video clip (V2) pre-
sents very dispersed values, while the fear video clip (V4) provides higher dispersion just 
for dopamine, Figure 14. 

  
(a) (b) 

 
(c) 

Figure 14. Normalized concentrations for dopamine, adrenaline and nor-adrenaline (a–c) for every 
video clip. 

The statistical analysis ANOVA of the plasma concentration level has not provided 
a clear difference between the effects of different emotions elicited for the three catechol-
amines measured. In Table 6 the p-values for the comparison between the videos are 
shown. No significant values have been obtained for any pair compared. 

Table 6. p-values results from Kruskal-Wallis one-way ANOVA test for catecholamine concentra-
tion data grouped by video clip. 

Group A Group B Adrenaline Noradrenaline Dopamine 
V1 V2 0.82591 0.90859 0.62776 
V1 V3 0.65790 0.99983 0.97443 
V1 V4 0.76604 0.95005 0.99913 
V2 V3 0.95784 0.56652 0.53611 
V2 V4 0.99743 0.99573 0.25316 
V3 V4 0.98951 0.71117 0.95883 

  

Figure 14. Normalized concentrations for dopamine, adrenaline and nor-adrenaline (a–c) for every
video clip.



Sensors 2022, 22, 4023 16 of 27

Table 5. Plasma catecholamine concentration levels for every volunteer for every sample (pg/mL),
for adrenaline (A), dopamine (DA) and noradrenaline (NA).

Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4 Volunteer 5 Volunteer 6 Volunteer 7

Sample A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA

Video 1 -
Basal 1 12 11 274 15 12 503 16 9 292 45 13 309 31 13 338 32 29 566 41 52 331

Video 2:
Refugee

(Fear GBV)

2 47 11 492 13 25 480 59 9 434 42 37 346 16 13 270 29 10 454 30 24 538
3 48 12 379 23 16 614 32 11 455 44 22 371 26 11 336 22 11 579 37 34 591
4 29 10 287 22 17 456 29 10 500 45 21 411 32 15 249 26 12 467 40 27 642
5 30 11 360 23 11 604 32 8 520 32 21 310 29 11 294 31 19 500 25 20 601
6 23 29 232 32 16 547 43 13 434 42 28 424 29 17 231 40 10 435 32 16 491

Video 3:
Queen (Joy)

7 17 31 335 19 25 445 21 9 373 26 30 362 33 11 247 23 10 415 25 31 267
8 21 20 302 24 10 569 38 9 396 46 29 368 24 22 234 12 11 451 49 28 376
9 22 23 344 14 11 633 23 12 375 40 32 415 30 13 238 37 8 402 21 32 337
10 37 11 300 28 14 542 50 9 363 30 17 313 38 18 237 12 10 446 43 49 371
11 22 13 302 33 18 469 21 9 351 40 26 410 38 22 201 19 9 333 13 13 376

Video 4:
Inside de

chamber of
horror (Fear)

12 10 27 284 27 11 492 58 9 289 46 26 413 28 16 300 14 13 474 21 47 279
13 11 14 374 20 16 520 37 9 402 48 17 442 30 14 298 41 8 451 28 40 414
14 32 17 410 29 15 558 28 11 330 46 21 415 36 13 273 21 12 446 45 34 343
15 42 11 280 25 14 595 30 9 426 39 30 397 27 14 264 52 9 338 27 41 267
16 20 20 368 19 15 623 17 13 450 31 21 361 26 15 271 29 11 478 14 37 293

Volunteer 8 Volunteer 9 Volunteer 10 Volunteer 11 Volunteer 12 Volunteer 13 Volunteer 14

Sample A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA

Video 1 -
Basal 1 19 15 363 27 16 144 28 14 475 23 13 233 27 12 233 39 31 225 24 14 315

Video 2:
Refugee

(Fear GBV)

2 26 9 437 17 11 129 20 9 406 17 13 238 23 17 229 16 16 242 14 12 370
3 18 9 475 13 11 114 34 16 289 28 19 239 21 18 212 41 34 268 12 14 387
4 20 18 492 37 16 137 22 13 576 28 11 212 27 9 253 20 24 278 13 15 449
5 17 10 481 11 12 108 27 13 521 33 16 270 25 8 183 17 16 256 14 9 280
6 13 9 642 21 17 95 16 8 419 28 18 299 14 9 239 14 16 244 16 10 279

Video 3:
Queen (Joy)

7 16 8 311 35 17 125 42 11 421 22 16 319 31 10 210 35 20 241 33 11 239
8 15 10 375 29 33 107 25 20 370 16 16 267 29 22 239 22 47 468 19 13 458
9 12 9 375 23 13 119 13 14 619 30 22 277 20 9 235 19 33 240 11 9 328
10 19 15 233 23 20 108 11 10 615 13 9 250 26 12 197 26 42 348 14 31 420
11 20 12 243 12 13 100 22 11 148 33 30 256 35 19 226 25 43 303 19 9 416

Video 4:
Inside de

chamber of
horror (Fear)

12 22 9 380 21 12 114 14 11 160 11 15 228 35 18 178 15 46 452 18 9 675
13 13 12 370 17 18 121 13 21 255 12 12 247 20 9 253 23 38 429 13 12 423
14 21 13 338 18 20 141 35 11 296 17 12 229 23 14 280 16 45 453 11 15 530
15 14 11 246 26 41 212 44 17 476 11 11 217 23 13 293 17 27 333 17 13 554
16 43 14 322 27 13 171 41 16 295 31 14 251 30 16 238 16 18 457 31 11 643

Volunteer 15 Volunteer 16 Volunteer 17 Volunteer 18 Volunteer 19 Volunteer 20 Volunteer 21

Sample A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA A DA NA

Video 1 -
Basal 1 49 13 153 38 20 447 31 15 288 29 15 333 33 16 627 15 16 359 23 18 312

Video 2:
Refugee

(Fear GBV)

2 33 10 147 31 17 609 15 18 138 24 10 297 28 12 710 22 20 332 17 11 324
3 43 15 187 24 14 539 26 14 150 26 10 286 26 25 704 12 11 438 24 13 302
4 38 19 186 34 17 481 20 12 160 21 16 388 26 12 630 25 10 285 24 13 407
5 29 13 171 39 12 586 29 17 143 35 30 259 23 14 462 12 17 300 16 14 335
6 33 11 159 31 12 519 39 18 143 17 22 284 27 11 552 19 14 278 16 11 318

Video 3:
Queen (Joy)

7 33 13 186 43 15 516 11 21 167 31 52 288 16 15 411 18 16 391 12 18 325
8 48 15 204 40 10 498 14 13 223 21 19 375 13 15 583 44 14 331 13 16 347
9 37 10 228 46 19 496 15 16 243 25 33 578 30 11 606 27 11 220 15 19 247
10 27 14 211 33 14 643 30 15 147 19 29 383 25 11 575 36 14 233 14 16 270
11 39 11 191 37 11 624 35 12 166 19 16 323 36 12 516 17 13 310 14 11 301

Video 4:
Inside de

chamber of
horror (Fear)

12 44 14 255 31 17 508 12 17 239 30 18 306 27 15 604 14 19 395 41 20 367
13 45 33 199 39 19 433 17 10 285 22 11 444 22 13 483 35 16 387 22 11 345
14 47 28 282 30 14 594 11 11 192 19 11 418 36 10 603 15 18 240 29 29 298
15 23 40 234 27 14 387 13 12 203 20 19 280 41 14 600 33 18 187 38 26 312
16 35 20 259 26 14 368 21 14 222 19 11 435 30 11 496 34 15 282 21 15 401
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Figure 15. Temporal evolution of normalized concentrations for dopamine, adrenaline and nor-
adrenaline (a–c) for every video clip, mean for all volunteers.

4.3.1. Catecholamine Concentration and Quartile Distribution

Data was collected per video clip, normalized per volunteer, and mean values were
calculated for all the volunteers.

The obtained values do not show differences in catecholamine concentrations for
different emotion-related video clips, especially for adrenaline and dopamine. Further-
more, for these catecholamines (A and DA), the gender-based violence fear video clip (V2)
presents very dispersed values, while the fear video clip (V4) provides higher dispersion
just for dopamine, Figure 14.

The statistical analysis ANOVA of the plasma concentration level has not provided
a clear difference between the effects of different emotions elicited for the three cate-
cholamines measured. In Table 6 the p-values for the comparison between the videos are
shown. No significant values have been obtained for any pair compared.

Table 6. p-values results from Kruskal-Wallis one-way ANOVA test for catecholamine concentration
data grouped by video clip.

Group A Group B Adrenaline Noradrenaline Dopamine

V1 V2 0.82591 0.90859 0.62776

V1 V3 0.65790 0.99983 0.97443

V1 V4 0.76604 0.95005 0.99913

V2 V3 0.95784 0.56652 0.53611

V2 V4 0.99743 0.99573 0.25316

V3 V4 0.98951 0.71117 0.95883
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4.3.2. Temporal Evolution of Catecholamines after Video Clip Watching

Figure 15 shows the temporal evolution of dopamine (a), adrenaline (b) and nora-
drenaline (c) for video clips V2, V3 and V4, related to fear (gender-based violence related),
joy and fear, respectively. The graphs represent the concentration of catecholamines, per
sample (five per video per volunteer), as well as the mean value (continuous line) and the
mean plus/minus standard deviation (dashed lines) for all the volunteers. Catecholamine
concentration values have been normalized with respect to the mean value of every volun-
teer. For the sake of clarity, and for comparison with respect to the behaviour of physiolog-
ical variables, in Figure 15 the temporal evolution of the mean value (for all volunteers)
has been plotted for the three catecholamines. Dopamine concentrations show a slightly
different evolution after watching the video clips related to fear with gender-based violence
than in those related to joy or fear, where a final drop can be appreciated, (Figure 15a).
Adrenaline concentration shows a continuous rising tendency for the fear-related clip
(V4) while for joy (V3), a stabilization is observed in the final samples (Figure 15b). In
the gender-based violence clip (V2), the stressful/relieving situation may provoke a rise
and a drop in the adrenaline’s concentration. Finally, in the noradrenaline’s concentration
(Figure 15c), a similar evolution can be observed in V2 and V3 (fear with gender-based
violence and joy) with a final drop in the normalized value, while V4 (intense fear) is not
presenting the final drop, since the stressful situation continues to get even more stressful
until the end of the clip.

4.4. Artificial Intelligent Algorithms

Considering our goal, which is to study the improvement that catecholamines mea-
surements can bring to our fear/not-fear detection model and compare the results with
physiological models, the data were normalized, reorganized, and grouped by clip for
both data types to generate supervised techniques and evaluate performance metrics
individually and together.

In this work the standardization selected is a modified version of self-dependent
z-score; it consists of subtracting the mean value and dividing by the standard deviation of
the complete experiment for each volunteer independently.

The algorithms tested to classify the data were support vector machine (SVM), k-
nearest neighbour (KNN), and ensemble (ENS). This selection was based on the target
application, a wearable device with memory and computation power constraints. In
addition, these methods are the most common ones used in the literature [44].

Each model’s hyper-parameters were tuned using Bayesian optimization to minimize
the misclassification rate over iterations and supported by 5 k-fold cross-validation strategy.
Specifically, the selected technique is a sequential model-based optimization, which has
shown substantial improvements over combinational space approaches [64]. Besides, this
training and validation scheme was based on previous works and results in [7]. The
performance values presented were the mean validation results of 10 iterations. No testing
was carried out due to the lack of data.

Table 7 shows the characteristics of the different models used to generate classifiers
regarding the information source, number of features, and windowing. A detailed expla-
nation is provided in the next subsections. Videos V02, V03, and V04 were considered in
all cases.

The metrics selected to evaluate the classifiers’ performance are geometrical mean
(Gmean) between Sensitivity (true positive rate, TPR) and Specificity (true negative rate,
TNR) according to Equation (1). The TPR is the ratio between true positive (TP) and the
sum of true positive and false negative (FN). The TNR is the ratio between true negative
(TN) and the sum of true negative and false positive (FP).

Gmean =
√
(Sensitivity ∗ Speci f icity =

√(
TP

TP + FN

)
∗
(

TN
TN + FP

)
(1)
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Table 7. Characteristics of each configuration.

Nb. Configs Physio Cat. Observations Features Window Size Overlap

1 X - 63 47 60 s -

2 X - 315 47 20 s 10 s

3 - X 63 15 - -

4 - X 63 3 - -

5 X X 63 48 60 s -

6 X X 315 48 20 s 10 s

4.4.1. Physiological Supervised Models

The classification of physiological data with supervised machine learning techniques
is a common approach in affective computing due to the complex relationships that implies.
The models presented in this work are user-independent because there is not enough data
for user-dependent solutions.

Two configurations were tested with the same number of features but with a different
window size and overlapping. The features used are 22 for BVP, 7 for GSR, 6 for SKT,
and 12 for respiration. The segmentation and windowing were applied following two
strategies. Firstly, the configuration 1 used a 60 s window per video clip aiming to reduce
data dispersion in the video. The second one has five windows per video, 20 s with
10 s overlap. This strategy helped algorithm training by providing more data and more
temporal resolution; however, this could also lead to information redundancy.

The results in Table 8 showed that it is possible to classify the data between fear and no
fear generally (Gmean above 0.5). The best performance was achieved by ENS (Adaboost)
with the first model.

Table 8. Performance metrics for physiological configurations.

Nb. Config Algorithm G. Mean TPR TNR

1

SVM 0.59 0.83 0.51

KNN 0.74 0.83 0.67

ENS 0,91 0.83 1.00

2

SVM 0.56 0.86 0.45

KNN 0.64 0.83 0.50

ENS 0.74 0.83 0.66

4.4.2. Catecholamines Supervised Models

As in the physiological section, three algorithms KNN, SVM, and ENS (RandomForest)
were applied (Table 9).

Table 9. Performance metrics for catecholamines models.

Nb. Config Algorithm G. Mean TPR TNR

3

SVM 0.49 0.47 0.55

KNN 0.53 0.51 0.58

ENS 0.45 0.47 0.50

4

SVM 0.33 0.29 0.73

KNN 0.37 0.25 0.64

ENS 0.44 0.42 0.53
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Firstly, each observation was associated with a clip and each feature to a sample of
that clip, resulting in a data matrix of 63 rows (21 volunteers × 3 clips) and 15 columns
(5 samples per clip × 3 catecholamines).

After achieving in almost all cases overfitted models or poor-quality metrics, a trans-
formation of the data was applied to compute the maximum in-video variations, consid-
ering the sign positive if this variation was increasing (minimum previous maximum)
or negative if it was decreasing (maximum previous minimum). This variable was ob-
tained and then normalized for each catecholamine, resulting in a data matrix of 63 rows
(21 volunteers × 3 clips) and 3 columns (1 maximum variation per clip × 3 catecholamines).

As in previous models and mainly due to the lack of enough data and an imbalanced
configuration, overfitted models were achieved and performance results worsened (Gmean
values between 0.33 and 0.44) and showed the model would work randomly, such as
flipping a coin.

4.4.3. Fusion Models

The data fusion applied followed two strategies based on physiological configurations.
The first configuration was merged with the variation in plasma catecholamine concentra-
tion levels, per video clip, as explained previously (Model 5) and the physiological variables
in a unique 60 s window. The second one used the plasma catecholamine concentration
level directly, five samples per video clip. Each sample was paired with a 20 s physio
window.

Table 10 shows the performance metrics obtained with the fusion models. The results
were slightly worse than physiological models alone, i.e., the model was not learning from
this data.

Table 10. Performance metrics for merged models.

Nb. Config Model G. Mean TPR TNR

5

SVM 0.57 0.88 0.46

KNN 0.72 0.81 0.65

ENS 0.90 0.81 1.00

6

SVM 0.52 0.88 0.41

KNN 0.64 0.82 0.52

ENS 0.74 0.82 0.67

5. Discussion

The study conducted in this work presents four main results. First, a methodology
and protocol have been defined to connect the elicitation of human emotions with the
variation of plasma catecholamine concentration. An immersive virtual reality environ-
ment has been arranged to provoke realistic situations where the volunteer could have
intense emotional reactions. A continuous monitoring of physiological variables, with a
research toolkit system (for the sake of comparison with other affective computing research
works), is connected with the virtual environment, as well as a labelling procedure for
discrete emotions and continuous PAD affective space dimensions. These three elements
have been presented in previous works by the authors [65]. The novelty added to this
method is to determine whether a person’s emotions can be reliably recorded, assessing
the differences or similarities between recording different physiological variables and mea-
suring plasma catecholamine levels. The blood extraction must be performed after the
video clip visualization to not interfere in the emotion elicitation but as soon as possible to
detect the concentration peaks and valleys due to the emotion processed in the brain, which
provokes a change in plasma catecholamine concentration. A pattern in the concentration
variation has been looked for, as well as different classifiers, typical in affective computing,
to determine the feasibility of using catecholamines for detecting fear emotions in a person.
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Second, the emotion labels obtained during the study guaranteed the elicitation of
the target emotions. The video clips selected were those with the best scores in terms of
unanimity, in discrete and continuous emotions classifications, from the UC3M4Safety
database [62]. The video clips’ durations were between 60 s and 119 s. The 21 volunteers
labelled the emotion felt during the video clip visualization in a very close way to the
target emotion, especially for video clips V04 (fear) and V01 (calm), while for the other
clips, at least the PA quadrant is maintained, (Figure 8). Every video clip provoked the
target emotions, and, except for two volunteers, every volunteer labelling process matched
with the rest of them, (Figure 9). Therefore, the variation in the measures of physiological
variables and plasma catecholamine concentration per video clip, whatever they were, can
be associated with a specific emotion.

Third, the physiological variables measured during the study, and the features ex-
tracted from them (IBI, GSR number of peaks, GSR mean and HRV) present similar be-
haviour as in previous works [7,65]. Statistically representative differences between fear-
related video clip V04 and joy and calm clips (V03 and V01) were found for the GSR mean,
as well as between V01 (calm), V02 (fear related to Gender-based violence) and V04 (fear)
for IBI. The classifiers applied to generate an artificial intelligence algorithm to detect fear
emotional reactions present good results for windows of 20 s and 60 s, although the results
were better for wider windows, and ENS model, with a True Negative Rate of 1 and a True
Positive Rate of 0.83, (Table 8).

It should be noted that the amount of data compiled during the experiment was large
due to the sampling frequency (200 Hz), making easier the training and testing processes
for affective computing tasks.

Finally, the plasma catecholamine concentration measurements provided data with
apparently no connection with the emotion elicited. The ANOVA analysis provided
no significant differences between the levels of catecholamines in blood plasma after
visualizing the video clips of the different emotions. Besides, the clustering analysis
(fear/no-fear emotions) on the data obtained from the 21 volunteers did not produce a
valid result. Moreover, the classifiers selected as artificial intelligence algorithms to detect
fear emotional reactions present poor-quality metrics, mainly due to the lack of enough
data for training, testing and generalizing.

This problem of insufficient data on plasma catecholamine concentration (only five
samples per video, i.e., per emotion) is difficult to solve. Even in an experimental study, the
ethical research advises to not make volunteers suffer unnecessarily. Sixteen blood samples
per session per volunteer, although taken through a via, while visualizing emotional
intensive video clips within a virtual reality environment, are a fairly good number to test
the hypothesis of the research work. In the literature, up to our knowledge, there is no
similar study, with most of the proposals being theoretical hypotheses and/or based on
analysing previous experimental results for other purposes.

However, the data obtained should have provided some patterns of responses to
different target emotions and, although in the temporal evolution of the concentration
levels of adrenaline and nor-adrenaline a similar behaviour can be observed after both V02
and V04 fear-related clips, neither statistically significant relations have been found nor
affective computing classifiers provided good results.

It is true, that the plasma catecholamine levels are altered by the effect of some foods,
drinks, and medicines or drugs, as well as by strong physical exercise and/or recent intense
stressful episodes. Amines found in banana, avocado, walnuts, beans, cheese, beer and
red wine can modify the concentration of these hormones in the blood. Additionally,
foods/drinks with cocoa, coffee, tea, chocolate, liquorice, or vanilla, as well as drugs
(nicotine, cocaine and ethanol) and medicines (aspirin, tricycle antidepressants, tetracycline,
theophylline, blood pressure control agents, and nitro-glycerine) have similar effects.

Besides, the emotional response is altered by prior experiences during a lifetime, and so
does the emotional response to stress and the conditioned response to fear. Traumatic stress-
induced fear memories may affect the physiological response and plasma catecholamine



Sensors 2022, 22, 4023 23 of 27

levels. There is strong evidence supporting that central catecholamines are involved in the
regulation of fear memory, by activation of the sympathetic nervous system with elevated
basal catecholamine levels are common in patients suffering from post-traumatic stress
disorder (PTSD).

In the study presented, attention is paid to the activity of the volunteers before the
experiment, as well as the different substances taken and, also, previous traumatic stressful
experiences.

Although we previously informed about the recommendations, the volunteers re-
ported the following data. With regard to medicines as regular treatment, six volunteers
reported five chronic diseases: diabetes mellitus (1), hypertension (2), cardiac failure (1),
ulcerative colitis (1), anaemia (1), and chronic pain (1). Additionally, one volunteer was
taking contraceptives. On the other hand, four volunteers were taking ibuprofen or another
type of anti-inflammatory drugs for the two days prior to the experiment. Respect to avoid-
ing stimulants in food, drinks and drugs in the 24 h prior to the experiment, 13 volunteers
took coffee or tea in that period of time, and one volunteer drank alcohol. Additionally,
three of them ate citric fruits in that period.

Only four volunteers (v06, v11, v13, v19) exactly complied with the recommendations
with regard to avoiding stimulant foods, drinks and drugs; and did not take any medication.
They were young women with ages 23, 30, 29, and 23, respectively. Likewise, three volun-
teers (v01, v04, and v17) only had a coffee, complying with the rest of the recommendations,
and did not take any medication either. Their ages were 21, 55, and 24 respectively. There
are seven volunteers that only took a coffee and medicaments not presenting differences
in the levels of catecholamine concentrations (v02, v05, v09, v12, v14, v15, and v20). In
summary, we can consider that 14 volunteers were fully compliant and 7 could have some
objection with respect to regular catecholamine activity.

Regarding prior stressful experiences, or specific fears, seven volunteers reported
some previous traumas that activate themselves in situations like video clips V02 and V04,
(v01, v03, v04, v12, v15, v16, and v20). Two of them identified as gender-based violence
victims. However, the evolution of their plasma catecholamine concentration levels were
not different from the other volunteers’, (Figures 15 and 16).

Apart from the extrinsic and intrinsic factors that can be affecting the results of the
study, the authors wish to highlight the low levels of the concentration of these cate-
cholamines present in the blood plasma. We tested the technique ELISA that produced
worse results in terms of sensitivity of these catecholamines. Nine women volunteers
followed a similar experimental study, and 15 blood samples per volunteer were analysed
with ELISA kits.

With respect to the hypothesis stated in this work, the measurement of the levels
of dopamine, noradrenaline and adrenaline concentration in blood plasma is neither
providing better classifications nor a more accurate differentiation of fear-emotion reactions
in women.

6. Conclusions

In this work, a methodology and a protocol have been proposed to connect the
elicitation of human emotions with the variation of plasma catecholamine concentration.
For them, an immersive virtual reality environment has been arranged to provoke realistic
situations where the volunteer could have intense emotional reactions. A continuous
monitoring of physiological variables, with a research toolkit system (for the sake of
comparison with other affective computing research works) was connected to the virtual
environment, as well as a labelling procedure for discrete emotions and continuous PAD
affective space dimensions.

Using this methodology, an experimental study with 21 volunteers has been con-
ducted, using fear as a target emotion, thus provoking fear and non-fear while measuring
physiological variables and extracting blood samples after the visualization of every video
stimulus. In this first study, 16 blood samples have been extracted per volunteer; 1 for basal
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measure and 5 after the three emotion-related video clips (fear (gender-based violence
related), joy and fear). These samples have been extracted in 1-min intervals after the
visualization of the video clip. Along with the blood sample for catecholamine plasma
analysis, physiological variables have been measured during the visualization of the video
clips. Skin temperature, galvanic skin response, blood volume pulse, respiration, and
Trapezoidal Electromyogram were the selected variables, measured with a commercial
research toolkit.

Additionally, the emotion labelling for every video clip by all the volunteers has
been analysed and there is a high degree of agreement in the discrete emotion, which was
even better in the PAD affective space dimensions, especially for fear-related video V04.
Therefore, we can affirm that the selected video clips are meaningful for the experiment.

The results for the evolution of the features extracted from the physiological variables,
as well as an ANOVA statistical analysis, are in accordance with previous works. Dif-
ferences between features measured during fear-related and during calm and joy-related
video clips have been found for the mean of GSR (60 s windows). Additionally, differences
have been found between calm-related and fear/gender-based-violence fear-related video
clips for the IBI (for heart rate,). Furthermore, the temporal evolution of these features has
been analysed and correlated with the fear-related video clips, identifying precise moments
where the features’ behaviour can be associated with the scene development.

We can conclude that there are no significant p-values (ANOVA statistical analysis
performed) that allow differentiating the emotion elicited using only the evolution of
the plasma catecholamine concentration levels as a variable. Additionally, the temporal
evolution of these levels has been analysed, not identifying precise patterns for fear-related
video clips different from the joy-related video clip.

Finally, artificial intelligence algorithms for fear classification with physiological vari-
ables and plasma catecholamine concentration levels (separately and together) have been
tested. The best results have been obtained with the features extracted from the physiologi-
cal variables. Adding the maximum variation of catecholamines during the five minutes
after the video clip visualization, as well as adding the five measurements (1-min interval)
of these levels, do not provide better performance in the classifiers.

The small number of samples together with the low concentration of catecholamines
in blood plasma make it not possible to use these data for machine learning techniques for
fear classification in this experiment.

Finally, we can state that research on this topic should continue considering the
following future actions:

1. Although it is true that the results of this study show that the measurement of cate-
cholamine concentration does not improve the detection and identification of emo-
tions, it would be desirable to have a larger sample of volunteers in order to detect
patterns of variation in this concentration that validate this conclusion.

2. Following Lovehëim’s theory work, adding the measurement of blood serotonin
concentration would be recommendable since it could allow us to improve the classi-
fication of fear from joy, which are both emotions with a high theoretical degree of
activation. For this study, although its inclusion was considered, adding the serotonin
measurement entailed the use of another analysis technique, which meant extracting
twice as many samples from each volunteer, which was not recommended from an
ethical point of view.

3. In the search for non-invasive emotion detection systems, it would be interesting to
analyse the effect of the concentration of catecholamine in sweat (cortisol) or in saliva
(alpha-amylase). If significant differences were found, it would be possible to include
these variables in automatic emotion detection systems design.

4. However, in the search for any other extra information, instead of clustering fear and
not-fear emotions, a behaviour pattern for each volunteer was examined according
to Khrone [66] which suggests that there are two main strategies in stress reaction:
vigilance and avoidance. From an unsupervised standpoint and after applying k-
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means algorithms four clear groups were observed, two of them being a symmetrical
representation of the other two. In two of the groups, the third clip contains a negative
variation, which is below the other two clips. On the other hand, the other two groups
have a peak in the third clip (V3) which is above the values representing the other
two videos.
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