
Feasibility Analysis in the
Sporadic DAG Task Model

Vincenzo Bonifaci∗, Alberto Marchetti-Spaccamela†, Sebastian Stiller‡, and Andreas Wiese§
∗Istituto di Analisi dei Sistemi ed Informatica, CNR, Email: vincenzo.bonifaci@iasi.cnr.it
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Abstract—Real-time systems increasingly contain processing
units with multiple cores. To use this additional computational
power in hard deadline environments, one needs schedulability
tests for task models that represent the possibilities of parallel
execution of jobs of a task. A standard model is to represent a
(sporadically) recurrent task by a directed acyclic graph (DAG).
The nodes of the DAG correspond to the jobs of the task. All such
jobs are released simultaneously, have to be completed within
some common relative deadline, and some pairs of jobs are linked
by a precedence constraint, i.e., an arc of the DAG. This poses
new challenges for analyzing whether a task system is feasible,
in particular for the commonly used online algorithms Earliest
Deadline First (EDF) and Deadline Monotonic (DM). While for
ordinary sporadic tasks the required algorithmic techniques are
well-understood, despite recent research [1], [3], [11], [13] much
remains open in this model.

In this work, we completely close the gap between the
algorithmic understanding of feasibility analysis for the usual
sporadic task model and the case where each sporadic task is
a DAG. We show for DAG tasks that EDF has a tight speedup
bound of 2− 1/m, where m is the number of processors, while
DM has a speedup bound of at most 3 − 1/m. Moreover, we
present polynomial and pseudopolynomial time tests, of differing
effectiveness, for determining whether a set of sporadic DAG
tasks can be scheduled by EDF or DM to meet all deadlines on a
specified number of processors. We remark that the effectiveness
of some of our tests matches the best known algorithms for
ordinary sporadic task sets, thus closing the gap.

I. INTRODUCTION

The sporadic task model is a well-known model to repre-
sent real-time systems based on a finite number of independent
recurrent processes or tasks, each of which may generate
an unbounded sequence of jobs. Determining how multiple
recurrent tasks can be scheduled on a shared uni- or multi-
processor platform is one of the traditional subjects of study in
real-time scheduling theory. Different formal models have been
proposed for representing such recurrent tasks; these models
differ from one another in the restrictions they place on the
jobs that may be generated by a single task (see, for example,
[5], [8], [9], [10], [14]).

It is well-known that the technological evolution of pro-
cessor manufacturing is moving away from increasing clock
frequencies to increasing the number of cores per processor; as
an example we refer to the 2007 Intel Teraflops Research chip
with as many as 80 cores. The presence of large core-counts
offers new opportunities for executing more computation-
intensive workloads in real time. Nowadays it is unclear

how the resulting massively parallel multicore CPUs will be
structured; in fact, it is not clear whether all the cores will
be identical, or there will be different specialized cores to
realize different functions, and/or whether some cores will be
dedicated to certain functionalities. However, it is likely that
in the near future an execution environment will allow for
the possibility of having more expressive task models than
the relatively simple recurrent task models considered thus far
in the real-time scheduling literature. We refer to [6], [13],
[14], [15] and to references therein for a thorough discussion
of the models. We observe that an important characteristic of
the more expressive models is to allow for partial parallelism
within a task, as well as for precedence constraints between
different parts of the task.

In this paper, we continue the study of a parallel task
model, the sporadic DAG model, that was introduced in [3],
[13] and that considers the preemptive scheduling of a recur-
rent task. The model generalizes the fork-join model that has
been introduced in [6] and further generalized in [1], [11], [13].
In the fork-join model, the execution requirement of a task is
an alternate sequence of parallel and sequential threads that
are represented as sequential and parallel segments; parallel
segments need to synchronize before starting execution of the
next sequential segment.

In the sporadic DAG model a task is represented as a
directed acyclic graph (DAG) G = (V,E); the task repeatedly
emits a dag-job, which is a set of precedence-constrained
sequential jobs. More precisely, in [3] each vertex v ∈ V of the
DAG corresponds to a sequential job, and is characterized by
a worst-case execution time (WCET) ev . Each (directed) edge
of the DAG represents a precedence constraint: if (v, w) ∈ E
is a (directed) edge in the DAG, then the job corresponding to
vertex v must complete execution before the job corresponding
to vertex w may begin execution. Any groups of jobs that
are not constrained (directly or indirectly) by precedence con-
straints among each other may execute in parallel, whenever
enough processors are available for them. This implies that
jobs of subsequent dag-jobs of the same task can be scheduled
in parallel.

When a dag-job is released by the task, it is assumed that all
|V | of the corresponding jobs become available for execution
simultaneously, subject to the precedence constraints. All |V |
jobs that are released at some time-instant t must complete
execution by time-instant t + D, where D is the (relative)
deadline parameter of the task. A minimum interval of duration
T must elapse between successive releases of two dag-jobs of



the same task. The duration T is called the period of the task.
The above model generalizes the one presented in [13], where
implicit deadlines (that is, D = T ) and unit execution time of
each node (that is, ev = 1 for all v) were assumed.

In this paper we consider real-time workloads that can be
modeled as a collection of independent sporadic DAGs and
that are executed upon a platform comprised of m identical
processors. We assume that the platform is fully preemptive
and that it allows global interprocessor migration, although we
assume that each job may execute on at most one processor
at each instant of time. We study the behavior of two well
known scheduling policies: Earliest Deadline First (EDF) and
Deadline Monotonic (DM) [7], [10].

Feasibility, schedulability and speedup bounds. An im-
portant requirement of hard real-time systems is to guarantee
prior to system run time that all deadlines will be met;
such guarantees are given by schedulability tests. Since the
period parameter Ti of the sporadic DAG task τi specifies
the minimum, rather than exact, duration that can elapse
between the release of successive dag-jobs, a task system
may generate infinitely many different collections of dag-
jobs. A task system T is said to be feasible on m speed-s
processors if a valid schedule exists on m speed-s processors
for every collection of dag-jobs that may be generated by the
task system. Given a scheduling algorithm A, a task system is
said to be A-schedulable on m speed-s processors if A meets
all deadlines when scheduling any collection of dag-jobs that
may be generated by the task system on m speed-s processors.

The problem of testing feasibility of a given DAG task
system is highly intractable (NP-hard in the strong sense [16])
even when there is a single DAG task. It is therefore highly
unlikely that we will be able to design efficient algorithms
for solving the problem exactly, and our objective is therefore
to design efficient algorithms that solve the problem approxi-
mately.

We say that a scheduling algorithm A has a speedup bound
s if any task system that is feasible on m unit speed processors
is A-schedulable on m speed-s processors. Furthermore, an
A-schedulability test has speedup bound s, if the following
holds: Any task system that is feasible on m unit speed
processors is determined by the test to be A-schedulable on
m speed-s processors. Note, that such a test also gives a
positive answer for instances for which there is no schedule
on m unit speed processors, but they are A-schedulable on m
speed-s processors. In this sense, the value s, i.e., the speedup
bound of the test, is a metric for quantifying the quality of the
approximation of the test.

Previous results. It is known [16] that the preemptive
scheduling of a given collection of precedence-constrained jobs
(that is, a DAG) on a multiprocessor platform is NP-hard in
the strong sense; this intractability result is easily seen to hold
for the sporadic DAG model as well.

In the (sequential) sporadic task model there exist schedula-
bility tests with speedup factor of 2−1/m when the scheduling
algorithm is EDF and 3−1/m when the scheduling algorithm
is Deadline Monotonic [2], [4].1

1Note that in [2], [4] it is assumed that subsequent jobs generated by the
same task cannot be parallelized.

As already observed, there are several papers that consid-
ered models where the execution requirement of a task is an
alternate sequence of parallel and sequential threads; namely,
a task τi is a sequence of si segments where the j-th segment,
1 ≤ j ≤ sj , consists of mi,j parallel threads. In [13] the
authors analyzed the case of implicit deadlines and all parallel
threads with the same worst-case execution requirement and
showed a global EDF-schedulability test with speedup 4 and a
partitioned DM-schedulability test with speedup 5. The paper
also extends the above results to the DAG model in the special
case where each node of the DAG has unit execution time.

In [11] the same model consisting of a sequence of parallel
and sequential threads is considered, with the assumption
that relative deadlines of the tasks are not larger than the
corresponding periods. The authors showed a speedup bound
of 2 for a certain class of algorithms, which includes PD2,
U-EDF, LLREF and DP-Wrap. In [1], Andersson and de Niz
considered a similar model and showed that EDF has a speedup
bound of 2 − 1/m. We remark that the schedulability test
provided in [1] is not efficient and no bound on its running
time is provided.

Most of the research described in [3] is concerned with
the DAG model in the case of a single DAG and D > T
(that in the case of a single DAG is the more interesting case).
First it is shown that the “synchronous arrival sequence”, in
which successive dag-jobs are released exactly the period T
time-units apart, does not necessarily correspond to the worst-
case behavior of a sporadic DAG task; hence, we cannot
determine schedulability properties by simply studying this
one behavior of the task. Furthermore, [3] also considers the
Earliest Deadline First (EDF) scheduling [10], [5] of a sporadic
DAG task on identical multiprocessors. It is shown that EDF
has a speedup bound no larger than 2 for scheduling a sporadic
DAG task. The paper also presents two different schedulability
tests for determining whether EDF can schedule a given
sporadic DAG task upon a specified identical multiprocessor
to meet all deadlines. These tests have different run-time
complexity — one has polynomial run-time while the other
has run-time pseudopolynomial in the representation of the
task — and effectiveness (as quantified, again, by the speedup
bound metric).

This paper. The main limitation of [3] is that a single DAG
task is considered. So its applicability is limited to systems that
execute a single task. The major contribution of this paper
is to consider the case of multiple tasks, where each task is
specified by a different DAG. The main results of the paper is
to show a 2 − 1/m speedup bound for EDF, thus improving
and extending previous results; the bound matches the best
bound for a sporadic task system [2], [4] and surprisingly
shows that parallel threads and precedence constraints do not
influence the effectiveness of EDF. Moreover, in addition to
EDF, the analysis is extended to the Deadline Monotonic (DM)
scheduling algorithm showing a 3−1/m speedup bound; also
in this case, the speedup bound matches the best bound known
for a sequential sporadic task system [2].

Our tests have pseudopolynomial time complexity; for this
reason, we complement the pseudopolyomial tests with simple
polynomial time sufficient conditions to test EDF and DM
schedulability.
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The remainder of this paper is organized as follows. In Sec-
tion II, we formally define the notation and terminology used
in describing our task model. In Section III-A we present the
speedup bound for EDF. The speedup bound for DM is given
in Section III-B. We present and analyze pseudopolynomial
time EDF- and DM-schedulability tests in Section IV, that
either guarantee that a DAG task system is EDF-schedulable
(respectively, DM-schedulable) on m processors of speed
2 − 1/m (respectively, 3 − 1/m) or prove that the system
in infeasible on m processors of unit speed.

Finally, in Section V we present simple sufficient schedu-
lability conditions that can easily be tested in polynomial time.

II. MODEL AND DEFINITIONS

In the sporadic DAG model, a task τi (i = 1, . . . , n) is
specified by a 3-tuple (Gi, Di, Ti), where Gi is a vertex-
weighted directed acyclic graph (DAG), and Di and Ti are
positive integers.

• The DAG Gi is specified as Gi = (Vi, Ei), where
Vi is a set of vertices and Ei a set of directed edges
between these vertices; it is required that these edges
do not form any oriented cycle. Each v ∈ Vi denotes
a sequential operation (a “job”). Each job v ∈ Vi
is characterized by a processing time ev ∈ N, also
known as worst-case execution time or WCET. The
edges represent dependencies between the jobs: if
(v1, v2) ∈ Ei, then job v1 must complete execution
before job v2 can begin execution.

• A period Ti ∈ N. A release or arrival of a dag-job of
the task at time-instant t means that all |Vi| jobs v ∈ Vi
are released at time-instant t; t is called the release
date of both the dag-job and the jobs that compose it.
The period denotes the minimum amount of time that
must elapse between the release of successive dag-
jobs: if a dag-job is released at t, then the next dag-
job of the same task cannot be released prior to time-
instant t+Ti. We say a job becomes available at time
t if all its predecessor jobs have completed execution
at time t and t is greater or equal than the release date
of the job.

• A deadline Di ∈ N. If a dag-job is released at time-
instant t, then all |Vi| jobs that were released at t must
complete execution by time-instant t+Di.

Throughout this paper we assume that the input consists of
a task system T = (τ1, τ2, . . . , τn), a collection of n sporadic
DAG tasks.

Remark 1. If Di > Ti, then task τi may release a dag-job
prior to the completion of its previously-released dag-jobs. We
do not require that all jobs of a dag-job complete execution
before jobs of the next dag-job can start executing.

Remark 2. We assume that each job requires an integer
number of units of execution time (less or equal to its WCET).
Note, however, that even though we assume the execution
times to be integers, when analyzing algorithms with increased
speed (e.g., as we will do for EDF with speed 2 − 1/m in
Section III), a job could be completed at a non-integral point

in time, even if it is never preempted. Therefore, in the analysis
jobs may be started or preempted at fractional timepoints.

Some additional notation and terminology:

• A chain in the sporadic DAG task τi is a sequence of
vertices v1, v2, . . . , vk such that (vj , vj+1) is an edge
in Gi, 1 ≤ j < k. The length of this chain is defined to
be the sum of the WCETs of all its vertices:

∑k
j=1 evj .

• We denote by len(Gi) the length of the longest chain
in Gi. Note that len(Gi) can be computed in time
linear in the number of vertices and the number of
edges in the acyclic graph Gi, by first obtaining a
topological order of the vertices of the graph and then
running a straightforward dynamic program.

• We define vol(Gi) =
∑
v∈Vi

ev . That is, vol(Gi) is the
total WCET of each dag-job. It is clear that vol(Gi)
can be computed in time linear in the number of
vertices in Gi.

• We denote the length of a time interval I by |I|.

III. SPEEDUP BOUNDS FOR COLLECTIONS OF JOBS

This section considers what we call a normal collection J
of jobs. The job sequence generated by a DAG task system T
is a normal collection of jobs. Arguing about job collections
instead of DAG task systems makes our results slightly more
general and—more importantly—cleaner and easier to present.
We now define the normal collections model.

Assume we are given m identical processors. A job collec-
tion J is a set of jobs that are revealed online over time, i.e., a
job j ∈ J becomes known upon the release date of j. Each job
j ∈ J is characterized by a release date rj ∈ N0, an absolute
deadline dj ∈ N, an unknown execution time ej ∈ N, and a set
of previous jobs Jj which are exactly the jobs which have to
be finished before j can become available (the predecessors of
j). Note that the actual execution time ej of a job is discovered
by the scheduler only after the job signals completion.

We call such a collection of jobs J a normal collection of
jobs if we also have for every predecessor job j of job k that
rj = rk and dj = dk. Observe that every collection of jobs
generated by a sporadic DAG task system is normal, since all
jobs that constitute a certain dag-job have identical release date
and deadline. A job j is available at time t if t ≥ rj and all
jobs in Jj have been completed, while j is not yet completed.

Given J , suppose that infinitely many (or, say, |J |) pro-
cessors of unit speed were available. In this case it is easy to
see that the following A∞ scheduling algorithm is optimal:
just allocate one processor to each job and schedule each job
as early as possible. Denote by S∞ the corresponding greedy
schedule; it is easy to see that the following claims hold:

• S∞ starts and ends processing jobs always at integral
time points.

• S∞ dominates all feasible schedules of J , in the
sense that at any point in time and for any job it
has processed at least as much of that job as any
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feasible schedule of J upon a platform of m unit speed
processors.

Below, we will analyze EDF and DM by comparing them to
A∞.

A. Analysis of EDF

The EDF scheduler, at any time, processes the m jobs with
minimum deadline which are currently available (breaking ties
arbitrarily).

Lemma 3. Consider a normal collection J of jobs and let
α ≥ 1. Then at least one of the following holds:

(i) all jobs in J are completed within their deadline
under EDF on m processors of speed α, or

(ii) J is infeasible under A∞, or
(iii) there is an interval I such that any feasible schedule

for J must finish more than (αm−m+1) · |I| units
of work within I .

Proof: Suppose that both (i) and (ii) do not hold, that
is, under EDF on m speed-α processors some job j fails its
deadline dj , and J is feasible if we are given a sufficiently
large number of processors. Recall A∞, the idealized greedy
algorithm using infinitely many (or, say, |J |) processors of unit
speed.

Without loss of generality, we can assume that there is no
job j′ in the instance with dj′ > dj (otherwise, since J is
normal the removal of j′ does neither affect EDF nor A∞).
Let t∗ denote the latest point in time such that at any time
t ∈ [0, t∗] EDF with α speedup has processed at least as much
of every job as A∞ at time t. Such a time exists, since t∗ = 0
satisfies this property. As (i) and (ii) are false, we also have
t∗ < dj .

We claim that within I = [t∗, dj ] EDF finishes more than
(αm−m+1) · |I| units of work. This claim gives the lemma
due to the following reasoning. If EDF finishes more than
(αm−m+1) · |I| units of work, then the non failing algorithm
A∞ finishes at least the same amount of work during I (by
construction of I). Hence every feasible schedule has to finish
more than (αm −m + 1) · |I| units of work during I , since
it could not do more than A∞ (and thereby more than EDF)
before I .

We now prove the claim on the amount of work done by
EDF in I . Denote by X the total length of the intervals within I
where in the EDF schedule all m processors are busy. Define
Y = |I| − X . We distinguish two cases. First assume that
α · Y ≥ |I|. Denote by Y1, ..., Yk ⊆ I all subintervals of
I where not all processors are busy. We define t′ such that
α · |[t∗, t′] ∩

⋃
i Yi| = dt∗e − t∗. During all points in time

within [t∗, t′] ∩
⋃
i Yi all jobs are available for EDF which

are scheduled by A∞ during [t∗, dt∗e]. Since during all these
points in time EDF does not use all processors and runs the
processors with speed α, by time t′ it has processed at least
as much of every job as A∞ by time dt∗e.

Next, define timepoints ti, i = 0, ..., dj − dt∗e such that
α · |[t∗, ti] ∩

⋃
i Yi| = dt∗e − t∗ + i for each i. We prove by

induction that up to time ti EDF has processed as much of
every job as A∞ by time dt∗e+ i. The case i = 0 was proven

above. Now suppose that the claim is true for some value i.
Then at each timepoint during [ti, ti+1) ∩

⋃
i Yi all jobs are

available for EDF that A∞ works on during [dt∗e+ i, dt∗e+
i+1). Since during all these timepoints EDF does not use all
processors and runs the processors with speed α, by time ti+1

it has processed at least as much of every job as A∞ by time
dt∗e+ i+1. By induction the claim is true for i∗ = dj −dt∗e
and hence at time dt∗e+ i∗ = dj EDF has finished as much of
every job as A∞. This yields a contradiction since we assumed
that A∞ is feasible and EDF is not.

Now assume that α ·Y < |I|. Hence, in the interval I EDF
finishes at least

αm ·X + α · Y = αm · (|I| − Y ) + α · Y
= αm · |I| − αmY + α · Y
> αm · |I| −m · |I|+ |I|
= (αm−m+ 1) · |I|

units of work, and by construction of I , any feasible schedule
has to finish during the interval I all work that EDF finishes
during I .

The above lemma implies the following theorem if we
choose α = 2− 1/m.

Theorem 4. Any normal collection of jobs that is feasible
on m processors of unit speed is EDF-schedulable on m
processors of speed 2− 1/m.

Proof: Since we assumed the instance to be feasible,
it is in particular feasible on a sufficiently high number of
processors of unit speed. Also, the instance admits a valid
schedule which finishes in any interval I at most m · |I| units
of work. Note that if α = 2− 1/m then (αm−m+1) · |I| =
(2m− 1−m+ 1) · |I| = m|I|. Hence, Lemma 3 implies that
EDF finishes all jobs by their respective deadline.

Since every collection of jobs generated by a sporadic DAG
task system is normal, we obtain the following corollary.

Corollary 5. Any DAG task system that is feasible on m
processors of unit speed is EDF-schedulable on m processors
of speed 2− 1/m.

The above bound is tight: examples are known, even
without precedence constraints, of feasible collections of jobs
that are not EDF-schedulable unless the speedup is at least
2− 1/m [12].

B. Analysis of DM

The relative deadline of a job j is the difference (dj − rj)
between its deadline and release date. At any time, the DM
scheduler processes the m jobs with minimum relative deadline
which are currently available (breaking ties arbitrarily).

Lemma 6. Consider a normal collection J of jobs and let
α ≥ 1. Then at least one of the following holds:

(i) all jobs in J are completed within their deadline
under DM on m processors of speed α, or

(ii) J is infeasible under A∞, or speed, or
(iii) there is an interval I such that any feasible schedule

for J must finish more than (αm − m + 1) · |I|/2
units of work within I .
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Proof: Suppose that both (i) and (ii) do not hold, that
is, under DM on m speed-α processors some job j fails its
deadline dj , and J is feasible if we are given a sufficiently large
number of processors. We again will consider the idealized
greedy algorithm A∞.

Without loss of generality, we can assume that there is
no job j′ in the instance with dj′ > 2dj − rj where rj is
the release date of job j. In fact assume that in J there is
a job j′ that has deadline later than 2dj − rj . If the relative
deadline of job j′ is at most dj − rj then the job is released
after dj and we can ignore it; if the relative deadline of job
j′ is greater than dj − rj then the execution of job j is not
interrupted by job j′ and hence by removing j′ from J we
obtain a smaller collection J ′ that violates the claim. Let t∗
denote the latest point in time such that at any time t ∈ [0, t∗],
DM has processed at least as much of every job as A∞ at time
t. Such a time exists, since t∗ = 0 satisfies this property. Also,
it must hold that t∗ < dj .

Let t̂ = min(t∗, rj), I = [t̂, 2dj − rj ] and Î = [t̂, dj ].
Observe that the definition of DM implies that during Î DM
executes only jobs that have their deadline in I .

We claim that, within Î , DM finishes more than (αm −
m + 1) · |Î| units of work, hence A∞ finishes at least the
same amount of work during I (by construction of I and Î)
and, hence, every feasible schedule has to finish more than
(αm−m+ 1) · |Î| units of work during I .

Analogously to the case of EDF, we can show by contra-
diction that, within Î , DM finishes more than (αm−m+1)·|Î|
units of work. Again, we denote by X the total length of the
intervals within Î where in the DM schedule all m processors
are busy. Define Y = |Î| − X . As in the proof of EDF
we distinguish two cases. First, if α · Y ≥ |Î|, by the same
argument as in the proof for EDF it is possible to show that
DM has finished as much of every job as A∞. This yields a
contradiction since we assumed that A∞ is feasible and DM
is not.

If α ·Y < |Î|, as in the proof of EDF it follows that during
Î DM finishes at least

αm ·X + α · Y > (αm−m+ 1) · |Î|

units of work, and by construction of I , any feasible
schedule has to finish during the interval I all work that DM
finishes during Î . Since |Î| ≥ |I|/2, the lemma follows.

The above lemma implies the following theorem if we
choose α = 3− 1/m.

Theorem 7. Any normal collection of jobs that is feasible
on m processors of unit speed is DM-schedulable on m
processors of speed 3− 1/m.

Proof: Since we assumed the instance to be feasible,
it is in particular feasible on a sufficiently high number of
processors of unit speed. Also, the instance admits a valid
schedule which finishes in any interval I at most m · |I| units
of work. Note that if α = 3−1/m then (αm−m+1) · |I|/2 =
(3m − 1 −m + 1) · |I|/2 = m|I|. Hence, Lemma 6 implies
that DM finishes all jobs by their respective deadline.

Corollary 8. Any DAG task system that is feasible on m
processors of unit speed is DM-schedulable on m processors
of speed 3− 1/m.

IV. PSEUDOPOLYNOMIAL TIME TESTS
WITH BOUNDED SPEEDUP

In the following we present a pseudopolynomial time
test for both EDF- and DM-feasibility that is based on a
characterization of the work that a feasible instance requires.

Recall the definition of A∞ from Section III. Suppose we
are given a set T of sporadic DAG tasks. Lemma 3 implies
that, in order to assert that EDF feasibly schedules any job
sequence J of T when given speed α, it suffices to ensure that
for any such job sequence J ,

• A∞ is feasible for J , and

• there is no interval I during which any feasible
schedule for J must finish more than (αm−m+1)·|I|
units of work.

On the other hand, if any of the two conditions fail (with
α ≥ 2 − 1

m ) then the system is infeasible on machines with
unit speed. Using Lemma 6 allows a similar reasoning for DM.

Remark 9. Observe that both conditions are monotone in
the execution times of the job sequence. That is, if they are
satisfied by a job sequence with some execution times, they
are also satisfied by a similar job sequence with decreased
execution times. This allows us to focus on the WCETs of the
tasks when verifying the conditions.

Condition 1. It is easy to check whether A∞ is feasible
for every job sequence of T: this is the case if and only if
len(Gi) ≤ Di for all i = 1, . . . , n. This condition can be
verified by n comparisons, that is, in linear time.

Condition 2. For the remainder of this section we can focus
on verifying the second condition. For a sequence of jobs J
and an interval I , we denote by workJ(I) the amount of work
done by A∞ during I on the jobs in J whose deadlines are in
I . The motivation for this quantity is that any feasible schedule
with unit speed machines has to finish at least workJ(I) units
of work during I .

Definition 10. Given a sporadic DAG task system T, let
gen(T) be the set of job sequences that may be generated by
T, and define

workT(t) = sup
J∈gen(T)

sup
t0≥0

workJ([t0, t0 + t]).

λT = sup
t∈N

workT(t)

t
.

Intuitively, the quantity λT denotes the maximum “work-
load density” which an interval can have. In particular, if
λT > m then the system is infeasible since there is a job
sequence for T and an interval I during which more than m·|I|
units of work have to be finished by any schedule.

We want to compute the maximum workload density to
test the second condition. We cannot afford to compute it with
perfect precision. However, computing the workload density up
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to an ε-error is sufficient, because of the next lemma. It shows
that with a certain speedup EDF and DM are still feasible, if
the workload density is a bit higher than m. So, if we can at
least distinguish whether it is greater than m, or less-or-equal
to a bit more than m, then we can either say EDF and DM
with speedup are feasible, or no feasible unit speed schedule
exists.

Lemma 11. Let T be a sporadic DAG task system. Let ε ≥ 0
and suppose that workT(t) ≤ (1 + ε)mt for any t ∈ N and
that T is feasible on a sufficiently large number of unit-speed
processors. Then T is EDF-schedulable on m processors of
speed 2 − 1/m + ε and DM-schedulable on m processors of
speed 3− 1/m+ ε.

Proof: We give the proof for EDF; the one for DM follows
by exactly the same arguments and is therefore omitted.
Suppose that EDF fails on some job sequence J ∈ gen(T)
when running at speed 2− 1/m+ ε. Then by Lemma 3 there
is an interval I in which any feasible schedule must finish
more than

(αm−m+1) · |I| = (2m−1+ εm−m+1)|I| = (1+ ε)m|I|

units of work. This contradicts that workT(|I|) ≤ (1+ε)m|I|.

Therefore, in order to approximately test the feasibility of T
it suffices to estimate λT . We summarize this in the following
lemma.

Lemma 12. Let ε ≥ 0 and λ̂T be such that λT/(1 + ε) ≤
λ̂T ≤ λT . Assume that T is feasible on a sufficiently large
number of unit-speed processors. Then

(i) if λ̂T > m, T is infeasible on m unit speed proces-
sors;

(ii) if λ̂T ≤ m, T is EDF-schedulable on m speed-
(2 − 1/m + ε) processors and DM-schedulable on
m speed-(3− 1/m+ ε) processors.

Proof: In case (i), we have λT ≥ λ̂T > m. Thus, there
is a job collection J ∈ gen(T) and an interval I such that
workJ(I) > m|I|, hence T is not feasible on m unit speed
machines.

In case (ii), we have λT ≤ (1 + ε)λ̂T ≤ (1 + ε)m. Thus,
Lemma 11 yields the claim.

Given a DAG task set T, a (1+ε)-approximation algorithm
for λT is an algorithm computing a value λ̂T which fulfills

λT/(1 + ε) ≤ λ̂T ≤ λT.

In other words, it computes a value not larger than the true
maximum work density, but also not much smaller than it. Note
that these are exactly the conditions required in Lemma 12.
Thus, we can reformulate the lemma:

Corollary 13. Let ε ≥ 0. A (1 + ε)-approximation algorithm
for λT yields an EDF-schedulability test for T with speedup
2− 1/m+ ε and a DM-schedulability test for T with speedup
3− 1/m+ ε.

Approximation of λT . We will now construct such (1 +
ε)-approximation algorithm for λT , for any given ε > 0. By

Corollary 13, this allows to test the second condition for speed-
up factors arbitrarily close to 2+1/m for EDF and arbitrarily
close to 3 + 1/m for DM. The running-time of the (1 + ε)-
approximation algorithm depends on ε. Thus, by increasing
the running time of the test, we decrease the required speedup
factor.

Recall that λT represents the maximum relative load of an
interval (over all possible job sequences). Given an interval,
its total load is the sum of the loads caused by the tasks
τ1, . . . , τn. Since the tasks are independent of each other, we
can equivalently write

λT = sup
t∈N

∑n
i=1 worki(t)

t

where worki(t) is the maximum amount of work that may be
done by A∞ on jobs of task τi that are due in an interval
of length t (i.e., the maximum load caused by task τi during
an interval of length t). This maximum is achieved when the
deadline of some dag-job of τi coincides with the rightmost
endpoint of the interval, and the other dag-jobs of τi are
released as closely as possible. That is, if the interval is
(without loss of generality) [t0, t0 + t], then there is

• one dag-job with release date t0+ t−Di and deadline
t0 + t,

• one dag-job with release date t0 + t − Di − Ti and
deadline t0 + t− Ti,

• one dag-job with release date t0 + t −Di − 2Ti and
deadline t0 + t− 2Ti,

• . . .

• in general, one dag-job with release date t0+t−Di−
kTi, up to a k such that t0+ t− (k+1)Ti ≤ t0 (more
dag-jobs would not contribute to the amount of work
done by A∞ during [t0, t0 + t]).

As a consequence, worki(t) is piecewise linear as a func-
tion of t, with a number of pieces that is proportional to
|Vi|·t/Ti, as each dag-job is responsible for at most |Vi| pieces.

For our purposes it suffices to approximately compute
supt∈N worki(t)/t for each task τi. In the next lemma, we first
prove some (rough) upper and lower bounds for the quantity
worki(t).

Lemma 14. For any task τi = (Gi, Di, Ti),

worki(t) ≥ max

(⌊
t+ Ti −Di

Ti

⌋
, 0

)
· vol(Gi), (1)

worki(t) ≤
⌈
t

Ti

⌉
· vol(Gi). (2)

Proof: (1): there can be as many as b(t+ Ti −Di)/Tic
releases of τi-dag-jobs in an interval of length t whose release
date and deadline fall within the interval; each of them
contributes vol(Gi) to the work function.

(2): there cannot be more than dt/Tie releases of τi-dag-
jobs in an interval of length t whose deadline falls within the
interval. These dag-jobs are the only ones that contribute an
amount of work larger than 0.
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The number of linear pieces of the function worki(t) can
be very large; so it is not clear how to handle this function
efficiently. Therefore, we approximate worki(t) by a function
ŵi(t) defined as follows:

ŵi(t) =

{
worki(t) if t ≤ Ti/ε+ (1 + 1/ε)Di
t−Di

Ti
vol(Gi) if t > Ti/ε+ (1 + 1/ε)Di.

Lemma 15. The piecewise linear function ŵi has O( 1ε · |Vi| ·
(1 + Di

Ti
)) many linear pieces.

Proof: Define T ∗i = Ti/ε + (1 + 1/ε)Di. During the
interval (T ∗i ,∞) the function ŵi(t) is linear by definition (i.e.,
has only one linear piece). For the interval [0, T ∗i ] observe that
ŵi(t) is piecewise linear and continuous and it can change
its slope only when a dag-job has finished processing. The
number of dag-jobs released during [0, T ∗i ] is bounded by
|Vi| · dT ∗i /Tie = O( 1ε · |Vi| · (1 + Di

Ti
)), which implies the

claim.

Summing over all tasks, we get:

Proposition 16. The function ŵ is piecewise linear and has
O( 1ε ·

∑n
i=1 |Vi| ·maxni=1(1 +

Di

Ti
)) many linear pieces.

We will now use the function ŵ(t) =
∑n
i=1 ŵi(t) instead

of the term
∑n
i=1 worki(t) to (approximately) compute λT .

The next lemma shows that ŵi(t) approximates worki(t)
sufficiently well, implying that also ŵ(t) is close to work(t).

Lemma 17. For all i = 1, . . . , n and all t ∈ N,
1

1 + ε
worki(t) ≤ ŵi(t) ≤ worki(t).

Proof: First observe that worki(t) ≥ ŵi(t), since for all
t > Ti/ε+ (1 + 1/ε)Di, by (1),

worki(t)

vol(Gi)
≥
⌊
t+ Ti −Di

Ti

⌋
≥ t+ Ti −Di

Ti
− 1

=
t−Di

Ti
=

ŵi(t)

vol(Gi)
.

Moreover, using (2),

worki(t)

ŵi(t)
≤ dt/Tie

t−Di

Ti

≤ t/Ti + 1

t/Ti −Di/Ti

=
t+ Ti
t−Di

≤ (Di + Ti)/ε+Di + Ti
(Di + Ti)/ε+Di −Di

= 1 + ε.

Corollary 18. For all t ∈ N, 1
1+εwork(t) ≤ ŵ(t) ≤ work(t).

Finally, we show that for piecewise linear functions with
few pieces, we can compute supt∈N f(t)/t efficiently which
together with the above preparation allows us to estimate T
and eventually to infer EDF- or DM-schedulability.

Lemma 19. Let f : N→ N be a piecewise linear function with
K linear pieces and assume we can compute limt→∞ f(t)/t.
Then the value supt∈N f(t)/t can be found by evaluating f in
O(K) points.

Proof: Let [a, b] be a piece of f , that is, a maximal interval
in which f is linear. Then f(t)/t is monotone in [a, b], so that

max(f(a)/a, f(b)/b) ≥ f(t)/t for all t ∈ [a, b]. Therefore, to
compute supt∈N f(t)/t it suffices to compute the value of f
in K + 1 points (one of these “points” is t =∞).

We can now conclude:

Theorem 20. Let ε > 0. There is a pseudopolynomial time
EDF-schedulability test with speedup 2 − 1/m + ε, and a
pseudopolynomial time DM-schedulability test with speedup
3− 1/m+ ε.

Proof: After combining Corollary 13, Corollary 16,
Corollary 18 and Lemma 19, it only remains to show that
each ŵi(t) can be evaluated in pseudopolynomial time for
any t. This is clear from the definition of ŵi when t >
Ti/ε + (1 + 1/ε)Di. When t ≤ Ti/ε + (1 + 1/ε)Di, notice
that there can be O(1 +Di/Ti) dag-jobs that contribute only
partially (less than vol(Gi)) to ŵi(t). For each of them,
the exact amount of contributed work can be computed in
polynomial time.

V. SIMPLE SUFFICIENT CONDITIONS FOR
SCHEDULABILITY

We complement the results of the previous sections with
two sufficient conditions for EDF- and DM-schedulability,
respectively, that can be easily checked in polynomial time.

Given a sporadic DAG task system, w.l.o.g. we assume that
the DAG-tasks τi are ordered according to nondecreasing Di

(breaking ties arbitrarily).

A. EDF-schedulability

Theorem 21. Assume a sporadic DAG task system satisfies
the following conditions:

i) len(Gk) ≤ Dk/3, k = 1, 2, . . . , n,
ii) for each k, k = 1, 2, . . . , n,∑

i:Ti≤Dk

vol(Gi)/Ti+
∑

i:Ti>Dk

vol(Gi)/Dk ≤ (m+1/2)/3.

Then the system is EDF-schedulable on m unit-speed proces-
sors.

Proof: Suppose by contradiction that EDF fails to meet
some deadline while scheduling some sequence of dag-jobs
released by a sporadic task τk. Let j be the first job of task
τk that misses its deadline dj . W.l.o.g. we assume that there
are no jobs with a deadline later than dj . Consider the interval
I = [rj , dj). Denote by X the total amount of time during
I where all processors are busy. Let Y = (dj − rj) − X =
Dk −X , i.e., Y denotes the total amount of time in I during
which not all processors are busy.

We first observe that Y ≤ Dk/3. This follows from the
observation that whenever a processor is idle, EDF must be
executing a job belonging the longest chain of the last dag-job
released by τk and hence Y ≤ len(Gk), which is assumed to
be at most Dk/3 (condition (i)).

Condition Y ≤ Dk/3 implies that X ≥ 2Dk/3. Now since
the total amount of execution occurring over the interval I is
greater or equal to (mX+Y ), we conclude that the total work
done by EDF during I is greater or equal to (2m+ 1)Dk/3.
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Now recall (2) and observe that the total amount of work
due in I is bounded above by

∑
i:Ti≤Dk

⌈
Dk

Ti

⌉
vol(Gi) +

∑
i:Ti>Dk

vol(Gi)

≤ 2Dk

 ∑
i:Ti≤Dk

vol(Gi)/Ti +
∑

i:Ti>Dk

vol(Gi)/Dk


≤ 2m+ 1

3
Dk

where we have used condition (ii) and the fact that dxe ≤ 2x
when x ≥ 1. This contradicts the assumption that EDF fails
and completes the proof of the theorem.

B. DM-schedulability

Theorem 22. Assume a sporadic DAG task system satisfies
the following conditions:

(i) len(Gk) ≤ Dk/5, k = 1, 2, . . . , n,
(ii) for each k, k = 1, 2, . . . , n,∑

i:Ti≤2Dk

vol(Gi)/Ti +

+
∑

i:Ti>2Dk

vol(Gi)/4Dk ≤ (m+ 1/4)/5.

Then the system is DM-schedulable on m unit-speed proces-
sors.

Proof: Suppose by contradiction that DM fails to meet
some deadline while scheduling some sequence of dag-jobs
released by a sporadic task τk. Let j be the first job of task
τk that misses its deadline dj in the minimal instance S that
violates the theorem, i.e. S is the instance with the smallest
number of jobs that violates the theorem. W.l.o.g. we assume
that there are no jobs with a deadline later than 2dj − rj .

Consider the intervals Î = [rj , dj) and I = [rj , 2dj −
rj); the crucial observation in this case is that, during Î , DM
processes jobs that have their deadline in I .

Denote by X the total amount of time during Î when all
processors are busy according to the DM schedule. Let Y =
(dj − rj)−X = Dk −X , i.e., Y denotes the total amount of
time in Î during which not all processors are busy.

We first observe that Y ≤ Dk/5. This follows from the
observation that whenever a processor is idle, DM must be
executing a job belonging to the longest chain of the last job
released by τk and hence Y ≤ len(Gk), which is assumed to
be at most Dk/5.

Condition Y ≤ Dk/5 implies that X ≥ 4Dk/5. Now since
the total amount of execution occurring over the interval Î is
greater or equal to (mX+Y ), we conclude that the total work
done by DM during Î is greater or equal to (4m+ 1)Dk/5.

Now recall (2) and observe that the total amount of work
due in I is bounded above by

∑
i:Ti≤2Dk

⌈
2Dk

Ti

⌉
vol(Gi) +

∑
i:Ti>2Dk

vol(Gi)

≤ 4Dk

 ∑
i:Ti≤2Dk

vol(Gi)/Ti +
∑

i:Ti>2Dk

vol(Gi)/4Dk


≤ 4m+ 1

5
Dk

where we have used the fact that d2xe ≤ 4x when x ≥ 1/2.
This contradicts the assumption that DM fails and completes
the proof of the theorem.

When the DAG task system satisfies Dk ≤ Tk for all tasks
τk, the following theorem provides a slightly better guarantee.

Theorem 23. Assume a sporadic DAG task system satisfies
the following conditions:

(i) len(Gk) ≤ Dk/4, k = 1, 2, . . . , n,
(ii) for each k, k = 1, 2, . . . , n,∑

i:Ti≤2Dk

vol(Gi)/Ti +

+
∑

i:Ti>2Dk

vol(Gi)/Dk ≤ (m+ 1/3)/4,

(iii) Dk ≤ Tk, k = 1, 2, . . . , n.

Then the system is DM-schedulable on m unit-speed proces-
sors.

Proof: The proof is similar to the proof above. Suppose
by contradiction that DM fails to meet some deadline while
scheduling some sequence of dag-jobs released by a sporadic
task τk. Let j be the first job of task τk that misses its deadline
dj . W.l.o.g. we assume that there are no jobs with a release
later than dj . Consider the intervals Î = [rj , dj); in this case
the crucial observation is that, during Î , DM processes jobs
that have their deadline in Î or are released in Î . Since the task
system satisfies (iii) it follows that for each DAG task there is
at most one job that is released in Î that is not due in Î .

As in the previous proof we denote by X the total amount
of time during Î where all processors are busy according to a
DM schedule. Let Y = (dj−rj)−X = Dk−X , i.e., Y denotes
the total amount of time in Î during which not all processors
are busy. reasoning similarly to the previous proof we observe
that Y ≤ Dk/4 and X ≥ 3Dk/4; Therefore, the total work
done by DM during Î is greater or equal to (3m+ 1)Dk/4.

Now recall (2). Since the total amount of work done in Î
by DM is bounded by the total work due in Î or released in
Î , we have∑

i:Ti≤Dk

(⌈
Dk

Ti

⌉
+ 1

)
vol(Gi) +

∑
i:Ti>Dk

vol(Gi)

≤ 3Dk

 ∑
i:Ti≤Dk

vol(Gi)/Ti +
∑

i:Ti>Dk

vol(Gi)/3Dk


≤ 3m+ 1

4
Dk,
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where we have used the fact that dxe ≤ 2x when x ≥ 1. This
contradicts the assumption that DM fails and completes the
proof of the theorem.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have closed the gap between feasibility
analysis for the sequential sporadic task model and that of its
parallel generalization, in which each sporadic task is modeled
as a DAG. We have shown that, even for DAG tasks, global
EDF has a tight speedup bound of 2 − 1/m, where m is
the number of processors, while DM has a speedup bound
of at most 3 − 1/m. We have also presented polynomial and
pseudopolynomial time tests for determining whether a set
of sporadic DAG tasks can be scheduled by EDF or DM to
meet all deadlines on a specified number of processors. It is
remarkable that the speedup bound of the pseudopolynomial
time test matches that of the best EDF-schedulability test
known for ordinary (sequential) sporadic task sets, see [2],
[4]. This suggests that better speedup bounds can only be
achieved by algorithms with a higher degree of sophistication
than global EDF. Another interesting direction for future work
is to provide speedup bounds for sufficient schedulability tests
based on simpler conditions, such as the polynomial time
schedulability tests that we proposed in Section V.
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