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Abstract-- The increasing penetration level of wind power 
challenges robust unit commitment with feasibilities and high 
computational burden. To meet these challenges, we propose two-
fold advances for two-stage robust unit commitment (TS-RUC), 
aiming at providing feasible solution and efficient decision tool for 
TS-RUC with multiple wind farms. First, the feasibility 
identification method is proposed to ensure the tractability of TS-
RUC. The feasibility boundaries are determined based on values 
of two sets of introduced slack variables, the wind power 
curtailment and load shedding. Second, the disjunctive 
programming is used to improve the computational efficiency of 
the max-min problem, which is reformulated with convex hull 
relaxation (CHR) method to reduce constraints embedding binary 
uncertainty variables. Simulation results on the modified IEEE-
118 bus system and Henan power grid demonstrate that the 
proposed improvement for the TS-RUC can be implemented for 
power systems with multiple wind farms and significant wind 
power. The feasibility identification can guarantee a feasible 
solution and the use of the CHR can improve the computational 
efficiency. 

Index Terms-- Wind power uncertainty, robust unit 
commitment, feasibility identification, column-and-constraints 
generation, convex hull relaxation method 

NOMENCLATURE 
Indices 
i   index of thermal power units 
j   index of wind farms 

t   index of periods 
b   index of system buses 
l   index of transmission lines 
m   index of segments of linearized fuel cost function 

Parameters 
GN  The total number of thermal power units 

JN   The total number of wind farms 

TN  The total number of periods 

BN  The total number of system buses 

MN   The total number of segments of linearized fuel function 

bG  The set of thermal power units located at bus b  

bW  The set of wind farms located at bus b  

SU
iC  The start-up cost of thermal power unit i  

min
if  The fuel cost corresponding to the minimum output 

level of unit i  

itmK  The slope of segment m of linearized fuel cost function 
of unit i  

max
imP  The maximum value of segment m of linearized fuel 

function of unit i  
windC  The penalty price of wind power curtailment  
loadC   The penalty price of involuntary load shedding 
lbg   The distribution factor of the net load at bus b  on line 

l 

jtW   The forecast value of wind farm j at period t 

jtW   The difference between the upper bound of the 
uncertainty set and the prediction value of wind farm j 
at period t 

jtW  The difference between the prediction value and the 
lower bound of the uncertainty set of wind farm j at 
period t 

btd   The forecast value of load at bus b  at period t 
max min/i iP P  The maximum/minimum output of unit i  

R R/i iU D   The upward/downward ramping rate of unit i  
min min
up, dn,/i it t   The minimum up/down time of unit i  

ur dr/it itC C   The price of upward/downward reserve capacity 
for unit i  at period t 

Variables 
itI  The binary variable for on/off status of thermal power 

unit i  at period t 

itu   The binary variable for start-up of unit i at period t 

itv   The binary variable for shut-down of unit i at period t 

itP   The scheduled power output of unit i at period t 

itmP   The power output of segment m for unit i at period t 
ur dr/it itP P The scheduled upward/downward reserve capacity of 

unit i at period t 
ur dr/it itp p The deployed upward/downward reserve of unit i at 

period t under worst scenario of wind power 
cur
btL   The involuntary load shedding at bus b  at period t 

under worst scenario of wind power 
cur
jtW   The wind power curtailment for wind farm j at period t 

under worst scenario of wind power 
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jtw   The possible wind power output in actual for wind farm 
j at period t 

jtZ    The binary variable to indicate if the wind farm j reaches 
its upper bound at period t 

jtZ 
 The binary variable to indicate if the wind farm j reaches 

its lower bound at period t 

I.  INTRODUCTION 
When the penetration level of wind power is low, the 

system operator can deploy a certain level of reserve in the 
traditional deterministic unit commitment (DUC). However, 
the significant growth of wind power has changed this situation 
[1]-[5]. With more wind power integrated, the system is facing 
a high level of uncertainty. 

To cope with the uncertainties, both stochastic 
programming [6] and robust optimization [7], as well as their 
combination [8], [9], has been applied in the day-ahead 
scheduling. The stochastic unit commitment (SUC) [10] - [12] 
adopts scenario sets to describe uncertainties. However, its 
computational burden increases with the number of scenarios 
[13]-[16]. Compared to the SUC, the robust unit commitment 
(RUC) usually has the easy-to-obtain set to characterize the 
uncertainty [17], which avoids the intractable scale by using the 
robust counterpart instead of a huge number of scenarios. To 
guarantee full adaptability to the uncertainty, two-stage RUC 
(TS-RUC) has been proposed, and then widely utilized [18]-
[20]. With the increasing number of wind farms, additional 
problems emerge for traditional TS-RUC, both in formulation 
and solution algorithms.  

From the formulation perspective, the feasibility cannot 
always be guaranteed if significant variations are embedded. 
The existing work assumes that the TS-RUC always has a 
feasible solution [21], [22]. However, such an assumption does 
not hold when the system has limited flexibility resources to 
accommodate all the uncertainties. To identify the infeasible 
instances, [18] formulates a feasibility sub-problem to generate 
feasibility cuts that will be added to the master problem in the 
first stage. However, the feasibility sub-problem cannot 
guarantee a feasible solution of the first stage at all instances 
without any slack variables introduced. Further, the slack 
variables and their penalty terms are introduced to the security 
constraints in the second-stage optimization to guarantee the 
nonempty solution space. However, pure mathematical terms 
cannot give system operators the concrete information without 
clear physical meaning. For example, even though [23-24] have 
considered the slack variables, they fail to tell what counter-
measures should be taken by the system operators when the 
slack variables are non-zero.  

From the algorithm perspective, when the number of wind 
farms increases, more binary variables and associated 
constraints are needed to represent the uncertainties of multiple 
wind farms, which significantly influences the computational 
efficiency. Most references utilize the column-and-constraints 
generation (C&CG) or Benders algorithms to accelerate [25]-
[27]. Ref. [28] investigates the decentralized algorithm to 
reduce the computational complexity. The difficulty mainly lies 
in the nonlinear max-min problem. Refs. [21] and [29] utilize 
outer approximation (OA) and mountain climbing methods to 

solve the max-min problem, respectively. However, neither OA 
nor mountain climbing can guarantee the global optimality of 
the max-min problem, even though they have high 
computational efficiency. In contrast, the big-M (BM) [30] 
method has global optimality when reformulating the max-min 
problem. However, as the BM reformulates the bilinear terms 
in each period of each wind farm with four sets of mixed integer 
constraints, it has the problem of computation scale increasing 
with the number of wind farms.  A fact that has been neglected 
by most researches is the specific characteristic of bilinear 
terms in the dual optimization of max-min problem. For a pair 
of bilinear terms, if their contained dual variables are the same, 
while their contained binary variables are different, and the sum 
of the two binary variables is equal to one, then such a pair of 
bilinear terms can be seen as the disjunctive programming [31] 
and can be relaxed by the convex hull relaxation (CHR) method. 
Compared to BM, CHR relaxes a feasible region with tighter 
solution space and fewer constraints [32, 33]. It provides an 
alternative solution to encounter the large scale of bilinear terms 
in TS-RUC with better computational efficiency.  

In this paper, we focus on developing an efficient decision 
tool with feasible solutions for power systems with multiple 
wind farms. Therefore, the traditional TS-RUC is further 
developed by improving feasibility identification and 
computational efficiency. With these two advances, the system 
operators can guarantee the decision-making tractable and less 
computation burden. The main contributions of this paper are 
summarized as follows: 

1) penalty terms of two sets of introduced slack variables 
are deployed into the objective of the second stage of the TS-
RUC in order to address the feasibility identification of 
uncertainties. The introduced slack variables with physical 
meaning enable the solution space nonempty and guarantee the 
existence of feasible solution in all instances. With the 
feasibility identification, the system operators can extract a 
feasibility uncertainty set to quantify the maximally allowed 
uncertainties in the system, within which the system operators 
can always have feasible uncertainty balance measures.  

2) the computationally efficient optimization technique for 
the TS-RUC is proposed to reduce the computation burden 
caused by the increasing number of uncertainty variables and 
constraints when more wind farms are integrated. The CHR 
method is utilized to reformulate the bilinear terms matched in 
pairs. With the proposed solution technique, lots of constraints 
with binary uncertainty variables are removed. Besides, for the 
first time, a comprehensive comparison is made among CHR, 
BM, and OA for TS-RUC with multiple wind farms in 
perspectives of computational accuracy and efficiency. 

The rest of the paper is organized as follows. Section II 
presents the formulation of the TS-RUC model with feasibility 
identification. The CHR is combined with the C&CG algorithm 
to solve the TS-RUC model in Section 3. Numerical results on 
a modified IEEE 118-bus system and a practical power system 
are presented in Section IV. Section V concludes. 

II.  TWO-STAGE RUC FORMULATION WITH FEASIBILITY 
IDENTIFICATION  

In this section, the TS-RUC optimization is formulated. 
The objective function (1) is to minimize the total operation 
cost while satisfying all security constraints. The first-stage 
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operation cost consists of start-up cost, fuel cost and reserve 
capacity cost in the base case, and the second-stage cost 
includes the WPC and LS penalty cost under the worst-case 
scenario. 

GT M
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The main difference between the proposed model and 
those in existing works lies in the objective function at the 
second stage. The slack variables cur

jtW  and cur
btL  are 

introduced, indicating the WPC and LS, respectively. 
Conventionally, the worst-case scenario is assumed to be 

feasible in the second-stage optimization. However, this may be 
not true when the penetration level is high. So relaxation for 
second-stage is a must. Besides, the slack variables in this paper 
are key performance indices of the power system, which can be 
used to justify whether the power systems can accommodate all 
the uncertainties of wind power. 

If the determined values of cur
btL  and cur

jtW  are zero, then it 
will be always feasible to accommodate the wind power within 
the given uncertainty set. Otherwise, with the nonzero values of 
slack variables, the feasibility boundaries can be derived by 
subtracting the slack variable values under each critical 
scenario from the original uncertainty set.  

The constraints include (2)-(10) under the base case and 
(11)-(15) under various uncertainties of wind power. 

(2)-(3) model the changes of the on/off status of power 
plants and impose their minimum up and downtime 
requirements. (4) constitutes the set of power balance. (5) limits 
the maximum and minimum power outputs. (6)-(7) describe the 
linear piecewise constraints of power outputs. The ramping 
limits, transmission line power flow limits and reserve capacity 
limits are enforced by (8), (9), (10), respectively. It is worth 
noting that the active power loss of lines is neglected because 
we utilize the direct current power flow method to model 
constraints of the transmission line power flow. (11) describes 
the power rebalance adapting to wind power uncertainty. (12) 
guarantees the generation and ramping limits after devoting the 
reserves in response to wind power uncertainty. (13) represents 
line flow limits in response to wind power uncertainty. (14) 
declares the limits of WPC and LS. (15) is the uncertainty set 
of the wind power by using binary variables. Without loss of 
brevity, the uncertainty only stems from the wind power 
production. 
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, 1jt jt jt jt jt jt jt jtw W W Z W Z Z Z            (15) 
In the TS-RUC model, the decision variables are divided 

into two groups. The first group consists of binary variables itI , 

itu , itv , and continuous variables itP , itmP , ur
itP , dr

itP . The 
binary variables determine the on/off status, start-up and shut-
down of the power plants. The continuous variables determine 
the output scheduling and upward/downward reserve capacity. 
In general, these decisions are made before the realization of 
uncertainties and they are robust against any realization of 
uncertainties in the second stage. 

The second-stage decision variables u r
itp , dr

itp , cur
btL , cur

jtW , 
corresponds to the devoted reserves and the volume of LS and 
WPC. They represent the re-dispatch actions in response to 
uncertainties. 

The above formulation can be recast as the following 
compact matrix form, which is suitable for developing solving 
algorithms. 

 

1 2

T

, ,
min { ( ) max min }
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)
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X Z Y Z

+

Y
X c Y

g X

HX NY h E Z
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Z E

 (16) 

where  , , , , , X = u v I P P P
ur dr  is the decision vector of the 

first stage, and  Y W L p p
cur cur ur dr, , ,  is the deterministic 

decision vector of the second stage, and ,{ } Z Z Z  is the 
uncertain decision vector of second stage. H  and N  are the 
coefficient matrices; b , c , h  are the coefficient vectors. The 
first stage is associated with the day-ahead dispatched 
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scheduling with objective ( )f X , while in the intra-day, the 
infeasibility penalty cost is needed with minimal T

c Y  subject 
to the worst-case scenarios. (16.a) represents constraints (2)-(10) 
which only contains variables of the pre-dispatch stage, (16.b) 
represents constraints (11)-(15). 

III.  PROBLEM REFORMULATION 
Due to the increasing deployment of the wind power, the 

number of wind farms integrated to the power system raises. 
This challenges the TS-RUC with the explosive number of 
uncertainty variables and constraints. In this section, we focus 
on computational efficiency improvement when solving the 
formulated optimization in the previous section. The 
improvement comes from two aspects. First, the C&CG 
algorithm efficiently decomposes the original problem into a 
master problem (MP) and a sub-problem (SP). Second, the 
relaxation of the SP is conducted from the perspective of 
disjunctive programming. In the first aspect, the SP aims to 
derive a critical scenario of wind power uncertainty and 
provides an upper bound for the original problem. Then, new 
variables and constraints corresponding to the critical 
uncertainty scenario are added to the MP to obtain a lower 
bound. The MP and SP are solved iteratively until the gap 
between the upper and lower bounds is smaller than a pre-
defined tolerance. In the second aspect, the CHR method is 
utilized to reformulate the SP problem. Compared with the 
traditional BM method, the CHR method relaxes the feasible 
region of the SP with fewer constraints embedded with binary 
variables, which reduces the calculation burden efficiently. 

A.  Master UC Problem 

The MP in (17) replaces the objective function of the 
second stage with an auxiliary variable  . Then the variables 
to be solved in the MP include the base-case UC scheduling, 
ED decisions, auxiliary variable   and all the additional 

variables  1,2, ,l l k Y , where l  is the iteration index and 
k is current number of iterations. The constraint set of the MP 
consists of (17.a)-(17.c), which represents the first-stage 
constraints, the optimal cutting planes, and the feasible cutting 
planes, respectively. The MP iteratively adds new constraints 
under the critical uncertain scenario represented by l

+*
Z and 

l

*
Z , and derives new decisions on X . 
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The MP aims to relax the original optimization model and 
provides a lower bound for the original problem. 
Mathematically, it is a standard MILP problem which can be 
solved by the commercial solvers. 

B.  CHR reformulation technique for max-min dual problem 

Fix the first-stage decision  , , , , ,X u v I P P P
* * * * * ur* dr*  

in the kth iteration, the SP can be expressed as follows: 

* T

*
1

( ) max min ( )
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. . ( ) : ( )s t b
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Y
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2HX NY h E Z E Z π
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The SP is a typical “max-min” bi-level problem and cannot 
be solved directly. The duality theory is utilized to transform 
the inner “min” problem to its equivalent “max” formulation. 
During the transformation, the variables +

Z  and 
Z  are 

treated as parameters. Then the max-min problem can be 
reformulated as a single level “max” problem, as shown in (19). 

* T
1 2
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T
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Z Z π
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In (19), the dual problem involves variables +
Z , 

Z , and 
π . The objective function contains non-concave bilinear terms 

+
Z π  and  Z π , which are NP-hard. To linearize these 
bilinear terms, traditional BM replaces the bilinear terms with 
auxiliary variables 1θ and 2θ  and adds mixed integer 
constraints on the auxiliary variables, as shown in (20). 

* T T T
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Z Z π
h HX π E θ E θ

c N π π Z Z

θ Z

θ Z

π Z θ π Z

π Z θ π Z

T

+

s.t. 0 0 {0,1}

+
+

   (20) 

In (20), M is a large enough constant. The dimensions of 
+

Z  and 
Z  equal to the product of the number of wind farms 

JN  and the number of time periods TN . When JN  increases, 
the dimensions of +

Z  and 
Z , as well as the number of mixed 

integer constraints increases. This may significantly affect the 
calculation time. 

The disjunctive programming is an alternative solution for 
the case that a continuous variable is multiplied by different 
binary integer variables. Assume that the dual variable π  is 
multiplied with binary variables: both +

Z  and 
Z  

simultaneously. The disjunctive programming combines the 
solution space with multiple discrete constraint sets. The 
continuous dual variable in (19) can be recast as follows: 

1 2( ) 0 ( ) 0
Z Z

g π g π

    
   

    
       (21) 

where 1( )g π  and 2 ( )g π  are constraint sets on π
corresponding to +

Z  and 
Z , respectively. As the sum of +

Z  
and 

Z is equal to 1, when 1+
Z , π  is uniquely determined 

by 1( )g π , otherwise, π  is uniquely determined by 2 ( )g π . 
Fig. 1 gives an illustrative example of the disjunctive 

programming in the two-dimensional solution space. The 
original feasible region contains two separate parts (marked in 
red) due to the discrete variables +

Z  and 
Z . The optimal 

solution falls into the bottom area when +
Z  equals to 1, while 

falls into the top area when 
Z =1. Our approach is to build a 

convex hull to cover and connect the two areas in the plan, 
hence called convex hull relaxation (CHR). By using the CHR 
method, the feasible region is relaxed to the area within the 



 5

dotted line. It is represented by the smallest set of points that 
include the full feasible region of the original problem. 

xπ

yπ

Z


Z
,( )π x yπ π

2 ( )g π  0

1( )g π  0
 

Fig. 1.  Relaxation feasible region by CHR method. 
 

In the BM method, each bilinear term is reformulated 
alone, with four groups of mixed integer constraints, as shown 
in (20.a)-(20.d). Different from the BM method, the CHR 
method reformulates the bilinear terms matched in pairs. First, 
the new variables 1π  and 2π , derived from the original variable 
π , are introduced, satisfying 1 2 π π π . 1π  and 2π  
correspond to the feasible region presented by +

Z and 
Z , 

respectively. Besides, 1π  and 2π  are bounded between zero 
and M multiplied by +

Z and 
Z , respectively. The 

reformulation of (19) based on the CHR method is shown as 
follows. 

1 2

* T T
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h HX π E π E π

c N π π Z Z

π Z

π Z

π π π

T

T

+

s.t. 0 0 {0,1}

   (22) 

As can be seen from (22), when 0 Z , 2π  will be 
constrained to 0, and π  will be entirely determined by 1π ; 

when 0 Z , 1π  will be constrained to 0, and π  will be 
entirely determined by 2π . 

Mathematically, the reformulated problem in (22) by the 
CHR method is a MILP problem and can be solved by the 
commercial solvers. In terms of calculation scale, it adds two 
groups of mixed integer constraints and a group of linear 
constraint. Therefore, its calculation scale is less than the BM. 

C.  Solving procedure 

The complete procedure of the solving algorithm for the 
TS-RUC can be described as  

Step 1: Set the lower bound LB    and upper bound 
UB    for MP in (17). Let the iteration index 0k  . Set the 
tolerance gap  as a very small constant. 
Step 2: Solve the MP in (17) and derive the optimal solution 

* { , , , , }, * * ** * *
k k k k kk k P PX u v PI

ur dr and *k , as well as the 

optimal objective value * *( )k kL f  kX . Then update the 
lower bound of MP as kLB L . 
Step 3: Fix *

kX , solve the max-min SP based on the CHR 
reformulation in (22). Derive its optimal solution 

1 2( , , , , )+* * * * *
k k k k kZ Z π π π , as well as the optimal objective value 

* T T * T *
1 1 2 2( ) +kU    *

k k k kh HX π E π E π . Furthermore, update 

the upper bound as min{ ( )+ }*
kX

kUB UB f U ， . 
Step 4: If UB LB   , terminate the procedure and return 

*

kX  as the final solution. Otherwise, let 

 1 1 1 1 1, , ,k     k k k kY W L p p
cur cur ur dr  and add optimal and feasible 

cutting planes in (17.b) and (17.c) to the MP.  
Step 5: Update 1k k   and go back to Step 2.  

IV.  NUMERICAL CASE STUDIES 

In this section, we use the modified IEEE-118 bus system 
and a practical power system in China to validate the 
effectiveness of the proposed TS-RUC formulation and the 
associated solution algorithm.  

The simulations on two test systems are both conducted in 
2 aspects. First, the effectiveness of the TS-RUC model is tested 
in terms of feasibility identification and robustness. Second, the 
computational efficiency of the solving algorithm is tested as 
well as the global optimality. 

The simulations were conducted on the tower server with 
Intel Xeon E5-2630@2.20 GHz and 128-GB RAM. The TS-
RUC optimization was implemented in MATLAB and solved 
by GUROBI 8.0. The gaps for the MP and SP are all set as 1e-
4. 

A.  Test on the modified IEEE 118-bus System 

The modified IEEE 118-bus test system includes 54 
thermal units with total capacity of 7220 MW and 186 
transmission lines, the detailed data of units and network 
parameters can be found in [34]. 5 300 MW wind farms are 
connected to bus 10, 25, 26, 37, and 38, respectively. 13 
transmission lines are added to the original system. The upward 
and downward reserve capacity price of each thermal unit is set 
as 40% of its maximum incremental cost of producing energy 
[35]. The 24-hour wind power generation is based on the 
historical data of the EirGrid [36], and the load demand profile 
is based on a provincial power grid of China. Both the wind 
power and load data have been scaled down to match the system. 

 

 
Fig. 2.  System load profile and wind power generation of five wind farms. 

(1) Feasibility identification and robustness test 
3 studied cases are listed in Table 1. In these cases, the 
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capacities of wind power are the same. The difference mainly 
lies in the ramping rate of the thermal units. 

TABLE I  
CASE SETTING 

Cases Simulation parameter 
Case 1 Base case 
Case 2 2% ramping rate improved on the basis of Case 1 
Case 3 5% ramping rate improved on the basis of Case 1 

 
The TS-RUC model without feasibility identification is 

also built and solved for comparison. Table 2 presents the 
comparative results between two models for 3 cases. It can be 
seen from Table 2 that with the proposed TS-RUC model we 
can always identify whether the system can accommodate all 
the wind power according to the value of WPC and LS. As in 
Case 3, both the WPC and LS are zero, which indicates that the 
system has sufficient flexibility to cope with any possible 
fluctuating scenarios of the wind power. While in Case 1 and 
Case 2, WPC and LS are not zero, indicating that the system 
needs more flexibility sources to avoid curtailment or 
unsupplied load. In contrast, the TS-RUC model without 
feasibility identification may be intractable in Case 1 and Case 
2, even though it can give the same results as the proposed TS-
RUC model in Case 3. 

TABLE II 
COMPARISON RESULTS BETWEEN TWO MODELS 

Model Cases 
Obj. of 

first-stage 
(106$) 

Total LS 
(MW) 

Total WPC 
(MW) 

TS-RUC with 
feasibility 
guarantee 

Case 1 1.611737 1.70 246 
Case 2 1.608902 0.51 143 
Case 3 1.608493 0 0 

TS-RUC without 
feasibility 
guarantee 

Case 1 Infeasible 
Case 2 Infeasible 
Case 3 1.608493 0 0 

 
Case 1 is zoomed in to illustrate the feasibility boundaries 

of the uncertainty set derived from the proposed TS-RUC 
model. As shown in Fig. 3, the upper and lower feasibility 
boundaries can be easily derived by subtracting the WPC and 
LS from the forecasted maximal available wind power. OUB 
and OLB are the forecasted upper and lower boundaries, 
respectively. NUB is the newly derived upper boundary to 
assess the maximal wind power that the system can 
accommodate. 

It should be noted that the solved first-stage objective and 
the total amount of WPC and LS are influenced by the price 
coefficients in the objective function. Different penalty prices 
of LS and WPC for Case 2 and Case 3 are compared in Table 3. 
In Case 2, when the penalty prices of LS and WPC are large 
enough, the first-stage objective remains the same; when the 
penalty price decreases, the volume of LS and WPC increase to 
achieve more economical results. In Case 3, when the penalty 
prices of LS and WPC are decreased to an extent, the volume 
of LS and WPC in the second stage no longer remains 0. This 
phenomenon means that even though the system has the ability 
to accommodate all the uncertainty of wind power, the WPC 
and LS contribute to more economical decisions under a smaller 
penalty price. Therefore, when the proposed model is used, the 

penalty price of LS and WPC should be set large enough to 
guarantee its function in feasibility identification. 

 

  

  

  
Fig. 3.  The derived boundaries of the uncertainty set in Case 1. 

TABLE III  
COMPARATIVE RESULTS WITH DIFFERENT PENALTY PRICE OF LS AND WPC 

Cases LS and WPC 
price ($/MW∙h) 

Obj. of first-
stage (106$) 

Total LS 
(MW) 

Total WPC 
(MW) 

Case 2 
3.5×107/8×105 1.608903 0.51 143 
3.5×106/8×104 1.608903 0.52 163 

3500/80 1.556829 4.56 630 

Case 3 
3.5×107/8×105 1.608493 0 0 
3.5×106/8×104 1.608493 0 0 

3500/80 1.556560 2.87 449 
 
 (2) Robustness of the decision 

In the following, we test the robustness of the solutions in 
Case 2 and Case 3 by the proposed TS-RUC model. The 
solutions are obtained with the penalty price of LS and WPC 
set as 3.5 107 and 8 105, respectively. By checking whether 
the volumes of WPC and LS are zero under massive randomly 
generated scenarios, the robustness can be verified. 

In Table 4, we generate two scenario sets to simulate the 
uncertainty of wind power. Scenario set 1 is generated within 
the range of the original uncertainty set, while Scenario set 2 is 
generated within the feasibility boundaries of uncertainty set. 
Both two sets contain 5000 scenarios. As shown in (18), when 
the first-stage decisions are fixed and the uncertainty of the 
wind power is uncovered, the “max-min” problem of the second 
stage becomes a “min” problem. We solve the “min” problem 
to achieve WPC and LS under each sampled scenario. 

As can be seen from Table 4, when the uncertainty is 
simulated by Scenario set 1, the maximum and average values 
of WPC are not zero; while when Scenario set 2 is utilized to 
simulate the uncertainty, both the WPC and LS are zero in terms 
of maximum and average values. In Case 3, as its original 
uncertainty set and feasibility uncertainty set are the same, there 
are no WPC and LS for both scenario sets. Therefore, it can be 
concluded that as long as the wind power realization is within 
the feasibility uncertainty set, the system can always provide a 
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feasible re-dispatch solution without WPC and LS. 

TABLE IV 
 ROBUSTNESS TESTING FOR THE SOLUTION OF THE PROPOSED MODEL 

Scenario sets Indexes Case 2 Case 3 

Scenario set 1 

Max WPC (MW) 30.68 0 
Average WPC (MW) 0.877 0 

Max LS (MW) 0 Average LS (MW) 

Scenario set 2 

Max WPC (MW) 0 Average WPC (MW) 
Max LS (MW) 0 Average LS (MW) 

 
 (3) Computational efficiency 

In order to illustrate the advance in the computational 
efficiency, BM and OA methods are implemented and 
compared. Rather than solving the optimization directly, the 
inactive constraints are identified and removed first [37, 38]. 
All the three methods, CHR, BM, and OA are combined with 
the C&CG algorithm for the decomposition of the two-stage 
optimization. 

With the increasing number of wind farms integrated into 
the system, there are more and more stochastic variables in the 
formulated optimization problem. Hence the size of the max-
min problem in Section 3(b) raises. To investigate the 
performance of three methods under different calculation scale, 
three cases are set as shown in Table 5 with a different number 
of wind farms. In Case 4.1, only one wind farm located at bus 
10 is considered. In Case 4.2, there are 3 wind farms located on 
bus 10, 25 and 26, respectively. In Case 4.3, there are 5 wind 
farms at bus 10, 25, 26, 37, and 38. The ramping rate of Case 4 
is the same as Case 1, and the penalty coefficient of LS and 
WPC are set as 3.5 107 and 8 105, respectively. The optimal 
value of the objective function and the computational time are 
given in Table 5 and Fig. 4. 

TABLE V  
PERFORMANCE OF THREE SOLVING ALGORITHMS  

Cases Solving 
algorithm 

Opt. Obj. 
(106$) 

Iterative 
times 

Case 4.1 
CHR 1.665505 6 
BM 1.665505 6 
OA 1.665501 8 

Case 4.2 
CHR 1.621866 7 
BM 1.621866 7 
OA 1.619545 6 

Case 4.3 
CHR 1.611737 9 
BM 1.611517 9 
OA 1.603863 7 

 
As can be seen from Table 5, the difference in the 

optimality between C&CG-CHR and C&CG-BM is within the 
tolerance gap. Therefore, it can be concluded that C&CG-CHR 
can guarantee the global optimality, just the same as C&CG-
BM. In contrast, the C&CG-OA method usually obtains a 
smaller objective value than the other two methods due to the 
local optimality of the max-min problem. For the OA method, 
the bilinear term in (19) is linearized around intermediate 
solution points and linear approximations are added to the OA 
formulation. Since the bilinear term is non-concave, only a local 
optimum is guaranteed by the OA algorithm [21]. Failing to 

obtain the worst-case scenario of the max-min problem means 
the solution cannot guarantee the robustness of the decision, 
which can be seen from the nonzero average and maximum 
values of WPC and LS under 5000 random scenarios derived 
from the feasible uncertainty set in Table 6.  

TABLE VI 
ROBUSTNESS TESTING FOR THREE SOLUTION METHOD 

Cases Solving 
algorithm 

Max 
WPC 
(MW) 

Average 
WPC 
(MW) 

Max LS 
(MW) 

Average 
LS 

(MW) 

Case 
4.1 

CHR 0 0 0 0 
BM 0 0 0 0 
OA 10.19 2.58 0 0 

Case 
4.2 

CHR 0 0 0 0 
BM 0 0 0 0 
OA 91.24 4.02 231.10 48.89 

Case 
4.3 

CHR 0 0 0 0 
BM 0 0 0 0 
OA 193.58 8.10 274.95 65.47 

 

 
Fig. 4.  Calculation time for three solving algorithms. 

Fig. 4 shows that the C&CG-CHR presents a better 
performance in calculation time than C&CG-BM, especially in 
the systems with multiple wind farms. The more wind farms 
exist in the system, the more improvement can the proposed 
C&CG-CHR make. As in Case 4.3, there are 5 wind farms. The 
C&CG-BM takes 2,485 seconds to obtain the optimal solution, 
while C&CG-CHR can improve the computational efficiency 
by about 55% than C&CG-BM in this case. This is because 
more wind farms relate to more mixed integer constraints, while 
the CHR can reformulate the feasible region with fewer 
constraints embedded with binary variables and connect the 
discrete constraint set with the minimum convex hull, which 
can reduce the scale of constraints and shrink the searching 
region of solution space than BM. For C&CG-OA method, its 
iterative times during one solving procedure are random due to 
the randomly generated uncertainty parameters in each iteration. 
Therefore its final decision and calculation time are also 
random, dependent on the randomly generated uncertainty 
parameters. Even though its calculation time is less than the 
CHR and BM method in Case 4.3, it is at the expense of losing 
robustness of solutions. 

B.  Test on the Practical Henan Power Grid in China 

A practical test system, the Henan power grid in China, is 
also used to further validate the effectiveness of the proposed 
TS-RUC formulation and the associated solution algorithm. 
This system includes 5 wind farms with the total capacity as 
3,600 MW, and the peak load is 29,622 MW. Besides, this 
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system is interconnected with other power systems by 6 tie-
lines with net injected power of 5,821 MW. 

Table 7 presents the comparative results between two 
models for the Henan power grid. Table 7 has similar results 
with Table 2. The comparative results validate that the proposed 
formulation method for the TS-RUC can guarantee the 
tractability of the model, compared with the traditional TS-
RUC model. 

TABLE VII 
COMPARISON RESULTS BETWEEN TWO MODELS FOR HENAN POWER GRID 

Model Obj. of first-
stage (107$) 

Total WPC 
(MW) 

Total LS 
(MW) 

TS-RUC with 
feasibility guarantee 1.3737207 1099 17.7 

TS-RUC without 
feasibility guarantee Infeasible 

 
In addition, the computational performance of the three 

solution algorithms on the Henan power grid is shown in Table 
8. The comparative results demonstrate that the CHR method 
has higher computational efficiency than the BM method. Even 
though the OA method has shorter calculation time than the 
CHR, it cannot guarantee the global optimality, which can be 
illustrated by comparative results in Table 9. Table 9 shows the 
testing results of the robustness of solutions under 5000 random 
scenarios derived from the feasible uncertainty set. The non-
zero values of WPC have verified the non-global optimality of 
the OA method. In contrast, the CHR method can guarantee the 
security of the redispatch, with no WPC under tested scenarios. 
The reason for non-zero values of LS in the CHR is because the 
randomly generated scenarios derived from the feasible 
uncertainty set do not consider the load shedding. 

TABLE VIII 
PERFORMANCE OF THREE SOLVING ALGORITHMS  

Solving algorithm Obj. of first-
stage. (107$) 

Calculation time (s) 

CHR 1.3737207 1449 
BM Fail to give the solution in 8 hours 
OA 1.3725859 683 

TABLE VIIII 
ROBUSTNESS TESTING FOR THREE SOLVING ALGORITHMS 

Solving 
algorithm 

Max WPC 
(MW) 

Average 
WPC (MW) 

Max LS 
(MW) 

Average 
LS (MW) 

CHR 0 0 12 0.42 
OA 736 68 116 0.78 

V.  CONCLUSIONS 
With more and more wind farms integrated in the power 

system, the traditional TS-RUC may suffer from the infeasible 
solution and high computational burden. This paper proposes 
two-fold advances for the TS-RUC to address the challenges. 
For the first advance, the feasibility identification is used to 
ensure the existence of a feasible solution of the TS-RUC in all 
instances by determining the feasible boundaries. For the 
second advance, the CHR method of disjunctive programming 
is introduced to improve the computational efficiency by 
reducing the number of constraints embedding binary 
uncertainty variables. The key findings of the case studies on 

the modified IEEE 118-bus system and a practical system can 
be summarized as follows: 
 
 When the uncertainty is in a low level, the TS-RUC with 

feasibility identification has the same scheduling results 
with the traditional TS-RUC; when the uncertainty is in a 
high level, the traditional TS-RUC is infeasible, while the 
TS-RUC with feasibility identification can guarantee the 
existence of feasible solution by giving the feasible 
boundaries of wind power. 

 The penalty coefficients of slack variables in the proposed 
TS-RUC has impact on the model effectiveness. It should 
be set large enough, usually with higher orders of the 
objective magnitude, to guarantee the effective 
identification of the largest boundaries of wind power that 
can guarantee a feasible solution. 

 The computational efficiency is influenced by the number 
of wind farms both for BM and CHR, due to the increased 
uncertainty variables and constraints. However, CHR has 
higher computational efficiency compared to BM, 
especially when the number of wind farms increases. 
Besides, CHR is a global optimal method, which can 
guarantee the reliability of the solution compared to OA. 
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