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Abstract: For many areas, satellite-based precipitation products or reanalysis model data represent the
only available precipitation information. Unfortunately, the resolution of these datasets is generally
too coarse for many applications. A very promising downscaling approach is to use soil moisture
due to its clear physical connection to precipitation. We investigate the feasibility of using soil
moisture derived from land surface temperature in this context. These data are more widely available
in the required resolution compared to other soil moisture data. Rain gauge-adjusted radar data
from Namoi serves as a spatial reference dataset for two objectives: to identify the most suitable
globally available precipitation dataset and to explore the precipitation information contained in
the soil moisture data. The results show that these soil moisture data cannot be used to downscale
satellite-based precipitation data to a high resolution because of cloud cover interference. Therefore,
the Integrated Multi-satellitE Retrievals for GPM (IMERG) late data represents the best precipitation
dataset for many areas in Australia that require timely precipitation information, according to this
study.

Keywords: precipitation measurement; radar; soil moisture; IMERG; Namoi; land surface temperature

1. Introduction

The objective of the paper is to find the best precipitation data with the shortest
possible timestep that is available in near-real-time for the whole of Australia.

In general, and in particular, in Australia, precipitation measurement information
availability is very heterogeneous. In this study, as part of the WaterSENSE project, remote
sensing data are explored to provide more uniform information.

The goal of WaterSENSE is to develop a modular, operational, water-monitoring
system built on Copernicus EO (Earth Observation) data. This will provide water man-
agers and the agricultural sector with a toolbox of reliable and actionable information on
water availability and water use anywhere in the world in support of sustainable water
management and transparency across the entire water value chain.

As part of this, we designed a modular approach in which the best available pre-
cipitation information is used at every location. Where available, quality-controlled and
gauge-adjusted radar data are used in accordance with Einfalt and Frerk [1] and Willems
and Einfalt [2]. This was implemented in our pilot region in Namoi, Australia. In addition
to providing local stakeholders with high-quality precipitation information, this setup is
also used as a testbed for other spatial precipitation datasets.

Where radar and rain gauge data are not available, satellite-based precipitation data
presents a viable alternative. However, despite considerable advances in this field, as iden-
tified by Pellarin et al. [3] and Brocca et al. [4], these data still suffer from inaccuracies and
a spatial resolution that is too low for many applications (He et al. [5] and Chen et al. [6]).
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Therefore, different approaches were successfully explored by different authors on
how to use soil moisture inferred from EO to derive or improve existing precipitation data.
For example, in 2008, Pellarin et al. [7] used soil moisture indicated by the polarization ratio
inferred from passive microwave measurements at 6.9 GHz from the Advanced Microwave
Scanning Radiometer-EOS (AMSR-E) (Jackson et al. [8]) sensor to eliminate false rainfall
events from a satellite-based precipitation estimate. Moreover, in 2009, Crow et al. [9] used
AMSR-E brightness temperature to correct satellite-based precipitation with the help of a
simple Antecedent Precipitation Index (API). Later, Pellarin et al. [3] used a modification of
the same approach, named PrISM, in combination with SMOS (Soil Moisture and Ocean
Salinity) (Kerr et al. [10]) soil moisture estimates to correct satellite precipitation. Their
results compared favorably against uncorrected existing satellite-based precipitation with
a short latency (up to a few days) and were comparable with post-processed versions of
satellite precipitation with a much longer latency. The comparison was performed on a
daily time scale and a 0.25◦ spatial resolution. In 2013, Brocca et al. [11] developed the
method of soil moisture to rain (SM2RAIN) to derive precipitation from soil moisture by
inverting the soil–water balance equation. They tested their approach using in situ soil
moisture observations and the Advanced SCATterometer (ASCAT) (Wagner et al. [12]) soil
moisture products.

Subsequently, Brocca et al. [13] used SM2RAIN to derive three daily global rainfall
products from three soil moisture datasets: ASCAT, AMSR-E, and SMOS. Compared with
the First Guess Daily product of the Global Precipitation Climatology Centre (GPCC)
(Schamm et al. [14]), the new precipitation datasets exhibited good performance. In some
cases, they even outperformed the near real-time 3-hourly Tropical Rainfall Measuring
Mission (TRMM) (Huffman et al. [15]) Multi-Satellite Precipitation Analysis (TMPA) (Huff-
man et al. [16]) 3B42RT, which was used as a reference for a state-of-the-art satellite-based
precipitation product. They noted that the results of the precipitation derived from soil
moisture were particularly good for regions with accurate soil moisture retrievals, which
also include Australia.

He et al. [5] used surface soil moisture to downscale daily IMERG precipitation data
to a 1 km spatial resolution. As they pointed out, high-resolution soil moisture data is
hardly available. Therefore, they applied the seamless downscaling method proposed by
Zhao et al. [17] to the European Space Agency (ESA) Climate Change Initiative (CCI) SSM
product converting the resolution from 25 km to 1 km. Subsequently, downscaling the
IMERG precipitation data to a 1 km resolution improved the comparison against rain gauge
stations over the original resolution.

Chen et al. [6] compared different downscaling methods for IMERG precipitation
data on monthly and yearly time scales. In their analysis, they looked at the importance
of five auxiliary variables in the downscaling process: normalized differential vegetation
index (NDVI), elevation, land surface temperature (LST), latitude, and longitude. From the
auxiliary variables, latitude and NDVI were the most relevant at these time scales, while
LST only played a minor role.

SMOS soil moisture data were also used by Brocca et al. [4] in a study that compared
SM2RAIN, PrISM, and SMART in Australia. In this comparison, SM2RAIN, when used to
correct the satellite precipitation, slightly outperformed the other approaches.

The method developed by Brocca et al. [11], in which remotely sensed soil mois-
ture is used in combination with a water balance model to correct satellite precipitation,
was refined by Crow et al. [18] and compiled into the Soil Moisture Analysis Rainfall
Tool (SMART). They successfully applied this method to different precipitation datasets
from TMPA and surface soil moisture obtained from the Advanced Microwave Scanning
Radiometer-EOS (AMSR-E).

In terms of hydrological applications, Massari et al. [19] compared the results of
correcting satellite precipitation (3B42RT) with Advanced SCATterometer (ASCAT) soil
moisture using SM2RAIN against the effect of state updates of the rainfall-runoff model
‘Modello Idrologico Semi-Distribuito in continuo’ (MISDc; Brocca et al. [20]) using the same
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soil moisture data. They found that correcting the precipitation estimate yielded better
results for the predictions of high flows.

These studies show the potential of using soil moisture inferred from satellite ob-
servations as an independent source of information to correct existing satellite-based
precipitation products. However, existing studies rely on soil moisture products with a
relatively coarse spatial resolution which does not allow improvement in the resolution of
existing satellite-based precipitation products.

Soil moisture (SM) inferred from satellite observations of land surface temperature
present an alternative data source, which we explore here with respect to the precipitation
signal that can be retrieved. For other applications, this SM data has already proven its
value (Sadeghi et al. [21], Bai et al. [22], and Yang et al. [23]), also due to its global availability
and higher temporal and spatial resolutions. These are characteristics that also make it very
interesting to investigate these data for precipitation estimation.

The paper is organized as follows. After a presentation of the investigation area
(Section 2), the Australia-wide precipitation data used (Section 3) and the verification
methods (Section 4) are introduced. In Section 5, the Australia-wide precipitation datasets
are investigated before the potential of SM-based land surface temperature is explored to
improve these data (Section 6). This is followed by the conclusion (Section 7).

2. Investigation Area

The Namoi catchment is located in New South Wales, Australia. It has an area of
approximately 42,000 km2 and is characterized by intensive agriculture, in particular
extensive cotton plantations. The Namoi river, which flows through the catchment from the
northeast to the southwest, is the main source of irrigation water. The catchment is shown
in Figure 1, along with the radar location and coverage and the areas for the evaluation of
the precipitation and the soil moisture data.

Atmosphere 2023, 14, 435 4 of 19 
 

 

 
Figure 1. Map of the Namoi catchment and its surrounding. Depicted are the catchment (red line), 
the location of Namoi radar (black dot), the radar coverage after processing (radius of 240 km; black 
circle), the area used for the comparison of the different precipitation datasets with respect to spatial 
precipitation patterns (black rectangle) and the area used for the evaluation of the soil moisture data 
(blue rectangle). 

3. Australia-Wide Precipitation Data with Near-Global Coverage 
After finalizing the operational correction and rain gauge adjustment of radar data 

for the Namoi area, the main focus was on providing precipitation data for regions in 
Australia without radar coverage with the potential to be used globally. The idea was to 
start with an existing dataset and improve it where necessary. Due to their near-global 
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ognized multi-instrument precipitation sources, GSMaP (Kubota et al. [25]) and IMERG 
(Huffman et al. [26]), and the reanalysis dataset ERA5 (Hersbach et al. [27]), which we 
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near-global datasets are given in Table 1 This approach was also described by Strehz and 
Einfalt [28]. 
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the location of Namoi radar (black dot), the radar coverage after processing (radius of 240 km; black
circle), the area used for the comparison of the different precipitation datasets with respect to spatial
precipitation patterns (black rectangle) and the area used for the evaluation of the soil moisture data
(blue rectangle).

The precipitation regime of the Namoi catchment is spatially very heterogeneous.
The eastern part of the catchment close to the Great Dividing Range has a relatively wet
climate with a maximum average (1976–2005) annual rainfall of 1300 mm. In contrast, the
low-lying plains situated in the western part of the catchment exhibit a predominantly
semi-arid climate with an average annual rainfall of approximately 400 mm near Walgett.
Generally, summer and winter are the wettest months, with winter rainfall being especially
relevant for dam inflows. However, also the annual rainfall amounts are highly variable,
with multi-decadal wet and dry periods with intermittent periods of droughts and high
rainfall, respectively. Recently, the Namoi catchment was in a dry period, with 2017 to 2020
being the driest period on record. Nevertheless, the entire region is prone to flooding (NSW
Department of Planning, Industry and Environment [24]).

3. Australia-Wide Precipitation Data with Near-Global Coverage

After finalizing the operational correction and rain gauge adjustment of radar data
for the Namoi area, the main focus was on providing precipitation data for regions in
Australia without radar coverage with the potential to be used globally. The idea was to
start with an existing dataset and improve it where necessary. Due to their near-global
coverage as well as their good temporal and spatial resolution, we selected two well-
recognized multi-instrument precipitation sources, GSMaP (Kubota et al. [25]) and IMERG
(Huffman et al. [26]), and the reanalysis dataset ERA5 (Hersbach et al. [27]), which we
analyzed against the gauge adjusted radar data of the Namoi area. Details of the different
near-global datasets are given in Table 1 This approach was also described by Strehz and
Einfalt [28].

Table 1. Details of different precipitation datasets, which have been analyzed against gauge-adjusted
radar data. For all datasets, the spatial grid resolution is 0.1◦ × 0.1◦.

Abbreviation Dataset Temporal
Resolution Latency

GSMap_nhh GSMaP real-time version 7 1 h No latency

GSMap_nhhG GSMaP real-time version 7 gauge adjusted 1 h No latency

GSMap_nhh00 GSMaP real-time version 7 (only hourly updates) 1 h No Latency

GSMap_nhhG00 GSMaP real-time version 7 gauge adjusted (only
hourly updates) 1 h No latency

GSMap_nrh GSMaP near real-time version 7 1 h 4 h

GSMap_nrhG GSMaP near real-time gauge adjusted version 7 1 h 4 h

GSMap_nrv6h GSMaP near real-time version 6 1 h 4 h

GSMap_nrv6hG GSMaP near real-time version 6 gauge adjusted 1 h 4 h

GSMap_sh GSMaP standard version 7 1 h 3 days

GSMap_shG GSMaP standard version 7 gauge adjusted 1 h 3 days

IMERG_early IMERG Early Run 0.5 h 4 h

IMERG_late IMERG Late Run 0.5 h 14 h

ERA5 ERA5 1 h 5 days
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4. Verification Methods
4.1. Taylor Diagram

To compare the performance of domain-averaged precipitation of the different datasets,
we decided to use three standard measures when comparing time series. The Pearson corre-
lation, the root-mean-square error, and the standard deviation are graphically summarized
in a Taylor diagram (Taylor [29]).

4.2. Fractions Skill Score

Apart from assessing the accuracy of the domain-averaged precipitation, it is also
necessary to verify how well spatial patterns are represented in the different datasets. Here,
we chose fractions skill scores (FSS) as introduced by Roberts and Lean [30]. In this method,
different gridded datasets are compared using fractional coverage over differently sized
areas. Therefore, the datasets can be assessed at different spatial scales. This can also be used
to compare the accuracy of downscaled data compared to the original data with respect to
a reference dataset, which we also had in mind when selecting this verification method.

To compute the FSS relative to a reference dataset (in this case, gauge adjusted radar
data), we first convert the gridded data into binary fields. In this process, all grid points
below a threshold are set to 0, while all other grid points are set to 1. Alternatively to fixed
thresholds, percentile thresholds can also be used, which removes the influence of any
bias and is, therefore, particularly useful when the main interest is the spatial accuracy of
the dataset. After computing binary fields, fractions are computed for every pixel. The
fractions are derived by dividing the grid points with a value of 1 within a square of
length n centered on the respective pixel by the total number of grid points in this square.
This results in a field of fractions for the test dataset T(n)(i, j) and for the reference dataset
R(n)(i, j), which depends on the spatial scale n and where i and j span the entire domain. In
order to compute fractions skill scores, first, the mean-squared-error (MSE) of R(n) with
respect to T(n) is computed for every spatial scale n. The fractions skill score is then the

MSE relative to that of a low-skill reference, FSS(n) = 1 − MSE(n)
MSE(n)ref

, where the low-skill

reference is given by, MSE(n)ref = 1
NxNy

[
∑Nx

i=1 ∑
Ny
j=1 R2

(n)i,j + ∑Nx
i=1 ∑

Ny
j=1 T2

(n)i,j

]
. This is the

largest possible MSE for given R(n) and T(n). Here Nx and Ny are the respective x and y
dimension of the datasets. The values of FSS vary from 0 for no skill to 1 for perfect skill.

4.3. Comparison of Soil Moisture and Precipitation

In order to compare precipitation and soil moisture, both datasets were mapped
on a common 1 km by 1 km grid. In general, the soil moisture change over a period is
more susceptible to precipitation during that period than absolute values of soil moisture.
Therefore, the soil moisture change in a period was compared to the cumulated precipitation
over the same period at every pixel. As the data were relatively noisy, the soil moisture data
were divided into four categories: positive relative soil moisture change (>0.1), negative
relative soil moisture change (<−0.1), missing values, and no distinctive change. The last
category was not used for analysis. The cumulated precipitation was also divided into
categories and analyzed to find which fraction of the precipitation events in the different
categories belong in the three remaining relative soil moisture change categories. As a
reference, the total fraction of pixels that fall into these categories, irrespective of the
precipitation amount, is also shown.

5. Comparison of Precipitation Data

The different datasets were analyzed on two different spatial and temporal scales
(daily and hourly). First, the spatially averaged precipitation for the Namoi catchment was
compared over one year from mid-October 2020 to mid-October 2021. The results are shown
in Figure 2. For daily data, all datasets exhibit high correlation values ranging from 0.8 to
0.92. However, some of the GSMaP and the ERA5 data show larger standard deviations
compared to the reference data. For hourly data, the correlation is less pronounced than
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for daily data, as expected. As for the daily data, some datasets showed larger standard
deviations than the reference. Afterward, the spatial distribution of the precipitation fields
was assessed against the gauge-adjusted radar data on a rectangular 200 km × 200 km
grid with a 1 km spatial resolution (Figure 1) using fractions skill scores. Given the results
regarding the spatial distribution of the precipitation as well as the results shown in Figure 2,
the best 5 datasets were selected for further analysis (Figure 3). The outcome for different
thresholds and on different spatial scales is robust as far as the ranking of the different
datasets is concerned, with IMERG Late always amongst the best datasets. Given the
results of our analysis as well as the latency and the temporal resolution of the data, the
IMERG Late dataset was consequently selected as a near-global precipitation dataset for
WaterSENSE. However, the potential for improving the spatial resolution as well as the
accuracy of the data was identified.
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Figure 2. Catchment averaged daily (a) and hourly (b) precipitation of different near-global datasets
compared against gauge-adjusted radar data using a Taylor diagram (Taylor [29]). The correlation is
given by the angle to the y-axis (dashed lines). The standard deviation increases with distance to the
origin of the coordinate system, and the standard deviation of the gauge-adjusted radar data is given
as a reference (black arc). The root-mean-square error is given by the distance to the black dot on the
x-axis (grey arcs).
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Figure 3. Spatial distribution of precipitation using fractions skill score (FSS). The datasets were
analyzed over a square area of 200 km by 200 km centered on the location of the Namoi radar. Results
are shown for two relative thresholds, the 0.75 quantile (a) and the 0.9 quantile (b), and for two fixed
thresholds of 4 mm (c) and 16 mm (d).

6. Evaluation of Soil Moisture Data
6.1. The Soil Moisture Model

The soil moisture data used for this analysis is based upon the Thermal-Optical Trape-
zoid Method (TOTRAM) (Yang et al. [23]), which combines satellite-based land surface
temperature (LST) and normalized difference vegetation index (NDVI) observations. The
LST serves as a proxy for the moisture conditions in the soil. Water in the soil cools its
surroundings through evaporation and transpiration. When the LST is equal to the air
temperature, a large part of the energy of the incoming radiation is used for evapotran-
spiration processes, which indicates well-watered conditions. If the LST is significantly
higher than the air temperature, the surface is not cooled due to evapotranspiration, which
means that a crop is stressed because it is not able to retrieve enough water from the soil or
that the topsoil is too dry to evaporate. To account for the effect of vegetation cover (Fc)
on the LST caused by the change in albedo and the shading of the topsoil, the NDVI is
used. The result is an LST-Fc trapezoidal space, where the soil wetness isolines between
the theoretical upper (warm) edge and lower (cold) edge can be converted to a relative soil
moisture content given the instantaneous LST and NDVI observations. Figure 4 shows a
schematic of the trapezoidal space of the TOTRAM model.
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contrast to Yang et al. [23], point D defines the cold edge of bare pixels using the wet bulb temper-
ature (WBT) instead of the minimum surface temperature (Tc,min) to increase the accuracy of the 
model for bare soil conditions. 
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However, when using soil moisture data to improve the spatial accuracy of precipi-
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Figure 4. Trapezoidal LST-Fc space is used to derive the relative root zone soil moisture content (θ)
based on satellite-based thermal (LST) and vegetation cover (Fc) data. The warm and cold edges
of the trapezoid define at which LST and Fc value combination θ is equal to the residual moisture
content (θR) or the field capacity (θF), respectively. Both the warm and cold edges are derived using
meteorological data on a pixel level. Points A and B of the trapezoidal space define the warm edge
using the maximum surface temperature of bare (Ts,max) and fully covered (Tc,max) pixels. Point C
defines the cold edge of fully covered pixels using the minimum surface temperature (Ts,min). In
contrast to Yang et al. [23], point D defines the cold edge of bare pixels using the wet bulb temperature
(WBT) instead of the minimum surface temperature (Tc,min) to increase the accuracy of the model for
bare soil conditions.

This soil moisture model is incorporated into the ETLook model (Bastiaanssen et al. [31])
as a stress component for calculating evapotranspiration, mostly because of the relatively
high spatial resolution (10 m) of Sentinel-2 based NDVI data. Although VIIRS-based LST
data has a lower resolution of 375 m, we used an NDVI-based thermal sharpening method
(Gao et al. [32]) to downscale the VIIRS data to the same 10 m grid. An added benefit of
using the TOTRAM model within ETLook is the ability to calibrate the trapezoidal space on
a pixel level. In contrast to the method described by Yang et al. [23], ETLook uses the wet
bulb temperature (WBT) to determine the cold edge to improve the model performance for
arid climates.

Alternative radar-based soil moisture models only provide data at a 500 m spatial
resolution or lower (Massari et al. [33], Zappa et al. [34], and Dari et al. [35]), which is
insufficient for modeling evapotranspiration at 10 m resolution. An added benefit is that
the TOTRAM soil moisture model estimates soil moisture for the entire rooting depth, in
contrast to the topsoil (~5 cm) observations of radar-based soil moisture models, which is
highly valuable for calculating the moisture stress component of the vegetation.

However, when using soil moisture data to improve the spatial accuracy of precip-
itation data, observations from the topsoil are preferred. If soil moisture is observed at
the rooting depth, the precipitation signal is attenuated. However, if the rooting depth is
shallow or the soil is bare, the attenuation of the precipitation signal should be limited,
similar to radar-based soil moisture data. For this research, the default soil moisture dataset
of 10 m resolution was split into two scenarios: (1) soil moisture observations at rooting
depth (default) and (2) soil moisture observations for bare soil conditions. For both scenar-
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ios, the 10 m resolution soil moisture data are mapped to a 1 km grid. For scenario 1, the
mapping approach was to calculate the mean of all the soil moisture values of the pixels
within the 1 km grid. For scenario 2, first, the pixels where significant vegetation cover
persisted (NDVI > 0.3) were removed. Second, any pixels which could represent standing
water (NDVI < 0.1) were also removed. Lastly, for the remaining pixels, the mean over
the same 1 km grid was calculated. Additionally, a record was held of how many pixels
satisfied the filter criteria to prevent using unrepresentative data at the 1 km grid scale.

6.2. Results

When possible, the data from consecutive days are used to calculate the soil moisture
change. This resulted in an overall data availability ranging from 2.3% in forested areas to
53.3% in areas with less vegetation (Figure 5). To investigate the effect of the vegetation filter
on the data availability, the soil moisture change was also calculated from the unfiltered
data, which gave a similar result with a substantial increase in data availability only in
densely vegetated areas in the west and southeast of the domain.
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Figure 5. Data availability of soil moisture change in percent calculated as the difference between the
soil moisture of consecutive days for scenario 1 (a) and for scenario 2 (b).

To overcome these issues, longer timesteps were allowed, e.g., if no soil moisture
information was available, the soil moisture difference was calculated with respect to the
last day that had data. Gaps of up to 4 days were allowed initially only for entire images
(not shown) and later also on the basis of individual pixels (Figure 6). The former only had
a small effect on data availability, and even though the latter resulted in an overall increase
in data availability, it still remained below 63%. To further increase the data availability,
a reverse speckle filter was applied to identify spatial gaps in the data and fill them by
interpolating over neighboring pixels. Gaps of up to 100 pixels were treated in this way.
This resulted in an increased and more homogeneous data availability with values up
to 65%. It should be noted that all the measures to increase the data availability, namely
using unfiltered data with respect to vegetation, including longer timesteps and applying a
reverse speckle filter, potentially lead to a less direct relationship between the inferred soil
moisture change and precipitation events.
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Figure 6. Data availability of soil moisture change in percent calculated as the difference between
the soil moisture of consecutive days, for which soil moisture was available if the gap with no soil
moisture data was shorter than five days for individual pixels (a). A reverse speckle filter was
additionally applied to data to interpolate gaps of up to 100 pixels (b).

Therefore, the relationship between the soil moisture change of the topsoil (scenario 2)
and the cumulated precipitation was investigated. For this purpose, the cumulated pre-
cipitation was calculated between the dates that were used to calculate the soil moisture
change for individual pixels. The cumulated precipitation was grouped according to
the precipitation amount with the expectation that more precipitation would increase
the chance of a positive soil moisture change and decrease the chance of a negative one.
Unfortunately, when looking at Figure 7a, the most prominent feature is the increase in
missing soil moisture change data for periods with large precipitation amounts, e.g., for
cumulated precipitation of more than 20 mm, 95% of the soil moisture data were missing.
The likelihood of observing a positive soil moisture change was only 9.5%, irrespective of
the precipitation, and decreased to about 3.5% for precipitation sums larger than 20 mm.
Observing a decrease in relative soil moisture was equally unlikely, and the percentage
of these cases decreased further with increasing precipitation down to about 1% for pre-
cipitation sums larger than 20 mm. The poor data availability is likely because the soil
moisture data tends to be missing for days with large precipitation sums, which can be
explained by the inability of the sensor to measure through clouds. When allowing missing
images for up to four days when calculating the soil moisture change, the increase in
missing data with precipitation amounts is slightly less pronounced, e.g., for cumulated
precipitation of more than 20 mm, 70% of the soil moisture data were missing. A positive
soil moisture change is slightly more likely for periods with large precipitation sums, e.g.,
for cumulated precipitation of more than 20 mm, 16% of the relative soil moisture data
showed an increase larger than 0.1. (Figure 7b). Allowing gaps of up to four days for
individual pixels further reduces the increase in missing data for more precipitation (46%
missing data for precipitation sums larger than 20 mm) and also makes positive soil mois-
ture changes more likely for larger precipitation sums, e.g., for cumulated precipitation
of more than 20 mm, 27% of the relative soil moisture data showed an increase larger
than 0.1. (Figure 7c). Additionally, reducing the gaps via a reverse speckle filter increases
the data availability slightly but otherwise does not change the analysis significantly, as
this is also the case for the observations of negative soil moisture change. Overall, this
analysis is still dominated by missing data, and while a stronger relationship between a
positive soil moisture change and larger precipitation amounts could be achieved through
the different processing steps, there are also still many cases with a negative soil moisture
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change despite large precipitation amounts in the considered period, e.g., in Figure 7d for
cumulated precipitation of more than 2 mm, 21% of the relative soil moisture data showed
a decrease larger than 0.1.
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Figure 7. Change of relative soil moisture for different precipitation sums. As a reference, the total
percentage of pixels that falls into the three relative soil moisture change categories irrespective of
the precipitation is also given as ‘all’. (a): The soil moisture change was calculated from consecutive
days. (b): The soil moisture change was calculated allowing gaps of up to four days but uniform for
the entire domain. (c): The soil moisture change was calculated allowing gaps of up to four days
individually for every pixel. (d): Same as lower left, but a reverse speckle filter interpolating gaps of
up to 100 pixels was applied to the data.

In a different approach, the condition on vegetation was relaxed, and all soil moisture
data were considered in calculating the soil moisture change (scenario 1). On this basis, the
soil moisture changes were calculated again, allowing gaps of up to 4 days on an individual
pixel basis. However, the results inferred in this way looked less promising than the ones
for topsoil only. Allowing gaps in the soil moisture data when calculating the soil moisture
changes implicitly increases the delay of the soil moisture data by the length of the gaps
that are allowed in the process.

6.3. Individual Cases

Apart from the obvious problem with missing data, the soil moisture change data
also show:
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• other signals not related to precipitation;
• relatively weak to no signals for periods with significant precipitation events.

To improve our understanding of this behavior, we looked at three cases in more detail.
In the first case, large precipitation amounts of up to 80 mm were measured in some

parts of the domain, while the major part of the domain received much less rain, with
values between 0.01 mm and 8 mm (Figure 8d). The soil moisture change data calculated
from unfiltered relative soil moisture data of consecutive days again features many areas
with missing data, but also for regions with partial data coverage in the southern part
of the domain, no pattern resembling the precipitation distribution could be detected
(Figure 8a). Most of the data going into this image originate from the root zones of plants
within the domain, which is likely to introduce a delay between precipitation and soil
moisture. However, calculating the soil moisture change for topsoil only resulted in a very
similar image (Figure 8b). Seeing the similarity between these two images gave rise to the
hypothesis that the images are dominated by factors other than recent precipitation events.
In an attempt to recover the precipitation signal, the soil moisture change as the difference
of root zone and topsoil relative soil moisture was calculated (Figure 8c). However, despite
showing a more positive soil moisture change, the precipitation pattern also cannot be
recognized in this image.
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tive days of relative soil moisture for scenario 1 (a), for scenario 2 (b), and from the difference between
scenario 1 and 2 (c) for 29/10/2020. Positive values mean an increase in soil moisture, while negative
values mean a decrease in soil moisture. Additionally, the respective cumulated radar precipitation is
shown (d).
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In contrast to the first case, the second one shows a very distinct pattern in the soil
moisture change data calculated from all soil depths and from topsoil only (Figure 9a,b).
However, in this period, no significant precipitation was recorded in the entire domain
(Figure 9d). The soil moisture change calculated from the difference of topsoil and root
zone successfully removes the majority of this signal resulting in only weak positive soil
moisture change with the largest values in the southwestern part of the domain (Figure 9c).
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Figure 9. Relative soil moisture change (dimensionless) calculated as the difference between consecu-
tive days of relative soil moisture for scenario 1 (a), for scenario 2 (b), and from the difference between
scenario 1 and 2 (c) for 04/11/2022. Positive values mean an increase in soil moisture, while negative
values mean a decrease in soil moisture. Additionally, the respective cumulated radar precipitation is
shown (d).

The third case features patches with and without soil moisture change data distributed
over the entire domain, with more data available in the western part (Figure 10). The soil
moisture changes calculated from scenario 1 as well as scenario 2 feature predominantly
positive values in the northwestern part of the domain and gradually decrease and eventu-
ally become negative towards the southeast. This nicely matches the general distribution
of the precipitation over this period (Figure 10d). Calculating the soil moisture change
based on the difference between topsoil and root zone soil, in this case, leads to a plot with
patches of slightly positive and slightly negative values relatively evenly distributed over
the area under consideration (Figure 10c).
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cipitation events prohibits the satellites from observing the land surface. The likelihood of 
the availability of two cloud-free images just before and after a precipitation event is low 
at best. Although Figure 10 shows some signs of a positive correlation between an increase 
in soil moisture content after a precipitation event, the gaps in the entire time series, as 
well as in the individual images, make it currently impossible to reliably downscale satel-
lite-based precipitation data using this soil moisture dataset.

However, some confusing patterns in soil moisture change are not caused by the soil 
moisture model itself but are introduced due to artifacts in the satellite data. For example, 
Figure 9 shows a relatively strong soil moisture increase in the left part of the image, while 
no precipitation was recorded. When comparing the raw LST data from VIIRS to the soil
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VIIRS, which was used for this product, is unable to remove shadows or hazy pixels from 

Figure 10. Relative soil moisture change (dimensionless) calculated as the difference between con-
secutive days of relative soil moisture for scenario 1 (a), for scenario 2 (b), and from the difference
between scenario 1 and 2 (c) for 22 January 2021. Positive values mean an increase in soil moisture,
while negative values mean a decrease in soil moisture. Additionally, the respective cumulated radar
precipitation is shown (d).

Figures 8–10 show that using LST-NDVI-based soil moisture data does not add much
value to downscaling IMERG Late precipitation data. Naturally, cloud cover during
precipitation events prohibits the satellites from observing the land surface. The likelihood
of the availability of two cloud-free images just before and after a precipitation event is
low at best. Although Figure 10 shows some signs of a positive correlation between an
increase in soil moisture content after a precipitation event, the gaps in the entire time series,
as well as in the individual images, make it currently impossible to reliably downscale
satellite-based precipitation data using this soil moisture dataset.

However, some confusing patterns in soil moisture change are not caused by the soil
moisture model itself but are introduced due to artifacts in the satellite data. For example,
Figure 9 shows a relatively strong soil moisture increase in the left part of the image, while
no precipitation was recorded. When comparing the raw LST data from VIIRS to the soil
moisture change pattern at high resolution (Figure 11), it becomes clear that the increase in
soil moisture is a result of an inaccurate cloud mask. The default cloud mask from VIIRS,
which was used for this product, is unable to remove shadows or hazy pixels from this
image, which have significantly lower LST values than cloud-free pixels. Since lower LST
values correspond to wetter soil moisture conditions at the same NDVI, the model assumes
that there is an increase in soil moisture content. Having a more accurate cloud mask would
result in fewer artifacts and a stronger correlation between the soil moisture change and
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precipitation flux. However, a better cloud mask inherently also means fewer observations,
which negatively impacts the temporal resolution and, thus, the usability of this dataset for
downscaling satellite-based precipitation data, such as IMERG late.
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Figure 11. Comparison between cloud-masked VIIRS-based LST data (a) and the difference between
the high-resolution soil moisture data (b) for the 4th of November 2020. White parts of the image are
masked using VIIRS’ standard cloud mask. At the edges of this cloud mask, significantly lower LST
values are visible, presumably caused by unmasked clouds or cloud shadows, negatively impacting
the performance of the soil moisture change product for downscaling precipitation data.

6.4. Alternative Datasets for Downscaling

Alternatively, other soil moisture datasets could be considered, such as SMOS, which
has already successfully been used by Pellarin et al. [3], Brocca et al. [4], and Brocca et al. [13].
However, this would mean that the spatial resolution would be much lower, e.g., 0.25◦ in
the case of SMOS. Thus, it would not be able to improve the spatial resolution of IMERG
late data. Many efforts have been made to downscale low-resolution microwave-based
soil moisture data (Massari et al. [33]). However, the use case of downscaling precipitation
data demands daily soil moisture observations at a high resolution (1 km), which currently
does not exist on a global scale. For example, multiple approaches exist to retrieve high-
resolution (<1 km) soil moisture data based on Sentinel-1 observations. However, Sentinel-1
does not observe the globe in an evenly distributed manner, resulting in an insufficient
temporal resolution over Australia (Fourcras et al. [36] and Bauer et al. [37]).

7. Conclusions

A high-quality gridded precipitation dataset, based on radar and rain gauge data, was
derived for the Namoi catchment. This dataset was used as a testbed to investigate different
satellite-based multi-instrument precipitation data such as GSMaP and IMERG, as well as
the reanalysis data ERA5. The quality of these globally available datasets was assessed
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with the requirements of WaterSENSE in mind. IMERG late data were found to be the best
data to complement gauge-adjusted radar data for areas in Australia where these data are
not available. The testbed was also used to improve our understanding of the relationship
between precipitation and a state-of-the-art relative soil moisture dataset also produced
in this project. The idea was that the high-resolution soil moisture data could be used to
downscale the coarser-resolution satellite-based precipitation data. A general relationship
between a positive soil moisture change and large precipitation events in the same period
could be shown. Moreover, different methods were successfully tried to mitigate the effect
of missing soil moisture data both temporally and spatially. However, as can be seen from
Figure 7 as well as from the individual case studies, the fraction of missing data is too high
to continue to implement this method for downscaling the satellite-based precipitation data.
Even in the third individual case, where a general agreement between the soil moisture
and the precipitation pattern exists, the patchiness of the data prohibits its application
in this context. Additionally, the soil moisture change data sometimes do not reflect
strong precipitation events (case one) and show strong signals not related to precipitation
in other situations (case two). The detailed investigation of these cases improved our
understanding of the complexity between data availability and data applicability for these
interesting situations.

Given the above analysis, IMERG late data in its original form was chosen as precip-
itation data in WaterSENSE for regions with insufficient radar and rain gauge coverage.
This enables us to provide precipitation data for the whole of Australia independently of
the density of the gauge network.
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