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Highlights:
What are the main findings?
• Single-diode model fitting to partial I–U curves was systematically investigated.
• The I–U curves were measured in the vicinity of the MPP.
• The I–U curve region selected for fitting had a significant effect on the fit accuracy.

What is the implication of the main finding?

• Suitably constructed partial I–U curves can be used in online condition monitoring.
• PV module aging can be detected and quantified using partial I–U curves.

Abstract: Photovoltaic system condition monitoring can be performed via single-diode model fitting
to measured current–voltage curves. Model parameters can reveal cell aging and degradation.
Conventional parameter identification methods require the measurement of entire current–voltage
curves, causing interruptions in energy production. Instead, partial curves measured near the
maximum power point offer a promising option for online condition monitoring. Unfortunately,
measurement data reduction affects fitting and diagnosis accuracy. Thus, the optimal selection of
maximum power point neighbourhoods used for fitting requires a systematic analysis of the effect
of data selection on the fitted parameters. To date, only one published article has addressed this
issue with a small number of measured curves using symmetrically chosen neighbourhoods with
respect to the maximum power. Moreover, no study has determined single-diode fit quality to partial
curves constructed via other principles, e.g., as a percentage of the maximum power point voltage.
Such investigation is justified since the voltage is typically the inverter reference quantity. Our work
takes the study of this topic to a whole new scientific level by systematically examining how limiting
the current–voltage curve measuring range to maximum power point proximity based on both
power and voltage affects single-diode model parameters. An extensive dataset with 2400 measured
curves was analysed, and statistically credible results were obtained for the first time. We fitted
the single-diode model directly to experimental curves without measuring outdoor conditions or
using approximations. Our results provide clear guidance on how the choices of partial curves
affect the fitting accuracy. A significant finding is that the correct selection of maximum power point
neighbourhoods provides promising real-case online aging detection opportunities.

Keywords: photovoltaic system; single-diode model; curve fitting; partial I–U curve; series
resistance; aging

1. Introduction

The photovoltaic (PV) single-diode model applied to the measured current–voltage
(I–U) curves of the PV module provides a valuable tool for monitoring and diagnosing the
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condition of a PV system. Every I–U curve is characterized by a set of single-diode model
parameters. Changes in these parameters can reveal changes in the condition of the PV
module. Among the parameters, series resistance is especially useful in the detection of
PV module aging and degradation [1,2]. The single-diode model parameters are obtained
from measured I–U curves using a mathematical fitting procedure. Parameter identifi-
cation techniques can be divided into offline and online techniques. The conventional
offline parameter identification techniques require the measurement of the entire I–U curve,
including its open-circuit (OC) and short-circuit (SC) ends. Unfortunately, this requires
the PV system to be shut down for the period of diagnostic measurements, accompanied
with power losses and undesired interruptions in electricity production. In contrast, online
identification techniques utilizing only partially measured I–U curves are designed to
avoid such interruptions. Therefore, online condition monitoring and diagnosis meth-
ods are strongly preferred in practical PV systems, and their development needs to be
vastly enhanced.

The practical requirement for single-diode model online parameter identification
techniques is that the operating point does not need to move too far from the maximum
power point (MPP). The reduction in measurement data available for curve fitting implies
a compromise in the fit quality; single-diode model parameters obtained from a partial
I–U curve measured in the vicinity of the MPP tend to suffer from lower accuracy. This
holds especially for the series resistance parameter, which is extremely important in aging
diagnostics. This issue raises the following yet unanswered questions: (1) how large should
the proportion of the I–U curve measured for fitting be to maintain the sufficient accuracy
of the identified parameters and (2) how should the MPP environment be selected for
analysis so that all parameters, especially the series resistance, are identified with sufficient
accuracy? For the first time, these questions are answered in a comparative and statistically
plausible manner in the present study.

In the literature, some light has been shed on the described problematics. Several
authors, having first applied their developed I–U curve fitting procedures to the entire
curve, also tested the capability of the procedure using partial I–U curves. The choice
of the used partial I–U curves varied from author to author. The authors of [3] showed
an example of fitting the model to a partial I–U curve obtained by moving 3 V to both
sides from the MPP voltage (UMPP) of a PV module. Consequently, the entire OC slope
of the I–U curve became well repeated, while the SC slope of the fitted curve overshot
clearly. Alternatively, the authors suggested choosing the neighbourhood symmetrically
with respect to the MPP power (PMPP) and presented an example where the I–U curve
cutting limit was 90% of PMPP. Such cutting made the fitted series resistance increase and
the shunt resistance decrease compared with the values obtained using the entire curve.
In [4], partial I–U curves were formed by selecting 30% of the measurement points closest
to the MPP for fitting. The fitting test performed under high-irradiance conditions (with
high irradiance being the optimal operating region to guarantee the proper performance
of the single-diode model and especially series resistance identification [1]), revealed that
the partial I–U curve produced smaller series resistance values than the entire curve. The
normalized root mean square errors (nRMSEs) were approximately 2% and 5% for the
entire and partial curves in [4], respectively. The authors of [5] also validated their curve
fitting method to partial I–U curves using 50% of the measurement points, selecting those
closest to the MPP. It was found that their curve fitting method performed well also in
the case of such partial I–U curves. The author of [6] investigated the usability of their
model with partial I–U curves by choosing measurement points so that the ratio between
the highest voltage values of the partially and the fully measured curves was around 90%
and the ratio between highest current values of the partial and full curves was around 98%.
The fitting was observed to perform acceptably in such cases. However, showing only one
or a few examples of constructing partial I–U curves is not sufficient to find an optimal
way to measure partial I–U curves in the vicinity of the MPP for fitting. In order to rectify
this shortcoming, the present paper exploits an exactly determined systematic approach for
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that purpose. Indeed, partial I–U curves constructed step by step starting from the full I–U
curve are used in this study. This approach enables a consistent analysis of the effect of the
selection of the measurement region on the fit, which in turn guarantees the usability of the
obtained results for further theoretical analyses as well as real practical applications in the
condition monitoring of PV systems.

Some studies have compared the effect of the location of special points picked around
the MPP for fitting. The authors of [7] picked four points in the vicinity of the MPP for
single-diode model fitting and investigated the effect of the location of the selected points
on the fit quality. The authors found that the optimal trade-off was obtained by selecting
two points from both sides of the MPP. Such a configuration allowed them to capture the
exponential curvature around the MPP correctly, resulting in equally good fit qualities in
the OC and SC ends of the I–U curve. In [8], it was observed that eight measurement points
with a spacing of 1 V were sufficient to capture the MPP curvature of a PV module. The
authors justified this with two observations. Firstly, a 15% voltage reduction to the left of
the MPP voltage was noticed to be usually sufficient to reach the almost linear high-current
region of the I–U curve. Secondly, test points up to 60–75% of the MPP current (IMPP)
were selected on the right side of the MPP as suggested in [2] to properly identify series
resistance. The fitting test performed under high-irradiance conditions provided good
results, although the power was only reduced by less than 11% of PMPP. In [9,10], six points
divided into two three-point blocks were chosen around the MPP. In [10], it was observed
that the voltage separation of the points in the same block should not exceed 5% of the
first selected voltage point. In addition, the difference between the central points of the
two blocks should be less than 20% of the voltage at the central point of the first block.
When the voltage steps determining the density of the selected points were chosen as 2% of
UMPP [9], the OC end of the fitted curve overshot clearly, and the SC end undershot slightly.
However, setting the voltage steps as 2.5% of UMPP significantly improved the fit quality,
causing only a slight undershoot at the OC end of the fitted curve and an overshoot at
the OC end. The authors of [11] also adopted the principle of the point selection strategy
of [9,10], but the location of the six points selected for fitting was sparser. The authors
of [12] used four arbitrary points on the I–U curve jointly with the slopes of the I–U curve
at these points. The four points were selected differently for different tests. The presented
method worked even when restricting the I–U curve in the vicinity of the MPP at voltage
limits of about 2–3% of UMPP. However, all the above studies only used some special
points picked around the MPP for fitting, and a comprehensive picture and a systematic
analysis of the effects of constructing a partial I–U curve on fitting accuracy were lacking.
In contrast, point selection for fitting is performed in the present study in a manner that is
computationally systematic and also comparable on a wider scale.

What all the above studies have in common is that they mainly examined the fitting
of the single-diode model only in certain cases of partial I–U curves, i.e., by means of
examples. To the best of our knowledge, there exists only one published research paper [13]
in which the measured I–U curve was piecewise cut into a smaller portion and the effects of
cutting on the fitted single-diode model parameters were investigated. It was found that the
identification of the single-diode model parameters and outdoor conditions performed well
even in close vicinity of the MPP. Such an observation is crucial for the online identification
of the model parameters. Unfortunately, in [13], the identification of the single-diode
model parameters was studied with only a small number of 20 I–U curves based on
PMPP percentages, and there exists no similar study with a larger number of data that
provides statistically plausible results. Moreover, no I–U curve cutting methods other
than cutting based on PMPP percentages have been investigated in a systematic manner.
Both shortcomings are extremely important for the development of the online condition
monitoring of photovoltaic systems and are concisely addressed in this work.

The present paper provides a systematic study on how limiting the measurement
region to partial I–U curves in the vicinity of the MPP affects the accuracy of the fitted single-
diode model parameters. The analysis is based on numerous data, with 2400 measured
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current–voltage curves, thus employing many more data than the analyses in earlier studies;
therefore, this study is the only one providing statistically plausible results. The raw
measurement data obtained with the I–U curve tracer were processed using an advanced
procedure: First, we removed abnormal measurement points; then, we distributed a fixed
number of I–U points evenly along the I–U curve, as in [14]. In this way, the correct weight
of the different parts of the I–U curve was ensured, resulting in comparable results in each
case studied. The selection of partial I–U curves was made using two alternative methods
based on MPP power and MPP voltage. The latter method is systematically studied for the
first time in this work. We also developed an advanced theoretical model and a procedure
to fit the single-diode model directly to the measured I–U curves without the need to
measure additional quantities, such as temperature or irradiance, or to use approximative
fitting methods. Finally, the parameter values of the single-diode model obtained under
certain irradiance and temperature conditions were converted to comparable values under
standard test conditions (STCs).

The novelty of this work lies in both its theoretical and practical applicability to the
condition monitoring of PV systems. Groundbreakingly, the results of the study provide
clear guidance on how the choice of the partial I–U curve affects the accuracy of the
parameters of the fitted single-diode model. Such relation is investigated in the present
study for the first time. A very significant finding is that a correct selection of the vicinity
of the maximum power point for fitting provides a promising opportunity to detect aging
in real applications. Series resistance is a key quantity for aging detection, and we further
investigated how the increase in the number of I–U curves used for fitting improves
the accuracy of the identified average parameter value. Such information is of practical
relevance when designing any I–U curve-based condition monitoring approach. As a
final step, the suitability of the used single-diode model fitting procedure for PV module
aging detection was demonstrated by utilizing full and partial I–U curves measured with
additional series resistances. The findings clearly outline the correct selection of partial I–U
curves used for aging detection.

The remainder of the paper is organized as follows: Section 2 provides information
about the mathematical single-diode model jointly with the used iterative fitting procedure;
then, the used data and their pre-processing procedure are introduced. The presentation
of the two different I–U curve cutting methods completes Section 2. In Section 3, the
experimental results are presented and discussed. Finally, Section 4 closes the paper.

2. Methods and Data
2.1. Used Electrical Model and Fitting Procedure

The single-diode model, which is widely used for describing the I–U characteristics of
a PV module [15], is also used in this work.

I = Iph − Io

(
exp

(
U + IRs

AUT

)
− 1

)
− U + IRs

Rh
, (1)

where Iph is the photogenerated current, Io is the dark saturation current, and A is the
diode ideality factor. As in [16], A is considered constant with a value of 1.1. The two
parasitic resistances, series resistance Rs and shunt resistance Rh, account for the different
loss mechanisms occurring in the PV cell. UT = NskBT/q is the thermal voltage, where Ns
is the number of PV cells connected in series, kB is the Boltzmann constant, T is the PV cell
operating temperature, and q is the electron charge.

The fitting procedure utilized in the present work was initially presented in [16]. It
takes the measured I–U curves and the STC electrical characteristics of the PV module as
its inputs. The outputs are the single-diode model parameters (Iph, Io, Rs, and Rh) and the
operating conditions (G and T), with G being the irradiance. No preliminary information of



Energies 2022, 15, 9079 5 of 21

the outdoor conditions is needed. The direct output parameters are (Iph, Rs, Rh, and T). Io
is calculated inside the fitting function called fit.m in Matlab using the following equation:

Io =
Iph − UOC

Rh

exp
(

AUT
UOC

)
− 1

(2)

derived from (1) in the OC. In (2), the OC voltage is obtained as in [17] as

UOC = UOC, STC + KU(T − TSTC) + AUT ln(Geff), (3)

where UOC,STC is the OC voltage in under STCs, KU is the temperature coefficient of UOC,
and TSTC is the STC temperature of 25 ◦C. The efficient irradiance, Geff, is calculated as

Geff =
ISC

ISC, STC + KI(T − TSTC)
, (4)

where short-circuit current ISC is approximated to be equal to the photocurrent obtained by
the fitting, ISC, STC is the SC current under STCs, and KI is the temperature coefficient of ISC.
The irradiance is calculated after the actual fitting as

G =
GSTC ISC

ISC, STC + KI(T − TSTC)
, (5)

where GSTC is the STC irradiance of 1 kW/m2. The short-circuit current is obtained from
the fitted curve as

ISC =
Iph

1 + Rs
Rh

. (6)

Finally, the investigated model parameter values are converted to STCs using the formulae [18,19]

Iph, STC = GSTC
Iph

G
− KI(T − TSTC) (7)

and
Rs, STC = Rs. (8)

In particular, the choice of Formula (8) was justified in [18], where the temperature
dependence of series resistance was also observed, but with minor significance. Other
parameters can also be also converted to STCs [18–20]. However, this is out of the scope of
the present paper, which focuses mainly on aging detection, and they are thus omitted.

The computational costs of the used iterative fitting procedure can be evaluated as
the number of iterations jointly with the number of times in which the objective function
is evaluated during the fitting. Another issue closely related to the usability of a fitting
procedure is the number of I–U curves needed for reliable fitting. Indeed, there is always
some deviation in the fitted single-diode model parameter values with respect to the
measured curves, even under stable outdoor conditions. Hence, the diagnosis should not
be based on a fit to a single curve, but a set of fits to successive I–U curves measured under
stable environmental conditions.

2.2. Used Measurement Data

The used measurement data were gathered on 25 August 2020 from the solar PV
research power plant of Tampere University, Finland. The PV power plant consists of
69 PV modules (NAPS NP190GK) fabricated of multi-crystalline silicon [21]. The dataset
of the present paper is a part of the dataset used in [16] consisting of a 40 min period
of stable high-irradiance conditions. Such conditions are favourable for the successful
diagnosis of single-diode model parameter identification. The data comprised the I–U
curve measurements of an individual PV module jointly with its operating condition
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measurements. The I–U curves were measured with an I–U curve tracer utilizing IGBTs
as the electronic load with 1 Hz sampling frequency. The irradiance received by the PV
module was registered with an SPLite2 sensor, and the PV module backplate temperature
was measured with a Pt100 sensor.

Additionally, the aging of the examined PV module was emulated by connecting
additional resistors of 0.22 and 0.69 Ω in series with the PV module and fitting the single-
diode model to the measured I–U curves. For the PV module with and without the
additional series resistors, high-irradiance measurement periods of 1300 s at a sampling
frequency of 1 Hz for the I–U curves were selected for the study. The measurements with
the additional series resistors were obtained on 18 and 31 July 2020. Such a short time
gap between the measurements inhibits the development of real aging effects between the
measurement periods.

The electrical STC characteristics of the used PV module differed slightly from the
datasheet values and were thus redetermined in [16]. The redetermined values used in the
present paper are reported in Table 1. The resistance of the cables connecting the PV module
to the I–U curve tracer was 0.363 Ω [3]. This value is included in STC series resistance
Rs, STC of Table 1.

Table 1. The electrical characteristics of the used PV module under STCs.

Parameter Value

ISC, STC 8.72 A
IMPP, STC 7.94 A
UOC, STC 32.8 V
UMPP, STC 22.9 V
KU –0.124 V/K
KI 0.0047 A/K
Rs, STC 0.768 Ω
Rh, STC 354 Ω
A 1.10
Ns 54

2.3. Pre-Processing of Measurement Data

The quality of I–U curve measurement data remarkably affects the fitting results,
especially when only partial I–U curves are utilized. As noted in [22], most measure-
ment devices space the measurement points according to either voltage or current, which
provides more weight to the side of the measured I–U curve having a larger number of
measurement points when fitting the single-diode model. This problem, also highlighted
in [3], was tackled in [14]. Therein, an I–U curve pre-processing procedure was presented
to first eliminate the abnormal measurement points and then to evenly space the points
along the measured I–U curve prior to actual curve fitting. This methodology was also
adopted in the present work. The points remaining on the I–U curve after the elimination
of the abnormalities were evenly distributed into small intervals, whereafter the voltage
and current values of each interval were averaged to form one representative point for each
interval, as in [14]. This mitigated the effect of the nonuniform data distribution on the
fit quality. Finally, the representative points were used for the actual single-diode model
fitting. As an example, Figure 1 illustrates the distribution of 50 representative points along
a measured I–U curve, with abnormalities having been eliminated. As can be seen, the
representative points represent the original measurement data very well.
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Figure 1. Measured I–U curve jointly with 50 representative points.

In order to obtain comparable fitting results with different I–U curve cutting limits,
an equal number of representative I–U points must be used in each case. On one hand,
the number of representative points should be sufficiently large to correctly capture the
shape of the entirely measured I–U curve. However, their number must not exceed the
number of the original points of the refined I–U curve after the elimination of abnormalities.
In particular, this holds for the cases where only a very limited neighbourhood of the
MPP is used for fitting. On the other hand, the number of representative points should be
sufficiently small to avoid excessive computational costs. It was experimentally found that
100 representative points is a good trade-off among all these criteria both for the entirely
and partially measured I–U curves.

2.4. Fitting the Single-Diode Model to Partial I–U Curves

The aim of the present work is to systematically study how the size of the MPP
neighbourhood affects the accuracy of the parameters of the fitted single–diode model. The
present paper adopts two I–U curve cutting principles: cutting based on certain percentages
of PMPP and UMPP.

When cutting the MPP neighbourhood based on PMPP for fitting, it is symmetrically
limited by a certain percentage of the PMPP so that only those parts of the I–U curve with
power higher than the limit are considered. When cutting the MPP neighbourhood based
on UMPP for fitting, it is symmetrically limited by a certain percentage of UMPP so that only
those parts of the I–U curve with voltage offset not exceeding that UMPP percentage are
considered. Clearly, the voltage offset on the right side of the MPP must not exceed the
OC voltage. This is prevented by choosing suitable cutting limits with a sufficient margin.
Figures 2 and 3 illustrate the used cutting principles based on certain percentages of PMPP
and UMPP, respectively.
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3. Results and Discussion

In order to confirm the functionality of the fitting procedure [14,16], the entire I–U
curves measured with a I–U curve tracer consisting of 100 representative points were
investigated at first. To verify the functionality of the fitting procedure, the most suitable
quantities are the PV module operating irradiance and temperature due to the existence of
measured reference values. Figure 4 shows the calculated and measured irradiance values
as functions of the measurement time during the entire 40 min measurement period. The
irradiance values calculated using the fitted curves follow the measured irradiance very
closely, being slightly above the measured values, with a difference of about 10 W/m2, in
accordance with earlier studies [3,16]. Figure 5 shows the fitted and measured temperature
values as functions of the measurement time during the measurement period. The fitted
temperature exhibited approximately 2.5 ◦C lower values than the measured PV module
backplate temperature. The main explanation for such a temperature difference is the
cooling effect of the wind continuously blowing towards the front surface of the PV panel;
thus, PV cells had a lower temperature than the PV module backplate. These results are
in agreement with the results published in [3,13,16], which demonstrates the functionality
of the chosen single-diode model fitting procedure for the entirely measured I–U curves,
which consist of evenly distributed representative points.
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3.1. Symmetrical Cutting with Respect to MPP Power

The parameter values of the single-diode model are slightly dependent on the opera-
tional conditions, mostly on the received irradiance and the temperature of the PV panel.
Therefore, the effect of the outdoor conditions was eliminated by converting the identified
parameter values to STCs via (7)–(8) to obtain comparable results. Figure 6 shows the
identified photocurrent converted to STCs (Iph, STC) during the entire 40 min measurement
period as a function of the I–U curve cutting limit. Therein, the fitting to the entirely
measured I–U curves serves as the reference. Obviously, the smallest scatter in the obtained
Iph, STC values was achieved using the entirely measured I–U curves for fitting. Up to the
cutting limit of 50% of PMPP, most of the measured I–U curve was still used for fitting, and
the scatter of obtained Iph, STC values increased only slightly as the cutting limit decreased.
When the part of the I–U curve used for fitting decreases with decreasing cutting limit
below 50% of PMPP, the scatter in the Iph, STC values increases significantly. This was a
natural consequence of the excessive reduction in the part of the measured I–U curve used
for fitting. The fit seemed to be very stable up to the cutting limit of 50% of PMPP, but the
stability of the fit started to suffer when an even smaller portion of the measured I–U curve
was used for fitting. However, the mean Iph, STC value remained almost constant up to the
cutting limit of 40%, indicating that reliable parameter values can be extracted from I–U
curves measured even in the immediate vicinity of the MPP.

The identified series resistance values obtained during the 40 min measurement period
by fitting the single-diode model to the entirely measured I–U curves are shown in Figure 7
as a function of measurement time. The obtained series resistance values only exhibited
a small deviation around the average values of about 0.8 Ω, in accordance with previous
studies [3,16]. Figure 8 shows the fitted series resistance values obtained during the 40 min
measurement period from partial I–U curves as a function of the cutting limit of PMPP. In
the figure, the entirely measured I–U curves serve as the reference. Up to an I–U curve
cutting limit of 50% of PMPP, the scatter around the mean value of the fitted series resistance
was small, but with smaller cutting limits, the fitted Rs values began to scatter significantly.
Table 2 shows the statistical quantities describing the fitted series resistance values for the
different PMPP-based cutting limits. The results presented in Table 2 confirm that the mean
Rs value changed little, increasing only slightly with the decrease in the cutting limit, but
the standard deviation in Rs increased significantly with the decrease in the cutting limit
when using small cutting limits. This indicates that the fit stability suffers with the decrease
in the I–U curve cutting limit, and at low cutting limits, sufficient measurement statistics
are needed to obtain a reliable result.
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Table 2. Statistical quantities of the fitted series resistance values for different cutting limits based on
MPP power during the 40 min measurement period.

Cutting Limit (% of PMPP) Mean (Ω) Standard Deviation (Ω)

Entire curve 0.7892 0.0098
90 0.7925 0.0126
80 0.7960 0.0132
70 0.7995 0.0156
60 0.8036 0.0150
50 0.8079 0.0169
40 0.8081 0.0367
30 0.8050 0.0620
20 0.8035 0.0841
10 0.8060 0.1055

Figure 9 shows the fitted temperature values obtained during the 40 min measurement
period as a function of the PMPP-based I–U curve cutting limit, with the reference being
provided by fitting to the entirely measured curves. The calculated mean temperature
slightly decreased with the decrease in the cutting limit, but the scatter of the temperature
was almost constant above the cutting limit of 50% of PMPP. The fitted temperature seemed
to decrease when the fitted series resistance increased, as shown in Figure 8, and vice versa.
If the I–U curve was cut even more, the scatter of the fitted temperature clearly increased
as the cutting limit decreased, as happened with the fitted series resistance. However, the
mean temperature did not change much. This reflected an increase in the instability of the
fitting procedure if the I–U curve was cut too much.
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Figure 10 shows the number of iterations used for I–U curve-wise fitting as a function
of the cutting limit in terms of PMPP for the 40 min measurement period. The number of
iterations needed was the smallest when fitted to the entirely measured I–U curve and
remained small up to a cutting limit of 50% of PMPP, but increased if the cutting limit was
further reduced. In addition, the scatter in the number of iterations increased with the
decrease in the cutting limit due to the increase in the instability of the fitting procedure
when the I–U curves were cut too much. The findings presented in Figure 10 are directly
reflected in Figure 11, which shows the objective function evaluations needed for curve-
wise fitting as a function of the PMPP-based cutting limit for the entire 40 min dataset. The
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more iterations were needed, the more often the objective function needed to be evaluated.
The objective function was evaluated on average five times during each iteration.
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3.2. Symmetrical Cutting with Respect to MPP Voltage

For the PV module used in this work, the ratio of UMPP/UOC was approximately
0.70 under STCs (Table 1). This determines the upper limit for the UMPP-based cutting
percentage, i.e., the sum of UMPP and the chosen voltage offset right from the MPP must not
exceed UOC. The extreme case in which the entire OC slope of the I–U curve was covered
determined the largest possible cutting limit of around 39% for the I–U curves in the used
dataset. Hence, 35% was chosen as the largest studied cutting limit to leave some margin.
In general, the ratio of UMPP/UOC depends on the used PV module, with typical values
being from 0.7 to 0.8 [8,23,24].

Figure 12 shows the fitted Iph values converted to STCs as a function of the UMPP-
based cutting limit during the 40 min measurement period. As with the PMPP-based cutting
limit, in the figure, fitting to the entirely measured curves is the reference. The scatter
of the calculated Iph, STC values increased significantly with the decrease in the cutting
limit, also with high cutting limits. It is noteworthy that the fit was much more unstable
than in the case of PMPP-based cutting in Figure 6. This was an expected result, as the
UMPP-based partial I–U curves covered a large part of the OC slope but only a small part
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of the SC slope. Hence, the fit quality in the SC region suffered. This finding is in accord
with the example in [3] with 3 V voltage offset to both sides of the MPP. Such an offset
corresponded approximately to a cutting limit of 15%. For a cutting limit of 35%, the scatter
of the obtained Iph, STC values was approximately equal to that obtained by cutting 30% of
PMPP. This is plausible, since in both cases, almost the same portion of the SC slope was
covered. One should also note the variation in the mean Iph, STC value with the change in
the cutting limit in Figure 12, which indicates that cutting the measured I–U curve with
respect to the MPP voltage might not provide fitting results as stable as those obtained by
cutting with respect to the MPP power.
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function of the cutting limit based on the MPP voltage.

The fitted series resistance values as a function of the UMPP-based cutting limit during
the 40 min measurement period are shown in Figure 13. Here, the reference is provided by
the entirely measured I–U curves. The corresponding statistics are reported in Table 3. The
cutting limit of 35% of UMPP provided the most stable result with the smallest standard
deviation. This was because the slope of almost the entire OC region was covered by the
partial I–U curve selected for fitting. In addition, the mean Rs value in this case was close to
the reference value. When the portion of the I–U curve used for fitting was narrowed, the
mean Rs value remained quite stable, but the scatter of the fitted resistance values increased
significantly. Despite this seemingly promising result, the fit was more unstable than when
using MPP power-based cutting limits due to the large scatter of the fitted values.
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Table 3. Statistical quantities of the fitted series resistance for different cutting limits based on MPP
voltage during the 40 min measurement period.

Cutting Limit (% of UMPP) Mean (Ω) Standard Deviation (Ω)

Entire curve 0.7892 0.0098
35 0.7962 0.0173
30 0.7979 0.0303
25 0.7992 0.0667
20 0.7929 0.0969
15 0.7922 0.1133
10 0.7973 0.1247

Figure 14 shows the fitted temperature values as a function of the UMPP-based cutting
proportion during the 40 min measurement period. In the figure, the reference is given by
the entirely measured I–U curves. The fitted temperature values with the cutting limit of
35% were the most stable, as they were in good agreement with the reference case. This was
because the OC end of the I–U curve was well represented in the cut curve and because
the OC voltage is strongly temperature dependent. Lower cutting limits provided much
more unstable fitting results, as evidenced by the increased scattering of the identified
temperature values with the decrease in the cutting limit. However, the mean temperature
obtained for the measurement period was practically the same for all cutting limits.
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Figure 14. Fitted temperature values during the 40 min measurement period as a function of the
cutting limit based on MPP voltage.

Figure 15 shows the number of iterations used in the fitting procedure as a function of
the UMPP-based cutting limit during the 40 min measurement period. A small number of
iterations was sufficient for the convergence of the fitting procedure with a cutting limit of
35%. However, the number of needed iterations increased strongly with the decrease in the
cutting limit. The shape of the plot in Figure 15 is reflected in Figure 16, where the needed
objective function evaluations are presented. It is noteworthy that both indicators of the
required computational resources had a much higher scatter than when using the cutting
limits based on the MPP power (Figures 10 and 11).
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3.3. Required Number of I–U Curves for Reliable Series Resistance Analysis

In real-life condition monitoring applications, the number of measured I–U curves required
for the reliable identification of series resistance is valuable information. Figures 17 and 18
show the series resistance values identified from the entirely measured I–U curves as a
function of the number of I–U curves used for the analysis. Figures 17 and 18 cover 10 min
measurement periods of 1–600 s and 1201–1800 s, respectively. The corresponding statistical
quantities for the identified series resistances are presented in Table 4.

Irradiance decreased slightly during the measurement period of 1–600 s, which re-
sulted in a decrease in the temperature of about 4 ◦C, which was suspected to have affected
the obtained series resistance. During the measurement period of 1201–1800 s, the opera-
tional conditions were more stable. Indeed, the mean of the fitted series resistance values
shown in Figure 17 decreased slightly with the increase in the number of analysed I–U
curves due to the decrease in the temperature during the measurement period of 1–600 s.
This was seen also as a slight increase in the standard deviation when the number of
analysed I–U curves increased. On the other hand, more stable series resistance values
were obtained during the measurement period of 1201–1800 s reported in Figure 18, when
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the operational conditions were more stable. The difference in the mean resistance values
between the cases shown in Figures 17 and 18 and in Table 4 can be explained by the fact
that the PV module temperature was somewhat higher in the case shown in Figure 17 than
in that in Figure 18. From Table 4, one can deduce that the series resistance obtained by
fitting decreased by 0.5% when the temperature decreased by 4 ◦C. This is something to
be noted when designing real online applications. Nevertheless, the mean of the fitted
series resistances was not very sensitive to the number of analysed I–U curves, nor was its
standard deviation, being slightly above 1% for all studied cases.
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Table 4. Statistics of the fitted series resistance values fitted to entire I–U curves for measurement
times of 1–600 s and 1201–1800 s.

1–600 s 1201–1800 s

Number of
Curves Mean (Ω) Standard

Deviation (Ω) Mean (Ω) Standard
Deviation (Ω)

60 0.7933 0.0085 0.7888 0.0102
120 0.7932 0.0093 0.7871 0.0105
180 0.7929 0.0095 0.7875 0.0100
240 0.7923 0.0096 0.7895 0.0101
300 0.7916 0.0097 0.7892 0.0099
360 0.7911 0.0098 0.7891 0.0096
420 0.7907 0.0099 0.7888 0.0094
480 0.7904 0.0098 0.7884 0.0091
540 0.7901 0.0099 0.7884 0.0091
600 0.7900 0.0100 0.7881 0.0091

In this light, a measurement period of few minutes provides sufficient statistical
analyses to estimate the series resistance reliably. However, the minimum number of the
measured I–U curves needed for reliable series resistance analysis depends on the stability
of the operating conditions.

3.4. PV Module Aging Detection

The aging of the examined PV module was emulated by connecting additional resis-
tors in series with the PV module and fitting the single-diode model to the I–U curves
measured thereafter. The additional resistors used in the present study had sizes of 0.22 and
0.69 Ω. For the PV module with and without the additional series resistors, high-irradiance
measurement periods of 1300 s were chosen for the investigation, i.e., 1300 I–U curves were
measured at a sampling frequency of 1 Hz. Figure 19 shows the fitted series resistance
values as a function of measurement time when the fitting was performed for the entirely
measured curves consisting of 100 representative points. Figures 20 and 21 show the series
resistance values when using the cutting limits of 50% and 20% of PMPP, respectively. The
corresponding statistical quantities of the fitted series resistance during the measurement
period of 1300 s are reported in Table 5.
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Table 5. Statistical quantities for series resistances identified from 1300 consecutive I–U curves using
the entirely measured I–U curves (cutting limit of 100%) and partial I–U curves with the cutting limits
of 50% and 20% of MPP power for fitting.

Rs, add (Ω) Cutting Limit (%) Mean (Ω) Standard Deviation (Ω)

0.00 100 0.7894 0.0101
50 0.8075 0.0166
20 0.8040 0.0841

0.22 100 1.0401 0.0079
50 1.0568 0.0111
20 1.0596 0.0690

0.69 100 1.5077 0.0080
50 1.5158 0.0127
20 1.5086 0.0580
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It becomes evident from Figures 19–21 and Table 5 that using the entirely measured
I–U curves provided smaller average series resistance values than the cutting limit of 50% of
PMPP for each emulated stage of aging. This is consistent with Figure 8 as well as previous
work [13]. As expected, the standard deviation in the fitted series resistance monotonically
increased when moving from using the entirely measured I–U curves to the cutting limit
of 50% and even further to 20% of PMPP. However, the average series resistance values
obtained with the cutting limit of 20% could be either smaller or larger than those with
the cutting limit of 50%. Such inconsistency is natural and is due to the large deviation in
the fitted values from the mean for the 20% cutting limit. It is also shown in Table 5 that
the standard deviation in the fitted Rs values was still tolerable with the cutting limit of
50% for each emulated stage of aging, so that such I–U curve cutting could be used for
diagnostic purposes. In contrast, the Rs values deviated too largely when using the 20%
cutting limit, thus preventing a reliable diagnosis.

Table 6 shows the differences between the average series resistance values (∆Rs) for
all the stages of emulated aging. The differences (∆Rs) were calculated using the entire
and partial I–U curves with cutting limits of 50% and 20% of PMPP for fitting. Fitting to the
entire I–U curves provided larger ∆Rs values than fitting to partial I–U curves. In addition,
the detection of aging stages provided overestimated values of ∆Rs in all cases. The reason
for such overestimation was clarified in [13], where it was observed that the minimization
of the RMSE in terms of current in fitting causes such phenomenon. In particular, the
value of ∆Rs= 0.7183 Ω in Table 6 in the case of the entire I–U curves to quantify the actual
additional resistance of 0.69 Ω coincides with the result of [13] obtained by minimizing the
RMSE in terms of current. In [13], it was noticed that if the RMSE is minimized in terms
of voltage, the problem is alleviated. However, as Table 6 reveals, the overestimation of
∆Rs also became partially mitigated in current-based RMSE minimization if the partial I–U
curves were used for fitting.

Table 6. Difference in mean Rs values obtained from 1300 successive I–U curves between aged and
non-aged PV modules using entire I–U curves or partial I–U curves with the cutting limits of 50%
and 20% of PMPP.

Rs, add (Ω) Cutting Limit of 100% Cutting Limit of 50% Cutting Limit of 20%

0.22 0.2507 0.2493 0.2556
0.69 0.7183 0.7083 0.7045

4. Conclusions

The present work provides a systematic analysis of how limiting the PV module I–U
curves to the vicinity of the MPP affects the fitting accuracy of the single-diode model.
Two I–U curve cutting approaches were examined, one of which has not been earlier
systematically studied in the existing literature. In addition, the present paper is the first
study to provide statistically reliable results; the experimental data of 2400 successive I–U
curves were subjected to a detailed analysis. The used I–U curves were measured under
high-irradiance conditions, where the single-diode model is known to work best.

The partial I–U curves were constructed step by step from complete curves to curves
in the close vicinity of the MPP by setting measurement limits based on either MPP power
or MPP voltage symmetrically for both sides of the MPP. The latter method was analysed
for the first time in the present paper. The effect of the choice of measurement limits around
the MPP was investigated for the most practical output parameters of the used single-
diode model fitting procedure—photocurrent, series resistance, and temperature—from a
condition monitoring point of view. The other parameters, including saturation current
and shunt resistance, were omitted from this paper due to their minor significance in the
condition monitoring of PV systems. It was shown that the measurement limits based
on the MPP power provided more stable fitting results than the limits based on the MPP
voltage. Overall, a 50% limit based on the MPP power proved to be a viable alternative
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for measuring partial I–U curves to accurately fit a single-diode model. In contrast, the
I–U curves measured in very close proximity to the MPP were not sufficient for reliable
aging diagnosis.

Among the single-diode model parameters, series resistance is the most important
in aging detection, being also in the focus of the present paper. It was investigated how
many complete I–U curves are needed for reliable series resistance analysis. According to
the findings, few hundred successive I–U curves are sufficient. It was also found that the
partial measurement of the I–U curve is sufficient for series resistance analyses, as long as
the open-circuit slope of the I–U curve and the MPP curvature are reasonably covered. To
emulate the aging of PV modules, two different-sized series resistors were still connected
in series with the used PV module. The present work constitutes a strong theoretical
foundation for further analyses and practical application development. In summary, the
developed theoretical approach and fitting procedure, as well as the results obtained, can
be used as a starting point for the development of online condition monitoring methods for
PV systems.
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