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Abstract
Countless applications use the propagation and reflection of sound to gain better knowledge of the

surrounding medium. This medium can, for instance, be made of a set of complex and heteroge-

neous biological tissues or of ships in the sea several kilometres away from the sound receiver. In

all cases, the sound propagation is affected by some nonlinear effects. In many applications those

effects are neglected, while in others they are exploited.

In this thesis we investigate the possibility of using the nonlinear effects in fields where they

are avoided, neglected, or overseen. We also try to establish faster or more accurate estimations

of nonlinear sound fields. The two domains that were investigated are the domain of underwater

acoustics with applications such as echo sounders or acoustic Doppler current profilers, and the

domain of medical imaging.

In underwater acoustics, we studied the combined use of the second harmonic and fundamental

signals for imaging using a scientific echo sounders and for determining current velocities using

acoustic Doppler current profilers. We show that the use of the second harmonic signal can improve

the performance in these applications when the range is limited.

In medical imaging, we investigated the use of the second harmonic signal with the multi-line

transmission technique. In this case too, images produced by the second harmonic signal suffer

from less perturbations than images produced by the fundamental signal.

We have developed new models to estimate the nonlinear propagation of sound. One model

intends to appropriately describes the attenuation and the dispersion observed in complex media.

It derives a wave equation with a loss operator defined by fractional order derivatives. The model

relies on variations of the constitutive equations that adequately describe the stress-strain relation

and heat transfer. The other models based on the quasi-linear approximation intend to speed up

or increase the flexibility of the implementation. They proved in one case to be faster than other

state-of-the-art simulators, and in the other case, more flexible than alternative methods. Given

that the conditions for quasi-linear propagation are satisfied, those simulators adequately describe

the sound field for the fundamental and second harmonic signals.
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Chapter 1

Introduction

Medical ultrasound imaging and underwater acoustic applications are two of many fields where

sound is used to gain better knowledge of the environment. The principle of listening to the sound

generated by a source, like with passive sonars, or to the echo of a transmitted sound signal af-

ter reflection from a target, like with active sonars and in medical ultrasound imaging, involves

sound propagation. When the equations describing a problem are linear, many mathematical tools

are available and solutions are easier to compute than for nonlinear equations. But the equations

of physics describing the propagation of sound are, by definition, nonlinear. Approximations are

necessary to obtain a linear equation for sound propagation. For many years, and in many cases,

these approximations have managed to describe a large part of the problems involving what is

called “small signals” with an adequate precision. But in some scenarios involving “finite amplitude

sound”, the introduction of nonlinear effects is required to explain the observations. The need for

extending the linear theory to include nonlinear effects was prompted by the discovery of nonlin-

ear aspects in existing applications, like the variations of propagation speed with the transmitted

pressure level [1], and the emergence of new technologies based on nonlinear interactions, like the

parametric acoustic array [2, 3].

1.1 When sound propagates

1.1.1 Constitutive equations

The constitutive equations form the starting point for deriving a wave equation. They describe the

physics of the medium when it is disturbed from its equilibrium state by the presence of sound.

Three equations are necessary to derive a linear wave equation: the equation of continuity, the

momentum equation, and the thermodynamic equation of state. In order to derive a wave equation

describing the nonlinear effects in thermoviscous fluids, a fourth equation is necessary, the entropy

equation.

The equation of continuity simply states that when the fluid is in motion, the net influx of mass

through a fixed volume element must be reflected as density changes within this volume. It links

the particle velocity vector v to the fluid instantaneous density ρ through the relation [4]

∂ρ

∂t
+ (v · ∇)ρ + ρ∇ · v = 0, (1)

1



CHAPTER 1. INTRODUCTION

where t is the time.

The momentum equation is the formulation of the law of physics stating that the forces exerted

on the fluid contained in a unit of volume are equal to the product of the mass of this volume by

its acceleration. It can be written in the case of a thermoviscous fluid as [4]

ρ

(

∂v

∂t
+ (v · ∇)v

)

= −∇P + η∇2v + (ζ + 1
3
η)∇(∇ · v), (2)

where P is the thermodynamic pressure, η is the shear viscosity, and ζ is the bulk viscosity. In this

equation, the terms involving the viscosities are issued from the formulation of the viscous stress

tensor for a mechanical model based on the Hooke’s law [5]. When more complex models lead to

different formulations of the viscous stress tensor, the form of the momentum equation changes.

Such models have been used in this thesis to come to a different form of the momentum equation

involving fractional derivatives (Eq. (17) in Paper III).

The thermodynamic equation of state relates three quantities describing the thermodynamic

behavior of the fluid. These quantities can be P , ρ, and T where T is the temperature, or P , ρ,

and s, where s is the specific entropy (per unit of mass). A Taylor expansion of this relation about

the equilibrium state is normally used. To the second order, it can be written [4]

p = c2
0ρ

′ +
c2
0

ρ0

B

2A
ρ′2 +

(

∂P

∂s

)

ρ,0

s′, (3)

where p, ρ′, and s′ are the dynamic pressure, density, and entropy, respectively, describing small

disturbances relative to the uniform state of rest, B/A is the parameter of nonlinearity characteristic

of the medium [6], and c0 is the “small signal” sound speed, the pressure dependent sound speed

evaluated at equilibrium state.

The entropy equation expresses the dissipation of energy due the fluid viscosity and to heat

transfers [7]. For a thermoviscous fluid in which relaxation effects are neglected, it is written [4]

ρT

(

∂s

∂t
+ (v · ∇)s

)

= κ∇2T + ζ(∇ · v)2 +
1

2
η

(

∂vi

∂xj

+
∂vj

∂xi

− 2

3
δij

∂vk

∂xk

)2

, (4)

where κ is the thermal conductivity and δij is the Kronecker delta. The final term of Eq. (4) is

written in Cartesian tensor notation: vi denotes the components of v in direction xi. In Eq. (4) as

in Eq. (2), the terms involving the viscosities differ when using mechanical models more complex

than a Hooke’s law. Likewise, the term involving the thermal conductivity κ comes from a heat

transfer model based on Fourier’s law. Models for heat transfer described by fractional derivatives

have also been introduced in this thesis leading to a different form for the entropy equation (Eqs. (6)

and (8) in Paper IV).

All these four constitutive equations are nonlinear. Yet it is possible to completely linearize them

in order to obtain a linear wave equation, or to keep the nonlinear terms up to a given order and

obtain a wave equation describing some nonlinear aspects of sound propagation. As an illustration,

a linear wave equation valid to the first order can be derived from these constitutive equations in

the very simple case of a fluid of negligible viscosity and thermal conductivity [8] (η, ζ , and κ are

of the same order as v and p and only contribute to the second order). Keeping only the term of

2



1.1. WHEN SOUND PROPAGATES

the first order, the continuity equation, Eq.(1), becomes

∂ρ′

∂t
+ ∇ · (ρ0v) = 0, (5)

where ρ0 is the density of the medium undisturbed. Likewise, keeping only the term to the first

order, the momentum equation, Eq. (2), becomes

ρ0
∂v

∂t
= −∇p. (6)

The linearized equation of state, Eq. (3), reduces to

p = c2
0ρ

′. (7)

Taking the time derivative of Eq. (5) and the divergence of Eq. (6) give

∂2ρ′

∂t2
+ ∇ ·

(

ρ0
∂v

∂t

)

= 0 and (8)

∇ ·
(

ρ0
∂v

∂t

)

= −∇2p, (9)

which when combined give
∂2ρ′

∂t2
= ∇2p. (10)

Using Eq. (7) to replace ρ′ in Eq. (10), we get

1

c2
0

∂2p

∂t2
= ∇2p, (11)

which is a linear wave equation describing propagation of sound in a lossless medium and valid to

the first order.

1.1.2 Nonlinear wave equations

Daring not to present the first contributions to the formulations of nonlinear sound propagation

in the eighteenth and nineteenth centuries by Euler, Lagrange, Poisson, Stokes, and Earnshaw, we

jump straight to the middle of the twentieth century and present three of the most used wave

equations describing the nonlinear propagation of sound. The equations presented in this section

can all be found in Ref. [4]. To get to these equations, the approach consists of keeping the terms

of the first and second order in the four constitutive equations presented above. Doing so for sound

propagation in a thermoviscous fluid leads for the continuity equation to [4]

∂ρ′

∂t
+ ρ0∇ · v =

1

ρ0c4
0

∂p2

∂t
+

1

c2
0

∂L
∂t

, (12)

3



CHAPTER 1. INTRODUCTION

and for the momentum equation to

ρ0
∂v

∂t
+ ∇p = − 1

ρ0c2
0

(ζ + 4
3
η)∇

∂p

∂t
− ∇L, (13)

where

L =
1

2
ρ0v

2 − p2

2ρ0c2
0

(14)

is the second-order Lagrangian density. The entropy equation simplifies to

ρ0T0
∂s′

∂t
= κ∇2T, (15)

where T0 is the temperature of the medium at rest. After replacing the entropy in Eq. (3) by the

expression given in Eq. (15) and using thermodynamics relations, the equation of state can be

written [4]

ρ′ =
p

c2
0

− 1

ρ0c4
0

B

2A
p2 − κ

ρ0c4
0

(

1

cv

− 1

cp

)

∂p

∂t
, (16)

where cv and cp are the specific heat capacities at constant volume and pressure, respectively. Fol-

lowing the same procedure as presented in the previous section to obtain a lossless linear wave

equation, the time derivative of Eq. (12) is subtracted to the divergence of Eq. (13) and Eq. (16) is

used to eliminate ρ′. This leads to the second order wave equation [4]

�
2p +

δ

c4
0

∂3p

∂t3
= − β

ρ0c4
0

∂2p2

∂t2
−

(

∇2 +
1

c2
0

∂2

∂t2

)

L, (17)

where β = 1 + B/(2A) is the coefficient of nonlinearity, �
2 is the d’Alembertian operator defined

as

�
2 ≡ ∇2 − c−2

0 (∂2/∂t2), (18)

and δ is the diffusivity of sound defined by

δ =
1

ρ0

(

4

3
η + ζ

)

+
κ

ρ0

(

1

cv

− 1

cp

)

. (19)

Equation (17) is the second-order wave equation. From this equation, three widely used nonlinear

wave equations can be derived: the Westervelt equation, the generalized Burgers’ equation, and the

Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.

The Westervelt (1963) equation describes diffraction, attenuation, and nonlinear effect of sound

propagation and is written

�
2p +

δ

c4
0

∂3p

∂t3
= − β

ρ0c4
0

∂2p2

∂t2
. (20)

The generalized Burgers’ equation (1948) describes the nonlinear propagation for plane, cylin-

drical, and spherical waves, and is written

∂p

∂r
+

m

r
p ∓ δ

2c3
0

∂2p

∂τ 2
= ± βp

ρ0c3
0

∂p

∂τ
, (21)

4



1.2. NUMERICAL SIMULATORS

where the ± signs account for outgoing and incoming waves, r is the radial coordinate, m = 0,

1/2, or 1 for plane, cylindrical, or spherical waves, respectively, and τ = t ∓ (r − r0)/c0 with r0

the source or starting radius.

The KZK equation (1971) uses the parabolic approximation and is written

∂2p

∂z∂τ
− c0

2
∇2

⊥p − δ

2c3
0

∂3p

∂τ 3
=

β

2ρ0c3
0

∂2p2

∂τ 2
, (22)

where τ = t−z/c0 for the outgoing wave, and ∇2
⊥ = ∂2/∂x2+∂2/∂y2 is a Laplacian that operates

in the transverse plane, the plane perpendicular to the axis of the beam. All these formulations

are approximations of the second-order nonlinear wave equation valid to the second order. They

assume cumulative nonlinear effects dominate local nonlinear effects, they describe attenuation in a

thermoviscous fluid, and they are valid for directive sources, that is ka ≫ 1 where a is the distance

characteristic of the source, and k = 2π/λ with λ the typical wavelength [4]. Although these

equations are widely used, they fail to describe some important situations like sound attenuation

in the ocean floor and in biological tissues. Parts of this thesis (Papers III and IV) study variations

of these equations to better describe frequency power law attenuation characteristic of complex

media. Finding a solution to these equations involves numerical computation. Since most of the

work done in this thesis uses numerical simulators it is appropriate to give a brief overview of some

of the methods used for solving these equations.

1.2 Numerical simulators

Numerical methods for solving nonlinear wave propagation can follow three main paths. They can

work in the time domain, in the frequency domain, or in a mix of time and frequency domains.

There exists many simulators with many variations [9, 10]. We mention only four examples that

are widely used and that have been used at some point in this thesis.

A simulator that solves the wave propagation in the time domain and that is based on the work

done at the University of Bergen [11, 12] is called the Bergen Code [13]. It seeks a solution to a

dimensionless version of the KZK equation in form of a Fourier series and actually computes the

terms of this series. The version publicly available can model general two-dimensional (2D) sources

and attenuation in a thermoviscous fluid. The Bergen Code was used during the elaboration of

Paper I to compare its results against those provided by the simulator developed at the department.

Although these comparisons were satisfactory, they are not shown in the published version of the

article.

Another method that solves nonlinear propagation in the frequency domain and that is based

on the operator splitting technique has been presented by Christopher and Parker [14, 15]. This

method differs from the other three in that it does not solve a wave equation. Its background is

more phenomenological. Christopher and Parker solve two effects. The first is the diffraction and

attenuation of the wave when it propagates linearly, and the second is the nonlinear effects. It uses

the angular spectrum approach to solve diffraction and solves a lossless form of the Burger’s equation

to take nonlinear effects into account. In this case, the operator splitting technique does not come

from a wish to estimate all the terms in a wave equation but more to estimate simultaneously

different physical effects. It is well adapted to simulate attenuation in media such as biological

5



CHAPTER 1. INTRODUCTION

tissue, but encounters limitations for wide band pulses due to its excessive computational burden in

this case. An implementation of this method was developed at the department and used in Papers

I and II [16].

A simulator that works in the time domain was first developed by Lee and Hamilton [17,18]. It

solves the KZK equation and uses the operator splitting method. It was later updated by Cleveland

et al. [19] who included multiple relaxation mechanisms to allow modeling of attenuation in non-

thermoviscous media. The KZKTexas code [20], as it is called, models axisymmetric sources and

was used in Papers I, II, and V. A version that solves the KZK equation in the case of general 2D

sources has been developed [21, 22] but is not publicly available.

Finally, a simulator capable of simulating nonlinear sound propagation in heterogeneous and

absorbing media was recently released under the GNU General Public License, version 3 [23].

Abersim [24–26] is a simulator based on the operator splitting method that solves the diffraction

and attenuation operators in the frequency domain but solves the nonlinear operator in the time

domain. It can model any transducer geometry, any power frequency law attenuation, and simulates

heterogeneities by using phase shift screens. Abersim was used in Papers V and VII.

The result of these simulators can help identify the source of perturbations and the required

corrections when measurements depart from the predictions of the models based on linear prop-

agation. They can also predict how the signal is affected by nonlinear effects in order to take

advantage of them.

1.3 Taking advantage of the effects of nonlinearity

When nonlinear effects are described by the second-order approximation, they translate to a distor-

tion of the pulse as it propagates. The distortion of the pulse is due to an increased propagation

speed compared to the small-signal sound speed where the medium is compressed, and a decreased

propagation speed where the medium is stretched, causing the peaks of a periodic wave to travel

faster than the troughs. This translates to energy transfers from the frequency band of the transmit-

ted signal to the frequency bands around the upper harmonics of the transmitted center frequency

(Fig. 1).

Nonlinear effects in sound propagation have found some applications. In the case of Tissue

Harmonic Imaging (THI) in medical imaging, this energy transfer is used to create images by

filtering the received echo in the second harmonic frequency band. This technique of second

harmonic imaging based solely on the nonlinear propagation of sound in biological tissue enhances

the image quality in many cases compared to imaging when filtering the signal in its transmitted

frequency band [27] (Fig. 2).

Parametric sonars form another industrial application of nonlinear effects in sound propagation.

It exploits the nonlinear interaction between two primary beams at slightly offset frequencies. This

interaction generates signals at the sum and difference frequencies. The radiation at the difference

frequency contains almost no sidelobes, has a high directionality, and can penetrate the ocean

bottom due to a low attenuation at low frequency. Parametric sonars can be used for sub-bottom

characterization and buried-object detection [28] (Fig. 3).

However, in some cases, as for target strength estimation in fishery research [29,30], the energy

transfer from the transmitted frequency band to the upper harmonic frequency bands can be seen

6



1.4. THE RESEARCH QUESTION
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Fig. 1: Signal’s normalized pressure amplitude (top row) and normalized energy spectra (bottom row) at
transmission (left column) and at focus point after nonlinear propagation through blood (right column).
The transducer is a flat circular piston of radius 11 mm focused at 60 mm. The transmitted pulse has a
center frequency of 1.2 MHz and an amplitude of 1.8 MPa.

as detrimental since the signal loses energy from its transmitted frequency band. This duality in

how the nonlinear effects in sound propagation are seen has been the motivator for this thesis.

1.4 The research question

The question that this thesis attempts to address is two-folded. The first part is: “Can we utilize

the effects of the nonlinear propagation of sound in areas where they are either ignored or avoided ?”,

and the second part is: “Can we improve the models predicting the nonlinear propagation of sound ?”.

These questions are fairly open. The work in this thesis has limited the fields of investigation to

underwater acoustics and medical ultrasound imaging although some of the theoretical studies can

be applied to wider areas.

1.5 The research method

A natural starting point to investigate new ways of using the nonlinear propagation of sound is to

look into areas where these effects are either avoided or neglected and investigate if one can use

them in a similar way as other technologies have successfully done. This was the method used

when investigating the possibility for second harmonic imaging with echo sounders as it is done

in medical harmonic imaging. Another path that this work has followed consists of studying a

technology and check how it could be improved when making use of the nonlinear effects. This

lead to the studies on acoustic Doppler current profilers and on multi-line transmission method in
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Fig. 2: Ultrasound image of a human heart (parasternal view) using fundamental imaging (top) with
a transmitted pulse of center frequency 4.0 MHz and harmonic imaging (bottom) with a transmitted
pulse of center frequency 2.2 MHz. The depth of view is 13 cm and the focus is at 9 cm. The noise is
reduced and the border of the heart walls and the mitral valve are more clearly delimited in the case of
harmonic imaging.
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Fig. 3: Image showing faults in sediment obtained by the TOPAS PS 18 sub-bottom profiler manufac-
tured by Kongsberg Maritime. The penetration is above 100 m and the water depth is around 870 m
(source: Kongsberg Maritime).
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medical imaging.

After an extensive use of the state-of-the-art simulators publically available for predicting non-

linear propagation of sound, the development of our own simulator, and equipped with an overview

of their strengths and limitations, a natural extension was to check if alternative models could be

found to predict nonlinear effects. The results that emerged from this are a combination of new

theoretical models and numerical methods backed up, in part, by measurements either done in the

past and reported in the literature, or realized during this thesis.

1.6 Justification of the work

The study of nonlinear effects in sound propagation has blossomed in the last sixty years due to

the appearance of computers powerful enough to find numerical solutions for the established wave

equations [31]. New disciplines have emerged such as high intensity focused ultrasound (HIFU)

in medicine [32] involving acoustic signals strongly affected by nonlinear effects. This in turn has

stimulated some efforts to better predict nonlinearity in sound propagation. Despite this access

to better knowledge, nonlinear effects are still avoided or neglected in some domains. There is

therefore a clear opportunity in these fields for a research study on the use of the nonlinear effects

in sound propagation and their combination with existing technologies.

As previously mentioned, there exists many tools that numerically solve the nonlinear wave

equations with their own strength and limitations. The numerical simulators and models available

can be improved to either describe more accurately the measurements or to increase their efficiency.

The research presented in this thesis uncovers new potential ways of using nonlinear sound

propagation. It also complements the theoretical and numerical models for nonlinear propagation.

With domains of application as large and complex as underwater acoustics and medical imaging,

the nonlinear propagation of sound deserves the attention of the scientific community. Impacts

such as better diagnostics for patients and a more efficient use of our natural resources are hopefully

some results of the research in this field.
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Chapter 2

Summary of publications

2.1 Paper I

“Feasibility of second harmonic imaging in active sonar: measurements and simulations”

IEEE Journal of Oceanic Engineering, Accepted for publication May 2, 2012.

In this paper, we investigate the feasibility of using the second harmonic signal generated by

nonlinear propagation in water for pulse-echo imaging with an echo sounder. Two transducers of

center frequency 120 kHz and 200 kHz were used together with an EK 60 scientific echo sounder

(Kongsgerg Maritime, Horten, Norway). By comparing our simulations to measurements of the

axial and lateral profiles when the signal is filtered around the harmonic frequency bands after free

propagation in water, we verify the correct implementation of our simulator. The measurements

confirm the characteristic narrower main lobe and lower sidelobes of the upper harmonic signals

compared to the fundamental signal. A comparison of pulse-echo imaging when using the funda-

mental and second harmonic signals with calibration spheres as reflectors reveals that one sphere

could only be detected by the second harmonic signal. Since the amplitude of the second harmonic

signal generated by nonlinear propagation is much lower than the amplitude of the signal around

the fundamental frequency band, the maximum attainable ranges for both signals have to be eval-

uated. These ranges are estimated using simulations of both signals at long range combined with

sonar budget equations. As expected, the maximum range of the second harmonic is lower than the

range of the fundamental signal, but given its imaging capabilities, the second harmonic signal has

a potential use in sonar applications when combined with the fundamental signal.

2.2 Paper II

“Theoretical improvements when using the second harmonic signal in acoustic Doppler cur-

rent profilers”

IEEE Journal of Oceanic Engineering, Revised version submitted June 11, 2012.

This article presents how the use of the second harmonic signal in acoustic Doppler current

profilers (ADCPs) can improve the performance when measuring ship velocity or current speed.

The geometry of the second harmonic beam improves the determination of the time of arrival of the
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pulse and decreases the velocity spread. Additionally, the velocity estimates obtained by combining

the fundamental and second harmonic signals can exhibit a lower variance than the estimate given

by the fundamental signal only. These properties are verified in the case of incoherent, coherent,

and broadband echo processing. As in the previous paper, the maximum attainable ranges for

the second harmonic and fundamental signals are evaluated. These ranges are estimated for the

fundamental signal of frequency f0 = 153.6 kHz, the second harmonic signal of frequency 2f0, and

the fundamental signal of a typical transducer transmitting at the frequency 2f0. The results show

that the range for the second harmonic signal is comparable to the range of a typical transducer

transmitting at the same frequency. This paper shows that the combined use of the fundamental

and second harmonic signals can improve the velocity estimate from ADCPs based on three main

processing methods.

2.3 Papers III and IV

“Nonlinear acoustic wave equations with fractional loss operators”

Journal of the Acoustical Society of America, vol. 130, no. 3, pp. 1125-1132, September 2011.

“A more fundamental approach to the derivation of nonlinear acoustic wave equations with

fractional loss operators”

Journal of the Acoustical Society of America, Revised version submitted June 15, 2012.

These two papers show a theoretical derivation of a nonlinear wave equation with fractional

derivatives. The aim is to derive a nonlinear wave equation that leads to frequency laws for attenu-

ation and dispersion describing adequately the measurements in complex media such as biological

tissues or the ocean bottom layers. In contrast with some articles where the loss operator in the wave

equation is modified ad-hoc, the presented papers take an alternative form of the constitutive equa-

tions as a starting point. New physical models described by a stress-strain relation and a heat flux

equation with fractional derivatives or fractional integrals are presented. They lead to a fractional

version of the Navier-Stokes equation and, in the first paper, to a fractional version of the entropy

equation. However, the second paper reveals that the derivation of the entropy equation cannot

be obtained rigorously. Instead of using the entropy equation to get to a nonlinear fractional wave

equation, it establishes a fractional relation between density and pressure using thermodynamic

arguments. The nonlinear fractional wave equation obtained in the second paper differs slightly

from the equation presented in the first paper, but lead to similar expressions for the attenuation

and dispersion as functions of the frequency. These papers show that a nonlinear fractional wave

equation not only describes appropriately the frequency power laws for attenuation and dispersion

when sound propagates in complex media, but also that the origin of the fractional derivatives can

be traced back to the constitutive equations when using adapted physical models.

2.4 Paper V

“Fast simulation of second harmonic ultrasound field using a quasi-linear method”

Journal of the Acoustical Society of America, vol. 131, no. 6, pp. 4365-4375, June 2012.
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This paper presents a numerical simulator based on the quasi-linear approximation and eval-

uates its performance. The simulator aims at providing an estimate of the amplitude and spatial

distribution of the fundamental and second harmonic signals in the case of medical ultrasound

imaging. The theory shows that no stepwise propagation from the source to the depth of interest is

required, making the simulator fast and adapted when quick computation is needed. A comparison

of the axial and lateral profiles of the fundamental and second harmonic signals with the results

given by the KZKTexas code and Abersim as well as measurements of the sound field generated

by a medical probe in water validate the simulator. The speed performance of the simulator is

evaluated against the KZKTexas code, and Abersim. It shows that the presented simulator is the

faster. To conclude, this paper shows that if the assumptions of quasi-linearity and propagation in a

homogeneous medium are satisfied, the simulator could be a fast alternative for estimating the fun-

damental and second harmonic pressure amplitudes and spatial distributions in medical imaging

applications.

2.5 Paper VI

“3D simulation of parametric ultrasound fields”

Proceedings of the 19th International Symposium on Nonlinear Acoustics, Tokyo, Japan, May 2012.

In this paper, a variation of the quasi-linear simulator presented in paper V is applied to para-

metric arrays that use the nonlinear interaction between two primary beams transmitted at slightly

different frequencies to generate signals at the sum and the difference of these frequencies. The axial

and radial profiles of the signals at both the sum and the difference frequencies are simulated and

the results are compared to the results of two analytical formulations that compare favorably to past

measurements. The article concludes that the presented simulator does not have the restrictions

on the source geometry that the analytical methods have and that it allows for more flexibility. In

this case too, if the assumptions of quasi-linearity and propagation in a homogeneous medium are

satisfied, this simulator could be used to predict the signals generated by parametric arrays. An

extended version of the paper included in the proceedings of the 19th International Symposium

on Nonlinear Acoustics is presented in this thesis to make the paper self-contained and easier to

understand for the reader.

2.6 Paper VII

“Multi-Line Transmission in medical imaging using the second harmonic signal”

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Submitted July 4, 2012.

An alternative technique to increase the image frame rate in medical imaging is applied to the

second harmonic signal in this paper. The technique called multi-line transmission (MLT) consists

of transmitting at the same time several pulses in separate directions thereby reducing the number

of needed transmissions to cover a predefined angular sector and increasing the frame rate. A

theoretical study using an adapted version of the quasi-linear simulator shows that when using the
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second harmonic signal, the perturbations at reception due to the echo of edge waves generated

by pulses transmitted in different directions are lower than when using the fundamental signal.

These results are confirmed by measurements using a cardiac probe transmitting at 1.5 MHz and

imaging a wire target immersed in anti-freezing additive. The conclusion of the paper is that there

is a potential improvement in image quality when using the second harmonic signal in conjunction

with the MLT technique.

14



Chapter 3

Discussions and future work

3.1 Discussions

The main contributions of this thesis are:

• Experimental data showing the feasibility of second harmonic imaging with echo sounders

and improved imaging capability for the second harmonic signal compared to the fundamen-

tal signal.

• Theoretical studies of the range performance when using the second harmonic signal with

echo sounders and acoustic Doppler current profilers.

• Study of the potential improvements in the velocity estimates when using the second har-

monic signal in acoustic Doppler current profilers.

• Theoretical and experimental study of the potential reduction of perturbations in multi-line

transmission method when using the second harmonic signal in medical imaging.

• Derivation from constitutive equations of a nonlinear wave equation that can describe the

attenuation and dispersion observed in complex media with the use of fractional derivatives.

• Implementation of a numerical simulator based on the quasi-linear approximation and com-

parison of its speed and accuracy against measurements and recognized state-of-the-art sim-

ulators for medical imaging applications.

• Short evaluation of simulations of parametric radiations using a numerical simulator based

on the quasi-linear approximation against analytical solutions.

3.1.1 Out in the “real world”

During this thesis, a number of experiments were carried out at Kongsberg Maritime facility in

Horten, Norway, and at the Department of Circulation and Medical imaging of the Norwegian

University of Science and Technology, in Trondheim, Norway. In all experiments, the measure-

ments of the sound field created by the scientific echo sounder (Paper I) and by the medical probe

(Papers V and VII) showed a fairly good match with the results of the numerical simulations. This

increases the confidence in the model on which the simulators are based. During the measurements
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using echo sounders, it was a positive surprise to see the results of pulse-echo imaging using the

sphere as targets. The results as presented in Paper I did not appear as the signals were acquired.

Each quadrant of the transducer was connected to one channel of the oscilloscope, and it was only

after processing the data from all four quadrants and combining the results that the echo from the

smallest sphere appeared so clearly when using the second harmonic signal while it was drowned by

the echo from the tank wall when using the fundamental signal.

An experiment that was not reported in any article consisted of using the EK 60 scientific echo

sounder in dual-frequency mode where two channels were used. The first channel was driving an

ES120-7C transducer emitting a pulse at 120 kHz and the second was connected to an ES200-

7C transducer that was muted (not transmitting). Both transducers were positioned side by side

and scanned an angular sector of approximately ± 30◦ in which several calibration spheres were

placed at about 3 m from the source. The echo from the fundamental signal centered around

120 kHz was recorded by the ES120-7C transducer and was displayed in the upper half of the

echogram view, while the signal filtered around 200 kHz mostly coming from the second harmonic

signal was recorded by the ES200-7C transducer and displayed in the lower half of the echogram

view. Although clear echoes from the calibration spheres were seen in both views, it was difficult to

quantify the resolution performance in each case. This could be due to the signal processing done by

the acquisition electronics and software. Unfortunately, we could not draw any clear conclusions

from this experiment although this is our closest attempt to what combined fundamental and

second harmonic imaging could be using an echo sounder.

During the experiments conducted to back up the simulations presented in Paper VII, we had

to estimate the frequency response of the probe we used in order to carefully choose the center

frequency and the bandwidth of the transmitted signal. If the transmit frequency was chosen close

to the center frequency of the probe, it allowed a high signal amplitude and a high signal-to-noise

ratio but the sensitivity of the probe in the second harmonic frequency band would be too low. The

choice was, therefore, a trade-off between a frequency low enough to record the part of the signal

in the second harmonic frequency band without too much attenuation or distortion, but close

enough to the probe’s center frequency to maximize the transmitted power and the signal-to-noise

ratio. These experiments were the first opportunity to work with a transducer array with a large

bandwidth, at least compared to the transducers used when experimenting with echo sounders.

It also gave us the chance to implement and work with a delay-and-sum beamformer. We were

able after that to put in perspective the requirements and performance of the transducers and data

acquisition in underwater acoustics against medical imaging.

3.1.2 Range performance estimation

When evaluating the maximum attainable range for the fundamental and second harmonic signal

for sonar application, we noticed that the results were fairly sensitive to simulation parameters such

as the receiver bandwidth and the volume scattering strength. It is therefore of prime importance

to get a precise knowledge of the system setup and the environmental conditions when estimating

maximum ranges in order to get trustworthy results. As justly pointed out by one of the anonymous

reviewers, “statement of maximum detection ranges is meaningless without statement of the appli-

cable frequencies, assumed target strength, and other factors defining the conditions”. The results

obtained for the maximum ranges were reviewed by our collaborators at Kongsberg Maritime and
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found in line with what is experienced in practice in similar operating conditions.

In the case of acoustic Doppler current profilers (ADCPs), the computation of the maximum

attainable range was inspired by the equations presented in Urick’s book [33] but it does not use a

sonar budget equation as in the case of echo sounders. To the authors’ knowledge, this is new to

the literature. For this study too, the results for the obtained maximun ranges were reviewed by our

collaborator at Nortek AS and found in line with what can be expected from comparable products

in the industry.

It should be noted that the volume scattering strength plays a different role in the context of

echo sounders and ADCPs. For echo sounders, volume reverberation is only a source of perturba-

tion that decreases the signal to noise ratio while for the ADCP it has two ambivalent contributions.

When measuring currents speed, the volume reverberation is the source of the signal analyzed. If

the volume scattering strength is high, it increases the signal to noise ratio but limits the maximum

range, and if it is low the signal to noise ratio is weaker but the maximum range is increased. For

detection at short range, a high volume scattering strength is beneficial, whereas if large attainable

range is an objective, a low volume scattering strength is preferable.

3.1.3 A quasi-linear simulator

We use the quasi-linear approximation in Papers V and VI as well as in the simulations of Paper

VII . The theory of quasi-linearity is not new, the innovative parts lies in the formulation of the

solutions to the quasi-linear approximation. By analytically performing an integration along the

propagation direction, we remove the need for a stepwise integration from the source plane to the

depth of interest. A triple integral in the frequency domain is all that needs to be computed. It is

independent of the depth of interest. The use of the beampattern at focus in order to easily compute

the Fourier transform in the source plane contribute to get a fast simulator. The use of a “virtual”

focus plane for one-dimensional (1D) arrays with different azimuth and elevation foci is another

technique that was implemented. The setup for the measurements of the sound field created by

a medical probe in water and presented in Paper V was chosen so that all these techniques were

tested. The match between measurements and simulations was surprisingly good.

When a similar simulator is used for estimating parametric radiations, the calculations become

indirectly dependent on the depth of interest. Indeed, the extent of the frequency domain on which

the triple integral is computed has to be taken large enough to avoid perturbations from aliasing

due to the discrete Fourier transform. The size of this domain and the number of operations

needed increase with the square of the depth of interest for a given opening angle. The situation

is different in the case of medical imaging where the beam is focused. So the simulator’s advantage

does not lie in its speed but more in its flexibility of use compared to the analytical solutions. In

addition, during the comparisons of the methods, we witnessed that the analytical solutions where

solved fairly fast using today’s computing power and the built-in algorithms in MATLAB® (version

2011a, The MathWorks, Natick, MA). That might not have been the case when the solutions were

first established (at least one of them).
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3.1.4 Establishing a new model

From simulations that can be verified by measurements in Papers I, II, V, VI, and VII, we worked in

Papers III and IV on a theory that could describe measurements. Obtaining a fractional nonlinear

wave equation was harder than first anticipated. We are, in this regard, grateful to Dr. Gregory

Vilenskiy who, during a seminar, pointed out some imprecisions in Paper III that lead to Paper IV.

In Paper IV, all the equations were meticulously derived to keep the validity to the second order.

This is what led us away from the entropy equation and towards a direct formulation of the density

as a function of pressure using fractional derivatives.

In contrast with the papers describing simulations, the results of these papers are harder to be

verified by measurements since they constitute the starting point of the method. Indeed, in that case

the scientific method consists of tracing back the origin of the observed attenuation and dispersion

to the correct physical models that appropriately describe them. The outcome is therefore a bit

more uncertain albeit very satisfactory to the mind.

3.2 Future work

An obvious follow-up for the potential use of the second harmonic signal with echo sounders and

acoustic Doppler current profilers would be trials at sea. Experiments in a real environment could

confirm the potential imaging improvements and the estimates of the maximum attainable range.

Measurements in shallow water where the range is traditionally limited by reverberation from the

sea surface and ocean bottom could reveal an improved range when using the second harmonic

signal with a narrow main lobe.

The numerical simulator based on quasi-linearity could also be tried successively, where the

output of one simulation is the input to the next. For each simulation, the parameters of the

medium can vary and allow a modeling of a medium made of homogeneous layers. This solution

would be particularly adapted to model the inhomogeneities of the ocean’s sub-bottom that can

easily be modeled by layers of different nature with different properties for the propagation of

sound.

In more complicated applications such as fishery sonars or multi-beam echo sounders, im-

provements in the obtained image similar to what was shown during our experiments with an echo

sounder should be possible when using the second harmonic signal. Each beam of a multi-beam

echo sounder would exhibit a narrower main lobe and higher main-lobe-to-sidelobe ratio. The

obtained image after beamforming should therefore have a better resolution. It should also suffer

from less perturbation due to volume reverberation, or echoes from the sea-bottom coming from

the direction of the sidelobes.

In applications such as sonar imaging and underwater communcation, wide bandwidth signals

are often used to offer either good range resolution or large signal-to-noise ratio. With the emer-

gence of very wide band transducers [34] it becomes necessary to consider the frequency dependent

distortion of those signals that cover a large range of frequencies. The part of the signal containing

higher frequencies is more attenuated due to higher absorption and greater nonlinear losses than the

part with low frequencies. A pre-conditioning of the signal at transmission could be investigated to

compensate for this and ensure that the desired signal reaches the target. A better match-filtering

could also be obtained when the nonlinear distortions of the received signal are taken into account.
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This technique is used in applications using the nonlinear propagation of sound in air to create

parametric audio sources [35, 36].

A research theme that was started but did not come to fulfillment due to lack of resources

is about the finite element modeling (FEM) of sound propagation using the fractional forms of

constitutive equations. With FEM no wave propagation equation is necessary. The constitutive

equations based on the chosen physical models describe the propagation medium and all physical

quantities such as density, particle speed, temperature, and pressure are computed in the entire

medium as a defined perturbation is applied at some place and time. Such modeling, though

very computer intensive, does not involve all the approximations done for getting to a nonlinear

wave equation and can give more correct estimates. In addition, since a model for heat transfer

is used, the evolution of the temperature in the medium is given during the simulation for the

sound propagation. Traditionally, the modeling of temperature increase due to sound propagation

for applications such as hyperthermia [37] and high intensity focused ultrasound (HIFU) [38, 39]

is done in two stages. The sound propagation is first simulated, and the temperature evolution is

then deduced from the local heat sources generated by the sound propagation with the help of the

bio-heat transfer equation. Using FEM would also accommodate fairly easily the formulations of

different physical models to describe the stress-strain relation and heat transfer. The challenge in

this method would be to properly implement a description of the fractional derivative and integral.

Had this implementation been completed, it would have been interesting to see how the results

compare to the results given by the simulators described in Ch. 1.
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Abstract− Nonlinear acoustics allows for applications like tissue harmonic imaging in medicine

and parametric arrays in underwater acoustics. Mainstream sonars transmit and receive signals at

the same frequency and up to now energy transferred to higher harmonic frequencies has been

mainly seen as a disturbance for target strength estimation, e.g., in fishery research. This paper

investigates the feasibility of utilizing the part of the signal generated around the second harmonic

frequency band by nonlinear propagation of sound in water. It presents the potential enhancements

the second harmonic signal may provide for target imaging as well as multi-frequency target recog-

nition. It compares measurements of the pressure field radiated by commercial transducers in water

at 121 kHz and 200 kHz up to a range of 12 m with numerical simulations. The detected levels of

higher harmonic signals agree with simulations of nonlinear wave propagation. This verifies the im-

plementation of the simulator and allows a comparison of the beam characteristics at longer ranges

when filtered around the fundamental or second harmonic frequencies. An example of pulse-echo

imaging with spherical targets is also shown using signals at the fundamental and second harmonic

frequencies where the second harmonic signal can detect one of the targets that the fundamental

signal cannot. Using the active sonar equation to estimate the maximum range, simulations based

on a simple model including ambient noise and volume reverberation confirm that with a source

level of 228 dB and a detection threshold of 12 dB the fundamental signal at 200 kHz can detect

a fish of target strength −36 dB to approximately 343 m while the detection range of the second

harmonic signal is approximately 243 m. The combined use of the signal components in the second

harmonic and fundamental frequency bands provides a high resolution image at short range and a

long range imaging capability at a lower resolution as well as a multi-frequency characterization of

targets.
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I. I

In most sonar applications the received signal is traditionally filtered around the transmit center

frequency at reception. The energy transferred to different frequency bands due to nonlinear sound

propagation effects is not used. But the signal generated in these different frequency bands has

features that can potentially improve target imaging. An application that found a use for nonlinear

propagation is the parametric sonar. In 1963 Westervelt [1] predicted that when transmitting

two high-frequency beams at slightly offset frequencies the beams would interact due to nonlinear

effects and the wave generated from this interaction would propagate at the sum and difference

of the transmitted frequencies, the signal at the difference frequency being the more applicable.

Berktay [2] further developed this theory and evaluated several possible applications of nonlinearity

in underwater transmitting applications. As an implementation of this, the parametric sonar is a

technology that exploits nonlinear propagation in underwater acoustics. It is an industrial product

that helps sub-bottom characterization [3] and buried object detection [4] thanks to the directional

low frequency beam, its long range, and bottom penetration capability. In his review, Bjørnø [5]

describes the characteristics and the performance of the parametric sonar.

About fifteen years ago, use of nonlinear propagation of sound also reached the field of medical

ultrasound with the development of tissue harmonic imaging (THI). In THI the image recon-

struction is made from receiving signals in the second harmonic frequency band. In many clinical

applications, THI results in enhanced image quality compared to reconstructing the image from

echoes in the transmitted frequency band. Duck [6] presents a comprehensive review explaining

why THI allows for better image quality. It is due to, among others, a narrower main lobe, a

better main-lobe-to-sidelobe ratio, and limited reverberation for the second harmonic signal com-

pared to the fundamental signal. THI is implemented in most commercial scanners and is often

the default imaging mode for cardiology where it has been shown to improve endocardial border

definition [7, 8] and measurements of heart functions [9]. THI has also shown promising image

improvements for, e.g., liver [10] and kidney [11] examination.

In sonar applications recent papers in the fishery research field have reported the problem that

energy transfer to higher harmonic frequencies creates for accurate target strength estimation [12,

13]. This problem strongly indicates that a significant amount of energy is transferred to higher

harmonic frequencies. The combined success of harmonic imaging in medical ultrasound and

the findings of significant energy transfers to higher harmonic frequencies in sonar applications

prompted us to take a new look at harmonic generation due to nonlinearity. In addition, recent

developments in transducer technology now allow sonar systems to work with a wide frequency

bandwidth. It is therefore possible to consider a transducer that can receive both at the first and

second harmonic frequencies as in medical ultrasound imaging.

In a parallel development, the use of the frequency response of living organisms to help char-

acterize them has witnessed a widespread interest [14]. The echo strength coming from fish or

zooplankton depends on the size but also on biological attributes of the species like the presence

or lack of a gas-filled or fluid-filled swimbladder [15, 16]. Combining the signals around the fun-

damental and second harmonic frequency bands could assist in marine life characterization. It is

reasonable to think that other applications like bathymetry and buried objects detection [17] also

28



Feasibility of second harmonic imaging in active sonar: measurements and simulations

can benefit from echoes at different frequency bands. This is a motivation for making a sonar that

can receive at both the fundamental and second harmonic frequencies as an aid for target classifica-

tion.

In the process of studying the potential use of the second harmonic signal in sonar, we learned

that in 1980 Muir [18] demonstrated the feasibility of using the second harmonic signal for imag-

ing. However to the authors’ knowledge, little has been published after this on second harmonic

imaging in underwater acoustic. Our work can be seen as a continuation of Muir’s.

In the first part of this article we confirm the presence of harmonic signals by measuring the

pressure field radiated by two circular transducers with a center frequency of 121 kHz for the first

one and 200 kHz for the second one in a water tank up to 12-m range. These measurements also

give us the opportunity to compare with our numerical simulations. In the second part we show

that second harmonic imaging can be used for target detection by imaging spherical targets using a

pulse-echo technique. This shows better resolution capabilities compared to images obtained with

the fundamental signal. In the third part of the paper we use numerical simulations of the pressure

field and the active sonar equation to estimate the maximum useful range for the second harmonic

signal and compare it to the maximum useful range of the fundamental signal. Finally the last part

advocates for the use of the second harmonic signal by discussing the advantages of combining it

with the fundamental signal. Some initial considerations based solely on numerical simulations

were presented as a conference proceedings paper [19] but we also report the measurement results

in this article.

II. F      

We conducted an experiment in a large water tank where a hydrophone recorded the pulse

generated by 121- and 200-kHz transducers. Simulated and measured pressure fields are compared

up to 12-m depth within ±30◦ angular range.

A. Setup

The transducers used were of type ES120-7C and ES200-7C (Simrad, Horten, Norway) with a

center frequency of 121 kHz for the ES120-7C type and 200 kHz for the ES200-7C type. Both are

made for split-beam echo sounders. They were driven by an EK60 scientific echo sounder (Simrad,

Horten, Norway). The hydrophone used to record the pressure pulse was of type ITC-6128 (ITC,

Santa Barbara, CA). Its receive sensitivity varies less than 15 dB re 1 V/μPa between 100 kHz and

600 kHz. The hydrophone signal was sent to a pre-amplifier of type 3988 (Krohn-Hite, Brockton,

MA) before being recorded by an oscilloscope of type DSO6014A (Agilent, Santa Clara, CA), and

transferred to a personal computer (PC) for further processing (Fig. 1).

Profiles showing the angular dependence at fixed range were recorded for both transducers. The

hydrophone was held still while the transducer was rotated counter clockwise covering an angular

range of ±30◦ using an angular step of 0.5◦. The profiles were recorded at regularly spaced depths

covering a depth range from 10 cm to 12 m. They were also used to determine an axial profile

along the main propagation axis. All measurements were done at the Kongsberg Maritime facility

in Horten, Norway, in a water tank of dimensions approximately 6 m × 15 m × 6 m (width ×
length × depth).
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Fig. 1: Setup for measurements of pressure fields in water tank. The hydrophone is positioned along the
z axis and θ is the angle between the transducer’s main propagation direction and the z axis.

The size of both transducers and their aperture weighting are designed to give a 3-dB opening

angle of approximately 7◦. The weighting is optimized to reduce sidelobe levels at the expense of

a slightly wider main lobe compared to a flat piston transducer of identical size. The transmitted

pulse was a pulsed continuous wave of duration 256 μs.

B. Simulator

Nonlinear wave propagation simulations were carried out using an implementation of an angular

spectrum method [20–23] for sources with cylindrical symmetry where the pressure field depends

only on range and distance to the propagation axis. The angular spectrum method operates in

the frequency domain and uses the operator splitting method. It consists of two operators applied

sequentially. The first operator accounts for diffraction and absorption in the linear domain. It

consists of multiplying the spatial Hankel transform of the particle velocity field for each harmonic

at a depth z by the corresponding operator H(n, ∆z, ri) defined for the nth harmonic by

H(n, ∆z, ri) =

{

exp[−j2π∆z

√

(

nf
c

)2 − r2
i − α0(nf)2∆z], if |ri| ≤ nf/c

exp[−2π∆z

√

r2
i −

(

nf
c

)2 − α0(nf)2∆z], if |ri| > nf/c,
(1)

where ∆z is the spatial step size, f the fundamental frequency, c the speed of sound, ri the ra-

dial coordinate, and α0 the attenuation coefficient in Np·m−1·Hz−2. This linear step is called the

ray-theory-updated frequency sampled convolution (RFSC) [21]. The second operator is a non-

linear step which implements the frequency domain solution of a lossless Burgers’ equation. The

nonlinear step at depth z + ∆z gives the expression of the velocity of the nth harmonic signal
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vn(z + ∆z, ri) at radial coordinate ri, as a function of the velocities obtained after the linear step:

vn(z + ∆z, ri) = v′
n(z + ∆z, ri) + j

βπf∆z

c2

( n−1
∑

k=1

kv′
kv

′
n−k +

M
∑

k=n+1

nv′
kv

′∗
k−n

)

,

for n = 1, 2, · · · , M.

(2)

In (2) v′
n(z+∆z, ri) designates the particle velocity of the nth harmonic signal at depth z+∆z and

radial coordinate ri obtained after the linear step, β is the coefficient of nonlinearity, and M is the

number of harmonics taken into account in the simulations. The depth and radial indexes for v′
k

were omitted in the summation for clarity and the star sign stands for complex conjugate. From the

expression of the particle velocity vn, the pressure is approximated by the relation pn = ρcvn, where

ρ is the density of the medium. At initialization (z = 0) the velocity profile of the fundamental

signal v1(0, ri) is determined by the extent of the transducer and its weighting as well as the input

pressure level p1 and for k > 1, vk(0, ri) = 0.

C. Measurements and simulations

To obtain the pressure field at a range z and limit perturbations from spatial aliasing, following

Christopher and Parker [21], the radial extent of the simulation was set to l = 2 tan θ z, where

θ = 30◦ is the angular extent of the field at range z. The number of radial samples was N = 2l/λ

where λ is the wavelength. The input to the simulator was a continuous wave at frequency 121 kHz

or 200 kHz. Table I summarizes the values of the parameters used in the simulations.

Table I: Parameters used in the simulation for sound propagation in distilled water at 121 kHz and
200 kHz.

Parameter Value

Frequency (f ) 121 kHz / 200 kHz
Source radius (R) 57.5 mm / 35 mm
Water density (ρ) 998 kg·m−3

Sound speed (c) 1479 m·s−1

Nonlinearity coefficient (β) 3.5
Attenuation coefficient (α0) 0.025 Np·m−1·MHz−2

⇒ 3.0 dB·km−1 at 121 kHz
⇒ 8.4 dB·km−1 at 200 kHz

Number of harmonics (M) 50
Step size (∆z) 1 mm

1) ES120-7C transducer:

The recorded pulse was filtered to extract the amplitude of the signal around the fundamental,

second, and third harmonic frequency bands. To compute levels equivalent to continuous wave

propagation and allow comparison with the simulations, the transient parts where the pulse is

building up and decaying were removed before filtering. The input electrical power levels sent to

the ES120-7C transducer were 100 W and 600 W. Fig. 2 shows the frequency power spectra of the

signal received when the hydrophone was situated on the propagation axis at 3 m from the source
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Fig. 2: Frequency power spectra of received signal when hydrophone is on the propagation axis at 3 m
from the source with 100-W (thick line) and 600-W (thin line) input electrical power. The spectra are
normalized by their amplitude at the fundamental frequency, 121 kHz.

for both input power levels and clearly indicates peaks for the first three harmonics.

From the angular profiles measured within the range interval 10 cm to 12 m, an axial profile

was computed for each input power level along the propagation axis. We tried different pressure

levels as an input to the simulator to obtain the best fit between measurements and simulations for

the axial profile of the fundamental signal. This gave p1 = 190 kPa for 100-W and p1 = 450 kPa

for 600-W input electrical power. In each case, the match between measurements and simulation

results was comparable. The obtained axial profiles of pressure amplitude in the z-direction for an

electrical power level of 600 W are shown in Fig. 3.3(a). The axial profile of the fundamental signal

shows a drop in the pressure level of approximately 30 dB over 12 m in both cases. The results of

a simulation using the KZKTexas code [24, 25] with the same input pressure level are also shown.

They differ from the results of our simulator by less than 2 dB.
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Fig. 3: Axial profile of pressure amplitude for the ES120-7C transducer - input electrical power level:

600 W. Simulation results are shown with solid, dashed, and dash-dotted lines for first, second, and

third harmonic signals, respectively. Bold lines are used for the results from our implementation of the

ASA simulator. Thin lines are used for the results of the KZKTexas code. Input pressure p1 estimated

at 450 kPa (a) and 540 kPa (b). Measurements for first, second, and third harmonics are shown with

circles, squares, and triangles, respectively.
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Fig. 4: Angular beam profile of pressure amplitude for the ES120-7C transducer at 3-m range - input
electrical power level: 600 W. Simulation results are shown with solid, dashed, and dash-dotted lines for
first, second, and third harmonic signals, respectively. Bold lines are used for the results from our imple-
mentation of the ASA simulator. Thin lines are used for the results of the KZKTexas code. Measurements
for first, second, and third harmonic signals are shown with circles, squares, and triangles, respectively.

With this choice of input power level the axial profiles of the second and third harmonic signals

show slightly higher levels for the measurements compared with what the simulations using the

angular spectrum method predict, up to 4.4 dB higher beyond 6-m range. We tried to vary the

values in the simulations for the nonlinearity coefficient β, the speed of sound c, and the attenuation

coefficient α0 within the intervals 3.32-3.61, 1447-1510 m·s−1, and 0.31-0.17 dB·m−1·MHz−2,

respectively, which are typical intervals at standard atmospheric pressure for a temperature between

10◦C and 30◦C [26]. Seeing no improvements with those changes or by varying the aperture

radius, the input pressure p1 was increased from 450 kPa to 540 kPa. The obtained match with the

fundamental signal is not as close as with 450 kPa input pressure with a mismatch around 1.7 dB

but the match with the second and third harmonics profiles is improved with a mismatch contained

within 0.6 dB beyond 6 m [Fig. 3.3(b)]. The sensitivity data of the hydrophone were available for

frequencies between 150 to 625 kHz with a 25-kHz interval. This means that in the case of the

ES120-7C the sensitivity had to be interpolated at the fundamental and harmonic frequencies. If

the interpolated sensitivity at the fundamental frequency was higher than the actual sensitivity, the

measured pressure after correction for the receiver sensitivity would be under-estimated leading in

turn to an axial profile for the fundamental signal that lies below the real pressure level. In that

case an input pressure level used in the simulations to best fit the measured axial profile of the

fundamental signal would be too low and it would explain why an input pressure of 540 kPa gives

axial profiles that better fit the measurements for the second and third harmonic signals.

Fig. 4 compares measurements with simulations of angular profiles of pressure amplitude for

first, second, and third harmonic signals at 3-m range with 600-W input electrical power. It also

shows the results of a simulation using the KZKTexas code. For this comparison, the input pressure

for the simulations was set to p1 = 450 kPa which gave the best fit between measurements and
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simulations for the axial profile of the fundamental signal. A fit to the fundamental signal was

preferred since measured pressure levels around this frequency are higher than around the second

or third harmonic frequencies and therefore less influenced by noise. This is specially important

when comparing pressure levels away from the propagation axis.

The angular beam profiles shown in Fig. 4 shows a fairly good match between the measurements

and the simulations using the angular spectrum with less than 4-dB difference for pressure levels

above 160 dB re 1μPa. The match with the simulations using the KZKTexas code is comparable

within the angular range ±15◦. However as the KZKTexas code is based on a parabolic approx-

imation which is valid only for narrow angles, the beam profiles differ from the measurements at

wider angles. The measurements and simulations confirm the narrower main lobe of higher har-

monic signals compared to the fundamental signal and a main-lobe-to-sidelobe ratio of 41 dB for

the second harmonic signal against 29 dB for the fundamental signal at 3 m. The noise level seems

to lie between 150 and 160 dB re 1μPa. This fits with the 8-b resolution of our oscilloscope that

fixes the minimum detectable level around 50 dB below the maximum level.

2) ES200-7C transducer:

Angular profile measurements and simulations were done for the ES200-7C transducer using

100- and 600-W input electrical power. Angular pressure profiles recorded at ranges between 10 cm

and 12 m were used to compute an axial pressure profile. The best fit between measurements and

simulations for the axial profile of the fundamental signal is obtained for p1 = 320 kPa for 100-W

and p1 = 800 kPa for 600-W input electrical power. Both the angular and axial profiles have very

similar shape as the profiles shown in Figs. 3.3(a) and 4 and are therefore not shown. The match

between measurements and simulation results for 100- or 600-W input power is also comparable.

As with the ES120-7C, the measured angular profiles agree with the simulations on the overall

beam shape and the level differences are mainly contained within 4 dB for negative angles and

10 dB for positive angles. The largest deviations for positive angles occur around the sidelobes of

the fundamental signal. The agreement between measurements and simulations around the main

lobe is better with a difference mainly contained within 5 dB. The main-lobe-to-sidelobe ratio is

approximately 22 dB for the fundamental signal and 41 dB for the second harmonic signal at 3 m.

The axial profile of the fundamental signal shows a drop in the pressure level of approximately

35 dB over 12 m. As expected, the attenuation is more significant than when using the ES120-

7C transducer that transmits at a lower frequency. The measurements for the axial profiles are

in this case less than 2 dB below the simulation results beyond 6 m. This mismatch cannot be

explained by the sensitivity of the hydrophone that was measured at the harmonic frequencies of

the ES200-7C and the input pressure level p1 can be assumed adequate. However an extension

arm was added to the positioning system for measurements between 10 cm and 2 m with both

transducers increasing the uncertainty of the hydrophone position by approximately ±3 cm. A

slight offset in the positioning of the hydrophone from the beam’s propagation axis is a possible

explanation for this mismatch that diminishes at longer range. Indeed the beam pattern in an angle

span of ±30◦ covers a smaller radial extent and varies more with radial distance close to the source

as shown in Fig. 5. A position error at short range can therefore give a larger error in the pressure

measurement than farther from the source. This explains wider variations between measurements

and simulations in this area with both transducers.

The overall match between measurements and simulation is within less than 5 dB beyond 6-m

range. Considering the variations of the axial pressure for a 200-kHz transducer with an input
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Fig. 5: Effect of a constant radial offset d of the position of the hydrophone from the beam’s propagation
axis. The spatial extent r1 of the beam pattern is smaller at short range than the radial extent at longer
range r2 giving more variations with the radial distance, and a possible larger error in the axial pressure
measurements.

pressure of 800 kPa over a range of 1000 m that is about 70 dB, and assuming that the simulator

gives similar results over long range, the achieved precision is acceptable for our purpose. We can

use our simulator to estimate and compare the range of the second harmonic signal to the range of

the fundamental signal for an active sonar using the active sonar equation. It should be mentioned

that the aim of these comparisons is not to validate the model based on the angular spectrum

approach. This verification has been done and reported earlier in several papers [22, 27, 28]. The

purpose is rather to check our implementation of the method, that we use the correct parameters

values, and that the assumptions that the model relies on are appropriate.

III. S  - 

The measured profiles confirmed that higher harmonics were present and detectable. We there-

fore set up an experiment where the ES120-7C transducer with a center frequency of 121 kHz

sent a pulse that reflected on targets and the second harmonic at 242 kHz was recorded by the

ES200-7C.

Both transducers were set side by side and the targets consisted of four spheres. Three spheres

were of diameter 38.1 mm and made of tungsten carbide while the fourth sphere had a diameter

of 13.7 mm and was made of copper. They were positioned in the horizontal plane which also

contained the propagation axis of both transducers and at a distance of approximately 2.75 m from

the source. The spheres were separated by approximately 0.8 m as shown in Fig. 6

The transducer ES200-7C was connected directly to the oscilloscope. The transducers were

rotated counter clockwise covering an angular range of approximately 15◦ to −45◦, where 0◦ is

the direction parallel to the wall of the water tank and positive angle is taken in the clockwise

direction. Input electrical power levels sent to the ES120-7C were 1 kW and 2 kW. The pulse

used was a pulsed continuous wave of duration 128 μs. The recorded data were processed to filter

out the pulse around the fundamental and the second harmonic frequency bands. The receiving

sensitivity of the ES200-7C was estimated at 121 kHz and 242 kHz and compensated for to get the

correct pressure level estimates for the recorded pulse. Fig. 7 displays the root mean square (RMS)

value of the pressure amplitude of the received echoes from the spheres when filtered around the
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Fig. 6: Setup of transducers and spheres for second harmonic imaging.
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Fig. 7: RMS value of the pressure amplitude of the received echoes from the spheres when filtered around
fundamental (solid line) and second harmonic (dashed line) frequencies. The input electrical power level
was 1 kW.

fundamental and second harmonic frequency bands for 1-kW input power. The recorded echo

pressure amplitudes are very similar in the case of 2-kW input power.

The echoes from the three biggest spheres are clearly visible. It is interesting to note that the

echo from the smallest sphere is barely noticeable when filtering around the fundamental frequency

while it is clear when filtering around the second harmonic frequency. This is due to the wider

main lobe of the fundamental signal compared to the main lobe of the second harmonic signal.

Indeed when the transducers point towards the small sphere the ensonified region delimited by the

main lobe of the fundamental signal also includes part of the closest large sphere and some of the

tank wall. The tank walls have a rough surface and the direct echo from the wall as well as from the

closest large sphere add to the weaker echo from the small sphere. As the transducers rotate past the

small sphere these perturbing echoes are strong enough to mask the signal reflected by the smaller

sphere and make it barely distinguishable.

By comparison the region ensonified by the main lobe of the second harmonic signal is smaller.

When the transducers point towards the smaller sphere the echoes coming from the closest large
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sphere and the wall are much weaker. As the transducers rotate past the smaller sphere these weaker

perturbing echoes allow the signal reflected by the smaller sphere to emerge. This allows a better

delimitation in the angular profile of the echo coming from the smaller sphere.

From the measurements, it can be established that the average opening angle of the beam de-

limited by a 6-dB decrease from the maximum of the amplitude (full-width-half-maximum) of the

echoes from the three largest spheres are 7.1◦ for the fundamental signal and 5.2◦ for the second

harmonic signal for 1-kW input power. For 2-kW input power the average 6-dB opening angles are

7.7◦ and 5.3◦ for the fundamental and second harmonic signals, respectively. Assuming the spheres

are point scatterers and reflect incoming waves isotropically, the beam pattern from each sphere

echo is the product of the transmitter (ES120-7C) and receiver (ES200-7C) beam patterns. Since

both transducers are designed with a 3-dB opening angle of approximately 7◦, their product should

give a beam pattern with a 6-dB opening angle of approximately 7◦. This is confirmed by the data

at the fundamental frequency. At the second harmonic frequency the main lobe of each echo is

narrower than for the fundamental signal. This gives greater resolving capabilities as expected, just

like one is used to in medical ultrasound applications.

This experiment shows that it is possible to use the second harmonic signal for imaging spheres.

The image obtained by using the signal around the second harmonic frequency shows better re-

solving capabilities and reveals one target that fundamental imaging does not detect. The larger

main-lobe-to-sidelobe ratio of the second harmonic signal can also be beneficial to target imaging.

In a shallow water environment a sonar scanning at low grazing angles will be perturbed by surface

and bottom reflections of the sidelobes. Scatterers situated in the propagation direction of the side-

lobes will also create perturbations. The amplitude of these perturbations should be reduced in the

case of second harmonic imaging due to the lower sidelobe levels.

IV. R      

As the pressure level of the second harmonic signal is well below the level of the fundamental

signal, it is interesting to compare the maximum useful range for a sonar using the echo filtered

around the second harmonic or the fundamental frequency bands. We therefore used our simulator

to estimate the transmitted pulse pressure level along the main propagation direction in conjunction

with traditional active sonar equations to estimate the maximum range at which the useful signal

level is higher than the noise or reverberation level.

A. Active sonar equations

The two forms of the active sonar equation when the perturbation source for target detection is

either isotropic noise or reverberation are, respectively:

SL − 2TL + TS = NL − DI + DT, (3)

and

SL − 2TL + TS = RL + DT, (4)
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where SL, TL, TS, NL, DI, DT, and RL stand for source level, transmission losses, target strength,

noise level, directivity index, detection threshold and reverberation level, respectively. The defini-

tion of the terms used in (3) and (4) can be found in [29] and in the appendix. These equations

characterize the case of the monostatic sonar. They give the maximum range to which a sonar

can detect a target. Beyond this range the useful signal level is below either the noise or reverber-

ation level and the signal-to-noise ratio becomes too small for target detection at a pre-assigned

probability of detection and false alarm.

Each term in the equation is adapted to the second harmonic signal when suited to compare

the maximum range for the fundamental and the second harmonic signals. The water depth and

the sonar depression angle are assumed large enough for the bottom and surface reverberations to

be neglected. Hence we only consider volume reverberation. This simulation represents a simple

case of the models described by Urick [29]. The maximum attainable ranges may vary in real cases

due to variable setups and environmental conditions. The aim of the simulation is to check that

the attainable range of the second harmonic is comparable to the range of state-of-the-art sonars

using fundamental imaging.

B. Simulations

The simulator based on the angular spectrum approach and described in section II-B was used

to estimate the on-axis pressure level at long range. In the simulations a circular flat piston with

the same dimensions as the ES200-7C was taken as source and receiver and the reflector was a

fish of length L. The water density and sound speed were taken to be constant. The equations for

determining TL, DT, NL, DI, and RL in our case are presented in the appendix. Note that NL−DI

is constant with frequency. DT being independent of frequency, the quantity NL − DI + DT is

equal for the fundamental and second harmonic signals.

The effects of diffraction were taken into account up to 5 m in the simulation. Beyond this

range, diffraction was neglected and the wavefront was approximated by a plane in the radial extent

of the simulation. The linear step became a simple attenuated spherical spreading. Instead of using

the linear operator described by (1) between ranges z and z + ∆z, the pressure level of the nth

harmonic was computed as follows

pn(z + ∆z) = pn(z)
z

z + ∆z
e−[α+j2πnf/c]∆z, (5)

where α is the absorption coefficient at frequency f expressed in Np·m−1. While the absorption in

distilled water can be considered proportional to the square of the frequency as shown in (1), the

absorption in seawater obeys a more complicated law. The absorption model used in the simulations

was based on the formula given by Ainslie and McColm [30] where temperature, salinity, pH, and

depth are parameters. This formula reveals a large dependency on temperature. Table II shows

the values of the parameters used to estimate the terms of the sonar equations and to simulate

attenuation in seawater. Using these parameters, absorption in seawater is about 45 dB·km−1

at 200 kHz and 96 dB·km−1 at 400 kHz. The value for the other simulation parameters are

unchanged from what Table I shows.
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Table II: Parameters used to estimate the terms in the active sonar equation (see also appendix for detailed
on their use) and to simulate attenuation in seawater.

Parameter Value

Input pressure (p1) 800 kPa
Fish size (L) 30 cm
Salinity 34 ppt
pH 7.7
Depth 100 m
Temperature 5◦C
Volume scattering strength (Sv) −85 dB
Pulse duration (τ ) 1 ms
Detection probability (Pd) 95%
False alarm probability (Pf ) 0.01%

C. Results

Figs. 8 and 9 show the different parts of the sonar equation applied to the fundamental and

second harmonic signals.

It appears that the sonar performance is limited by reverberation for the fundamental signal.

The maximum range is 343 m. For the second harmonic signal the noise level is the limitation.

The maximum range is 243 m. This is possible because the reverberation level is proportional to

the source level while the noise level is not.

A relation can be found between the maximum range of the fundamental and the second har-

monic signals when reverberation is the only limitation. In the remote far field the upper harmonics

do not obey spherical spreading because local effects contribute more to nonlinearity than the prop-

agation of existing harmonics [31]. However if the range is limited as in our case, the transmission

losses can be approximated for the first two harmonics by

TL = 20 log r + αr, (6)

when α is expressed in dB·m−1. Combining (6) and (17) the reverberation level can be written as

RL = SL − 2TL + Sv + 10 log V, (7)

which when used in (4) gives

TS = Sv + 10 log V + DT. (8)

We call r1 and r2 the values of the ranges that satisfy (8) for the fundamental and the second

harmonic signals, respectively. Using (11), (18) and (19) to express TS and V , we can write:

−0.9 log

(

f

2f

)

= 20 log

(

r1

r2

)

+ 20 log

(

λ

λ/2

)

(9)
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Fig. 8: Active sonar equation plots for the fundamental signal propagating in seawater. The solid line is
the left-hand side of the active sonar equation: SL − 2TL + TS. The dashed line is the right-hand side
of (3): NL − DI + DT. The dotted line is the right-hand side of (4): RL + DT. The arrow indicates
the maximum range where signal is no longer detectable due to reverberation.
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Fig. 9: Active sonar equation plots for second harmonic signal propagating in seawater. The solid line is
the left-hand side of the active sonar equation: SL − 2TL + TS. The dashed line is the right-hand side
of (3): NL − DI + DT. The dotted line is the right-hand side of (4): RL + DT. The arrow indicates
the maximum range where signal is no longer detectable due to noise.
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which gives the following relation between r1 and r2,

r1

r2

≈ 0.52. (10)

This surprising result shows that, in the case of reverberation only, the second harmonic signal has a

maximum range around twice the range of the fundamental signal. The most favourable condition

for exploiting the second harmonic signal is therefore where the ambient noise is low. In that case

the high pressure level of the fundamental signal is likely to generate a high reverberation level while

the low pressure level of the second harmonic signal contributes to limited reverberation. This low

pressure level becomes a limitation when the ambient noise level rises and the signal-to-noise ratio

of the second harmonic signal becomes too weak.

V. W    ?

The first two sections showed how the second harmonic signal can contribute to improving

image quality in sonar imaging. But if a broadband transducer can be used for imaging both at

the fundamental and second harmonic frequencies it is legitimate to compare the performance of

a sonar transmitting at 200 kHz and using echoes around the first and second harmonic frequency

bands with the performance of a sonar transmitting at 200 kHz then at 400 kHz and using the

echoes around the fundamental frequencies only.

To estimate the maximum useful range for such a sonar transmitting at 400 kHz we use our

simulator with an input pressure of 600 kPa and all the other parameters unchanged from what

Table II describes. In this configuration the maximum useful range is below 220 m which is shorter

than the maximum useful range for the second harmonic signal at 400 kHz. Moreover while a

sonar transmitting at 400 kHz with the same transducer dimensions has a narrower main lobe and

therefore a better resolution than the first and second harmonic signals of a sonar transmitting at

200 kHz, it lacks the high main-lobe-to-sidelobe ratio that the second harmonic signal at 400 kHz

provides. One way to increase the main-lobe-to-sidelobe ratio is to apply a weighting on the aper-

ture. However the weighting function needed reduces the transmitted axial pressure level and limits

even further the maximum useful range.

The combination of echoes around the fundamental and second harmonic frequency bands

brings additional advantages. It gives an update rate that is twice the rate of a sonar receiving

echoes around the fundamental frequency only. The two images obtained allow one to combine

the high-resolution of the second harmonic signal at short range and the long-range capability of

the fundamental signal with a lower resolution. In addition the echoes at two different frequencies

can be used to characterize acoustic targets. Previous studies have shown that one can use the echoes

at multiple frequencies to distinguish organisms with different acoustic properties [32]. The size of

the target is one obvious parameter that influences the frequency response. When the target size

is well below the pulse wavelength λ the echo received comes from a diffraction process while it

comes from reflection when the target size is much larger than the wavelength. A simplistic model

for a target is a gas-filled bubble of radius a immersed in water. As mentioned in [29] the ratio

of the acoustic cross section σ to the geometrical cross section in this case is proportional to (ka)4

when ka ≪ 1, where k = 2π/λ. For ka ≫ 1 this ratio is constant. Given that TS = 10 log
(

σ
4π

)

the target strength evolves similarly with ka.
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But the frequency response of organisms depends on more factors than just their size [32].

Experiments have been carried out to characterize the frequency response of fish with or without

swimbladder [16, 33, 34], zooplankton [15, 34, 35], or jellyfish [34, 36]. They all give examples

of how living organisms can be differentiated by their frequency response. For instance at fre-

quencies between 18 and 200 kHz, Korneliussen and Ona showed that signal from zooplankton

mainly comes from Rayleigh scattering while for most swimbladdered fish it comes from geometric

scattering [32].

This shows that the combined use of echoes filtered around the fundamental and second har-

monic frequency bands can help identifying living organisms and that it is advantageous when

imaging targets compared to using only the echo filtered around the fundamental center frequency.

VI. C   

Through experiment we have verified that propagation of sound in water for state-of-the-art

sonars generates significant signals around the second and third harmonic frequency bands. Mea-

surements of the pressure field radiated by two commercial transducers were compared with nu-

merical simulations and fit within 5 dB beyond 6-m range. They show that the second harmonic

signal exhibits low sidelobes relative to the main lobe, which is important in many applications of

sonar imaging. The measured pressure fields were in accordance with the design of both transducers

exhibiting a 3-dB opening angle around 7◦ and a main-lobe-to-sidelobe ratio higher than 20 dB.

Higher attenuation for the pressure level of the fundamental signal at the highest transmitted fre-

quency was also confirmed with a pressure drop over 12 m of approximately 30 dB at 121 kHz and

35 dB at 200 kHz.

The second harmonic signal was used to image spherical targets. The echo from the targets had

a narrower main lobe when filtering the signal around the second harmonic frequency band and

the smallest sphere could only be detected by the second harmonic signal. This shows that use of

the second harmonic signal can potentially improve the image quality when combining it with the

fundamental signal.

A simulator was used to compare the maximum range as defined in the active sonar equation

for the fundamental signal at 200 kHz and the second harmonic signal at 400 kHz in the case of

isotropic noise and volume reverberation as limiting factors. A simple case of the models presented

in Urick’s text [29] was used and indicates that the second harmonic signal can be used to detect a

30-cm long fish at a maximum range of approximately 243 m against 343 m for the fundamental

signal when the source level is 228 dB and the detection threshold is 12 dB. In this case the max-

imum achievable range for the fundamental signal of a sonar transmitting at 400 kHz is less than

for the second harmonic signal of a sonar transmitting at 200 kHz. This counterintuitive result de-

pends on the model used and the levels chosen for the input pressure, the noise, and the scattering

strength but it shows that there is a role for second harmonic imaging in sonars and echo-sounders.

Using a single transducer one could combine the high resolution of the second harmonic signal at

short range with the long-range capability and lower resolution of the fundamental signal.

Combining echoes from the fundamental and the second harmonic signals doubles the data rate

per ping. In addition the echoes at two different frequencies can contribute to target classification,

e.g., living organisms, by comparing their frequency response. This is another potential use for the

second harmonic signal in fishery research.
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In contrast to using several transducers simultaneously when characterizing living organisms by

their frequency response, combining the fundamental with the second harmonic signals does not

require extra equipment. This arrangement could be implemented into existing sonar systems at a

potential reduced cost provided that the cost of wideband transducers will drop in the future.

A limitation of the presented technique is the need for high transmitted power. With low

input power the higher harmonics signals generated due to nonlinear propagation are negligible.

Medium-to-high input powers are necessary. In our case 1-kW input power was enough to achieve

second harmonic imaging. Increasing input power also has its limitations in the form of cavitation,

hard shock, or saturation that all dissipate energy into the medium. In addition the receiver needs

to be sensitive enough to detect the low level of the echoes and the uncertainty of the recorded level

should be small if used in organism characterization.

The results of these experiments confirm the potential of second harmonic imaging in underwa-

ter acoustics. In a future work, combining the echoes received around the fundamental and second

harmonic frequency bands could be tried at sea using existing echo-sounders or sonars. Such an

experiment would demonstrate both the image enhancement and target classification capabilities

of the method. Experiments in shallow water would put in evidence the reduction in perturbations

from surface and bottom reverberation when using the second harmonic signal with low sidelobe

levels. Other examples of future work include a more detailed characterization of the second har-

monic imaging in terms of resolution and sidelobe echoes strength as well as a comparison between

fundamental and second harmonic images for varying ranges.

A

C    

The target strength is defined as

TS ≡ 19.1 log L − 0.9 log(f/1 kHz) − 62 (11)

where L is the size of the fish in cm and f the frequency. Equation (11) is based on empirical

measurements [29]. In our simulations, TS ≈ −36 dB at 200 kHz.

For the case of an active sonar transmitting a sinusoidal pulse in a background of Gaussian noise

where the received signal is processed by an energy detector, the detection threshold can be defined

as [37]

DT ≡ −5 log M +

(

6.2 +
4.54√

M + 0.44

)

log(A + 0.12AB + 1.7B), (12)

where M is the number of independent samples of the squared amplitudes used by the energy

detector and is equal to 1 in our case and

A ≡ ln
0.62

Pf

, (13)

B ≡ ln

(

Pd

1 − Pd

)

, (14)

with Pf the false alarm probability taken equal to 0.01% and Pd the detection probability taken

equal to 95% in our case. Equation (12) takes into account the low time-bandwidth product
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(equal to 1 in our case) and is valid for sinusoidal signals in narrowband Gaussian noise. In our

simulations, DT ≈ 12 dB.

The noise generated for the frequency range of interest is mainly due to thermal noise originat-

ing in the molecular motion of the sea. The chosen model valid for frequencies above 100 kHz for

the noise level is

NL ≡ −15 + 20 log(f/1 kHz) + 10 log ω. (15)

where ω is the bandwidth of the receiver assumed equal to the bandwidth of the signal (the inverse

of the signal duration in our case). Both the detection threshold and the noise level are defined

by considering the noise power in the bandwidth of the receiver ω instead of a 1-Hz bandwidth

as done in [29]. By doing so, the same definition for the detection threshold can be used in (3)

and (4). In our simulations, NL ≈ 61 dB at 200 kHz.

In our case the directivity index is the same as the array gain. For a circular piston of radius R

we get [29]

DI ≡ 10 log

[

(

2Rπ

λ

)2
]

, (16)

where λ is the wavelength. In our simulations, DI ≈ 30 dB at 200 kHz.

The reverberation level is defined as

RL ≡ SL − 40 log r + Sv + 10 log V − 2αr, (17)

where r is the range, Sv the volume scattering strength, V is characteristic of the reverberation

volume, and α the attenuation coefficient expressed in dB·m−1. Computations in [29] give the

following expression for V :

V ≡ cτ

2
Ψr2, (18)

where c is the speed of sound, τ is the pulse duration, and for a circular piston of radius R, Ψ is

defined by [29]

10 log Ψ ≡ 20 log

(

λ

2πR

)

+ 7.7. (19)

According to [29], the source of volume scattering strength Sv is biological. For frequencies above

20 kHz, the scatterers are likely to be zooplankton. The variation of Sv in this frequency range

is slight or absent. Sv is taken constant for the fundamental and second harmonic signals in our

simulations.
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Theoretical improvements when using the
second harmonic signal in acoustic Doppler

current profilers

F. Prieur, R. E. Hansen

Abstract− Acoustic Doppler current profilers and velocity logs are devices that compute the

Doppler frequency shift undergone by a pulse after reflection by floating particles in water or by the

seafloor. Using this Doppler shift, the velocity of the water currents carrying the reflecting particles

or the speed of a vessel relative to the sea bottom can be estimated. The attainable performance

of Doppler logs in terms of range and velocity estimate error are directly linked to the physical

dimensions and geometry of the transceivers as well as the nature of the pulse transmitted. Beyond a

certain transmitted power, distortion of the transmitted pulse due to nonlinear effects is significant.

The second harmonic signal generated in that case can be used to estimate velocity in conjunction

with the fundamental signal. It has a narrower main lobe and a higher main-lobe-to-sidelobe ratio

compared to the fundamental signal. Such geometrical properties contribute to a more localized

velocity determination with less perturbations coming from scatterers away from the region of

interest. Combining the velocity estimates using the fundamental and second harmonic signals also

helps decreasing the velocity estimate error. For a Doppler log transmitting a pulse at 153.6 kHz

using 250 W input power with a nominal range of 400 m, the attainable range for the second

harmonic signal is estimated to around 221 m.
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I. I

The Doppler effect is the principle that acoustic Doppler current profilers (ADCPs) and Doppler

velocity logs (DVL) rely on. The DVLs are used to track the speed of a ship or an autonomous

underwater vehicle (AUV) over the sea bottom. The ADCPs are an evolution of the DVLs. While

they also can track the speed of a ship or an AUV, their main purpose is to map the velocity of the

water current by providing water velocity in range cells over a depth profile. By transmitting an

acoustic pulse into water and recording the signal that small floating particles or plankton reflect,

the ADCP can estimate the frequency shift that the reflected signal undergoes by Doppler effect.

This frequency shift is characteristic of the water velocity since backscatterers are assumed to float

in the water and move, on average, at the velocity of the water. For speed measurements the ADCP

and DVL use the reflection from the sea bottom to estimate the speed of the ship or AUV over the

sea bottom. To estimate a three-dimensional velocity the ADCP uses three or four independent

acoustic beams pointing at an angle from the vertical and separated from each other. In the four-

beam case the “Janus configuration” is often used where the beams are oriented 90◦ apart from each

other in azimuth. One pair of beams is oriented along the longitudinal axis of the ship and is used

to estimate the along-track velocity. The other pair is oriented athwartships and is used to estimate

the cross-track velocity. In the three-beam case the beams are often placed with 120◦ separation

in azimuth with one beam pointing forward along the ship longitudinal axis [1]. The geometry

of these beams is crucial for the performance of the ADCP. Indeed at each depth cell the ADCP

estimates an average of the backscatterers velocity over the ensonified depth cell volume. Therefore

a narrower beam will define smaller depth cells and more localized velocity estimates. In the case

of speed measurements, a narrower beam will produce a smaller footprint on the sea bottom giving

similar improvements. Theriault [1] characterized the spatial response of Doppler current profilers

in both the three-beam and four-beam cases. The sidelobe levels in these beams are also a source

of perturbation. In the case of water velocity measurement the maximum attainable range is af-

fected due to the echo from the part of the sea bottom, or the surface if the instrument is pointing

upwards, ensonified by sidelobes [2]. For speed measurements the echo from the sea bottom en-

sonified by the main lobe is perturbed by the echo from the part of the sea bottom ensonified by

sidelobes.

In addition to these geometrical parameters that have to be accounted for in the design, ex-

perience has shown that there is an upper limit to the transmitted power above which nonlinear

propagation of sound greatly affects the efficiency of the transducers used in the ADCPs [2]. Today’s

ADCPs are not operated in these upper power ranges. In fishery research the transmitted power to

transducers used with echo sounders is also limited to avoid energy loss to frequency bands around

higher harmonic frequencies and ensure accurate target strength estimation [3]. However non-

linear propagation of sound has seen many applications in underwater acoustics with parametric

arrays [4] and medical imaging with tissue harmonic imaging (THI). The beam of the second har-

monic signal used in tissue harmonic imaging shows a lot of beneficial geometrical properties, like

a narrower main lobe and a high main-lobe-to-sidelobe ratio, that improve the image produced by

echoes filtered around the second harmonic frequency [5]. In addition to previous successful uses

of nonlinear sound propagation, the recent developments in transducer technology has led to very
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wideband transducers that can technically transmit a pulse and record the echoes filtered around

the fundamental and the second harmonic frequencies [6]. This has led us to investigating the pos-

sibility of using the second harmonic signal in conjunction with the fundamental signal to improve

performance of ADCPs. This solution requires only one transceiver and the maximum range is

defined by the maximum attainable range for the second harmonic signal. In addition it combines

the geometrical properties of the second harmonic signal and an additional velocity estimate per

ping. Using two transducers transmitting at the fundamental and the second harmonic frequencies

or one transducer transmitting at the second harmonic frequency with a weighting that reduces

sidelobe levels cannot combine all those advantages.

Depending on the type of applications that the ADCP is aimed at, the processing of the received

signal differs. Three main types of echo processing are used: incoherent pulse processing, coherent

pulse to pulse processing, and broadband signal processing. While incoherent pulse processing al-

lows for a very large range it requires long averaging time to reduce absolute velocity error and is

subject to a depth resolution-velocity error trade-off. It is best aimed at deep water low-precision

applications. In [7] Theriault studies the performance of an incoherent Doppler profiler. At the

opposite end of the scale the coherent pulse to pulse processing gives an excellent space-time resolu-

tion but is limited to depths of some tens of meters. It is best suited for shallow water applications

requiring high resolution. Lohrmann and Nylund give a description of the performances and op-

erational limitations of a pulse to pulse coherent system in [8]. The broadband signal processing is

an intermediate solution that combines the advantages of incoherent and coherent pulse to pulse

processing methods. It allows for large ranges in the hundreds of meters and a velocity variance and

spatial resolution intermediate between the two first methods. Brumley et al. give a performance

estimate of broadband signal processing and compare it to the other methods in [9]. To cover all

types of applications, we study the advantages of combining the fundamental and second harmonic

signals using all three processing methods mentioned.

In the first part of this article we examine the advantages that the geometry of the second

harmonic signal beam provides. We show that the narrower main lobe and high main-lobe-to-

sidelobe ratio of the second harmonic signal give an echo that is less spread in time than when

using the fundamental signal and that the spread in speed estimate is also reduced. This in turn

allows for a more precise determination of the time of arrival of the pulse and velocity estimation.

The second part studies the error reduction of the velocity estimate when combining echoes

from the fundamental signal and the second harmonic signal for the three main processing methods:

incoherent pulse processing, coherent pulse to pulse processing, and broadband signal processing.

In the last part, we use a simulator and a signal budget equation to estimate the maximum range

attainable when using the second harmonic signal and find it comparable to the range specifications

of commercial ADCPs transmitting at the same frequency.

II. G       

Propagation of sound is inherently nonlinear. In the second-order approximation for thermo-

viscous fluids such as water, nonlinear effects translate into a dependency of the sound propaga-

tion speed with the medium density [10]. The propagation velocity of sound increases where the

medium is compressed and decreases where it expands. Because of that, the pressure peaks of a

pulse travel faster than its troughs resulting in a distorted pulse. This distortion translates in the
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frequency domain into energy transferred to harmonic frequency bands centered around multiples

of the transmitted frequency. At low transmitted power level this energy transfer and the nonlinear

effects are negligible but at high transmitted power the part of the signal in the higher harmonic

frequency bands can be detected and used. In this paper the second harmonic signal, which is the

part of the signal filtered around twice the transmitted frequency, is studied and compared against

the fundamental signal, the part of the signal filtered around the transmitted frequency.

A. A narrower main lobe and lower sidelobes

The beam pattern of the second harmonic signal has been compared against the beam pattern

of the fundamental signal in numerous papers [11–13]. It exhibits a narrower main lobe and a

higher main-lobe-to-sidelobe ratio. A simulation of the pressure lateral beam profiles of the first

and second harmonic signals is shown in Fig. 1. It uses a circular transducer of radius 82.5 mm

with a transmit frequency of 153.6 kHz and an initial pressure of 100 kPa, which describe a typical

ADCP [2]. The other parameters used in the simulations can be found in Table I. The simulation

is based on an angular spectrum approach (ASA) and uses an operator splitting method [14, 15].

A pre-defined number of harmonic frequencies are taken into account in the computation that

solves the propagation in the frequency domain. The first operator, the linear step, accounts for

diffraction and attenuation. It consists of multiplying the spatial Hankel transform of the field at

depth z for each frequency by a diffraction operator (Eq. (4) in [14]) and appending the losses due

to absorption. The second operator, the nonlinear step, implements a solution to a lossless Burgers

equation in the frequency domain (Eq. (3) in [15]). Applying both operators iteratively with a

small step size simulates nonlinear propagation from the source plane.

Fig. 1 shows a 3 dB beamwidth of approximately 2.4◦ for the fundamental signal and 1.6◦

for the second harmonic signal and a ratio of main lobe to first sidelobe around 17 dB for the

fundamental signal and 29 dB for the second harmonic signal. The lateral profile obtained with the

same aperture transmitting at twice the frequency, 307.2 kHz, and filtered around the fundamental

frequency is also shown in Fig. 1 as a comparison. As expected the 3 dB beamwidth is lower than

for the second harmonic signal (1.4◦) as well as the main-lobe-to-sidelobe ratio (15 dB).

In this article the examples are based on a piston transducer with a uniform excitation. Doppler

logs also use weighted transducers that produce a beam pattern with lower sidelobes at the expense

of a wider main lobe. For this kind of transducers the second harmonic signal also exhibits a

narrower main lobe and a larger main-lobe-to-sidelobe ratio compared to the fundamental signal.

We verified that using a transducer weighted with a Hanning window or a piston transducer with a

uniform excitation the use of the second harmonic signal improved the Doppler log performances

in a similar fashion.

The drawback of sidelobes in terms of range limitation for water velocity estimation and echo

perturbations for travel speed estimation are illustrated in Fig. 2. In the case of water velocity

estimation the echo from the bottom is much stronger than the back scattered pulse from volume

scatterer limiting the effective vertical range to z cos θ where z is the depth and θ the orientation

angle of the transducer referred to the vertical [2]. In the case of speed estimation the sidelobes

create perturbations for the detection of distance to bottom and increase the area over which velocity

is averaged.
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Fig. 1: Simulated normalized lateral beam profiles for the fundamental signal (solid line), the second
harmonic signal (dashed line), and the fundamental signal transmitted at twice the frequency (dotted
line) generated by a circular transducer of radius 82.5 mm after 7 m propagation in seawater. The
transmitted frequency is 153.6 kHz and 307.2 kHz for the fundamental signals and the input pressure
is 100 kPa.

To illustrate the effects of low sidelobes and a narrow main lobe, we first simulated the sound

field created by a circular aperture transmitting a pulse and then estimated the signal received by this

same transducer after reflection on a flat bottom. The configuration is the same as shown on Fig. 2

with θ = 30◦ and z = 7 m. The radius of the transducer is 82.5 mm, the transmitted frequency is

153.6 kHz, and the input pressure is 100 kPa. To first estimate the amplitude of the sound field

reaching the sea bottom, the simulator is used to propagate the sound from the transducer to the

plane containing the sea bottom. The part of the seafloor considered to compute the reflection

of the signal is a square patch large enough to contain the footprint of a conical beam with an

opening angle of 30◦. Most of the signal energy is contained within this area. A grid is applied

on the sea bottom and each element of the grid is assigned the same reflection coefficient. The

fundamental and second harmonic signals reaching each grid element are propagated back to the

transducer assuming a linear propagation and no absorption loss. Spherical spreading is assumed

and the directivity of the transducer is taken into account at reception. For a linear propagation of a

pulse of wavelength λ towards a circular piston of radius R the directivity function is given by [16]

br(γ) =
2J1[(2πR/λ) sin γ]

(2πR/λ) sin γ
, (1)

where J1 is the Bessel function of the first kind of order one and γ is the angle between the main

propagation axis of the transducer and the path from center of transducer to the sea bottom grid

element. This allows to estimate the amplitude of the signal reflected by each element of the seafloor

after reception for the fundamental and second harmonic signals.
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Fig. 2: Left: range limitation to z cos θ due to sea bottom reflection in the sidelobes direction when
estimating water velocity. Right: increase of beam footprint where velocity is averaged creating larger
spread in travel speed estimation.

In addition to these signal amplitudes, the two-way time delays for each element of the sea

bottom grid are computed. Summing the scaled and delayed signals reflected by each grid element

gives an estimate of the shape of the recorded echo from the sea bottom. The shape of the echo

from the sea bottom area when ensonified by a sinusoidal wave modulated by an envelope with

smoothly tapered edges are shown in Fig. 3 for the fundamental signal and the second harmonic

signal, respectively. The effects of a wide main lobe and high sidelobe levels are visible as the energy

is more spread in time compared to the echo from the second harmonic signal. An easier way to

visualize this effect is to compute the cumulative signals energy over time as shown in Fig. 3. The

figure also shows the cumulative energy for the fundamental signal of a pulse transmitted at twice

the frequency. The signal reaches 10% of its total energy at approximately 10.75 ms and 10.88

ms for the fundamental and second harmonic signals, respectively, while it reaches 90% of its total

energy at 11.08 ms and 11.16 ms for the second harmonic and fundamental signals, respectively.

The energy build-up in the case of the fundamental signal transmitted at twice the frequency is

very close from the case of the second harmonic signal revealing a pulse slightly more compressed

in time. This shows that the energy of the second harmonic signal is more concentrated in time

allowing a more precise determination of time of arrival of the pulse, and Doppler frequency shift.

This example shows the advantages of a narrower main lobe and a larger main-lobe-to-sidelobe

ratio in the case of travel speed estimation. In the case of current velocity estimation the reflecting

surface should be replaced by a volume of water determined by a piece of spherical shell which

center is the center of the transducer and of thickness cτ/2, where c and τ are the speed of sound

and pulse duration, respectively. In that case, the spatial extent of the beam as well as the pulse

length determine how the energy is spread in time. The second harmonic signal gives similar

advantages compared to the fundamental signal in this case too.

B. Doppler shift spreading
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Fig. 3: Top left: normalized fundamental signal received after echo from the sea bottom patch. Bottom
left: normalized second harmonic signal received after echo from the sea bottom patch. Right: signal
energy normalized to its maximum value for the fundamental signal (dashed line), the second harmonic
signal (solid line), and the fundamental signal transmitted at twice the frequency (dotted line) over time.

The received echo can be seen as a collection of reflections from point scatterers. Depending

on the position of these point scatterers in the beam, the corresponding echo will have a varying

Doppler shift. Fig. 4 shows the wave vector k of the reflected signal from a point scatterer P

propagating back to the transducer, together with the particle velocity vector v assumed in the

horizontal plane. In this figure x is the azimuth direction and y is the elevation direction.

The Doppler frequency shift produced by this point scatterer can be written as

fd =
k · v

π
. (2)

Equation (2) shows that if the velocity vector v is assumed constant in the horizontal plane, the

Doppler frequency shift differs for each point scatterer within the beam due to the variations in the

direction of k. This generates a spread in the Doppler shift at reception of the signal. A beam with

a lower spatial extent should suffer from less spread in the Doppler shift.

Using the results from the simulation described in the previous section that estimates the ampli-

tude of the signal reflected by a rectangular patch of sea bottom, the Doppler shift is calculated for

each grid element. Each Doppler shifted signal is propagated back to the transducer also as previ-

ously described. Fig. 5 shows the spread in velocity estimate at 7 m depth for the fundamental and

second harmonic signals as well as for the fundamental signal transmitted at twice the frequency

when |v| = 2 m/s and the velocity vector v is parallel to the elevation direction, that is vx = 0 in

Fig. 4. According to (2) a spread in the Doppler frequency shift can be due to variations of the

norm of the velocity vector or of the angle it makes with the wave vector k. If the angle between
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Fig. 4: Wave number k of reflected signal by point scatterer P . The velocity vector v is assumed constant
in the horizontal plane at depth z.

the velocity and wave vectors is assumed equal to π/2 + θ, the nominal Doppler shift is

fdNOM = −|k||v|
π

sin θ, (3)

which corresponds to approximately −208 Hz and −415 Hz for the fundamental and second

harmonic signals, respectively.

For all three signals the Doppler shift spectrum shows a main lobe and a decay with sidelobes.

The main lobe for the fundamental signal is wider than for the second harmonic signal and the side-

lobe levels are higher. The main lobe for the fundamental signal transmitted at twice the frequency

is very close to the main lobe for the second harmonic signal but its sidelobe levels are higher.

The shape of the Doppler shift spectra is closely related to the beam patterns of the transducer at

fundamental and second harmonic frequencies as mentioned in [17].

The Doppler shift spectrum has a 3-dB bandwidth of about 14.9 Hz and 15.7 Hz for the fun-

damental and second harmonic signals, respectively, which corresponds to 14.4 cm/s and 7.6 cm/s

when using (3). This shows that the geometrical properties of the second harmonic signal beam

improve the precision of the velocity estimate. If the effect of the sidelobes in the Doppler spectrum

are ignored, using the second harmonic signal produces the same spread in the Doppler shift as the

fundamental signal transmitted at twice the frequency. However using the components around the

fundamental and second harmonic frequencies of one received echo produces two velocity estimates

per ping that can be combined for better precision as shown in the next section. This cannot be

achieved by using only the fundamental signal transmitted at twice the frequency.

III. V  
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Fig. 5: Normalized Doppler shift spectrum in dB at 7 m depth for the fundamental signal (dashed line),
the second harmonic signal (solid line), and the fundamental signal transmitted at twice the frequency
(dotted line) plotted against corresponding velocity spread when |v| = 2 m/s and v is parallel to the
elevation direction.

A. Incoherent Doppler profilers

One way to determine the velocity from the echo of the sea bottom or from a depth cell is to

compute the frequency spectrum of the received signal and determine the signal frequency after

Doppler shift. From the frequency, the radial velocity can be calculated using:

fd =
2fv

c
, (4)

where fd is the Doppler frequency shift, f is the frequency of the transmitted signal, v is the sought

radial component of the velocity, and c is the speed of sound. To determine the velocity in the

depth cell situated at range r, the signal is time gated at time tr = 2r/c before frequency analysis.

The size of the time window centered around tr is usually the same as the transmitted pulse length

T . This gives a range resolution of L = cT/2 and a frequency spectrum bandwidth of 1/T . A

lower limit for the error variance of an estimator for fd is given by the Cramér-Rao bound. In the

case of incoherent processing, and when the correlation time of the reverberation signal is assumed

equal to the pulse length this limit is [18]

σ2
f =

1

(2πT )2

1

Nv

1

Iv(SNR)
, (5)
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where σf is the standard deviation of the frequency estimator, Nv is number of independent depth

cells considered during the processing time, and Iv(SNR) is defined as

Iv(SNR) =
2√
ln 2

∫

√
ln 2

−
√

ln 2

x2dx
[

1 + exp(x2)/(SNR
√

2)
]2 . (6)

The signal-to-noise ratio, SNR, is defined as the ratio of the energy of the reverberated signal to the

noise energy where the noise bandwidth was assumed equal to the transmitted signal bandwidth,

in this case 1/T . Using (4), the standard deviation lower bound of the velocity estimate can be

written as:

σv =
cσf

2f
=

c

4πfT

1
√

NvIv(SNR)
(7)

The relation between the lower bounds for the standard deviation of the velocity estimate in the

case of the fundamental signal σv1 and in the case of the harmonic signal σv2 is

σv2 =
σv1

2

√

Iv(SNR1)

Iv(SNR2)
(8)

where SNR1 and SNR2 are the signal-to-noise ratios for the fundamental and second harmonic

signals, respectively. The function Iv(SNR) tends towards 0 when SNR is very low, and towards 1

when SNR is very high. This means that in the case of high SNR for both the fundamental and

second harmonic signals σv2 ≈ 0.5 σv1. As an example, SNR2 is taken equal to 15 dB, the lower

bound of the useful range of signal-to-noise ratio in the case of an incoherent system [9], and SNR1

is assumed to be 10 dB higher and equal to 25 dB. The function Iv was evaluated for both values

of SNR1 and SNR2

Iv(SNR1) ≈ 0.85, Iv(SNR2) ≈ 0.80, σv2 ≈ 0.52 σv1. (9)

This shows that the standard deviation of the velocity estimate is reduced when using the second

harmonic signal instead of the fundamental signal. Such a reduction improves the measurements

by reducing the required averaging times, permitting the observation of smaller time scale effects.

This conventional method assumes that echoes from separate pings are not correlated. It is called

“incoherent” in opposition to the “coherent” method that evaluates the phase variations between

two consecutive pulses.

B. Coherent Doppler profilers

In the “coherent” processing method the system transmits a series of single pulse pings with a

shorter time interval and observes the phase changes from ping to ping at each range cell. By sam-

pling each ping at the same depth the phase variation from ping to ping can be used to determine

the velocity of the scatterer at that depth [19]

v =
c (dΦ/dt)

4πf
, (10)
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where dΦ/dt is the time derivative of the signal phase. For this method, the echoes need to be

coherent which means the time interval between consecutive recorded echoes should be below the

decorrelation time. The signal phase variation can be estimated using for instance the covariance

method [19,20]. In this method the echo from each consecutive pulse is sampled at fixed range r so

that the same set of scatterers contribute to the selected part of the echo. The time interval between

each sample is noted τ = 2r/c and the sampling frequency is the pulse repetition frequency (PRF).

In this case the pulse length does not determine the bandwidth of the frequency spectrum and

the standard deviation of the velocity estimate. The spectral bandwidth in this method, called the

Doppler bandwidth and noted B thereafter, is due to the sources of phase noise “like turbulence

within the sample volume, beam divergence, finite scatterer residence time, and acceleration during

the averaging period” [9] and is greatly reduced compared to the signal bandwidth. To explain this

we use the theory presented in [21] and start by defining g(t) the analytical signal corresponding

to the received signal. When sampling the series of pings at intervals τ we can define the two

dimensional signal z(s, t) = g(s + t) as the return after delay t from the pulse transmitted at

time s. The time s is discrete and its values are incremented by τ . A two-dimensional Fourier

transform of z(s, t) can therefore be computed and gives a spectrum as a function of the range

frequency fr and Doppler frequency fs. The obtained spectrum has a bandwidth along the range

frequency equal to the bandwidth of the transmitted signal, 1/T , but its bandwidth along the

Doppler frequency, B, does not depend on signal duration. The fact that the standard deviation

of the velocity estimate does not depend of the signal length allows one to transmit signals of short

duration and improve the spatial resolution L = cT/2.

In [22] Zrnić gives an expression for the variance of the mean frequency estimate using the

covariance method in the case where a Gaussian shaped power spectrum for the received echoes is

assumed, and successive pairs of echoes are correlated. For large decorrelation time compared to

ping interval, and even greater observation time, this expression can be simplified to

σ2
f ≈ 2πBτ

√
π(τc/τ)2 + 1/SNR2 + 2/SNR

8π2Mτ 2
c

when Mτ ≫ 1/(2πB) ≫ τ,

(11)

where 1/(2πB) is the decorrelation time, M the number of pings, and τc is the time lag at which

the auto-correlation is evaluated (0 ≤ τc ≤ τ ). Two limit cases can be considered. In the first case

we assume 1/SNR ≫ 2πBτ and in the second case 1/SNR ≪ 2πBτ . Considering the first case,

σf can be approximated to

σ2
f ≈ 1/SNR2 + 2/SNR

8π2Mτ 2
c

. (12)

Using (4), the relation between the standard deviation for the velocity estimates obtained with the

fundamental and second harmonic signals is

σv2 =
σv1

2

√

1/SNR2
2 + 2/SNR2

√

1/SNR2
1 + 2/SNR1

. (13)

In the second case, we have [9]

σ2
f ≈ π−1/2B

4Mτ
(14)
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and

σv2 =
σv1

2

√

B2

B1

, (15)

where B1 and B2 are the Doppler bandwidth in the case of the fundamental and second harmonic

signals, respectively.

In the first case, the relation between the standard deviations σv1 and σv2 is very much de-

pendent of the signal-to-noise ratios SNR1 and SNR2. As an example, if SNR1 = 25 dB and

SNR2 = 15 dB we have

σv2 ≈ 0.92 σv1. (16)

In the second case assuming the source of phase noise only comes from the beam divergence,

the Doppler bandwidth is approximately proportional to the product of the beamwidth by the

transmitted frequency. Calling ξ1 and ξ2 the beamwidth for the fundamental and second harmonic

signals, respectively, we can write

σv2 = σv1

√

ξ2

2ξ1

(17)

Using the 3-dB beamwidths computed in Sec. II for ξ1 and ξ2 we have

σv2 = σv1

√

1.6

2 × 2.4
≈ 0.58 σv1. (18)

This is valid in the simple case where the only source of phase noise considered is the beam di-

vergense. If for instance the beam divergence is altered by turbulences, the dependence of the

beamwidth is reduced and the ratio of the standard deviations gets closer to 1/
√

2.

C. Estimator redundancy

When using both the fundamental and second harmonic signals, two velocity estimates can be

computed. When the two estimates can be considered as independent statistical processes averaging

both gives a combined variance

Vc =
Vv1 + Vv2

4
, (19)

where Vc, Vv1, and Vv2 are the variances of the combined velocity estimates, the estimate using the

fundamental signal, and the estimate using the second harmonic signal, respectively. In the case of

incoherent pulses both estimates are independent and using the results of the numerical example

in (9) we can write

σc ≈ 0.56 σv1, (20)

where σc is the standard deviation of the combined estimate. In this particular case the variance

when combining estimates from the fundamental and the second harmonic signals is slightly higher

than when using the second harmonic signal alone.

In the case of coherent pulse processing since the beam geometries and the scatterer response

are different from the fundamental signal to the second harmonic signal the two estimates can be
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considered independent. Using (16) we can write in the case of low SNR:

σc ≈ 0.68 σv1. (21)

In the case of high SNR, using (18), we have

σc ≈ 0.58 σv1. (22)

In this case the standard deviation of the velocity estimate combining the fundamental and the

second harmonic signals is lower than when using the second harmonic signal alone if the signal-

to-noise ratio is low.

To summarize, the standard deviation for the velocity estimate is improved when using the

second harmonic signal in place of the fundamental signal for sufficiently large SNR. As the SNR

increases, this reduction in standard deviation increases. Combining the fundamental signal with

the second harmonic signal can give an estimate with a further reduced standard deviation provided

that the SNR does not reach a higher limit above which the standard deviation gets larger than the

one obtained using the second harmonic signal only.

A limitation when using the combined estimate in the coherent case comes from the ambiguity

velocity. Since the phase cannot be determined beyond the limits [−π, π] without ambiguity, we

get from (10) the maximum radial velocity that can be detected without ambiguity [23]

va =
c

4fτ
. (23)

This maximum velocity is decided by the frequency of the second harmonic signal and is therefore

halved compared to the ambiguity velocity when using the fundamental signal only. Using the

combined estimate or the estimate using the second harmonic signal together with the estimate

using the fundamental signal gives a reduced standard deviation and the same ambiguity velocity as

when using the fundamental signal alone.

D. Broadband Doppler profiler

To achieve coherent pulse to pulse processing, the inter-pulse delay τ must be limited to ensure

a phase difference below π and to avoid echo decorrelation. In addition the echo from the previous

pulse must have died out before the next pulse can be transmitted limiting the maximum attainable

range to ra = cτ/2. This gives the range-velocity ambiguity relation

rava =
cτ

2

c

4fτ
=

λc

8
. (24)

This is the main limitation for the coherent pulse to pulse signal processing. These limitations

on range and velocity could be removed if the time between pulses could be smaller than the

propagation time to maximum range. This can be done if the system receives echoes from two or

more pulses for each ping. This concept lies behind the broadband Doppler current profilers [9].

Two pulses of duration Tp are sent with a time interval T0. If T0 is chosen small, the depth cell

size cT0/2 is reduced and the ambiguity velocity c/(4fT0) is increased. The ping interval τ can be
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as large as necessary and the range is only limited by the SNR. Using the covariance method, the

variance of the velocity estimate per ping in this case is inversely proportional to the averaging time-

bandwidth product Ta/Tp, where Ta is the time for which covariance samples are averaged [9]. It

would then be natural to try to reduce Tp to decrease the variance per ping but doing so would

shorten the pulse and reduce the SNR impairing the maximum attainable range [24].

To increase the signal bandwidth without excessively decreasing the signal duration and SNR,

phase coding can be used. Coded pulses composed of many closely spaced elements are transmitted.

Such signals can have a long duration allowing to transmit the same energy as long uncoded pulses

while providing a large bandwidth as short uncoded pulses. When phase coding is used, a simplified

expression of the variance of the velocity estimate per ping given by Zrnić [22] is presented in [9].

For a two-pulse transmission and Ta ≤ T0 it is

Vf =
1

(2πT0)2

(

1

ρ2
− 1

)

C2

2Ma

, (25)

where Vf is the Doppler frequency estimate variance, C is a correction coefficient for non-ideal

aspects of the code and processing, Ma is the number of code elements in Ta, and ρ is the auto-

correlation coefficient at lag T0. Since the phase of the second harmonic signal can be assumed to

be twice the phase of the fundamental signal, a phase coding modulating the phase of the funda-

mental signal with 0◦ and 180◦ is equivalent to no phase coding for the second harmonic signal.

Assuming that coded pulses are contiguous with a pulse separation T0, in the case of a two-pulse

transmission the second harmonic signal is a sine pulse of length 2T0. Brumley et al. mention a

numerical example of variance calculation in the case of a broadband coded pulse with a two-pulse

transmission [9]. In their calculation f = 600 kHz, Ma = 118, va = c/(4fT0) = ±40 cm/s,

ρ = 0.5, and C = 1.5, which gives Vf ≈ 305 Hz2 with c = 1479 m/s and a speed standard devi-

ation around 2.2 cm/s. If the second harmonic signal pulse is processed incoherently, using (7) it

leads to a velocity standard deviation

σv =
c

4π2f2T0

1
√

NvIv(SNR2)
=

va

4π
√

NvIv(SNR2)
. (26)

Choosing Nv = 1 and SNR2 = 15 dB, we get

Iv(SNR2) ≈ 0.80 and σv ≈ 3.56 cm/s. (27)

Averaging both estimates as explained in the previous section gives the combined velocity standard

deviation

σc =

√
2.22 + 3.562

2
≈ 2.09 cm/s, (28)

which shows a slight reduction by a factor 0.95 compared to the velocity standard deviation ob-

tained when using the fundamental signal only.

IV. R 

The question of the range performance when using the second harmonic signal obviously has

to be addressed. The maximum range at which an ADCP can be used is determined when, due
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to geometrical spreading and attenuation in seawater, the echo strength has dropped to a level

comparable to the noise level [2]. Since the intensity of the transmitted pulse around the second

harmonic frequency is much lower than around the fundamental frequency, it is expected that the

maximum attainable range should be lower when using the second harmonic signal.

To estimate the range limitations, the KZKTexas Code [25, 26], which operates in the time

domain, is used to simulate the pressure field. This simulator is equivalent to our implementation

of the ASA simulator mentioned in Sec. II but is slightly faster and allows us to use a lateral

sample size that increases with depth of propagation. This is well adapted to our case where we

seek the pressure field contained within an opening angle along the propagation depth. The aim is

to estimate the sound intensity of a pulse received by an ADCP transducer after being reverberated

by the scatterers contained in the sea and filtered around the fundamental or the second harmonic

frequencies. The pressure field is simulated up to a range of 500 m and the extent of the beam

patterns is limited to 20◦ on each side of the main propagation axis where most of the energy is.

This means that the depth cell at range r is modelled as a cylinder of diameter D = 2r tan 20◦ and

height cT/2, where T is the pulse duration. The scatterer density is characterized by the volume

scattering strength sv which defines the part of the incident energy reverberated by each unit of

volume. The volumic scatterers are assumed to reverberate the energy in an omnidirectional way

and the propagation back to the receiver is assumed to be linear. Not all of this reflected energy is

received due to the directivity of the receiver, so the beam pattern of the transducer at reception has

to be taken into account. The reverberated intensity can therefore be defined for each depth cell at

range r:

Irev(z) =

∫ D/2

0

[

bt(z, r)br[atan(r/z)]
p(z)

pref

]2

sv2π r dr cT/2, (29)

where bt(z, r) is the normalized beam pattern at transmission determined by simulation, br is the

beam pattern at reception defined in (1), p(z) is the axial pressure of the fundamental or second

harmonic signal at range z, and pref is a reference pressure equal to 1 μPa. In (29) the intensity

is referred to a reference intensity corresponding to a plane wave of pressure 1 μPa and the axial

pressure p(z) as well as the lateral profile bt(z, r) are computed by the KZKTexas code taking into

account absorption and diffraction during transmission. Using the decibel (dB) notation we define

the reverberation level RL as RL = 10 log(Irev).

When the reverberated signal is travelling back to the receiver, the transmission losses TL due

to geometrical spreading and absorption have to be taken into account. Considering a spherical

spreading and an attenuation coefficient α in dB/m, we have using [27]

TL = 20 log z + αz. (30)

The total echo level EL recorded at the receiver is EL = RL − TL.

Fig. 6 shows the echo level for fundamental and second harmonic signals in the case of a circular

transducer of radius R = 82.5 mm transmitting a pulse at frequency 153.6 kHz with an input

pressure p0 = 131 kPa and receiving an echo from volumic reverberation. It also shows the echo

level for the fundamental signal of a circular piston of radius R = 66.5 mm transmitting a pulse

at the frequency of the second harmonic signal, 307.2 kHz with an input pressure of p0 = 93 kPa.

This is to compare the range performance of the second harmonic signal against the fundamental

67



Paper II

signal at the same frequency. The value of the other simulation parameters are presented in Table I

and are based on existing transducer data [2]. Typical values for the volume scattering strength

were chosen from measurements of the San Diego coast [28]. It appears that we compare range

performance for different transducer size and different input power but this is done to compare

existing hardware. Had we compared the range performance using the same transducer size and

input power only doubling the transmit frequency it would not have been representative of existing

products.

Table I: Parameters used to compute the echo level and to estimate the pressure profiles along depth using
the simulator. The parameters marked with a † are used to compute the absorption in seawater according
to the formula given in [29]

Parameter Value

Source radius (R) 82.5 mm 66.5 mm
Frequency (f ) 153.6 kHz 307.2 kHz
Input pressure (p0) 131 kPa 93 kPa
Input power (P ) 250 W 80 W
Volume scattering strength (Sv = 10 log sv) -86 dB -80 dB
Water density (ρ0) 998 kg/m3

Sound speed (c) 1479 m/s
Nonlinearity coefficient (β) 3.5
Attenuation (α)

Salinity† 34 ppt
Depth† 100 m
Temperature† 10◦C
pH† 7.7

⇒ 0.045 dB/m at 153.6 kHz
⇒ 0.076 dB/m at 307.2 kHz

Pulse duration (T ) 2 ms

According to [2] the nominal range for an ADCP of radius R = 82.5 mm transmitting at

153.6 kHz with an input power of 250 W is 400 m. The horizontal line in Fig. 6 that intersects the

echo level of the fundamental signal at 400 m range gives an estimate of the signal strength needed

at reception. This level is around 35 dB. According to [30] the ambient noise above 100 kHz

increase as 20 log f which places the minimum echo level for the second harmonic signal 6 dB

above the 35 dB level required for the fundamental signal. For a minimal echo level around 41 dB,

the maximum attainable range when using the second harmonic signal is around 221 m and around

243 m for the fundamental signal at 307.2 kHz.

In this particular case the results show that the range performance for the second harmonic sig-

nal is almost as good as for the fundamental signal transmitting at the second harmonic frequency,

307.2 kHz.

Although the obtained numbers for the maximum attainable range depend on the assumptions

made for the model and on parameter values such as the reverberation strength or the the input

pressure they show that there is a possible use for the second harmonic signal to improve the velocity

68



Theoretical improvements when using the sec. harmonic sig. in acoust. Doppler current profilers

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

Range [m]

E
c
h

o
 L

e
v
e
l 
[d

B
 r

e
 1

 µ
P

a
]

 

 

Fig. 6: Echo level for the fundamental signal (solid line) and the second harmonic signal (dashed line)
for a piston transducer of radius R = 82.5 mm transmitting a 2 ms pulse at 153.6 kHz with input
pressure p0 = 131 kPa, and echo level for fundamental signal (dotted line) for a piston transducer of
radius R = 66.5 mm transmitting a 2 ms pulse at 307.2 kHz with input pressure p0 = 93 kPa. The
horizontal dash-dotted lines represent the echo level for the fundamental signal at 153.6 kHz at 400 m
range (right most line) and the echo level 6 dB above this level (left most line). The intersections of the
left most line with the echo levels for the second harmonic signal and fundamental signal at 307.2 kHz
give the maximum attainable range in both cases.

estimate given by commercial ADCPs.

V. C

In this article we have given quantitative proofs that the geometrical properties of the second

harmonic signal give a more precise estimate of current or ship velocity compared to when using

the fundamental signal with ADCPs. The narrower main lobe and larger main-lobe-to-sidelobe

ratio allow to ensonify a smaller volume and reduce echoes from scatterers not situated in the main

propagation direction. This in turn gives an echo more compressed in time and a smaller spread

in Doppler frequency shift, which allows a better determination of the distance to scatterers and

velocity estimate.

We have also shown that provided the signal-to-noise ratio is high enough using the second

harmonic signal improves the standard deviation of the velocity estimate compared to when the

fundamental signal is used. A numerical example showed that the standard derivation can be im-

proved by a factor 0.52 when the echo is processed incoherently. Combining the estimates from

the echo filtered around the fundamental and the second harmonic frequencies can also further de-

crease the standard deviation of the velocity estimate. Numerical examples show that the estimator

redundancy decreases the standard deviation by a factor 0.68 in the case of pulse to pulse coherent

processing and 0.95 in the case of broadband signal processing.
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Finally the maximum attainable range for the second harmonic signal was estimated using a

simulation of the pressure field and a signal budget equation. For a range limitation of 400 m for

the fundamental signal transmitted at 153.6 kHz, the maximum attainable range using the second

harmonic signal at 307.2 kHz is around 221 m for a piston transducer with uniform excitation.

All these properties combined with the new transducers technologies allowing one to receive

the echo filtered both around the fundamental and the second harmonic frequencies show that the

velocity estimates provided by ADCPs could be improved. Part of the benefits of combining echoes

at two different frequencies is that it doubles the amount of information per ping.

The present paper only studies the case of 180-degree phase shift coding for broadband Doppler

profilers that leads to no coding for the second harmonic signal. Other coding using 90-degree

phase shift would result to a coded pulse at the second harmonic frequency. Although it is hard to

estimate the value of the correction coefficient for the non-ideal aspect of the obtained code, the

variance of the second harmonic estimate should be improved compared to an incoherent process-

ing as presented. A possibility for future work could be the search for a coded pulse that would have

similar properties when filtered around the fundamental and second harmonic frequencies. Trials

at sea to validate the feasibility of the method is another possible future work.
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Abstract− Fractional derivatives are well suited to describe wave propagation in complex me-

dia. When introduced in classical wave equations, they allow a modeling of attenuation and disper-

sion that better describes sound propagation in biological tissues. Traditional constitutive equations

from solid mechanics and heat conduction are modified using fractional derivatives. They are used

to derive a nonlinear wave equation which describes attenuation and dispersion laws that match

observations. This wave equation is a generalization of the Westervelt equation, and also leads to a

fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers’ equations.
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I. I

Fractional derivatives, whether the formal name is used or not, have been used for modeling

heat transfer or diffusion [1, 2],seismic data [3], and sound wave propagation [4–6], only to name

a few. They allow the description of the physics of complex media in solid and fluid mechanics.

When modeling sound propagation, the use of fractional derivatives leads to models that better

describe observations of attenuation and dispersion [7]. The wave equation for viscous losses in-

volving integer order derivatives only, leads to an attenuation which is proportional to the square of

the frequency. This does not always reflect reality. In, e.g., biological tissues [8], and in marine sed-

iments [9], the frequency dependency of attenuation and dispersion is more complicated. Different

forms of the wave equation have been proposed to reflect this complexity [4, 7, 10–12].

Nonlinear effects in sound wave propagation, may also be taken into account during numerical

simulation. This is the case for the Bergen Code [13, 14], the KZKTexas code [15–17], and the

angular spectrum method defined by Christopher and Parker [18, 19]. In the case of the angular

spectrum approach, the attenuation is modeled as proportional to ωy, with ω the angular frequency

and y non-integer, allowing one to simulate attenuation in media like biological tissue. Time do-

main simulators can use multiple relaxation processes to approximate such attenuation both in the

linear case [20] and the nonlinear case [21]. Typically, this requires two or more relaxation processes

to model a power law over a restricted frequency range. Each process requires two parameters to be

found from a curve fit. These parameters describe the pysics in the case of propagation in sea water

or air. In more complex media, the link to the physics is not so direct.

Several simulators take a modified nonlinear wave equation as a starting point by replacing the

traditional loss operator by fractional derivatives [7,22,23], or a convolution in time [24–26]. Their

justification for modifying the standard wave equations is the ability of fractional derivatives to lead

to a dispersion equation that better describes attenuation and dispersion. A wave equation based

on fractional constitutive equations gives an alternative to modeling absorption and dispersion in

complex media like biological tissues.

In this article, we aim at finding the source of the fractional derivative in the nonlinear wave

equation. We derive a nonlinear wave equation using constitutive equations as a starting point. The

aim of the article is to relate non-integer power absorption laws to more fundamental physical phe-

nomena, rather than just the measured absorption characteristics. It also establishes a connection

between fractional constitutive equations coming from different fields of physics describing me-

chanical stress or heat transfer. The constitutive equations come from the fractional Kelvin-Voigt

model from solid mechanics [27, 28], and a fractional extension of the Gurtin Pipkin model from

heat conduction [29, 30], while the other building equations come from fluid mechanics [31, 32].

We start by briefly recalling the definition and properties of the fractional derivative. Then,

we derive a modified version of Euler’s equation, and of the entropy equation, introducing frac-

tional derivatives. We explain what these modifications are based on, using solid mechanics and

heat diffusion theory. Combining these two equations, we get a wave equation by following the

steps and approximations done in fluid mechanics theory. Thereafter, we show that the obtained

wave equation is a generalization of the Westervelt equation, and that the dispersion equation can

describe attenuation and dispersion for propagation in complex media such as biological tissues.
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Finally, generalized forms of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) and Burgers’ equations

using fractional derivatives are obtained.

II. F 

The fractional derivative is an extension to integer order derivatives, and is best understood by

looking at its Fourier transform in the frequency domain. For any positive integer n, the temporal

Fourier transform of the nth order derivative of a function f(t) satisfies the relation

F
{

dnf

dtn
, ω

}

= (jω)nF{f}. (1)

The fractional derivative of order γ, for γ real, can be seen as the operator whose Fourier transform

satisfies Eq. (1), where n is replaced by γ. In the time domain, this corresponds to a convolution

dγf

dtγ
=

1

Γ(1 − r)

∫ t

0

1

(t − τ)r

dn

dtn
f(τ)dτ, (2)

where 0 ≤ n−1 < γ < n, r = γ−n+1, and Γ(1−r) is the gamma function. Equation (2) is the

definition of the fractional derivative given by Caputo [33, 34]. Fractional derivatives introduce a

memory effect in the physical process they describe [28, 35]. The nth order derivative is convolved

with a memory function
1

Γ(1 − r)

1

tr
(3)

In the case where r → 1 (no memory), the memory function tends towards a Dirac impulse

function, and the order of the fractional derivative tends towards the integer n. In the case where

r → 0 (infinite memory), Eq. (2) tends towards an integration of the nth order derivative resulting

in the (n − 1)th order derivative.

Subsequently, the fractional integral of order α can also be defined as [34]

Iα[f(t)] =
1

Γ(α)

∫ t

0

(t − τ)(α−1)f(τ)dτ for 0 < α. (4)

Its Fourier transform satisfies the relation

F{Iα[f(t)], ω} = (jω)−αF{f}. (5)

Hence fractional integrals and derivatives allow to model any power law in the frequency domain.

Fractional integrals and derivatives can be combined, giving the property

dγ

dtγ
[Iα] =

{

dγ−α

dtγ−α if 0 < α < γ

Iα−γ if 0 < γ < α
(6)

Fractional derivatives have been introduced in solid mechanics to more appropriately describe

the stress-strain relations [28], or heat transfers [1] in viscoelastic media. This will be used here as
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a starting point to modify the constitutive equations.

III. F      E’ 

 

The basic equations that the nonlinear wave equation derived in this paper is built upon are:

the equation of continuity, expressing the conservation of mass; the equation of state, expressing the

thermodynamic state of the fluid; Euler’s equation, that translates the conservation of momentum;

and the entropy equation, expressing the conversion of energy in an irreversible process. The last

two equations, Euler’s equation, and the entropy equation, are the equations that we will modify

by introducing fractional derivatives.

A. Euler’s equation

In this section, we describe how the expression of the stress tensor can be described by the

fractional Kelvin-Voigt model, and how this leads to a form of Euler’s equation with fractional

derivatives. Following the expression of Euler’s equation in Eq. (15.5) of Landau and Lifshitz [31],

we have

ρ

(

∂vi

∂t
+ vk

∂vi

∂xk

)

=
∂σik

∂xk

= − ∂p

∂xi

+
∂σ′

ik

∂xk

(7)

where ρ is the density, vi the components of the particle speed vector, t and xi the temporal and

spatial coordinates, and p the total pressure. σik, and σ′
ik represent the stress tensor, and viscous

stress tensor, respectively. Using Eqs. (15.2) and (15.3) of Ref. [31],

σik = −pδik + σ′
ik (8)

= −pδik + η

(

∂vi

∂xk

+
∂vk

∂xi

− 2

3
δik

∂vl

∂xl

)

+ ζδik
∂vl

∂xl

,

where η, and ζ are the shear and bulk viscosity coefficients respectively, and are independent of

velocity. This is the same relation established by Markham et al. [27] in their Eq. (13.3). In their

article, they refer to the physical model as Stokes’s model. Further on, approximating the static total

pressure by the inviscid total pressure, they get the relation

p ≈ K
ρe

ρo

, (9)

where K is the Young’s modulus, ρe the excess density, and ρ0 the equilibrium density. And finally,

they get Eq. (14.2):

σik = −K
ρe

ρ0

δik + η

(

∂vi

∂xk

+
∂vk

∂xi

− 2

3
δik

∂vl

∂xl

)

+ ζδik
∂vl

∂xl

. (10)
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Using a linear form of the equation of continuity (a full nonlinear form is presented in Sec. IV)

∂ρe

∂t
= −ρ0

∂vi

∂xi

, (11)

we get the constitutive equation

σik = Kδik
∂ui

∂xk

+ η

(

∂vi

∂xk

+
∂vk

∂xi

− 2

3
δik

∂vl

∂xl

)

+ ζδik
∂vl

∂xl

(12)

where ui are the components of the displacement vector field, and vi = ∂ui/∂t.

Comparing this relation to the Kelvin-Voigt model [11, 28] (or Stokes’s model as referred to by

Markham et al. [27]) described by the stress-strain relation

σ = K

[

ε + τσ
∂ε

∂t

]

(13)

where ε = ∂u/∂x is the strain, u the displacement, and τσ the creep time, we can match the

component of the normal stress tensor: −pδik = Kε, and of the viscous stress tensor: σ′
ik =

Kτσ∂ε/∂t.

The theory presented by Markham et al. [27] is remarkable in that it relates Eq. (8) to Eq. (13)

via Eq. (12), bridging the gap between the stress-strain formulations used in fluid mechanics, and

solid mechanics. The equivalence of both formulations for the stress-strain relation is not often

found in the literature.

The Kelvin-Voigt model is one of many stress-strain relations. Other models such as Maxwell’s

model, and the standard linear solid model, also called Zener model, are often employed, each

describing the material properties differently. A thorough review of those models was given by

Rossikhin and Shitikova [28], where they also discuss a generalization of each model using fractional

derivatives. The Kelvin-Voigt model may be generalized using fractional derivatives [11, 28]:

σ = K

[

ε + τ γ
σ

∂γε

∂tγ

]

for 0 < γ ≤ 1, (14)

where ∂γ/∂tγ describes the fractional time-derivative of order γ as defined in Eq. (2). Since the

strain rate is ∂ε/∂t = ∂v/∂x, when considering a one-dimensional deformation, Eq. (14) becomes

σ = K

[

ε + τ γ
σ I1−γ

(

∂v

∂x

)]

for 0 < γ < 1,

= K

[

ε + τσ
∂v

∂x

]

for γ = 1,

(15)

where I1−γ is the fractional integral of order 1− γ as defined in Eq. (4). Introducing the fractional

integral in Eq. (7), Euler’s equation can be generalized to

ρ

(

∂vi

∂t
+ vk

∂vi

∂xk

)

= − ∂p

∂xi

+ τ γ−1I1−γ

(

∂σ′
ik

∂xk

)

(16)
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where τ is a time constant characteristic of the creep time. Replacing σ′
ik by its expression using

Eq. (8) , and assuming the viscosity coefficients η, and ζ to be constant, Eq. (16) may, in vector

notation, be written as

ρ

[

∂v

∂t
+ (v · ∇)v

]

= −∇p + τ γ−1ηI1−γ(∆v) + τ γ−1(ζ +
1

3
η)I1−γ[∇(∇ · v)], (17)

which is a fractional integral generalization of Navier-Stokes equation. In this work, bold face

symbols designate vectors. Eq. (17) can be simplified the same way as Hamilton and Morfey [32]

do in the case of thermoviscous fluids to get Eq. (32) in Ref. [32]. We obtain the fractional Euler’s

equation

ρ0
∂v

∂t
= −∇p′ + (ζ +

4

3
η)τ γ−1I1−γ(∆v) − ρ0

2
∇v2 − ρ′∂v

∂t
(18)

where ρ′ = ρ − ρ0, and p′ = p − p0 represent the dynamic density and pressure, which describe

small disturbances relative to the equilibrium values ρ0 and p0.

B. The entropy equation

The constitutive equation linking heat flux to temperature gradient has evolved in a similar

manner as the stress-strain relation. In 1958, Cattaneo [36] and Vernotte [37] modified the Fourier

law to allow for a finite speed of propagation of disturbances. Indeed, as it is well explained in

the introductions of Refs. [38] and [39], when very small time scales are considered, or when the

materials have “a non-homogeneous inner structure” [38], like biological tissues, the assumption of

matter as a continuum fails. The classical descriptions for energy transport (e.g., Fourier law) are

no longer applicable. The Cattaneo-Vernotte equation modifies the Fourier law “to account for the

time lag between the temperature gradient and the heat flux induced by it” [39]. The modification

consists of the addition of the second term on the left-hand side in the following equation:

q + τcv
∂q

∂t
= −κ∇T, (19)

where q is the heat flux, T the absolute temperature, κ the thermal conductivity, and τcv is a

relaxation time. In 1968, Gurtin and Pipkin [29] introduced a more general time-non-local rela-

tion (of which the Cattaneo-Vernotte equation is a particular case), linking heat flux transfer and

temperature gradient

q(t) =

∫ ∞

0

K(τ)∇T (t − τ)dτ. (20)

Assuming that the media is initially at constant temperature, that is ∇T (t) = 0 for t < 0, Eq. (20)

can be written

q(t) = −
∫ t

0

K(t − τ)∇T (τ)dτ. (21)

This is the model that we adopt for the heat flux in the case of propagation in biological tissues

whose structure is non-homogeneous. An extension of the model defined by Gurtin and Pipkin

can be written using fractional integral notation [30]. Indeed if the heat flux relaxation function is
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defined as

K(t − τ) =
κ

Γ(α − 1)
(t − τ)α−2 for 1 < α ≤ 2, (22)

the heat flux equation can be written

q(t) = −κIα−1
∇T (t), (23)

where Iα−1 represents the fractional integral of order α − 1 as defined in Eq. (4). Eq. (23) is thus

the fractional constitutive equation describing the heat flux. Combined with the thermal energy

equation

∇ · q(t) = −ρcp
∂T

∂t
, (24)

where cp is the specific heat capacity at constant pressure, it leads to a fractional heat equation which

was formulated around the nineties in Refs. [1] and [2]. In one space dimension, it reads

∂2T

∂x2
=

1

D

∂αT

∂tα
with D =

κ

ρcp

> 0, (25)

where D is the thermal diffusivity. In Refs. [1] and [2], Eq. (25) is defined for 0 < α ≤ 2. For

0 < α ≤ 1, it is a fractional diffusion equation and for 1 < α ≤ 2, it is a fractional wave equation.

In Ref. [40], Nigmatullin explained how fractional derivatives appeared when describing diffusion

in a medium of fractal geometry. In this work, we consider Eq. (25) as a fractional wave equation

expressed in three space dimensions:

∇2T =
1

D

∂αT

∂tα
, with 1 < α ≤ 2. (26)

Due to the non-integer integral in Eq. (23), the unit of the thermal conductivity κ is W·s1−α/(Km),

and in Eq. (26), the unit of the thermal diffusivity D (Ref. [41]) is m2/sα. Equation (26) can then

be written as

∇2T =
τα−2
th

c2
0

∂αT

∂tα
, with 1 < α ≤ 2, (27)

where τth is a relaxation time characteristic of the medium [36].

In Eq. (33) of Ref. [32], Hamilton and Morfey use a simplified version of the entropy equation:

ρ0T0
∂s

∂t
= κ∇2T, (28)

where T0 and ρ0 are the equilibrium temperature and density, respectively, and s the entropy per

unit mass. This equation expresses the thermal losses in a thermoviscous fluid as a function of

temperature, and is a valid approximation well away from solid boundaries [32]. In combination

with Eq. (27) we obtain the fractional entropy equation:

ρ0T0
∂s

∂t
=

κτα−2
th

c2
0

∂αT

∂tα
. (29)

IV. F  
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In this section, we use the fractional versions of Euler’s equation (18) and the entropy equa-

tion (29), to obtain a wave equation with fractional derivatives. Following the approximations to

the second order [42] of Hamilton and Morfey [32], the fractional Euler’s equation (18), can be

simplified as follows:

ρ0
∂v

∂t
= −∇p − τ γ−1

ρ0c2
0

(ζ +
4

3
η)

∂γ

∂tγ
∇p − ∇L, (30)

where L is the second-order Lagrangian density defined as

L =
1

2
ρ0v

2 − p2

2ρ0c2
0

. (31)

The prime notation for p′ used in Eq. (18) has been dropped, but p still represents the dynamic

pressure from this point on. Approximations to the second order as in Ref. [32], lead to the

following form of the continuity equation:

∂ρ′

∂t
+ ρ0∇ · v =

1

ρ0c4
0

∂p2

∂t
+

1

c2
0

∂L
∂t

. (32)

This equation is nonlinear, and will be one of the contributors to the nonlinear term in the final

wave equation.

We introduce the equation of state as a Taylor series of P (ρ, s) about the equilibrium state

(ρ0, s0), where terms of third order are neglected [32]:

p = c2
0ρ

′ +
c2
0

ρ0

B

2A
ρ′2 +

(

∂P

∂s

)

ρ,0

s′, (33)

with B/A the medium parameter of nonlinearity, and s′ = s − s0 the dynamic entropy. This

equation is also nonlinear and is the other contributor to the nonlinear term of the final wave

equation. Introducing T ′ = T − T0, and integrating Eq. (29) with respect to time gives

ρ0T0s
′ =

κτα−2
th

c2
0

∂α−1T ′

∂tα−1
, (34)

which is used to eliminate s′ in favor of T ′ in Eq. (33). Following the steps described by Hamilton

and Morfey (see Ref. [32] for detailed description), we get the following equation:

ρ′ =
p

c2
0

− 1

ρ0c4
0

B

2A
p2 − κτα−2

th

ρ0c4
0

(

1

cv

− 1

cp

)

∂α−1p

∂tα−1
, (35)

where cv and cp are the heat capacity per unit of mass at constant volume and pressure, respectively.

Subtracting the time derivative of Eq. (32) from the divergence of Eq. (30), and using Eq. (35) to
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eliminate ρ′, we get

�
2p +

τ γ−1

ρ0c2
0

(

ζ +
4

3
η

)

∂γ

∂tγ
∇2p

+
κτα−2

th

ρ0c4
0

(

1

cv

− 1

cp

)

∂α+1p

∂tα+1
= − β

ρ0c4
0

∂2p2

∂t2
−

(

∇2 +
1

c2
0

∂2

∂t2

)

L,

(36)

where

�
2 = ∇2 − 1

c2
0

∂2

∂t2
(37)

is the d’Alembertian operator, and

β = 1 +
B

2A
(38)

is the medium coefficient of nonlinearity. The expression for β regroups contributions to nonlinear

propagation coming both from the equation of state, and the equation of continuity. Discarding

the term containing L, we get a fractional wave equation:

�
2p +

τ γ−1

ρ0c2
0

(

ζ +
4

3
η

)

∂γ

∂tγ
∇2p +

κτα−2
th

ρ0c4
0

(

1

cv

− 1

cp

)

∂α+1p

∂tα+1
= − β

ρ0c4
0

∂2p2

∂t2
. (39)

For clarity, the following notations are introduced:

Lv =
τ γ−1

ρ0c2
0

(

ζ +
4

3
η

)

(40)

Lt = −κτα−2
th

ρ0c2
0

(

1

cv

− 1

cp

)

, (41)

Lv > Lt.

Equation (39) may then be expressed as a fractional form of the Westervelt equation

�
2p + Lv

∂γ

∂tγ
∇2p − Lt

c2
0

∂α+1p

∂tα+1
= − β

ρ0c4
0

∂2p2

∂t2
, (42)

which we will call the fractional Westervelt equation of the first form. The first term on the left

hand side of Eq. (42) characterizes diffraction. The second and third terms characterize attenuation

coming from the fractional Euler’s equation and the fractional entropy equation respectively. The

term on the right hand side characterizes nonlinearity, and comes from the continuity equation and

the equation of state.

In order to get a fractional form of the Westervelt equation with a non-integer frequency power

attenuation law, we note that γ = 1 and α = 2 in Eq. (42) leads to the Westervelt equation (see

next section). Thus, in that case, the fractional orders are linked. We generalize this link by setting

γ = α − 1 = y − 1 with 1 < y ≤ 2. The same assumption is implicitly done in the derivation of

the fractional forms of the Westervelt and Burgers’ equations [22, 26]. This leads to the fractional

Westervelt equation of the second form:

�
2p + Lv

∂y−1

∂ty−1
∇2p − Lt

c2
0

∂y+1p

∂ty+1
= − β

ρ0c4
0

∂2p2

∂t2
. (43)
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Even if it is difficult to find physical data on material properties to justify this assumption, except

for γ = 1, it is reasonable to assume that γ and α are strongly linked. Indeed, the fractional

integrals in the stress-strain relation, or the heat flux equation are both due to internal structures

or inhomogeneities in the material. The nature of the media dictates the order of the fractional

integrals in both equations. Eq. (43) is the form of the fractional wave equation we use in the rest

of the article.

V. C  W 

In the case of propagation in classical thermoviscous fluids, the stress tensor is described by Eq.

(8). This leads to the non-fractional form of the Euler’s equation: Eq. (18), where γ = 1. The

entropy equation has also its non-fractional form when using Fourier law as a constitutive equation.

It is obtained by setting α = 2 in Eq. (29). Equation (39) then becomes

�
2p +

1

ρ0c2
0

(

ζ +
4

3
η

)

∂

∂t
∇2p +

κ

ρ0c4
0

(

1

cv

− 1

cp

)

∂3p

∂t3
= − β

ρ0c4
0

∂2p2

∂t2
(44)

The low-frequency regime covers the applications involving compressional waves, while the high-

frequency regime applies mostly to shear waves [11]. This article is mainly oriented towards appli-

cations of compressional waves, and low frequencies. In this regime, ∇2p can be approximated by

c−2
0 ∂2p/∂t2. Equation (44) then gives the Westervelt equation

�
2p +

δ

c4
0

∂3p

∂t3
= − β

ρ0c4
0

∂2p2

∂t2
, (45)

where

δ =
1

ρ0

(

ζ +
4

3
η

)

+
κ

ρ0

(

1

cv

− 1

cp

)

(46)

is the diffusivity of sound. This shows that Eqs. (39), (42), and (43) are fractional generalizations

of the Westervelt equation.

VI. D 

To find the frequency dependence of attenuation and propagation velocity, a dispersion equa-

tion can be derived from Eq. (43). Using the principle of superposition the Fourier transform in

space and time of a harmonic plane wave solution, v(x, t) = exp[j(ωt− kx)], gives the dispersion

equation for any wave. Since the principle of superposition assumes linearity, the nonlinear term

has to be excluded in Eq. (43). Using the Fourier transform’s property of fractional derivatives given

in Eq. (1), we get

k =
ω

c0

√

1 + Ltej(y−1)π/2ωy−1

1 + Lvej(y−1)π/2ωy−1
=

ω

c(ω)
− jα(ω). (47)
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Simplifications in the low frequency regime give the following expressions [11]:

α(ω) =
1

c0

(

Lt

2
− Lv

2

)

cos
(yπ

2

)

|ω|y,

c(ω) ≈ c0

[

1 −
(

Lt

2
− Lv

2

)

sin
(yπ

2

)

ωy−1

]

,

(48)

These expressions lead to a velocity dispersion relation that satisfies the Kramers-Kronig relation

[43], and confirm that it fulfils the causality requirement. The expressions for α(ω) and c(ω)

describe observations in biological tissues [8] that the Westervelt equation fails to explain. For

values of y between 1 and 2, the attenuation is proportional to ωy, which covers the vast majority of

attenuation laws for propagation in biological tissues [8]. For illustration, the frequency dependency

for the attenuation, and the velocity dispersion are shown on Figs. 1, and 2 respectively, for different

values of y. There is a singularity for y = 1 as discussed in Ref. [11] that is why values for y in the

range 1.1 to 2 are plotted . In these examples, the time constants involved in Lv and Lt have been

chosen identical. The following values were set for the plots: τ = 10−10 s, c0 = 1500 m/s, α = 1.2

dB/cm at 1 MHz for y = 1.1, and ω ≤ 3.107 rad/s . The figures show the low-frequency regime,

that is ωτ ≪ 1. Figs. 1 and 2 show attenuation and phase velocity dispersion for y = 1.1 that is

comparable to the measurements made by Kremkau et al [44] on human brains and to previous

illustrations of attenuation and dispersion frequency dependencies [12, 23, 45].

0 0.5 1 1.5 2 2.5 3

x 10
−3

0

1

2

3

4

5

6

7

ωτ

α
(ω

) 
[d

B
/c

m
]

y = 1.1

y = 1.3

y = 1.5

y = 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5

6

7

f [MHz]

Fig. 1: Attenuation α(ω) as a function of ωτ for different values of y
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Fig. 2: Velocity dispersion c(ω) − c0 as a function of ωτ for different values of y

A. KZK equation

Again, starting from Eq. (43), when approximating ∇2p by c−2
0 ∂2p/∂t2 in the low-frequency

domain, we get

�
2p +

Lv − Lt

c2
0

∂y+1p

∂ty+1
= − β

ρ0c4
0

∂2p2

∂t2
. (49)

Introducing the retarded time coordinate τr = t− z/c0, and following the same steps as Hamilton

and Morfey in Ref. [32], Eq. (49) can be approximated to

∇2
⊥p − 2

c0

∂2p

∂z∂τr

+
Lv − Lt

c2
0

∂y+1p

∂τ y+1
r

= − β

ρ0c4
0

∂2p2

∂τ 2
r

, (50)

where ∇2
⊥ = ∂2/∂x2 +∂2/∂y2 is the Laplacian that operates in the plane perpendicular to the axis

of the beam. This approximation is valid for well collimated sound beams satisfying the relation

ka ≫ 1 where k is the wave number, and a the characteristic radius of the source. Eq. (50) is a

fractional derivative generalization of the KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation. For

y = 2, δ = c2
0(Lv − Lt), and we obtain the KZK equation

∂2p

∂z∂τr

− c0

2
∇2

⊥p − δ

2c3
0

∂3p

∂τ 3
r

=
β

2ρ0c3
0

∂2p2

∂τ 2
r

. (51)
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B. Burgers’ equation

Likewise, re-writing Eq. (49) in one spatial dimension, we get

(

∂2

∂z2
− 1

c2
0

∂2

∂t2

)

p +
Lv − Lt

c2
0

∂y+1p

∂ty+1
= − β

ρ0c4
0

∂2p2

∂t2
. (52)

Introducing the retarded time coordinate τr, it becomes

∂2p

∂z2
− 2

c0

∂2p

∂z∂τr

+
Lv − Lt

c2
0

∂y+1p

∂τ y+1
r

= − β

ρ0c4
0

∂2p2

∂τ 2
r

. (53)

The first term on the left can be neglected when using second-order approximations as done by

Hamilton and Morfey in [32]. An integration with respect to τr gives

∂p

∂z
− Lv − Lt

2c0

∂yp

∂τ y
r

=
β

2ρ0c3
0

∂p2

∂τr

=
βp

ρ0c3
0

∂p

∂τr

. (54)

Equation (54) is a fractional derivative generalization of the Burgers’ equation. For y = 2, we

obtain the Burgers’ equation
∂p

∂z
− δ

2c3
0

∂2p

∂τ 2
r

=
βp

ρ0c3
0

∂p

∂τr

. (55)

VIII. C

Fractional derivatives are introduced in the constitutive equations by use of previous studies

on stress-strain relations in solid mechanics, and heat conduction mechanisms linking to different

areas of physics. The nonlinear wave equation obtained from these building equations leads to a

frequency-dependent attenuation and dispersion that fit observations [8, 44]. This work justifies

why the modifications of the wave equation using fractional derivative, as done in the existing

literature, are legitimate. These modifications have been done empirically in view of the observed

attenuation or dispersion power laws. Such modifications do not always guarantee the causality of

the solution. Since our fractional wave equation is derived from constitutive equations, its causality

is assured.

We have shown that the Westervelt equation is a particular case of our wave equation, which

may be simplified into a fractional KZK equation. Therefore, fractional derivatives offer an al-

ternative to multiple relaxations used for time-domain simulators like the KZKTexas code [15]

to approximate attenuation and dispersion in biological tissue. The fractional derivative can for

instance be solved in the time domain by using a backward difference power series [10] or the

Grünwald-Letnikov formulation [23]. Using the constitutive equations as a starting point, instead

of an approximated wave equation could also be an alternative to simulate sound propagation in

non-homogeneous media.

The fractional wave equation introduced requires 9 constants to describe attenuation and dis-

persion: 2 for the relaxation times, 2 for the order of the fractional derivatives, 2 for the viscosities,
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2 for the heat capacities, and 1 for the thermal conductivity. A model using 2 relaxation processes

requires 5 constants [21]: 2 for the relaxation frequencies, 2 for the relaxation dispersion, and 1

for the thermoviscous prefactor. However, the thermoviscous prefactor can be expressed using the

diffusivity of sound which is a combination of 5 constants: 2 for the viscosities, 2 for the heat

capacities, and 1 for the thermal conductivity, bringing the total number of constants to 9. The

complexity of a model using fractional equations should therefore not exceeed the complexity of

existing models based on multiple relaxation processes.

This article also calls for a better determination of the time constants involved in the fractional

loss operators, and maybe measurements establishing a link between the order of the fractional

integrals in the stress-strain relation and the heat flux equation. This, in turn, would lead to a

better understanding of the attenuation and dispersion mechanisms that happen in hybrid media,

like biological tissues, which fall between solids and fluids.
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A more fundamental approach to the
derivation of nonlinear acoustic wave equations

with fractional loss operators

F. Prieur, G. Vilenskiy, and S. Holm

Abstract− A corrected derivation of nonlinear wave propagation equations with fractional loss

operators is presented. The fundamental approach is based on fractional formulations of the stress-

strain and heat flux definitions but uses the energy equation and thermodynamic identities to link

density and pressure instead of an erroneous fractional form of the entropy equation as done in

“Nonlinear acoustic wave equations with fractional loss operators” [J. Acoust. Soc. Am. 130(3),

1125-1132 (2011)]. The loss operator of the obtained nonlinear wave equations differs from the

previous derivations as well as the dispersion equation, but when approximating for low frequencies

the expressions for the frequency dependent attenuation and velocity dispersion remain unchanged.
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I. I

Fractional derivatives introduced in physical models can describe sound attenuation in complex

media. When introduced into the constitutive equations, they build a wave equation in which

attenuation obeys a frequency power law [1] characteristic of many media [2]. Fractional derivatives

have also been shown to be closely related to the multiple relaxation model of Nachman et al. [3,4].

This paper builds on an article from Prieur and Holm [5] that derives nonlinear wave equations

with fractional loss operators and presents a corrected derivation. More precisely, it uses the same

fractional models for the stress-strain relation and the heat flux definition, but instead of establishing

a fractional form of the entropy equation, it uses the energy equation together with the appropriate

generic thermodynamic identities to express the density as a function of pressure using fractional

derivatives.

The reason why we prefer this alternative approach is as follows. In media where the stress tensor

and heat flux are described by the fractional Kelvin-Voigt model and the fractional Fourier’s law,

respectively, using the conventional entropy equation may result in a negative entropy production

rate. This situation is different from that of the classical Navier-Stokes and Fourier equations,

where the use of the conventional Gibbs definition of the entropy results in a positive entropy

production rate. Consequently, in general the conventional local equilibrium hypothesis which

is used for Newtonian fluids does not work here, and an extension of the conventional irreversible

thermodynamics approach is required. Although non-equilibrium thermodynamics is a vibrant and

rapidly expanding field of research [6], to the authors’ knowledge, there exists no such extended

thermodynamic model for the above mentioned fractional constitutive equations in the literature.

Derivation of fractional wave equations directly from the equations of mass, momentum and energy

conservation alleviates the indeterminacy of the entropy equation, to a certain extent.

This more physically straightforward approach leads to a different form for the fractional loss

operator and for the dispersion relation than in Ref. [5] because it does not employ the incorrect

version of the fractional entropy equation postulated in Eq. (29) of Ref. [5]. The expressions for the

attenuation and velocity dispersion, however, remain the same in the low frequency approximation.

In the first part of this article, we recall the fractional constitutive equations. We then derive an

expression of the density as a function of pressure using fractional derivatives and explain why it is

more rigorous than the approach used in Ref. [5]. Finally, the corrected form of the nonlinear wave

equations with fractional loss operators are presented.

II. F  

The approach in the paper of Prieur and Holm [5], which introduces fractional loss operators in

nonlinear wave equations, is based on the fractional version of two constitutive equations. The first

equation describes the relation between stress and the corresponding strain. It is a generalization of

the Kelvin-Voigt model:

σ = K

[

ε + τ γ
σ

∂γε

∂tγ

]

for 0 < γ ≤ 1, (1)
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where σ is the stress, K is the Young’s modulus, ε is the strain, and τσ is the creep time. It is valid

for low and intermediate frequencies [1]. Here ∂γ/∂tγ describes the fractional time-derivative of

order γ. The Caputo fractional derivative of order γ of a function f is defined by [7]

dγf

dtγ
=

1

Γ(1 − r)

∫ t

0

1

(t − τ)r

dn

dtn
f(τ)dτ, (2)

where n is an integer, 0 ≤ n − 1 < γ < n, r = γ − n + 1, and Γ(1 − r) is the gamma function.

The second constitutive equation defines the heat flux and is a generalization of the Gurtin-Pipkin

model. It is written as

q(t) = −τ 1−α
th κIα−1

∇T (t) for 1 < α ≤ 2, (3)

where q is the heat flux, T the absolute temperature, κ is the thermal conductivity, Iα−1 represents

the fractional integral of order α − 1 and τth is a thermal relaxation time characteristic of the

medium. The fractional integral of order α of a function f is defined by [7]

Iα[f(t)] =
1

Γ(α)

∫ t

0

(t − τ)(α−1)f(τ)dτ for 0 < α. (4)

The first constitutive equation, Eq. (1) leads to a fractional form of the momentum equation [5]:

ρ0
∂v

∂t
= −∇p′ + (ζ +

4

3
η)τ γ−1I1−γ(∇2v) − ρ0

2
∇v2 − ρ′∂v

∂t
, (5)

where v is the velocity vector, v = |v|, η and ζ are the shear and bulk viscosity coefficients,

respectively, ρ′ = ρ − ρ0, and p′ = p − p0 represent the dynamic density and pressure, which

describe small disturbances relative to the equilibrium values ρ0 and p0. The second constitutive

equation was used in Ref. [5] to get to a fractional form of the entropy equation. In the next

sections, we show a more rigorous approach for this step.

III. T     

A general form of the entropy equation as it appears in conventional fluid mechanics can be

found by combining Eqs. (2.25) and (2.28) from Ref. [8] with the help of Eq. (2.29)

ρT

(

∂s

∂t
+ v · ∇s

)

= −∇ · q + Φ, (6)

where ρ is the density, s the specific entropy, and Φ represents the work of the dissipative stresses.

For Newtonian fluids Φ is strictly positive and guarantees a positive entropy production rate.

However, in the case of a stress tensor defined using fractional derivatives as in Eq. (1), Φ is given
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by the following expression

Φ ≡ τ γ−1

3
∑

i=1

3
∑

k=1

∂vi

∂xk

I1−γ (σ′
ik)

=
τ γ−1

Γ (1 − γ)

3
∑

i=1

3
∑

k=1

∂vi (t)

∂xk

∫ t

0

σ′
ik(τ)(t − τ)−γdτ,

(7)

where σ′
ik is the viscous stree tensor as defined in Eq. (8) of Ref. [5]. Contrary to the conventional

Navier-Stokes hydrodynamics, here Φ is not a positive quadratic form of ∂vi/∂xk as shown in

Eq. (2.30) of Ref. [8]. Because of the presence of the integral operator over time, here the expression

for Φ can, in principle, be of any sign depending on the current value of t and the previous history

of the system’s time evolution. Generally speaking, this situation can be resolved by employment of

the methods which constitute the subject of extended thermodynamics (see Ref. [6] for an in-depth

discussion), where it is shown that an additional entropy production term must be present on the

right-hand side of the entropy equation to compensate for the negative Φ and ensure that the rate

of entropy production is positive. Detailed discussion of this theoretical approach can be found in

monograph [6], and is omitted here both because it goes beyond the scope of this paper and due to

its complexity.

In the absence of function Φ (e.g. in a stagnant fluid) the rate of entropy production which

corresponds to the term −∇ · q may also become negative, implying that the entropy equation

requires appropriate correction if the Gurtin-Pipkin model is used instead of the classical Fourier’s

law. For Cattaneo’s law of heat conduction, which is a special case of the Gurtin-Pipkin model, the

structure of this corrective term was worked out in Ref. [6]. However, to the best of our knowledge,

it still remains unknown for the Gurtin-Pipkin model.

Neglecting Φ, the correcting terms that ensure a positive entropy production rate, and the term

in v · ∇s we obtain the following version of the fractional entropy equation using Eq. (3)

ρT
∂s

∂t
= −∇ · q = τ 1−α

th κIα−1∇2T. (8)

This linearized entropy equation differs from Eq. (29) in Ref. [5] by the presence of the Laplacian

operator. Since the corrective term in the entropy equation is unknown in the case of a non-

Newtonian media, the equation linking the density to the pressure must be found by a different

method from what was done in Ref. [5]. It can be shown that Eq. (8) is consistent with the second

order accurate fractional wave equation derived by this alternative method.

IV. T     

The chosen alternative way of getting a fractional relation between density and pressure without

using the entropy equation has its starting point in the following two thermodynamic identities,

the caloric and thermodynamic equations of state, respectively [9]:

de =

(

cp − b
p

ρ

)

dT +

(

p

ρ2c2
T

− b
T

ρ

)

dp, (9)
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and

d(1/ρ) = b
dT

ρ
− dp

ρ2c2
T

, (10)

where e is the specific internal energy, cp is the specific heat capacity at constant pressure, b is the

coefficient of thermal expansion, and cT is the sound speed at constant temperature. Using Eqs. (9)

and (10) in the conventional energy equation [9],

ρ

(

de

dt
+ p

d(1/ρ)

dt

)

= −∇ · q + Φ, (11)

we get

ρ

(

cp
dT

dt
− b

T

ρ

dp

dt

)

= −∇ · q + Φ, (12)

where Φ corresponds now to the work of dissipative stresses in the case of a fractional stress-strain

relation. Replacing the heat flux by its fractional definition, Eq. (3) we get:

ρ

(

cp
dT

dt
− b

T

ρ

dp

dt

)

= τ 1−α
th κIα−1∇2T + Φ. (13)

Using Eq. (13) and the thermodynamic identities [9]

b2T

cp − cv

=
1

c2
T

and
c2
s

c2
T

=
cp

cv

, (14)

where cv is the specific heat capacity at constant volume, and cs is the sound speed at constant

entropy, the thermodynamic equation of state, Eq. (10), can be re-written

dρ

dt
=

1

c2
s

dp

dt
− b

cp

(τ 1−α
th κIα−1∇2T + Φ). (15)

Assume now, that the viscosities involved in the expression of Φ and the thermal conductivity κ are

small and that their contribution is of the same order of magnitude as the amplitude of the sound

wave velocity. As Φ is proportional to a viscosity multiplied by the square of a velocity, it is of the

third order and can be neglected in both Eqs. (13) and (15). We then obtain from Eq. (13) to the

leading order and from Eq. (15) to the second order,

dT

dt
=

bT

ρcp

dp

dt
and

dρ

dt
=

1

c2
s

dp

dt
− b

cp

τ 1−α
th κIα−1∇2T. (16)

Combining those two equations and using the identities in Eq. (14), we get

c2
s

dρ

dt
=

dp

dt
−

(

1

cv

− 1

cp

)

τ 1−α
th κ

ρ
Iα−1∇2p. (17)

We then use an expansion of c2
s(ρ, T ) in a power series of the density perturbation ρ′ to get to the

second order

c2
s(ρ0, T )

dρ

dt
=

dp

dt
− ∂c2

s

∂ρ
(ρ0, T0)ρ

′dρ

dt
−

(

1

cv

− 1

cp

)

τ 1−α
th κ

ρ0

Iα−1∇2p. (18)
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In addition, we know from Eq. (15) that to the leading order dρ/dt = c−2
s (ρ0, T )dp/dt which

after integration gives ρ′ = c−2
s (ρ0, T0)p

′, and Eq. (18) becomes

dρ

dt
=

1

c2
s(ρ0, T )

dp

dt
− ∂c2

s

∂ρ
(ρ0, T0)

p′

c6
s(ρ0, T0)

dp

dt
− 1

c2
s(ρ0, T0)

(

1

cv

− 1

cp

)

τ 1−α
th κ

ρ0

Iα−1∇2p. (19)

To keep the second order accuracy, the convective time derivative d/dt must be replaced in Eq. (19)

by (∂/∂t + v · ∇) in the term on the left-hand side and the first term on the right hand side but

can be substituted by ∂/∂t in the other terms. Using an expansion of c−2
s (ρ0, T ) in a power series

of the temperature perturbation T ′, to the second order the term in v.∇ρ cancels out with the

term in v · ∇p/c2
s(ρ0, T0) and we get

∂ρ

∂t
=

1

c2
s

∂p

∂t
−

(

1

c4
s

∂c2
s

∂T
T ′ +

1

c6
s

∂c2
s

∂ρ
p′

)

∂p

∂t
− 1

c2
s

(

1

cv

− 1

cp

)

τ 1−α
th κ

ρ0

Iα−1∇2p, (20)

where c2
s and its derivatives are all taken in (ρ0, T0). Using Eq. (16) to replace T ′ by bT0p

′/ρ0cp we

get

∂ρ

∂t
=

1

c2
s

∂p

∂t
− 1

c4
s

{

bT0

ρ0cp

∂c2
s

∂T
+

1

c2
s

∂c2
s

∂ρ

}

p′
∂p

∂t
− 1

c2
s

(

1

cv

− 1

cp

)

τ 1−α
th κ

ρ0

Iα−1∇2p. (21)

Using the identity of equilibrium thermodynamics [9]

ds = −cp − cv

ρbT
dρ +

cv

T
dT, (22)

together with those in Eq. (14), it can be shown that the constant term in curly brackets in Eq. (21)

is equal to c−2
s (∂c2

s/∂ρ)s. Using the following definitions [2]:

A ≡ ρ0c
2
s and B ≡ ρ2

0

(

∂c2
s

∂ρ

)

s

, (23)

an integration in time gives

ρ′ =
1

c2
s

p′ − 1

ρ0c4
s

B

2A
p′2 − τ 1−α

th κ

ρ0c2
s

(

1

cv

− 1

cp

)

Iα∇2p′. (24)

Equation (24) expresses the density as a function of pressure and is the corrected form of Eq. (35)

in Ref. [5] where the fractional time derivative is now replaced by a fractional time integral and a

Laplacian. The presented derivation does not assume validity of the equation of state for ideal gas

in order to establish a relation between pressure and density as done in other works [8, 10, 11].

V. N      

As mentioned in Ref. [5], the fractional momentum equation can be simplified to

ρ0
∂v

∂t
= −∇p − τ γ−1

ρ0c2
0

(ζ +
4

3
η)

∂γ

∂tγ
∇p − ∇L, (25)
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where L is the second-order Lagrangian density defined as:

L =
1

2
ρ0v

2 − p2

2ρ0c2
0

, (26)

and we use the notation of Ref. [5]. A second order approximation of the equation of continuity

gives
∂ρ′

∂t
+ ρ0∇ · v =

1

ρ0c4
0

∂p2

∂t
+

1

c2
0

∂L
∂t

. (27)

Subtracting the time derivative of Eq. (27) from the divergence of Eq. (25), and using the new

expression for ρ presented in Eq. (24) where cs(ρ0, T ) is replaced by c0 we get:

�
2p +

τ γ−1

ρ0c2
0

(

ζ +
4

3
η

)

∂γ

∂tγ
∇2p

+
κτ 1−α

th

ρ0c2
0

(

1

cv

− 1

cp

)

∂2−α

∂t2−α
∇2p

= − β

ρ0c4
0

∂2p2

∂t2
−

(

∇2 +
1

c2
0

∂2

∂t2

)

L,

(28)

where the d’Alembertian operator �
2 and the medium coefficient of nonlinearity β are defined as

in Ref. [5]. After neglecting the term containing L and defining

Lv =
τ γ−1

ρ0c2
0

(

ζ +
4

3
η

)

and Lt = −κτ 1−α
th

ρ0c2
0

(

1

cv

− 1

cp

)

, (29)

we get a corrected version of the fractional Westervelt equation of the first form

�
2p + Lv

∂γ

∂tγ
∇2p − Lt

∂2−α

∂t2−α
∇2p = − β

ρ0c4
0

∂2p2

∂t2
. (30)

Note that the dependency on the order of the fractional operator α in the heat flux equation,

Eq. (3), is now different compared to Ref. [5]. In addition the third term on the left-hand side of

Eq. (30) involves both temporal and spatial derivatives while in Ref. [5], it only involved temporal

derivatives. By setting γ = 1 and α = 1, we get the correct form of Eq. (44) in Ref. [5]

�
2p +

1

ρ0c2
0

(

ζ +
4

3
η

)

∂

∂t
∇2p +

κ

ρ0c2
0

(

1

cv

− 1

cp

)

∂

∂t
∇2p = − β

ρ0c4
0

∂2p2

∂t2
, (31)

which leads to the Westervelt equation when using the low frequency approximation, and Eqs. (1)

and (3) describe the traditional Kelving-Voigt model and the Fourier’s law, respectively. Due to the

incorrect form of Eq. (42) the value for α leading to the Westervelt equation was erroneously set to

2 in Ref. [5]. We generalize the link between the fractional orders by setting γ = 2 − α = y − 1

and get the correct version of the Westervelt equation of the second form, Eq. (43) in Ref. [5],

�
2p + (Lv − Lt)

∂y−1

∂ty−1
∇2p = − β

ρ0c4
0

∂2p2

∂t2
. (32)
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This gives the corrected dispersion relation, Eq. (47) of Ref. [5],

k =
ω

c0

√

1

1 + (Lv − Lt)ej(y−1)π/2ωy−1
, (33)

which leads to the unchanged Eq. (48) in the same reference, expressing the frequency dependency

of the attenuation and phase velocity.

VI. C

An updated form for nonlinear wave equations with fractional loss operators has been pre-

sented. The derivation is based on constitutive equations describing the stress-strain relation and

the relation between the heat flux and the temperature. Instead of establishing a fractional form of

the entropy equation from the heat flux definition, the energy equation and conventional thermo-

dynamic identities are used to get an expression of the density as a function of pressure including

fractional derivatives. This approach is more general and does not use the approximation of the

medium as an ideal gas to link the entropy to the pressure.

This derivation is physically more consistent and gives a corrected form for the fractional loss

operators of the nonlinear equations presented previously. The loss operator coming from ther-

mal damping involves both spatial and temporal derivatives while in the previous formulation it

only involves temporal derivatives. Although the dispersion equation also differs from the previous

derivation, after low frequency approximation the expressions of the frequency dependent attenua-

tion and dispersion remain unchanged.
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Fast simulation of second harmonic ultrasound
field using a quasi-linear method

F. Prieur, T. F. Johansen , S. Holm, and H. Torp

Abstract− Nonlinear propagation of sound has been exploited in the last 15 years in medical

ultrasound imaging through tissue harmonic imaging (THI). THI creates an image by filtering the

received ultrasound echo around the second harmonic frequency band. This technique produces

images of enhanced quality due to reduced body wall reverberation, lower perturbations from off-

axis echoes, and multiple scattering of reduced amplitude. In order to optimize the image quality it

is essential to be able to predict the amplitude level and spatial distribution of the propagating ul-

trasound pulse. A method based on the quasi-linear approximation has been developed to quickly

provide an estimate of the ultrasound pulse. This method does not need to propagate the pulse

stepwise from the source plane to the desired depth, it directly computes a transverse profile at any

depth from the definitions of the transducer and the pulse. The computation handles three spatial

dimensions which allows for any transducer geometry. A comparison of pulse forms, transverse

profiles, as well as axial profiles obtained by this method and state-of-the-art simulators, the KZK-

Texas code, and Abersim, shows a satisfactory match. The computation time for the quasi-linear

method is also smaller than the time required by the other methods.
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I. I

Nonlinear propagation of sound has, for the last 15 years, proved to be crucial for enhancing

image quality in medical ultrasound imaging. A consequence of nonlinearity is the appearance of

energy around the harmonic frequency bands as the signal propagates. In tissue harmonic imaging

(THI), the image reconstruction is made from receiving signals in the second harmonic frequency

band. In many clinical applications, THI results in enhanced image quality compared to recon-

structing the image from echoes in the transmitted frequency band. THI has been shown to im-

prove endocardial border definition [1, 2] and measurements of heart functions [3]. THI has also

shown promising image improvements for, e.g., liver [4] and kidney [5] examination. Duck [6]

presents a comprehensive review explaining why THI allows for better image quality.

A number of simulators have been developed to model nonlinear propagation of sound. Christo-

pher and Parker [7,8] developed a method based on an angular spectrum approach. But simulation

of short pulses as the one used in medical ultrasound imaging requires a large number of harmon-

ics rendering the computation time prohibitive. The KZKTexas code [9, 10] does not have this

limitation because it solves the propagation in the time domain. However it uses multiple relax-

ation processes to simulate power law attenuation as in biological tissue. This requires a number

of parameters (typically five when using two relaxation processes) increasing the complexity of the

method. Both methods use the operator splitting approach and therefore require stepwise propaga-

tion from the source to the depth of interest. In this article, the focus is on fast simulators.

The quasi-linear theory has been used previously to attempt a more computational effective

solution. Yan and Hamilton [11] recently presented a method based on the quasi-linear assumption

that allows one to model body wall aberrations by use of phase screens. The method is presented

in the case of continuous wave excitation and can propagate the wave from phase screen to phase

screen. In 2011, Du and Jensen [12] published their findings on a possible nonlinear extension

to the Field II simulator [13, 14]. They use the quasi-linear theory and consider pulsed excitation.

However, they dismiss interactions between the temporal frequency components of the transmitted

pulse and propagate each of them individually. This puts a limitation on the pulse bandwidth for

which the method is valid. A work worth mentioning, though not exactly based on the quasi-linear

theory, is the article from Jing et al. [15] where they present an improvement to the classical angular

approach methods by finding an implicit solution for the nonlinear term. Though continuous

wave is often assumed in their paper, the method includes the case of pulsed excitation. Of special

interest is the approximation made to this implicit solution that corresponds to neglecting back

propagation. Finally, the work of Varray et al. [16] also shows an application of the quasi-linear

approximation by finding a solution to the Westervelt equation. They use what they define as

the generalized angular spectrum approach to simulate the second harmonic signal in a medium

where the nonlinear parameter varies. Unlike in Refs. [11] and [12], they neglect the terms due

to back propagation as in Ref. [15]. This method uses stepwise propagation since the medium is

inhomogeneous.

In this article, we present a method for nonlinear pulsed wave propagation based on the quasi-

linear theory. It does not require stepwise propagation and simulates the pulse in the frequency

domain allowing a trivial modeling of attenuation. Some theory of the described method as well
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as simulation results were previously presented in conference proceedings papers [17, 18]. This

article brings additional explanations on the physics behind the solution and on the implementation

details of the simulator. It also compares a new implementation of the solutions with recognized

simulators and measurements by establishing lateral and axial pressure profiles. The main advantage

of the method is that it allows a fast estimation of the amplitude of the pulse at any depth. The

objective of the algorithm is that it should be fast enough to allow a medical scanner to adjust its

setup parameters as the user adjusts imaging parameters, without noticeable delay for the user. This

is important in all harmonic imaging modes, but in particular those where several transmit focus

zones are used to create an image using a montage process [19]. In that case an approximation

to dynamically focused transmission is performed by acquiring several sub-images at individual

transmission focal points. Each sub-image is only used around its focal point and mounted next

to the other sub-images to form a new image with improved transmit focusing. It is imperative

that the user does not notice any gain variation across the cuts, thus rendering the montage process

invisible. As the user adjusts setup parameters, e.g., for increasing the frame rate by using fewer

sub-images, the ultrasound scanner needs to estimate the proper transmit level and receive gain to

use as a function of depth. The fast pressure amplitude estimate provided by the presented method

is therefore an adapted solution to this problem.

The first part of this article presents theoretical solutions to a nonlinear wave equation using

quasi-linearity and their formulations in our simulator. In the second part, we describe the im-

plementation of the simulator and quantify its computational requirements. In the third part, the

performance of the simulator are evaluated and compared to well established simulators both in

terms of accuracy and speed. In the last part of the article, the limitations of the simulator are

discussed and some conclusions are drawn.

II. T

A. Wave equation and quasi-linearity

The nonlinear propagation of sound in an absorbing fluid can be described by the following

wave equation

∇2p − 1

c2
0

∂2p

∂t2
+ L(p) = − β

ρ0c4
0

∂2p2

∂t2
, (1)

where ∇2 is the Laplacian operator, p, c0, ρ0, and β represent the acoustic pressure, the sound speed,

the medium density, and the coefficient of nonlinearity, respectively. The first two terms on the left-

hand side of Eq. (1) represent the diffraction. The linear operator L(p) represents the losses. In the

case where L(p) = δ
c4
0

∂3p
∂t3

, with δ the diffusivity of sound, Eq. (1) is the Westervelt equation [20]

and the loss operator describes thermoviscous losses proportional to the square of the frequency.

Attenuation in complex media like biological tissues obeys a frequency power law. In that case,

L(p) can be described by a convolution between p and a kernel function [21] or equivalently, by

fractional derivatives [22]. The use of fractional derivatives to describe attenuation in complex

media has recently been shown to be linked to the use of multiple relaxation processes [23]. The

term on the right-hand side of Eq. (1) represents the nonlinearity of propagation. In the quasi-linear
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theory, it is considered as a small correction to the linear equation. The acoustic pressure is written

p = p1 + p2. The pressure p1 represents the sound pressure at the fundamental frequency f0. While

p2 is the sound pressure of the second harmonic signal at frequency 2f0 and the harmonic signals

of higher order are neglected. The fundamental signal pressure p1 satisfies the linear propagation

equation and the second harmonic signal pressure p2 satisfies the nonlinear propagation equation,

where p is approximated to p1 in the nonlinear term [24]

∇2p1 −
1

c2
0

∂2p1

∂t2
+ L(p1) = 0, (2)

∇2p2 −
1

c2
0

∂2p2

∂t2
+ L(p2) = − β

ρ0c4
0

∂2p2
1

∂t2
. (3)

The right-hand side of Eq. (3) appears as a perturbation term and can be understood as a source

term for p2 originating from p1.

B. Angular spectrum approach

When transmitting a pulse of frequency f0, an angular spectrum approach which decomposes

the pulse into monochromatic plane waves is used. This allows the definition of the complex

pressure P (x, y, z) as a sum of complex exponential functions

p(x, y, z, t) =
1

2
P (x, y, z, t) + c.c., (4)

where c.c. stands for complex conjugate. The method consists of taking a three-dimensional Fourier

transform along the time t, and the spatial directions x and y (transverse space), when z is the main

propagation direction. The Fourier transform of the complex pressure P (x, y, z, t) is defined as

P̂ (k, z) =

∫∫∫

P (x, y, z, t)e−j(ωt+kxx+kyy)dtdxdy, (5)

where k is a vector with coordinates (ω/c0, kx, ky), with ω, kx, and ky the temporal angular

frequency, and transverse wave numbers in x and y directions, respectively. Using the properties of

the Fourier transform of a derivative and of a product, Eqs. (2) and (3) can be written

∂2P̂1(k, z)

∂z2
+ K2(k)P̂1(k, z) = 0, (6)

∂2P̂2(k, z)

∂z2
+ K2(k)P̂2(k, z) =

βω2

2ρ0c4
0

P̂1(k, z) ⊗ P̂1(k, z). (7)

In these equations, P̂1 and P̂2 are the Fourier transforms of the complex pressure P1 and P2,

respectively, and the symbol ⊗ represents a convolution along the three dimensions of k. The

imaginary part of K(k) represents the attenuation and is the formulation of the loss operator L in

the frequency domain. Knowing that attenuation in biological tissue obeys a frequency power law
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proportional to f b with 1 ≤ b < 2, we can write

K(k) =
√

k2 − k2
x − k2

y − ja(f/106)b, (8)

where a is the attenuation factor in neper for a wave of 1 MHz traveling 1 m. The imaginary part

of K(k) can be appended ad hoc to reflect measured attenuation for a given medium [7]. A more

fundamental way to obtain it is to model losses in complex media using fractional derivatives as

explained in Ref. [22]. Doing so also gives an expression for the dispersion of the phase velocity that

always accompanies a frequency power law attenuation as shown in Eq. (48) of the same reference.

In medical ultrasound, the variations of the phase velocity with frequency are very small [25], the

effects of dispersion are therefore neglected in the simulations.

In the very near field, the transverse components of the wave numbers kx and ky can have large

values leading to k2 < k2
x + k2

y which translates as the presence of evanescent waves. In that case,

K is imaginary and those waves are quickly attenuated.

C. Solutions for the angular spectrum approach

A solution of Eq. (6) is

P̂1(k, z) = P̂1(k, z0)e
−jK(k)(z−z0). (9)

Note that the sign convention in the exponential in Eq. (9) was chosen in conjunction with the

sign convention for the imaginary part of K(k) in Eq. (8) to avoid divergence when z → ∞.

The solution of Eq. (7) is the sum of the solution when the right side of the equation is set

to zero, P̂2h, and a particular solution, P̂2p. The homogeneous solution P̂2h has the same form as

Eq. (9). To find P̂2p, one can express Eq. (7) in terms of an integral equation using one-dimensional

Green’s functions. As shown by Jing et al. in the appendix of Ref. [15], taking into account that

they use the opposite sign convention for K(k), the Green’s functions in the case of a half space

defined by the source plane can be written as

G(z, z′,k) =
e−jK(k)(z+z′) − e−jK(k)(z−z′)

2jK(k)
, 0 ≤ z′ ≤ z, (10)

G(z, z′,k) =
e−jK(k)(z+z′) − e−jK(k)(z′−z)

2jK(k)
, z ≤ z′. (11)

This gives for P̂2p

P̂2p(k, z) =
jM

2K(k)

(
∫ z

0

e−jK(k)(z−z′)F (P̂1)dz′ −
∫ z

0

e−jK(k)(z+z′)F (P̂1)dz′

+

∫ +∞

z

e−jK(k)(z′−z)F (P̂1)dz′ −
∫ +∞

z

e−jK(k)(z+z′)F (P̂1)dz′
)

,

(12)

where M = βω2/(2ρ0c
4
0) and F (P̂1) = P̂1(k, z′) ⊗ P̂1(k, z′). Jing et al. [15] verified numerically

that in the weakly nonlinear case the three last integrals in Eq. (12) could be neglected. We can give
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Fig. 1: Four types of contributions of local sources. Path 1 forms the dominant contributions, all other
paths come from back propagation and can be neglected.

a physical explanation for this. The first integral represents the local sources situated between the

source plane and the observation point z propagating forward (path 1 in Fig. 1). It is the dominant

contribution. The third integral represents the local sources situated beyond the observation point

and back propagating (path 3 in Fig. 1). The second and fourth integrals represent, respectively,

the local sources situated between the source and the observation point z, and the sources beyond

the observation point. Radiation from both reach the observation point z due to back propagation

and reflection on the source plane (paths 2 and 4 in Fig. 1). Neglecting back propagation gives

P̂2p(k, z) ≈ jM

2K(k)

∫ z

0

e−jK(k)(z−z′)F (P̂1)dz′ (13)

Given that P̂2p(k, 0) = 0, and assuming that

P̂2(k, 0) = P̂2h(k, 0) + P̂2p(k, 0) = 0, (14)

we get P̂2h(k, z) = 0. The solution to Eq. (7) therefore reduces to its particular solution, P̂2(k, z) =

P̂2p(k, z).

Let us now use the expression for P̂1(k, z), given by Eq. (9), to express P̂2 as a function of the

linear field P̂1 at depth z0

P̂2(k, z) =
jM

2K(k)

∫ z

0

∫ +∞

−∞
P̂1(k

′, z0)P̂1(k − k′, z0)e
−jK(k′)(z′−z0)e−jK(k−k

′)(z′−z0)

× e−jK(k)(z−z′)dz′
dk′

(2π)3
.

(15)

Following an integration along z′ from the source plane to the point z of interest, we get [17]

P̂2(k, z) =
jM

2K(k)

∫ +∞

−∞
P̂1(k

′, z0)P̂1(k − k′, z0)

× H(k,k′, z, z0)
dk′

(2π)3
,

(16)

where

H(k,k′, z, z0) = ze−jK(k)(z−z0)ejΛ(k,k′)(z0−z/2)sinc
[

Λ(k,k′)
z

2π

]

, (17)
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and

Λ(k,k′) = −K(k) + K(k′) + K(k − k′), (18)

sinc(x) =
sin(πx)

πx
. (19)

Equations (16)−(19) show that the pressure P2 can be evaluated at any depth from the expression

of P̂1(k, z0). This allows for a fast simulation of lateral profiles or pulse shape at any depth without

the need for stepwise propagation. The conditions of application for this method are a quasi-linear

propagation with p1 ≫ p2, and a homogeneous medium.

D. Linear field evaluation in the focal plane

1) The Fraunhofer approximation:

Although Eq. (9) is correct for any z0, numerical evaluation is simplified when z0 is taken as the

focal depth. Indeed, in the focal plane of a focused two-dimensional (2D) array the spatial Fourier

transform of the wave is proportional to the transducer’s aperture function A(x, y). This can be

seen when looking at the Fraunhofer approximation of the Huygens principle. The Fraunhofer

approximation is valid in the far field of an unfocused transducer or at the focal depth d of a

focused transducer and is written for a monochromatic wave of frequency f according to Ref. [26]

P1(x, y, d) ≈
f · exp(jωd/c0) exp

[

jω
2dc0

(x2 + y2)
]

jc0d

×
∫∫

A(x0, y0)e
−j ω

c0d
(x0x+y0y)

dx0dy0,

(20)

which can be re-arranged as

P1(x, y, d) ≈
dc0f · exp(jωd/c0) exp

[

jω
2dc0

(x2 + y2)
]

jω2

×
∫∫

A

(

−kxdc0

ω
,−kydc0

ω

)

ej(kxx+kyy)dkxdky,

(21)

with kx = −x0ω/(c0d) and ky = −y0ω/(c0d). The integral can be seen as the inverse Fourier

transform of the aperture function A(−kxdc0/ω,−kydc0/ω). The phase term dependent on x

and y in front of the integral indicates that A(−kxdc0/ω,−kydc0/ω) represents the pressure field

on a paraboloid with z as its symmetry axis, and that a phase correction is needed to get the field in

a transverse plane. Neglecting the proportionality factor and the phase factor which is independent

of x and y, a spatial Fourier transform gives

P̂1(kx, ky, d) ∝ A

(

−kxdc0

ω
,−kydc0

ω

)

⊗ Ĉ(ω, kx, ky), (22)
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dy dx

τy(y) τxy(x,y) τx(x)

dy: focus in elevation

d = (dx + dy)/2

dx: focus in azimuth

y

x

d

Fig. 2: Delays τx(x) and τy(y) to focus a 1D array at dx in azimuth and dy in elevation, respectively.
Delay τxy(x, y) to focus a 2D array at focal distance d.

with

Ĉ(ω, kx, ky) = F
{

exp

[

jω

2dc0

(x2 + y2)

]}

, (23)

where F designates the 2D spatial Fourier transform in the transverse plane (x, y). Generalizing

to the case of a pulse, and assuming the aperture is symmetric along x and y directions giving

A(−x,−y) = A(x, y), we get the result

P̂1(k, d) ∝ P̂ (ω)A

(

kxdc0

ω
,
kydc0

ω

)

⊗ Ĉ(ω, kx, ky), (24)

where P̂ (ω) is the temporal Fourier transform of the transmitted pulse.

2) When azimuth and elevation focal distances differ:

In the case of transducers with a different focal point in azimuth and elevation as in one-

dimensional (1D) arrays for medical imaging [27], the correction is slightly different. We define dx

and dy the focal distances in azimuth and elevation directions, respectively, as shown in Fig. 2. The

distance d is defined as d = (dx + dy)/2. The pressure field at distance d is approximated by the

pressure emitted by a 2D array with d as focus distance. The aperture function of such a transducer

is equivalent to the aperture function of the aperture phase shifted to remove the delays responsible

for the azimuth and elevation foci to dx and dy and replace them with a delay corresponding to a

2D array focused at distance d as described in the previous section. The corresponding delays τx,

τy, and τxy are defined as

τx(x) =
dx −

√

d2
x − x2

c0

, (25)

τy(y) =
dy −

√

d2
y − y2

c0

, and (26)

τxy(x, y) =
d −

√

d2 − x2 − y2

c0

. (27)
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The phase shifted aperture function is

A′(x, y) = A(x, y)e−jω∆(x,y)/c0 , (28)

where ∆(x, y) = τxy(x, y) − τx(x) − τy(y). Applying the theory described in the previous sec-

tion, we can write the Fourier transform of the pressure field of a 1D array as

P̂1(k, d) ≈ P̂ (ω)A′
(

kxdc0

ω
,
kydc0

ω

)

⊗ Ĉ(ω, kx, ky) (29)

III. I

A. Discretizaton

A numerical evaluation of the solution for P̂1, and P̂2 developed in the previous section was

implemented using MATLAB® (version 2008b, The MathWorks, Natick, MA). The temporal and

spatial frequency domains are defined by the discretization size and the number of samples. The

sampling frequency fs is chosen to satisfy the Nyquist criteria fs ≥ 2fmax, where fmax is the largest

temporal or spatial frequency. Since both the fundamental and second harmonic fields can be

treated as a monofrequency wave modulated by an envelope characterized by the pulse bandwidth

B, the maximum frequency can be taken equal to B when working in the temporal frequency

domain. The pulse bandwidth B is approximated equal for the fundamental and harmonic fields.

For the spatial frequencies, as shown in Fig. 3 the maximum radial frequencies are approximated

to

kxm =
ωm

c0

Dx

d
(30)

kym =
ωm

c0

Dy

d
(31)

for x and y spatial directions, respectively, where ωm is the maximum temporal radial frequency,

and Dx and Dy are the aperture dimensions along x and y, respectively. For the fundamental and

harmonic fields, respectively, ωm should be set to 2π(f0 + B/2) and 2π(2f0 + B/2), in Eqs. (30)

and (31).

The number of samples for temporal and spatial frequencies are determined by the spatial

extent for the simulation set by the user. If Lx, Ly, and Lz define the spatial extent in x, y, and z

directions, respectively, we have

Nx = Lx2(kxm/2π) = Lx
Dx

c0d

ωm

π
, (32)

Ny = Ly2(kym/2π) = Ly
Dy

c0d

ωm

π
, (33)

Nt =
Lz

c0

2B, (34)
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Fig. 3: Determination of maximum spatial radial frequencies kxm and kym in x and y directions,
respectively.

where Nx, Ny, and Nt are the number of samples in the spatial and temporal frequency domains,

respectively. The simulation domain characterized by Lx and Ly has to be taken large enough to

avoid perturbations at large depths from source replica that appear due to spatial aliasing when using

the discrete Fourier transform [28]. Using Eqs. (32)−(34), it is easy to see that the sample counts

and computational burden will be directly linked to the temporal bandwidth of the transmitted

pulse B as well as the ratios of the aperture size to the focal distance Dx/d and Dy/d. A short

pulse with a large bandwidth and a large aperture strongly focused are therefore expected to require

a relatively long simulation time.

B. Harmonic field computation

While the computation of the fundamental field P1 is straightforward, the convolution in

Eq. (16) is the most computer intensive operation in the evaluation of the harmonic field P2.

If the simulated aperture is assumed symmetric along the x and y axis, the field needs only to be

calculated in one quadrant of the transverse plane of interest. The field in the three other quadrants

can be deduced by symmetry. In that case, the convolution is estimated using Nx/2·Ny/2·Nt sums

involving matrices whose size increases by one for each sum. The number of operations is there-

fore of the order of N2
x · N2

y · N2
t . As an example, we consider a pulse transmitted at frequency

f0 = 2 MHz, with a bandwidth B = 1 MHz, and an aperture of dimension Dx = 2 cm, and

Dy = 2 cm with a focus distance of d = 6 cm. The pulse duration is approximately 1/B = 1 μs,

hence Lz =3·c0/B ≈ 0.45 cm is adequate. The transverse dimensions are defined as Lx = 3 cm,

and Ly = 3 cm. We have for the harmonic field

Nx = Lx
2Dx(2f0 + B/2)

c0d
= 60, (35)

Ny = Ly
2Dy(2f0 + B/2)

c0d
= 60, (36)

Nt = Lz
2B

c0

= 6, (37)
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when c0 = 1500 m/s. This gives a number of operations for the convolution of the order of

466×106.

IV. P   

In this section we check the accuracy of the described method, from here on referred to as the

quasi-linear (QL) method, for the case of an annular array and a rectangular phased array. For the

annular array, the results are compared against the output of the KZKTexas code and a simulation

package for three-dimensional (3D) nonlinear wave propagation of wide band pulses from arbitrary

transducers called Abersim [29–31]. For the rectangular array, the results are compared against

Abersim and measurements. We then compare the time requirements when using each method.

A. Results accuracy

1) Annular array:

An annular array of radius 10 mm and focal distance 60 mm was simulated using the QL

method. The results were compared to the results of the KZKTexas code and Abersim. The trans-

mitted pulse had a frequency of 2.2 MHz and a duration of approximately 2 μs. The propagation

medium was water, and losses due to thermoviscous effects were neglected. The pulse generated by

the QL method in the source plane was used as an input to the KZKTexas code and Abersim. Its

maximum input pressure was 92 kPa.

Figure 4 compares the lateral distribution of the pulse normalized root mean square (RMS)

obtained by all methods for the fundamental and second harmonic signals at depths 30 mm and

60 mm. The RMS values were computed over the time range −6 μs ≤ t ≤6 μs, and the pulses

were centered at t = 0 μs.

Axial profiles for the fundamental and second harmonic signals were also computed using all

three methods and are shown in Fig. 5.

The pulse at focus distance (z = 60 mm) using all three methods is shown in Fig. 6. It is built

by adding the components of the pulse around the fundamental and second harmonic frequency

bands.

The pulse RMS fields obtained using the QL simulator for the fundamental and the second

harmonic signals can be compared to the results given by the KZKTexas code and Abersim in

Fig. 7. The differences between the profiles obtained by the QL simulator and the other methods

are displayed in Fig. 8 and never exceed 8 dB over the displayed area.
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Fig. 6: Pulse at focus depth. Thick, dashed, and thin lines show the results from the QL simulator, the
KZKTexas code, and Abersim, respectively.
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The lateral profiles show a good match between the QL method, Abersim, and the KZKTexas

code. At 30 mm depth the mismatch averaged over the lateral extent −10 mm ≤ r ≤ 10 mm

is below 1.5 dB for the fundamental signal and 3.5 dB for the second harmonic signal. At the

focal point at 60 mm the averaged mismatch is below 1 dB and 2.2 dB for the fundamental and

second harmonic signal, respectively. The axial profiles show an average mismatch below 1.1 dB

and 1.5 dB for the fundamental and second harmonic signal, respectively. The pulse shapes at focus

can hardly be distinguished from each other. When considering pressure levels above 50 kPa, the

mismatch averaged over the time range −1 μs ≤ t ≤ 1 μs between the QL method and the other

methods is below 16 kPa or 14%. This shows that the quasi-linear approximation is valid in this

case and that the energy contained outside the fundamental and second harmonic frequency bands

can be neglected. Finally, the pulse RMS fields show that the axial and lateral matches are similar

away from the propagation axis or at other depths.

2) Rectangular array:

Measurements were done using a M3S phased array connected to a Vivid 7 scanner (GE

Vingmed Ultraound AS, Horten, Norway). The transmitted field was recorded in a water tank

by a HGL-0085 hydrophone (Onda, Sunnyvale, CA) connected to a digital oscilloscope of type

42 XS (LeCroy, Chestnut Ridge, NY). The fixed focal distance in elevation was 70 mm and the

focal distance in azimuth was set to 50 mm. The center frequency of the transmitted pulse was

2.1 MHz. To compare the measurements with the QL method and Abersim, simulations were run

considering a rectangular array of dimensions 18 mm in azimuth (x) and 11.5 mm in elevation (y)

with the same focus distances as the M3S phase array. In this case, in order to guarantee proper

modeling of the pulse, the measurements of the transmitted pulse at depth z = 60 mm were used

as an input to the QL method. The pulse back propagated to the source plane by the QL method

was then used as an input to Abersim. Its maximum input pressure was 147 kPa. The propagation

medium was water, and losses due to thermoviscous effects were neglected.

Lateral profiles for the fundamental and second harmonic signals obtained by the QL method

and Abersim at both focus depths are compared against the measurements in Fig. 9. As in the case

of the annular array, the RMS values were computed over the time range −1.6 μs ≤ t ≤ 1.6 μs,

and the pulses were centered around t = 0 μs.

Figure 10 compares the axial profiles and Fig. 11 compares the on-axis pulses at both focal

depths obtained by the three methods. As in the case of the circular array, the on-axis pulses

are built by adding the components of the pulses around the fundamental and second harmonic

frequency bands.

The comparison of the lateral profiles show a good agreement. The average mismatch at 50 mm

depth when the QL method is compared to the measurements and Abersim is below 3.5 dB and

2.3 dB, respectively. At 70 mm, the mismatch with the measurements and Abersim is below 1.3 dB

and 1.4 dB, respectively. The average mismatch for the axial profiles is below 0.7 kPa or 0.7% for

the fundamental signal and below 1.6 kPa or 2% for the second harmonic signal. The observant

reader will notice that the maximum pressure levels are reached at slightly larger depth in the case of

the measurements compared to what the simulations give. This mismatch of approximately 2 mm

can be explained by the positioning uncertainty of the measurement setup. The simulation results

for the pulse shape at focus depths also match well with the measurements. When considering

pressure levels above 100 kPa, the relative mismatch at 50 mm depth averaged over the time range

−1.6 μs ≤ t ≤ 1.6 μs is below 6% and 25% when comparing the QL method to Abersim or to the
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Fig. 12: Execution time required by the QL method (solid), the KZKTexas code (dash-dotted), and
Abersim (dashed) to generate a lateral profile at different depths.

measurements, respectively. At 70 mm depth, the averaged mismatch is below 3% and 19% when

comparing to Abersim and to the measurements, respectively.

B. Speed evaluation

We compared the execution time of the QL simulator, the KZKTexas code, and Abersim. The

time required for each method to produce a lateral profile for different depths was recorded and is

shown in Fig. 12. The transducer and pulse used in the simulations were the same as described in

Sec. IV A 1 for the case of the annular array with a focal distance of 60 mm. The machine used to

run the simulations had 8 GB of memory and ran on an Intel (Intel, Santa Clara, CA) eight core

64-bit processor at 2.9 GHz clock frequency under the operating system Linux Red Hat (Red Hat,

Raleigh, NC) release 5.7. We used version R2008b of MATLAB.

For this comparison, the spatial extent of the simulations was set to the minimum size required

to avoid perturbations from source replicas generated by the discrete spatial Fourier transform. The

spatial extent of the simulations therefore increased with depth beyond the focus depth. This is

the reason why the simulation time increases for the QL method for depth beyond the focus depth

(z > 60 mm) although no stepwise propagation from the source is required. The simulation spatial

extent for the QL method and KZKTexas code were taken equal for each depth.

C. Limitations of the method

Since the quasi-linear assumption is valid only in the case of weak nonlinearity, it is expected

that the QL method should give less accurate results in the case of strong linearity. Figure 13 shows

the maximum negative pressure of the on-axis pulse at focus as a function of the maximum pressure

of the pulse at transmission given by measurements and the QL simulator. The measurements were

done with the same setup as described in Sec. IV A 2 with the azimuth focus set to 70 mm instead

of 50 mm. The comparison is done for the fundamental and the second harmonic signals.
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Fig. 13: Maximum negative pressure at focal depth as a function of the maximum input pressure of the
transmitted pulse for the fundamental and second harmonic signals. Solid and dashed lines show the
results for the QL method, and the measurements, respectively.

Figure 13 shows that the maximum negative pressure level estimated by the QL method is

linearly proportional to the input pressure for the fundamental signal while for the second harmonic

signal it is proportional to the input pressure level squared. This is predicted by the quasi-linear

theory as shown by Eqs. (9) and (16).

V. D

The results given by the QL simulator appear to be comparable to the results given by recog-

nized simulators such as the KZKTexas code and Abersim. It is quite difficult to compare the speed

of each method due to the differences in their way of operating. The KZKTexas code and Abersim

propagate the field stepwise from the source plane to the desired depth while the QL method es-

timates the field at any depth without stepwise propagation. While Abersim and the QL method

propagate the field in 3D allowing for any transducer geometry, the KZKTexas code propagates

the field in 2D limiting its use to axisymmetric transducers. The KZKTexas code is written in

Fortran and compiled, Abersim is a mix of compiled C routines and MATLAB code, and the QL

method is written in MATLAB code only. In addition, the parameter values used in each method

like the propagation step size or the spatial extent of the simulation influence the execution time.

For the QL method and the KZKTexas code, one can define the spatial extent of the simulation.

An increase of the simulation’s spatial extent has a greater impact on the execution time of the

QL method compared to the KZKTexas code since it applies to both the elevation and azimuth

directions while it only affects the lateral direction for the KZKTexas code. This explains why the

increase in execution time with depth is greater for the QL method than for the KZKTexas code.

Despite all these differences, Fig. 12 gives an indication of the relative speed performance of

our implementation of the QL method. It is clearly the fastest way to estimate a lateral profile

for depths below the focus point. The QL method is up to 1000 times faster than Abersim for

simulation depths below focus depth, and around 100 times faster beyond focus depth. The speed

performance degrades if the spatial extent of the simulation becomes increasingly large. It should be

mentioned that no particular effort was made to optimize the execution speed of the QL method.
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To further improve its speed, the code could be translated to C language and compiled or a faster

2D version could be written for axisymmetric transducers.

The quasi-linear theory neglects the harmonic signals of order greater than two. This is where

the method encounters some limitations. In practice, the energy transferred to harmonic signals

of order greater than two increases with the input pressure level. The consequences of this is that

the QL method over-estimates the levels of the fundamental and second harmonic signals at high

input pressure level as shown in Fig. 13. In this particular case, the fundamental signal starts to get

over-estimated for input pressure levels larger than about 350 kPa while the second harmonic signal

starts to get over-estimated for input pressure levels larger than about 160 kPa. These maximum

input pressure values are only representative of the chosen model and can also vary with parameters

such as the aperture apodization, the focal distance, or the attenuation in the medium. Beyond

these levels the harmonic signals of order greater than two cannot be neglected and the quasi-linear

method is less adapted. This limitation on the input pressure level can be somewhat relaxed if one

is only interested in the lateral pressure profiles as their shape is less affected by the over-estimation

previously mentioned.

If the limitation on the input power imposed by the quasi-linear assumption can be satisfied

in many cases in medical ultrasound imaging, the assumption that the pulse propagates in a ho-

mogeneous medium however is rarely satisfied. It is a drawback that the method cannot model

reverberation as well as phase and amplitude aberrations. However, if the simulator is used to pre-

dict the pulse pressure level in the case when several focal depths are used in order to build an image

from partial images, the presented model assuming a propagation in a homogeneous media might

give sufficient precision.

VI. C

In this work, we have explained the theory and the physics that allow us to quickly estimate

at any depth the pressure pulse transmitted by a transducer of arbitrary geometry. The solution is

based on the quasi-linear theory and approximates the pulse by the sum of its components around

the fundamental and the second harmonic frequency bands. The method does not require a step-

wise propagation from the source plane and provides a full 3D estimate of the pulse in a transverse

plane. The only inputs to the simulator are the aperture geometry with its weighting and the pulse

shape and amplitude at focus depth. An obvious potential application for this simulator is medical

ultrasound imaging. For this purpose, the simulator can model 1D arrays with different azimuth

and elevation focus depths.

The accuracy and speed performance of the simulator has been compared to recognized state-of-

the-art simulators: the KZKTexas code for axisymmetric transducers and Abersim for transducers

of arbitrary geometry. Measurements were also compared to the results given by our method. These

comparisons showed a relative mismatch between pulse shape estimates below 14% and allow us to

conclude that the presented method is faster than the other methods, up to 1000 times faster than

Abersim for moderate depth, and around 100 times faster at large depths.

The method encounters limitations in speed performance for depths well beyond the focal

depth. In that case, the full 3D computation in a large discretization plane increases the compu-

tation time. The input pressure must also be kept below an upper limit otherwise the method

over-estimates the pressure levels.
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The implementation of the method that has been tested is not optimized for computation time.

It is written in MATLAB code and is interpreted, not compiled. Some further work could consist

of optimizing the method and possibly implementing it using graphical processing units. Another

interesting future test would be to compare the results of the simulator with measurements of sound

propagation in a medium resembling biological tissue.

129





Bibliography

[1] H. Becher, K. Tiemann, T. Schlosser, C. Pohl, N. C. Nanda, M. A. Averkiou, J. Powers, and

B. Lüderitz, “Improvement in endocardial border delineation using tissue harmonic imaging,”

Echocardiogr., vol. 15, no. 5, pp. 511–517, 1998.

[2] R. J. Graham, W. Gallas, J. S. Gelman, L. Donelan, and R. E. Peverill, “An assessment of

tissue harmonic versus fundamental imaging modes for echocardiographic measurements,” J.

Am. Soc. Echocardiogr., vol. 14, no. 12, pp. 1191–1196, 2001.

[3] G. A. Whalley, G. D. Gamble, H. J. Walsh, S. P. Wright, S. Agewall, N. Sharpe, and R. N.

Doughty, “Effect of tissue harmonic imaging and contrast upon between observer and test-

retest reproducibility of left ventricular ejection fraction measurement in patients with heart

failure,” Eur. J. Heart Failure, vol. 6, no. 1, pp. 85–93, 2004.

[4] S. Tanaka, O. Oshikawa, T. Sasaki, T. Ioka, and H. Tsukuma, “Evaluation of tissue harmonic

imaging for the diagnosis of focal liver lesions,” Ultrasound Med. Biol., vol. 26, no. 2, pp.

183–187, 2000.

[5] T. Schmidt, C. Hohl, P. Haage, M. Blaum, D. Honnef, C. Weiss, G. Staatz, and R. W. Gün-

ther, “Diagnostic accuracy of phase-inversion tissue harmonic imaging versus fundamental

B-mode sonography in the evaluation of focal lesions of the kidney,” AJR, Am. J. Roentgenol.,

vol. 180, no. 6, pp. 1639–1647, 2003.

[6] F. A. Duck, “Nonlinear acoustics in diagnostic ultrasound,” Ultrasound Med. Biol., vol. 28,

no. 1, pp. 1–18, 2002.

[7] P. T. Christopher and K. J. Parker, “New approaches to the linear propagation of acoustic

fields,” J. Acoust. Soc. Am., vol. 90, no. 1, pp. 507–521, Jul. 1991.

[8] ——, “New approaches to nonlinear diffractive field propagation,” J. Acoust. Soc. Am., vol. 90,

no. 1, pp. 488–499, Jul. 1991.

[9] Y. S. Lee, R. Cleveland, and M. F. Hamilton, “KZKTexas,” http://people.bu.edu/robinc/kzk/,

(Last viewed May 30, 2012), Oct. 1998.

[10] Y. S. Lee and M. F. Hamilton, “Time-domain modeling of pulsed finite-amplitude sound

beams,” J. Acoust. Soc. Am., vol. 97, pp. 906–917, 1995.

[11] X. Yan and M. F. Hamilton, “Angular spectrum decomposition analysis of second harmonic

ultrasound propagation and its relation to tissue harmonic imaging,” in Proceedings of the

131



Paper V

4th International Workshop on Ultrasonic and Advanced Methods for Nondestructive Testing and

Material Characterization, N. Dartmouth, MA, Jun. 2006, pp. 11–24.

[12] Y. Du, H. Jensen, and J. A. Jensen, “Angular spectrum approach for fast simulation of pulsed

non-linear ultrasound fields,” in Proc. IEEE Ultrason. Symp. 2011, Orlando, FL, Oct. 2011.

[13] J. A. Jensen, “Field: A program for simulating ultrasound systems,” Med. Biol. Eng. Comput.,

vol. 34, Suppl. 1, pt. 1, pp. 351–353, 1996.

[14] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped,

apodized, and excited ultrasound transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control,

vol. 39, no. 2, pp. 262–267, 1992.

[15] Y. Jing, M. Tao, and G. T. Clement, “Evaluation of a wave-vector-frequency-domain method

for nonlinear wave propagation,” J. Acoust. Soc. Am., vol. 129, no. 1, pp. 32–46, Jan. 2011.

[16] F. Varray, A. Ramalli, C. Cachard, P. Tortoli, and O. Basset, “Fundamental and second-

harmonic ultrasound field computation of inhomogeneous nonlinear medium with a gen-

eralized angular spectrum method,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58,

no. 7, pp. 1366–1376, Jul. 2011.

[17] H. Torp, T. F. Johansen, and J. S. Haugen, “Nonlinear wave propagation - A fast 3D sim-

ulation method based on quasi-linear approximation of the second harmonic field,” in Proc.

IEEE Ultrason. Symp. 2002, vol. 1, Munich, Germany, Oct. 2002, pp. 567–570.

[18] S. Dursun, T. Varslot, T. F. Johansen, B. Angelsen, and H. Torp, “Fast 3D simulation of

2nd harmonic ultrasound field from arbitrary transducer geometries,” in Proc. IEEE Ultrason.

Symp. 2005, vol. 4, Rotterdam, Netherlands, Sep. 2005, pp. 1964–1967.

[19] J. Lu, H. Zou, and J. F. Greenleaf, “Biomedical ultrasound beam forming,” Ultrasound Med.

Biol., vol. 20, no. 5, pp. 403–428, 1994.

[20] M. F. Hamilton and C. L. Morfey, “Model equations,” in Nonlinear Acoustics, M. F. Hamilton

and D. T. Blackstock, Eds. San Diego, CA: Academic, Dec. 1998, ch. 3, pp. 41–63.

[21] T. L. Szabo, “Time domain wave equations for lossy media obeying a frequency power law,”

J. Acoust. Soc. Am., vol. 96, pp. 491–500, Jul. 1994.

[22] F. Prieur and S. Holm, “Nonlinear acoustic wave equations with fractional loss operators,” J.

Acoust. Soc. Am., vol. 130, no. 3, pp. 1125–1132, Sep. 2011.

[23] S. P. Näsholm and S. Holm, “Linking multiple relaxation, power-law attenuation, and frac-

tional wave equations,” J. Acoust. Soc. Am., vol. 130, no. 5, pp. 3038–3045, Nov. 2011.

[24] M. F. Hamilton, “Sound beams,” in Nonlinear Acoustics, M. F. Hamilton and D. T. Black-

stock, Eds. San Diego, CA: Academic, Dec. 1998, ch. 8, pp. 233–261.

[25] M. Odonnell, E. T. Jaynes, and J. G. Miller, “Kramers-kronig relationship between ultrasonic

attenuation and phase velocity,” J. Acoust. Soc. Am., vol. 69, no. 3, pp. 696–701, Mar. 1981.

132



[26] J. W. Goodman, “Fresnel and Fraunhofer diffraction,” in Introduction to Fourier optics, 3rd ed.

Greenwood Village, CO: Roberts & Company, 2005, ch. 4, pp. 74–75.

[27] D. G. Wildes, R. Y. Chiao, C. M. W. Daft, K. W. Rigby, L. S. Smith, and K. E. Thome-

nius, “Elevation performance of 1.25D and 1.5D transducer arrays,” IEEE Trans. Ultrason.

Ferroelectr. Freq. Control, vol. 44, no. 5, pp. 1027–1037, Sep. 1997.

[28] P. Wu, R. Kazys, and T. Stepinski, “Analysis of the numerically implemented angular spectrum

approach based on the evaluation of two-dimensional acoustic fields. Part II. Characteristics

as a function of angular range,” J. Acoust. Soc. Am., vol. 99, pp. 1349–1359, Mar. 1996.

[29] T. Varslot and G. Taraldsen, “Computer simulation of forward wave propagation in soft tis-

sue,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 9, pp. 1473–1482, Sep.

2005.

[30] T. Varslot and S. E. Måsøy, “Forward propagation of acoustic pressure pulses in 3D soft

biological tissue,” Model. Identif. Contr., vol. 27, no. 3, pp. 181–200, Jul. 2006.

[31] M. E. Frijlink, H. Kaupang, T. Varslot, and S. E. Måsøy, “Abersim: A simulation program

for 3D nonlinear acoustic wave propagation for arbitrary pulses and arbitrary transducer ge-

ometries,” in Proc. IEEE Ultrason. Symp. 2008. Beijing, China: IEEE, Nov. 2008, pp.

1282–1285.





Paper VI

3D simulation of parametric ultrasound fields

F. Prieur

Proceedings of the 19th International Symposium on Nonlinear Acoustics

(extended version), Tokyo, Japan, May 2012.





3D simulation of parametric ultrasound fields
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Abstract− Parametric sonar is widely used for seafloor characterization, sub-bottom object de-

tection, or underwater communication. It takes advantage of the interaction between two primary

beams transmitted at slightly different frequencies. Due to nonlinear propagation, two secondary

beams at the sum and difference frequency are generated. The signal at the difference frequency

combines sub-bottom penetration due to low attenuation, and high resolution due to an acous-

tic beam with a narrow main lobe and negligible sidelobes. It allows to generate directional low

frequency beams with transducers of reasonable size. A method that estimates the pressure level

and the beam profile of the signals at the sum and difference frequency is presented. It solves the

Westervelt equation in the frequency domain under the quasi-linear approximation. A full three

dimensional estimate of the radiated fields can be computed at any depth without the need for

stepwise propagation from the source plane. The method applies to two dimensional transducers

of arbitrary geometry and distribution. It does not rely on the parabolic approximation and is

not limited to monochromatic signals, thus allowing to model pulses with wide bandwidth. The

limits of the method come from the assumptions of a homogeneous medium and input pressure

levels sufficiently low to satisfy the quasi-linear approximation. The obtained results in the case of

a flat piston transducer compare favorably to previous measurements and numerical estimates from

proved methods.
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I. I

Parametric sonar is a powerful tool used for long range exploration in the sea, seafloor character-

ization [1,2], sub-bottom object detection [3,4], and underwater communications [5]. It combines

the directivity of high frequency sound signals with the low attenuation at low frequencies. The

physics of parametric signals consists of transmitting two beams of slightly different frequencies that

overlap in space. Due to the nonlinearity of sound propagation in water, signals at the sum and

difference frequency appear. The low attenuation of the created field at the difference frequency

allows the pulse to propagate to large ranges in water or penetrate deep into the sea bottom. Its

spatial distribution follows the spatial distribution of the primary beams and gives a directional

low frequency beam with almost no sidelobe. Accurate estimates of the pressure level and spatial

distribution of the second order signals can contribute to adequately dimension a parametric sonar

system. The requirements in spatial resolution and pressure level of the second order signals dic-

tate the size of the transducers, as well as the transmitted frequencies and the input powers [6].

Modeling of parametric sonar can be classified in roughly three categories [7,8]: absorption limited

arrays, spreading loss limited arrays, and saturation limited arrays. Many models that fit each cate-

gory have been developed [9–12]. They are based upon approximations for the region of nonlinear

interaction and for the beam patterns of the transmitted pulses. Except for simple cases they do

not provide a closed expression for the lateral or axial profiles. Later models for parametric signals

have solved a nonlinear wave propatation equations using the quasi-linear approximation [13–15].

If the results given by these models are more precise and have a larger domain of validity than the

first methods, they still make some assumptions or approximations on the transducer geometry or

the transmitted beam profiles.

In this article we present a method that estimates the parametric signals by solving the West-

ervelt equation under the quasi-linear approximation. The method provides a full 3D estimate of

a beam profile at any depth without stepwise propagation. It can model any transducer geometry

and any type of power law attenuation.

The first part of this article presents the theory the model is based on and the expressions for

the parametric signals at the sum and difference frequency. The second part compares the estimates

given by the method with results from other recognized methods and measurements. Finally, we

discuss the advantages and weaknesses of the method.

II. T

A. Quasi-linearity and angular spectrum approach

The nonlinear propagation of sound in a thermo-viscous fluid can be described by the Wester-

velt equation [16]

∇2p − 1

c2
0

∂2p

∂t2
+

δ

c4
0

∂3p

∂t3
= − β

ρ0c4
0

∂2p2

∂t2
, (1)
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where ∇2 is the Laplacian operator, p, c0, ρ0, δ, and β represent the acoustic pressure, the sound

speed, the medium density, the diffusivity of sound, and the coefficient of nonlinearity, respectively.

In the quasi-linear approximation, the sound pressure p is approximated by the sum of the first and

second order sound fields, respectively p1 and p2, while the sound fiels of higher order are neglected.

The propagation equations for p1 and p2 are, respectively

∇2p1 −
1

c2
0

∂2p1

∂t2
+

δ

c4
0

∂3p1

∂t3
= 0 and (2)

∇2p2 −
1

c2
0

∂2p2

∂t2
+

δ

c4
0

∂3p2

∂t3
= − β

ρ0c4
0

∂2p2
1

∂t2
. (3)

The angular spectrum approach (ASA) used in the presented method decomposes the pulse

in a sum of monochromatic plane waves. The complex pressure P (x, y, z, t) can therefore be

introduced as a sum of complex exponentials and is related to the real pressure as follows

p(x, y, z, t) =
1

2
P (x, y, z, t) + c.c. (4)

where c.c. stands for complex conjugate. Since the ASA solves the propagation of sound in the

frequency domain, a three-dimensional Fourier transform along the time t and the transverse spatial

directions x, and y is introduced and we can define the Fourier transform of the complex pressure

as

P̂ (k, z) =

∫∫∫

P (x, y, z, t)e−j(ωt+kxx+kyy)dxdydt, (5)

where k is a vector with coordinates (ω/c0, kx, ky) with ω, kx, and ky the angular temporal fre-

quency and spatial wave numbers in the x and y directions, respectively.

B. Solutions of parametric signals

In the case of a parametric sonar, two pulses with a slightly different center frequencies fa and fb

are transmitted. Callling Pa and Pb the complex pressures of these primary beams, the quasi-linear

theory approximates the total pressure as the sum of

P1 = Pa + Pb and P2 =
1

2
(P 2

a + P 2
b + 2PaPb − 2PaP

∗
b ) (6)

where the star denotes the complex conjugate. In the expression of P2, the first two terms represent

the second harmonic issued from the interaction of each primary beam with itself. The third and

fourth terms represent the secondary sound fields at the sum and difference frequency fp = fa + fb

and fm = fa − fb, respectively assuming fa > fb. They are due to the interaction of the primary

beams with each other. The solutions for the fundamental of each transmitted beam propagating

linearly satisfy the following equations

∂2P̂t(k, z)

∂z2
+ K2

t (k)P̂t(k, z) = 0 (7)
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where

K2
t (k) = ω2

t /c
2
0 − k2

x − k2
y − jδω3

t /c
4
0, (8)

and the subscript t should be replaced by a or b when referring to the signal transmitted at frequency

fa or fb, respectively. The solution for primary beams at depth z is therefore

P̂t(k, z) = P̂t(k, 0)e−jzKt(k). (9)

As Eqs. (8) and (9) show, the imaginary part of Kt describes the attenuation due to thermo-viscous

effects. In the low frequency approximation, this attenuation is proportional to the square of the

frequency. For media like sand, clay, or sediments the frequency dependency of the attenuation

differs [17]. An ad-hoc modification of the imaginary part of Kt allows modeling of a power law

attenuation characteristic of such complex media.

In the rest of the document the subscripts p and m refer to the signals at the sum and differ-

ence frequency, respectively. The solution for the signal pressures Pp and Pm satisfy the following

equations:

∂2P̂p(k, z)

∂z2
+ K2

p(k)P̂p(k, z) =
βω2

p

ρ0c4
0

P̂a(k, z) ⊗ P̂b(k, z) (10)

∂2P̂m(k, z)

∂z2
+ K2

m(k)P̂m(k, z) =
−βω2

m

ρ0c4
0

P̂a(k, z) ⊗ P̂ ∗
b (k, z) (11)

when the Fourier transform of P ∗
b (x, y, z, t) is assumed equal to P̂ ∗

b (k, z). This is verified in z=0

if the aperture function is symmetric in both transversal directions. A solution to a similar equation

presented in Ref. [18] allows us to write

P̂p(k, z) ≈ jMp

Kp(k)

∫ z

0

e−jKp(k)(z−z′)P̂a(k, z′) ⊗ P̂b(k, z′)dz′, (12)

P̂m(k, z) ≈ −jMm

Km(k)

∫ z

0

e−jKm(k)(z−z′)P̂a(k, z′) ⊗ P̂ ∗
b (k, z′)dz′, (13)

Using the expression for P̂a(k, z) and P̂b(k, z) given in Eq. (9) and after integrating along z′ as

shown in Ref. [19], we get

P̂p(k, z) ≈ Mp

Kp(k)

∫∫∫

P̂a(k
′, 0)P̂b(k − k′, 0)Hp(k,k′, z)

dk′

(2π)3
, (14)

P̂m(k, z) ≈ −Mm

Km(k)

∫∫∫

P̂a(k
′, 0)P̂ ∗

b (k − k′, 0)Hm(k,k′, z)
dk′

(2π)3
. (15)

where

Mp = βω2
p/(ρ0c

4
0), Hp(k,k′, z) = ze−jKp(k)ze−jΛp(k,k′)z/2sinc

[

Λp(k,k′)
z

2π

]

, (16)

Mm = βω2
m/(ρ0c

4
0), Hm(k,k′, z) = ze−jKm(k)ze−jΛm(k,k′)z/2sinc

[

Λm(k,k′)
z

2π

]

, (17)
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Fig. 1: Lateral profiles for the signals at the sum frequency: 28 kHz (left) and difference frequency:
3 kHz (right) obtained at 7.5 m, 16.9 m, and 27.2 m by the QL method (bold), the Ding method
(dashed), and the Garrett method (thin). Note the different vertical scale for each plot.

and

Λp(k,k′) = −Kp(k) + Ka(k
′) + Kb(k − k′), (18)

Λm(k,k′) = −Km(k) + Ka(k
′) − Kb(k − k′), (19)

sinc(x) =
sin(πx)

πx
. (20)

Equations (14) to (20) show that the pressures Pp and Pm can be evaluated from the expression

of P̂a(k, 0) and P̂b(k, 0). This allows for a fast simulation of lateral profiles or pulse shape at any

depth without the need for stepwise propagation. The conditions of application for this method

are a quasi-linear propagation with p1 ≫ p2, and a homogeneous medium.

III. R

A simulator that solves Eqs. (14) and (15) was implemented using MATLAB® (version 2011a,

The MathWorks, Natick, MA). In order to check the accuracy of the method, the parametric source

described in Ref. [20] was modeled. It consists of a flat piston of radius a = 0.87 m transmitting

two beams at fa = 15 kHz and fb = 12 kHz. The results produced by our method referred to as

the quasi-linear (QL) method from this point on were compared against a numerical evaluation

of the integrals presented in Eq. 5 of Ref. [14] and Eq. 9 of Ref. [13] (referred to as the Garrett

method) for the sum and difference frequency signals, respectively. They were also compared against

the results given by the method described by Ding in Ref. [15] which uses a sum of Gaussian beams

to approximate a flat piston aperture (referred to as the Ding method). All three methods attempt

to reproduce the results of the measurements made by Garrett et al. [20] in 1982.

Figure 1 compares the results given by all three methods for the lateral profile at three different

depths for the sum and difference frequency signals. The results match well with the measurements

reported on Fig. 11 of Ref. [13]. Axial profiles for the signals at the sum and difference frequency

were also computed by the QL method. The results are compared against the results given by the
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Fig. 2: Axial profiles for the signals at the sum and difference frequency obtained by the QL method
(bold), the Ding method (dashed), and the Garrett method (thin). The axial pressure is normalized by
the pressures of the transmitted beams pa and pb and by the areas of the transducer emitting the primary
beams Aa and Ab.

Garrett and Ding methods in Fig. 2. Again, there is a good match with the measurements reported

on Fig. 3 of Ref. [13].

The average difference between the QL method and the other methods is below 1.8 dB and

0.9 dB for the lateral profiles of the signals at the sum and difference frequency, respectively, and

below 0.8 dB and 0.4 dB for the axial profiles.

IV. D

The method described in Refs. [13–15] use the Khokhlov-Zabolotskaya-Kuznetsov (KZK)

equation as a starting point. This equation uses the parabolic approximation that is valid for direc-

tional beams. The QL method uses the Westervelt equation as a starting point that does not make

the parabolic approximation. The parabolic approximation is equivalent to replacing the expression

for the real part of Kt(k) by

Re[Kt(k)] =
ωt

c0

−
c0(k

2
x + k2

y)

2ωt

. (21)

while our simulator uses

Re[Kt(k)] =
√

ω2
t /c

2
0 − k2

x − k2
y. (22)

Consequently, the QL method should be more precise at short range than the other methods. That

is if all spatial frequencies are taken into account. For the computation to be feasible in a reasonable

amount of time, the extent of the spatial frequency domain has to be limited. Since the near field
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contains high spatial frequencies, the QL method applies, in this domain, a low-pass spatial filter

which damps the variations of the near field as shown in Fig. 2.

The integral solutions presented in Refs. [13] and [14] are valid only for flat piston sources with

an axial symmetry while the approximation presented by Ding in Ref. [15] applies to any source

with axial symmetry. This theory can be extended to approximate sources with arbitrary source

distribution and geometry by a sum of two-dimensional Gaussian beams but the final form still

requires the evaluation of an integral over the propagation direction [21, 22]. The QL method

provides a full 3D estimate of the signals at the sum and difference frequency and can be used with

transducers of arbitrary geometry. In addition, the extra step needed to compute the coefficients

describing the Gaussian beams in Ding’s method is avoided.

While the compared methods assume a mono-frequency signal, the QL method can model

signals with a large frequency bandwidth. Sub-bottom characterizing applications often use wide

bandwidth pulses like Gaussian pulses to guarantee a good range resolution [2, 3, 23]. Likewise

underwater communication use phase shift keying modulated signals with large bandwidth in order

to achieve high bit rates [5]. In the case of mono-frequency signals the convolutions in Eqs. (14)

and (15) involve only two dimensions, the transverse spatial frequencies, while for large bandwidth

pulses the additional temporal frequency dimension has to be taken into account.

The QL method encounters limitations due to the assumptions it relies on. It assumes a ho-

mogeneous media and quasi-linear propagation. This means that if the media deviates from a

homogeneous model, like the layers of the sub-bottom, the results given by the method become

less accurate. Similarly, if the transmitted levels exceed a certain threshold, the energy transmitted

to harmonics of degree greater than two is not negligible and the quasi-linear model is not valid

anymore. The fundamental and second harmonic pressure levels are therefore over-estimated in

this case.

For very long propagation distances, the simulation domain has to be taken large enough to

avoid perturbations coming from source replica generated by the discrete Fourier transform. This

slows down the computation for lateral profiles at long range.

V. C

A method that solves the propagation of parametric signals in a homogeneous medium has

been presented. It provides estimates for the lateral profile of the parametric signals at the sum and

difference frequency without the need for stepwise propagation. The results given by the method

have been compared to other analytical forms and match within 1.8 dB for the calculated lateral

profiles, and 0.8 dB for the axial profile.

The main advantage of this method is that it allows more flexibility in the model. It directly

models any transducer geometry and any power law attenuation. It is not reduced to the case of

a continuous wave and can model pulses with a wide bandwidth. The method is based on the

assumption of quasi-linearity, which puts a limitation on the level of transmitted pressure. Above a

certain level, the first and second harmonics can be over-estimated.

This method could be used to estimate the pressure level and the beam profile of the parametric

signals when using sub-bottom target detection. Both allow an accurate estimation of the sound

intensity that hits a target. Corrolating this knowledge with the reflected echo from the target could

contribute to a better determination of the size and type of targets. If the sound propagates in water

143



Paper VI

and in sediments, the simulation can be divided into two parts where the first part estimates prop-

agation in water and the second part estimates propagation in sediments. The frequency spectrum

obtained by the first simulation at the interface water-sediment would be the input to the second

simulation. This approximates the medium as a stack of homogenous layers perpendicular to the

sound main propagation direction.
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