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Feasibility of soil moisture estimation using passive distributed
temperature sensing
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[1] Through its role in the energy and water balances at the land surface, soil moisture is a
key state variable in surface hydrology and land‐atmosphere interactions. Point
observations of soil moisture are easy to make using established methods such as time
domain reflectometry and gravimetric sampling. However, monitoring large‐scale
variability with these techniques is logistically and economically infeasible. Here passive
soil distributed temperature sensing (DTS) will be introduced as an experimental method
of measuring soil moisture on the basis of DTS. Several fiber‐optic cables in a vertical
profile are used as thermal sensors, measuring propagation of temperature changes due to
the diurnal cycle. Current technology allows these cables to be in excess of 10 km in
length, and DTS equipment allows measurement of temperatures every 1 m. The passive
soil DTS concept is based on the fact that soil moisture influences soil thermal properties.
Therefore, observing temperature dynamics can yield information on changes in soil
moisture content. Results from this preliminary study demonstrate that passive soil DTS
can detect changes in thermal properties. Deriving soil moisture is complicated by the
uncertainty and nonuniqueness in the relationship between thermal conductivity and soil
moisture. A numerical simulation indicates that the accuracy could be improved if the
depth of the cables was known with greater certainty.

Citation: Steele‐Dunne, S. C., M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, and N. C.
van de Giesen (2010), Feasibility of soil moisture estimation using passive distributed temperature sensing, Water Resour. Res.,
46, W03534, doi:10.1029/2009WR008272.

1. Introduction

[2] Because of its role in the water and energy balances at
the land surface, soil moisture has been identified as a key
state variable in surface hydrology and land‐atmosphere
interactions [Entekhabi et al., 1996]. In the coming 5 years,
the European Space Agency and the National Aeronautics
and Space Administration will launch the first dedicated
satellite missions (Soil Moisture and Ocean Salinity (SMOS)
and Soil Moisture Active and Passive (SMAP)) to measure
this critical state variable [Anthes et al., 2007; Kerr et al.,
2001]. Data from these missions will be used to improve
our understanding of the global energy and water budgets.
For calibration and validation, a global network of indepen-
dent in situ soil moisture measurements over varying soil and
land cover types is essential. Point observations of soil
moisture are relatively straightforward to make using estab-
lished methods such as time domain reflectometry (TDR) and
gravimetric sampling. TDR is a useful method for making
continuous, long‐term measurements as it is nondestructive,

and sensors can be installed at the site of interest. However,
monitoring large‐scale variability with TDR would involve
installing a vast and costly network of sensors.
[3] Here we propose using distributed temperature sens-

ing (DTS) to obtain simultaneous measurements of soil
moisture over large areas. By providing continuous, high‐
resolution observations over a large area, soil DTS could
play an important role in supporting a modest network of
traditional sensors. Soil moisture fields can maintain spatial
patterns in time because of covariances between soil mois-
ture and factors such as topography, soil texture, and veg-
etation [Vachaud et al., 1985; Mohanty and Skaggs, 2001;
Jacobs et al., 2004; Cosh et al., 2004]. Temporal and spatial
stability concepts can be used to identify a single or a few
representative sensor locations, observations which are
similar to the field or pixel average. Alternatively, they can
also be used to identify locations that are systematically
biased with respect to the mean, thereby providing a mea-
sure of subfield or subpixel heterogeneity. Quantifying
spatiotemporal stability requires an extensive initial network
of sensors to measure soil moisture over a lengthy validation
period. Soil DTS offers a relatively economical way to make
continuous observations at thousands of locations within the
watershed or footprint of interest. Furthermore, combining a
few accurate, conventional sensors with the distributed
observations from soil DTS to capture fine‐scale variability
in soil moisture would enhance the usefulness of large‐scale
remote sensing products.
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[4] The idea of observing temperature dynamics to infer
soil moisture is far from new. Idso et al. [1975a, 1975b,
1976] explored the possibility of using the thermal inertia of
the surface to infer soil moisture in the top few centimeters
of the soil column. Price [1977] proposed an algorithm
based on an “apparent thermal inertia,” calculated from
satellite observations of daily minimum and maximum
temperature and surface reflectance, which might be used to
estimate soil moisture from remote sensing. In addition to
the challenges posed by thermal infrared remote sensing
(notably, atmospheric attenuation and vegetation opacity),
the thermal inertia approach also needed to account for the
surface energy balance [e.g., Rosema, 1975; Gurney and
Camillo, 1984] as well as the subsurface soil moisture
lower boundary condition [Van De Griend et al., 1985].
[5] The dependence of soil thermal properties on soil

moisture has also been used to design in situ soil moisture
probes. Most are based on the initial dual‐probe heat pulse
design ofCampbell et al. [1991]. Many have been augmented
with additional needles to allow for simultaneous measure-
ment of water flow, solute, and heat transport properties [e.g.,
Mori et al., 2003; Mortensen et al., 2006]. Recent designs
include a “button” heat pulse probe, in which a ring‐shaped
heating element and a central thermistor are embedded in a
plastic disk [Kamai et al., 2008]. This new design addresses
the sensitivity of results from conventional heat pulse probes
to needle spacing [Kluitenberg et al., 1995; Liu et al., 2008].
Nonetheless, these probes still measure soil moisture at a
single location. The proposedmethodology will use hundreds
or thousands of temperature measurements over a large area
to monitor soil moisture in a distributed fashion.
[6] Distributed temperature sensing is a flexible and

powerful tool in environmental monitoring in which tem-
perature changes are measured along a fiber‐optic cable [e.g.,
Selker et al., 2006]. When laser light is sent through fiber‐
optic cable, a small fraction of the energy undergoes inelastic
(Raman and Brillouin) scattering whereby light is produced at
frequencies higher (anti‐Stokes signal) and lower (Stokes
signal) than the transmitted laser light. The amplitude of the
backscattered anti‐Stokes signal is a function of the cable
temperature and the intensity of illumination. The amplitude
of the Stokes signal is a function of the intensity of illumi-
nation alone. Consequently, the ratio of the anti‐Stokes and
Stokes intensities provides ameasure of the cable temperature
[Tyler et al., 2009]. The spatial resolution of commercially
available DTS is typically 1 m for cables up to 10 km long.
The precision of the temperature measurement depends on
laser intensity, detector sensitivity, and integration time, but
precision on the order of 0.1 K can be obtained using a 1 km
cable with 1m resolution and a 60 s integration time. Selker et
al. [2006] demonstrated the potential usefulness of DTS in
diverse hydrological investigations.
[7] Recently, Sayde et al. (Feasibility of soil moisture

monitoring with fiber optics, submitted to Water Resources
Research, 2009) demonstrated that soil moisture in a labo-
ratory column in the range 0.05–0.41 m3 m−3 could be
measured with a precision of 0.046 m3 m−3 using an active
DTS approach. In active DTS, a heat pulse is applied to the
soil, and the resultant temperature change in the fiber‐optic
cable is used to determine soil moisture. Alternatively,
passive soil DTS measures the temperature response in
buried cables to the diurnal radiation cycle. Because passive
soil DTS avoids applying external energy to the soil column,

the soil temperature and flux profiles are undisturbed and
the natural state can be observed.
[8] Active DTS also poses logistical (and economical)

challenges to its implementation in the field. The only
power demand of passive soil DTS is that of the DTS unit
and data recorder, while active DTS also requires a power
source to heat one of the cables. Installing a passive soil
DTS system involves plowing the fiber‐optic cable into the
ground. Active DTS requires electrical connections where
current can be applied to heat the cable. The reduced power
requirement and simpler installation render passive soil DTS
a more flexible and inexpensive tool than active DTS.
[9] There are two potential roles for passive soil DTS.
[10] 1. If passive soil DTS alone can yield an adequate

estimate of soil moisture, it could be used to monitor soil
moisture over large scales for long time periods.
[11] 2. Passive and active soil DTS could be combined.

Active soil DTS could be reserved for periods when the site
is managed because a high‐voltage subsurface installation
requires supervision. Passive soil DTS could provide con-
tinuity between managed periods.
[12] In this study, results from a feasibility study are

presented which demonstrate that passive soil DTS alone
can yield information on surface soil moisture. From June to
September 2008, fiber‐optic cables were used to monitor
temperature at two depths at a field site at Monster, Nether-
lands. Through its impact on thermal diffusivity, soil mois-
ture influences heat transport between the cables. Here it is
shown that solving for the optimum parameters of the heat
diffusion equation can yield a time series of estimated soil
moisture. The challenges associated with inferring soil
moisture from temperature data, the lessons learned from this
experiment, and a new strategy for using this technique in
future field experiments are also discussed.

2. Methods

[13] The hypothesis of this research is that soil moisture
can be determined from temperature data because of the
dependence of soil thermal properties on soil moisture. First,
the thermal diffusivity must be determined from the observed
cable temperatures. Then, the soil moisture must be inferred
from the thermal diffusivity.

2.1. Soil Thermal Properties From Cable Temperatures

[14] Heat transfer in a soil column can be described by the
diffusion equation

@T

@t
¼ D �ð Þ @

2T

@z2
¼ � �ð Þ

C �ð Þ
@2T

@z2
; ð1Þ

where T is temperature and D is the thermal diffusivity of
the soil, the ratio of its thermal conductivity (�) to its thermal
capacity (C). These soil thermal properties are functions of
soil moisture, so the objective of this feasibility study was to
determine if soil temperature measurements at multiple levels
are sufficient to infer soil thermal properties and hence soil
moisture. Using an approach similar to that employed by
Béhaegel et al. [2007], soil moisture was estimated by finding
the diffusivity which gave the best fit between simulated and
observed cable temperature.
[15] An implicit finite difference scheme was used to

simulate heat diffusion in a soil column from the surface to
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the depth of the lower cable at a resolution of 5 mm and 60 s
(the resolution of available cable temperatures). The experi-
ment setup is shown in Figure 1. The temperature measured in
the lower cable provided the lower boundary condition. The
surface temperature, the upper boundary condition, was
measured in the cable from the DTS unit to where it entered
the ground. For a window of 24 h, the MATLAB function
fminsearch was used to find the diffusivity value that mini-
mized the root‐mean‐square error between the simulated and
observed temperature at the depth of the upper cable. Fmin-
search is a multidimensional unconstrained nonlinear mini-
mization algorithm that uses the Nelder‐Mead direct search
method. For the first time step, linear interpolation between
the three temperature measurements was used to give the
initial temperature profile.
[16] A single estimated thermal diffusivity is obtained for

the full ∼10 cm using this approach, so it is assumed that

thermal diffusivity is homogeneous over this depth. The
derived soil moisture is therefore an integrated measure of
soil moisture in the top 10 cm. Furthermore, as discussed by
Bristow [2002], the diffusivity estimated here is really an
“apparent” diffusivity because it assumes that conduction is
the only mechanism of heat transfer. This apparent diffu-
sivity is influenced by sensible and latent convective heat
transfer processes which are not represented in the model,
while the true diffusivity really refers to thermal conduction
alone.
[17] The optimization algorithm “failed” if it did not find

a diffusivity value within prescribed limits (1 × 10−8 m2 s−1,
1 × 10−5 m2 s−1). These conservative limits are well beyond
the physical range expected from the models discussed in
section 2.2. In the event of failure, linear interpolation
between the three temperature measurements was used to
reinitialize the model.

Figure 1. Experiment setup. (top) Plan view and vertical cross section of cable installation at Monster,
Netherlands. (bottom) Measured cable depth as a function of distance from the DTS end (x = 2 m refers to
the cable segment between 0 and 2 m).
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[18] A “moving window” was used to resolve changes in
soil moisture at finer than daily resolution; the 24 h optimi-
zation window was shifted in 3‐hourly increments. In
section 4, the diffusivity at each 3‐hourly time step is that
which gives the best fit in the subsequent 24 h period. The
initial condition was given by the best estimate for that time
step from the previous window’s estimation result. Because
of sensitivity of the solution to depth and the known variable
depth of the cables (Figure 1), each 2 m segment of cable
was modeled separately.

2.2. Soil Moisture From Soil Thermal Properties

[19] The volumetric heat capacity of soil (J m−3 K−1) is a
simple, well‐understood linear function of soil moisture:

C ¼ �mcm ¼ Va

Vt
�aca þ Vw

Vt
�wcw þ Vs

Vt
�scs

C ¼ n 1� Srð Þ�aca þ Srn�wcw þ 1� nð Þ�scs;
ð2Þ

where the subscripts m, a, t, w, and s denote the bulk soil,
air, total, water, and soil solids, respectively; r is the density
in kg m−3; V represents volume; c is the specific heat
capacity; Sr is the relative saturation; and n is the porosity.
[20] Thermal conductivity is considerably more compli-

cated. In dry soil, thermal conductivity is dominated by the
contribution of the air fraction, so there is little variability in
dry thermal conductivity among different soils. As the soil
becomes wetter, a thickening water film increases connec-
tivity between soil particles, causing a sharp increase in
thermal conductivity. As the soil approaches saturation, the
thermal properties of the solids fraction dominate and because
the particles are already well connected, the rate at which
thermal conductivity increases is reduced.
[21] Of the many models available, those of Johansen

[1975] and Campbell [1985] are used here to illustrate the
challenges of obtaining soil moisture given the thermal
diffusivity or conductivity. Johansen [1975] calculates the
thermal conductivity as a linear combination of the dry and
saturated thermal conductivities using a Kersten coefficient
[Kersten, 1949] which depends on relative saturation and
whether the soil is considered coarse or fine. Calculation of
the dry and saturated conductivities requires the bulk den-
sity, porosity, and quartz content of the soil. Campbell
[1985] uses an empirical equation derived from the labora-

tory‐based thermal conductivity measurements of McInnes
[1981]. Thermal conductivity is expressed as a function of
volumetric soil moisture and five coefficients that depend
on the volume fractions of soil solids, quartz, and other
minerals as well as the bulk density and the clay mass
fraction of the soil.
[22] Figure 2 presents the thermal conductivity and ther-

mal diffusivity calculated using the Johansen [1975] and
Campbell [1985] models for a loamy sand. Because of the
high thermal conductivity of quartz (7.7 W m−1 K−1) com-
pared to that of other minerals (2.0–3.0 W m−1 K−1), both
models are sensitive to the quartz fraction. Figure 2 shows
the calculated thermal properties for quartz fractions of 80%
and 90%, highlighting the need to determine the quartz
content accurately. Thermal diffusivity from the Johansen
and Campbell models is a monotonic function of relative
saturation up to D = 8.7579 × 10−7 m2 s−1 and D = 9.4809 ×
10−7 m2 s−1, respectively. Without additional information, it
is impossible to infer a unique relative saturation from a
thermal diffusivity value above these threshold values. It is
clear from Figure 2 that the choice of thermal conductivity
model will influence the final soil moisture from the esti-
mated thermal diffusivity.

3. Experiment Design

[23] This feasibility study was conducted from June to
October 2008 on the grounds of the drinking water pumping
station in Monster (52°07′N, 4°17′E), Netherlands. This
secure site ensured minimal disturbance to the equipment.
The site had a calcaire Regosol [European Commission
Joint Research Centre, 2005], with a loamy sand texture
and sparse grass cover. The results presented in this paper
are based on DTS data collected from 11 September to
9 October 2008, during which contemporaneous validation
and meteorological data were available.
[24] A Halo‐DTS system from Sensornet was used in this

experiment. This system is suitable for use with cables up to
4 km long, can detect temperature changes of 0.1 K at a
measurement integration time of 10 s, and has a spatial
resolution of 2 m. Here measurements were taken with an
integration time of 60 s, improving the accuracy further.
Armored two‐fiber multimode 50/125 mm optic cable from
Kaiphone Technology was laid in a loop, as shown in
Figure 1, to observe temperatures at two depths. The dis-

Figure 2. Thermal (left) conductivity and (right) diffusivity as functions of relative saturation calculated
using the models of Johansen [1975] and Campbell [1985] assuming two different values for quartz
content Q.
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turbance due to the plowing of the cable was negligible
because of the unstructured and loosely packed loamy sand
at the site. Prior to the removal of the cable at the end of the
experiment, trenches were dug along the length of the cable,
and the cable depths were measured using a laser level.
Figure 1 shows that the depth of cable installation increased
with distance from the DTS unit. The mean depths of the
upper and lower cables were 7.85 and 9.98 cm, with stan-
dard deviations of 1.35 and 1.31 cm and ranges of 4.9 and
4.7 cm, respectively. The mean distance between the upper
and lower cables was 2.13 cm, with a standard deviation of
0.55 cm. It is important to note that the surface temperature
observations were not colocated with those at depth. The
surface temperatures used here were measured in the PVC
tube containing the cable, between the DTS unit and the
location where the cable enters the ground. In this study,
because the study area is small and has uniform soil, cover,
and meteorological conditions, it is reasonable to assume
that surface temperature is almost uniform in space.
[25] A HOBO® weather station (Onset Computer Corpora-

tion, http://www.onsetcomp.com/products/weather_stations)
measured pressure, air temperature, relative humidity, down-
ward shortwave radiation, precipitation, wind direction, and
wind speed. These data were combined with the surface cable
temperature to calculate net radiation. Downward longwave
radiation (LWdown) from the atmosphere was calculated using
equations (3) and (4) [Bras, 1990]:

LWdown ¼ �EaT
4
a ; ð3Þ

where s is the Stefan‐Boltzmann constant and Ta is the air
temperature inKelvin.Ea is the atmospheric emissivity given by

Ea ¼ 0:74þ 0:0049e; ð4Þ

where e is the vapor pressure in millibars. Upward longwave
radiation (LWup) from the surface was given by

LWup ¼ �EsT
4
s ; ð5Þ

where Es is the surface emissivity, assumed to be 0.84 [Arya,
2001, Table 3.1], and Ts is the surface temperature in Kelvin.
An albedo of 0.18 was assumed to calculate the upward
shortwave radiation [Bras, 1990, Table 2.5]. Hourly relative
saturation of the soil was measured using four ECH2O

® probes,
distributed evenly (every ∼9 m) along the length of the cable as
illustrated in Figure 1.

4. Results

4.1. Meteorological Observations

[26] Meteorological data are not required in any of the
calculations discussed here. However, precipitation and net
radiation data are shown in Figure 3 to identify when changes
in soil moisture are expected to be seen.
[27] A total of 71 mm of precipitation was recorded during

this period, most of which occurred between 30 September
and 6 October following a fortnight of dry weather. The
highest daily amounts (14.0 and 15.5 mm, respectively)
occurred on these two dates.
[28] Net radiation was considerably reduced on 13, 24,

and 25 September as well as 1 and 6 October 2008. In
section 4.4, it will be shown that this poses a challenge to
retrieving soil moisture using the technique discussed here.

4.2. Relative Saturation Observed With ECH2O Probes

[29] Relative saturation was measured using four ECH2O
EC‐10 probes from Decagon Devices (user’s manual avail-
able at http://www.decagon.com/pdfs/manuals/EC‐20_EC‐

Figure 3. Precipitation and net radiation at Monster, Netherlands, from 11 September to 9 October
2008. Precipitation was measured in 5 min intervals (bars, left axis), and the cumulative precipitation
is also shown (dotted line, right axis). Net radiation was calculated using measured shortwave radiation,
temperature, and relative humidity, as discussed in section 2.
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10_EC‐5_v8.pdf). The sensors were inserted vertically and
thus measured relative saturation in the top 14.5 cm. Cali-
brated observations from the four probes are shown in
Figure 4. An artificial rainfall experiment was conducted on

18 September 2008 in the vicinity of ECH2O 1. Elevated
relative saturation was also observed at ECH2O 2, but the
remaining probes were unaffected. By 29 September, the soil
was completely dry. Both completely wet and dry conditions

Figure 4. Relative saturation observed using ECH2O probes from 18 September to 9 October 2008 at
the Monster study site. The mean is shown in grey.

Figure 5. Temperatures recorded in the cables at the surface and in the upper and lower levels (mean
depths of 7.85 and 9.98 cm, respectively), showing (a) the spatially averaged temperature at each depth as
a function of time, the spatial distribution of temperature in the (b) upper and (c) lower cables, and (d) the
spatial distribution of the difference between the temperature at the lower cable and the upper cable.
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were observed with ECH2O 1, so it was used to scale the data
from the other probes by assuming that the precipitation on
30 September raised the relative saturation to the same value
at all probes. This assumption is valid because of the small
study area and uniform soil and cover. Sharp increases are
apparent following the significant events on 30 September
and 6 October, while frequent smaller events maintained a
relative saturation of about 0.3 between these events.

4.3. Soil Temperatures Observed With DTS

[30] Figure 5 shows the cable temperatures observed
using the DTS system. As required for the successful
application of this method, the cable temperatures exhibit a
clear diurnal cycle in response to the diurnal variation in net
radiation that is damped and attenuated with depth. At a
given time, the range in temperature along both the upper
and lower cables varies from 0.1°C to 2.7°C. Maximum
variability occurs at the daily maximum and minimum
temperatures. In general, the range is largest on clear days
when downward shortwave radiation and, consequently, net
radiation are highest. This spatial variability in temperature
may be due to variability in soil texture or soil moisture or,
more likely, to the variation in cable depth seen in Figure 1.
[31] Figure 5 also shows that temperature difference

between the upper and lower cables clearly varies in time and
space. During the night, the lower cable cools more slowly
than the upper cable, while in the late morning to early after-
noon the surface is warming and the upper cable heats upmore
quickly. Themagnitude of the difference observed between the
cables depends on the strength of the diurnal cycle in tem-
perature, which is determined by the net radiation (Figure 3).
The temperature difference between the cables varies with
depth. Close to the DTS unit, where both cables are closer to
the surface, the difference between them is largest.

4.4. Estimated Thermal Diffusivity

[32] Figure 6 shows the estimated thermal diffusivity as a
function of distance along the cable and time. Elevated
diffusivities were estimated on 13 and 24–25 September and
in the week following 29 September. These were all periods
in which precipitation occurred (Figure 3) and soil moisture
increased (Figure 4). However, there were also many times
within these intervals in which the optimization algorithm
failed to converge on an optimum value. This can be attrib-
uted to the low net radiation values on these days (Figure 3).
When daytime net radiation is low, temperature gradients are
small. As the gradient goes to zero, the inversion becomes
unstable. This will also pose a problem when this method is
applied under dense vegetation cover. Furthermore, many of
the estimated diffusivities lie beyond the reasonable range
of values expected from both the Campbell and Johansen
models. The maximum expected value is on the order of
1.25 × 10−6 m2 s−1 (Figure 2). The horizontal striping in
Figure 6 shows that the estimated diffusivity varied with
location along the length of the cable. The three horizontal
bands apparent at x = 6m, x = 14m, and x = 22m are the cable
segments in which the estimated diffusivities generally fall
within the physically plausible range.
[33] Figure 7 examines the potential role of the distance

between the cables in obtaining a reasonable estimate for
thermal diffusivity. Time series of estimated diffusivities
from four 2 m cable segments are shown. The two diffu-
sivities in black are from x = 6 m and x = 14 m, where the
distance between the cables was 3 and 2.95 cm, respec-
tively. In both cases, the estimated diffusivity is typically
within the plausible range. A single data gap, which can be
attributed to low net radiation, occurs on 5 October. The
estimated diffusivities at x = 8 m and x = 20 m are shown in
grey. Here the cables were just 1.6 and 1.5 cm apart. The

Figure 6. Thermal diffusivity (m2 s−1) estimated using the technique discussed in section 2.1. Distance
from where the cable enters the ground at the DTS end (x in meters) is on the y axis.

Figure 7. Estimated thermal diffusivity at selected locations along the cable. The cable segments shown
were at x = 14, x = 6, x = 8, and x = 20 m, respectively.
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same temporal pattern is apparent, with increased diffusivity
estimated in periods of elevated soil moisture. However,
the estimated diffusivities are almost always higher than the
reasonable range. There are also more cases when the
optimization algorithm failed to converge on a solution. This
suggests that the cables must be some minimum distance
apart to reliably estimate the thermal diffusivity. To inves-
tigate this further, the diffusion model was used to simulate
the response at depth to a sinusoidal surface temperature
pattern.
4.4.1. Hypothetical Cable Depth for Optimum
Performance of Inversion Approach
[34] The analysis is in terms of amplitude, which varies

only with depth, rather than temperature, which varies with
both time and depth. For a sinusoidal surface temperature
with amplitude As and period P, the amplitude at some soil
depth z is given by

A zð Þ ¼ As exp �z

ffiffiffiffiffiffiffi
�

PD

r� �
; ð6Þ

where D is the thermal diffusivity of the soil [e.g., Arya,
2001]. To determine soil moisture from the surface to
depth z�, cables are placed at the surface (z = 0 cm) and at
the lower boundary (z = z�). The inversion method requires
a third cable somewhere between these two. Figure 8a
shows the temperature amplitude difference between a
hypothetical cable at depth z and one both at the surface
(dashed line) and at 10 cm depth (solid line). The optimum
depth for this hypothetical cable, zopt, is where these ampli-
tude differences are equal. This occurs where the amplitude
is the mean of the amplitudes in the surface and lower
cables:

A zopt
� � ¼ As þ A z�ð Þ

2
: ð7Þ

Substituting the values for the amplitude at z� and zopt and
rearranging yields the following expression for the opti-
mum cable depth:

zopt ¼ �
ffiffiffiffiffiffiffi
PD

�

r
log

1

2
exp �z�

ffiffiffiffiffiffiffi
�

PD

r� �
þ 1

� �	 

: ð8Þ

This optimum depth is at the intersection of the two curves
in Figure 8a. Note that the optimum depth depends only on
the soil thermal diffusivity and the depth z�. The difference
in amplitude between either boundary and zopt, on the other
hand, is proportional to the surface amplitude:

�A zopt
� � ¼ As � A zopt

� � ¼ As

2
1� exp �z�

ffiffiffiffiffiffiffi
�

PD

r� �� �
: ð9Þ

Higher values ofDA imply that changes in temperature and
therefore diffusivity are more readily detectible. Its depen-
dence on As explains why reduced net radiation (which
reduces As) limits our ability to estimate diffusivity and soil
moisture from temperature observations. From Figures 8b
and 8c, using the lowest value of diffusivity for a given
soil yields the most conservative estimate of zopt, i.e., closest
to the surface with the highest value of DA. The thermal
diffusivity of dry soil should therefore be used to determine
the optimum cable depth. Recall from section 2.2 that there
is little variability in this quantity among soil types, so the
optimum depth will vary little by soil type.
[35] Assuming D = 2 × 10−7 m2 s−1, Figure 8a shows that

the optimal cable depth to measure soil moisture from 0 to
0.10 m is 0.034 m and thatDA at this depth is 5.6 K for As =
15 K. Placing the cable at 0.07 or 0.085 m reduces the
corresponding values of DA to just 1.9 or 0.9 K, respec-
tively. This explains why the diffusivity estimate appears to
improve with increasing distance between the lower cables
in Figure 7. Placing the cable closer to the optimal depth

Figure 8. Calculating the optimum cable depth to estimate soil moisture between the surface and depth
z� (in meters). For As = 15 K and D = 2.5 × 10−7 m2 s−1, (a) the difference in amplitude between a cable at
depth z and the cables at the surface and lower boundary where z� = 0.1 m is shown. (b) The optimum
cable depth (zopt) and (c) the difference in amplitude between a cable at zopt and the boundaries are also
shown.
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leads to more reliable estimates of diffusivity and hence soil
moisture.
4.4.2. Impact of Uncertainty in Cable Depth
[36] A Monte Carlo experiment, with 100 ensemble

members, was conducted to demonstrate the impact that
uncertainty in the cable depth has on the estimated diffu-
sivity. The Johansen model (assuming 90% quartz content)
was used to generate a time series of thermal diffusivity
values from the relative saturation values plotted in Figure 4.
Assuming these values for diffusivity in the heat diffusion
model (equation (1)) and forcing the surface boundary with
the temperature data from the surface cable, a time series of
temperature at 4 cm depth was simulated. This depth was
chosen as it is close to the optimal hypothetical depth from
section 4.4.1. The inversion approach was used to estimate
the diffusivity, but assuming that the depths of the upper and
lower cables were uncertain, each with an error standard
deviation of 0.5 cm.
[37] Figure 9 shows the mean diffusivity estimated for

each pair of uncertain cable depths. The mean value of the
true diffusivity was 5.1 × 10−7 m2 s−1. The impact of

uncertainty in the depth of the upper cable is much more
significant than in the lower cable because the temperature
fluctuations at depth are smaller, so there is less difference
between model layers. An error with a standard deviation of
0.5 cm in a cable at 4 cm depth leads to diffusivity estimates
spanning the full dynamic range. If the upper cable depth is
assumed to be shallower than the true depth, the diffusivity
is underestimated.
[38] Figure 10 shows the time series of estimated diffu-

sivity for each assumed cable depth pair, with the true dif-
fusivity shown in black. The apparent grouping of diffusivity
estimates is due to the discretization of the diffusion model
(dz = 0.005m). Figure 10 shows that the impact of uncertainty
in cable depth is most significant at high values of diffusivity.
At very high values of diffusivity, assuming the incorrect
cable depth can lead to physically implausible (high) values
of thermal diffusivity. This underscores the importance of
correctly determining the cable depths. The overestimation
of thermal diffusivity in Figure 7 could be because the cable
depth was overestimated.

4.5. Estimated Soil Moisture

[39] Figure 11 shows the soil moisture inferred from the
estimated diffusivities for two 2 m segments, those at 6 and
14 m from the DTS unit. These segments are shown in
Figure 7 to give the most reasonable estimated diffusivity
values.
[40] For most of the experiment up to 29 September the

estimated diffusivity was very low. Consequently, both the
Johansen and Campbell models yield unique and compara-
ble estimates for relative saturation. While Figure 4 suggests
that the soil was completely dry by 29 September, it is
important to note that both thermal conductivity models are
only defined above relative saturation of 0.1. In dry soils, a
small change in relative saturation leads to a large increase
in thermal diffusivities, so, despite the variability in Figure 7
during this dry period, the estimated relative saturation is
nearly constant.
[41] Figure 7 shows that elevated diffusivities were

detected for these segments during the week of 29 September
to 6 October, consistent with the increased soil moisture
shown in Figure 4. However, these diffusivities were higher
than the maximum expected from both the Johansen and
Campbell models for this loamy sand. Consequently, there
are many gaps in estimated soil moisture during this wet
period. There are three possible causes of this problem:

Figure 9. The impact of uncertainty in the cable depths on
the temporal mean of the estimated diffusivity. The color of
each dot indicates the value of the estimated diffusivity. The
true value refers to the diffusivity value calculated from the
observed relative saturation and was used to simulate the
temperatures at 4 and 10 cm.

Figure 10. Sensitivity of diffusivity estimate to uncertainty in the cable depth. Each grey line is the dif-
fusivity estimate from an assumed pair of cable depths. The true (simulated) diffusivity is superimposed in
black.
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(1) neither the Johansen nor the Campbell model correctly
describes the relationship between relative saturation and
thermal diffusivity for this soil; (2) the distance between
the cables is still too small (section 4.4.1) and/or the cable
depth is incorrect (section 4.4.2); and (3) the diffusion
model was invalid during this period because of heat advec-
tion as water infiltrated the unsaturated zone.
[42] Another interesting feature of Figure 11 is attribut-

able to the nature of the relationship between thermal con-
ductivity and relative saturation, that above some value the
increase in thermal conductivity with relative saturation
slows down. Above this critical value, it is impossible to
infer a unique relative saturation value for a given thermal
conductivity or diffusivity. For each model, both possible
solutions are shown in Figure 11. The threshold in the
Campbell model is higher than the maximum value from the
Johansen model, so in some cases (e.g., for x = 6 m on
25 September), the Campbell model will give two possible
values (one greater than and one less than the maximum),
while the Johansen model gives none. If the diffusivity is
between the threshold value from Johansen and that from
Campbell, the Campbell model gives a unique estimate for
the relative saturation, while the Johansen model yields two
possible values (e.g., after initial increase on 29 September,
for x = 14 m). Clearly, the inability to distinguish between
relative saturation of ∼0.2 and ∼1.0 is unacceptable. This
indicates that some prior knowledge of soil moisture would
add value to this estimate. In section 5, details on how to
address this serious shortcoming will be presented.

5. Conclusions and Discussion

[43] A feasibility study was conducted to investigate the
possibility of using passive soil DTS to observe soil moisture.
Cables were installed at two depths to monitor temperature

changes in response to net radiation. The hypothesis was that
the cable temperatures could be used to estimate soil thermal
properties from which soil moisture could be inferred.
[44] Béhaegel et al. [2007] estimated 15 day soil moisture

in the thermally active layer by simulating heat diffusion
and finding the thermal diffusivity which gave the best
agreement with observed temperature at 60 cm. Here a
similar inversion approach was used to estimate soil mois-
ture in the top 10 cm of soil, where the boundary conditions
and temperature to be matched were all measured using
passive soil DTS. Soil moisture was estimated in 24 hmoving
windows shifted in 3‐hourly increments. While it was shown
that changes in soil moisture resulted in detectable changes in
thermal diffusivity, the shorter estimation or optimization
window posed several problems.
[45] 1. In a longer time window, it seems a more rea-

sonable assumption that diffusion is the dominant heat
transfer process because the duration of a precipitation event
is a smaller fraction of the study interval.
[46] 2. The temperatures vary primarily in response to the

diurnal variability in net radiation. If net radiation is low for
a given day, there is very little temperature response to
measure. In a 15 day estimation window (e.g., as used by
Béhaegel et al. [2007]) this is less problematic unless net
radiation is low for the entire 15 day window.
[47] 3. A longer study interval implies an effective dif-

fusivity for a longer period, so the results are effectively
averaged. This reduces the likelihood of obtaining extreme
values beyond the physically reasonable range.
[48] The usefulness of inverse methods is further limited

by the nature of the relationship between thermal diffusivity
and relative saturation. At low relative saturation, a minute
change in relative saturation leads to a dramatic increase in
diffusivity, while diffusivity is largely insensitive to changes
at higher relative saturation. Furthermore, it is impossible to

Figure 11. Inferred relative saturation from the estimated thermal diffusivities at (top) x = 6 m and
(bottom) x = 14 m using the Campbell [1985] and Johansen [1975] models. Above a diffusivity
threshold in each of the models, relative saturation is a nonunique function of thermal diffusivity. “Low”
and “high” assume the relative saturation value less than and greater than that associated with the
maximum thermal diffusivity.
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infer a single relative saturation from a diffusivity value for
at least half of the dynamic range.
[49] While this study demonstrated that passive soil DTS

could indeed detect changes in soil moisture, it also high-
lighted several reasons why data assimilation might be a
more appropriate method of estimating soil moisture than
conventional inverse methods. In a data assimilation
approach, the cable temperatures can be used to constrain a
coupled heat‐moisture transport model. Future research will
focus on a dual state‐parameter estimation approach [e.g.,
Moradkhani et al., 2005], in which temperature will be
estimated as a state and soil moisture will be estimated as a
parameter of the model. Thermal properties are calculated
from soil moisture in forward simulations, avoiding the
nonuniqueness problem in the other direction. The model
can be adapted to include advection, evaporation, or any
additional processes considered significant. Accounting
for these processes ensures that the true, rather than the
“apparent,” thermal diffusivity is estimated. Soil tempera-
ture and moisture content can be estimated at all depths in
the desired profile at the resolution of the coupled model,
yielding a profile of surface and root zone soil moisture
rather than a single integrated measure between the cables.
[50] Even using data assimilation techniques, many of the

technical challenges remain. Several lessons from this study
will be used to address these more practical issues. First, the
cable depths must be well known and the cables must be
sufficiently far apart for there to be a measurable difference
in temperature. The plow design and installation method
will be revised to ensure that cables are installed a fixed and
known distance apart. The cable depth can be determined by
amplitude analysis for a given soil moisture if the relation-
ship between thermal diffusivity and soil moisture is known
using probe measurements [e.g., Mori et al., 2003]. A
method was presented to calculate the optimum cable depth
to measure soil moisture over a prescribed depth. To mea-
sure soil moisture from 0 to 10 cm, for example, cables are
required at 0, 10, and 3.4 cm. In this experiment in a fine
sand Regosol with weak to absent soil structure, there was
little disturbance due to the plowing of the cable. However,
if cables are plowed into soils containing fine sediments or
clay, a recovery period would be required before the first
useful observations to ensure that the measurements could be
considered representative of the surrounding undisturbed soil.
[51] In this experiment, a single series of surface tem-

perature was available. Because the experiment was con-
ducted in a very small area with uniform soil, cover, and
meteorological conditions, it is reasonable to assume that
surface temperature is homogeneous. However, to account
for spatial variability, future larger‐scale experiments will
have a colocated cable to measure surface temperature.
[52] Finally, the relationship between thermal conductiv-

ity and soil moisture is critical. This must be ascertained
through in situ measurements over the full dynamic range of
saturation values. This is the key link between soil moisture
and soil temperature, and its significance cannot be under-
estimated if passive soil DTS is to be developed into a
viable approach to measure large‐scale variability in soil
moisture.
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