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A new approach is suggested to define and evaluate key metrics as to autonomous aerial 

vehicle performance.  This approach entails the conceptual definition of a “Turing Test” for 

UAVs.   Such a “UAV Turing test” would be conducted by means of mission simulations 

and/or tailored flight demonstrations of vehicles under the guidance of their autonomous 

system software.  These autonomous vehicle mission simulations and flight demonstrations 

would also have to be benchmarked against missions “flown” with pilots/human-operators in 

the loop.  In turn, scoring criteria for such testing could be based upon both quantitative 

mission success metrics (unique to each mission) and by turning to analog “handling 

quality” metrics similar to the well-known Cooper-Harper pilot ratings used for manned 

aircraft.  Autonomous aerial vehicles would be considered to have successfully passed this 

“UAV Turing Test” if the aggregate mission success metrics and handling qualities for the 

autonomous aerial vehicle matched or exceeded the equivalent metrics for missions 

conducted with pilots/human-operators in the loop.  Alternatively, an independent, 

knowledgeable observer could provide the “UAV Turing Test” ratings of whether a vehicle 

is autonomous or “piloted.”  This observer ideally would – in the more sophisticated mission 

simulations -- also have the enhanced capability of being able to override the scripted 

mission scenario and instigate failure modes and change of flight profile/plans.   If a 

majority of mission tasks are rated as “piloted” by the observer, when in reality the 

vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation 

“passes” the “UAV Turing Test.”  In this regards, this second “UAV Turing Test” approach 

is more consistent with Turing’s original “imitation game” proposal.  The overall feasibility, 

and important considerations and limitations, of such an approach for judging/evaluating 

autonomous aerial vehicle “intelligence” will be discussed from a theoretical perspective.  
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Nomenclature 

G i  Cooper-Harper handling quality rating for the 

i
th

 mission task for a generic aircraft model  

H i  Cooper-Harper handling quality rating for the 

i
th

 mission task for the subject aircraft  

NM  Number of mission simulations 

NT  Number of mission tasks being rated  

sA  Mean mission success (from several mission 

simulations) of an autonomous system guiding 

and controlling a subject aircraft 

 sP  Mean mission success for human operator 

controlling subject aircraft in same set of 

mission simulations as autonomous system 

S  Array of individual mission success estimates  

Ti  Reviewer rating as to “intelligence” guiding 

the vehicle for i
th

 mission task, for subset of 

tasks performed by autonomous system  

" Level of autonomy 

" * “Mechanistic approach” intelligence metric, 

0 " # * " 10  

"#
*  UAV Turing test intelligence metric  
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I. Introduction 

THERE continues to be ongoing debate as to how 

to define, measure, and evaluate key metrics as to 

autonomous aerial vehicle performance.  This includes, 

of course, fundamental questions, and measures, as to 

aerial vehicle autonomy and intelligence.  This is not a 

wholly academic question; autonomous aerial vehicles 

are steadily being introduced and finding great utility in 

society.  References 1, 2, and 3, for example, discuss in 

considerable detail some of the societal benefits that 

could be derived from the widespread usage of 

autonomous aerial vehicles, with special emphasis on 

the benefits of autonomous vertical lift and/or rotary-

wing vehicles.  Figure 1 illustrates some of these 

possible mission or functional capabilities.  To a 

considerable degree, though, the rate of UAV 

introduction can be considered contingent upon the 

relative maturity of emerging autonomous system 

technologies.  From an engineering perspective it is 

difficult to develop a technology wherein fundamental 

questions as to its optimum functioning is still 

undecided.  From an operational perspective it is 

difficult to define mission requirements as well as 

acquire and effectively use a new system if key 

performance metrics are only nebulously understood.   

 

Does defining and measuring intelligence for 

embodied (i.e. robotic) intelligent systems, such as 

autonomous aerial vehicles, have special importance, or 

consequence, as compared to other establishing metrics 

for other intelligent systems?   The answer is, of course, 

yes.  For embodied intelligent systems, such as UAVs, 

actions can have dramatic consequences in the real 

world.   UAVs can crash; they can collide in the air or 

on the ground with other vehicles or objects.  They can 

fail to sense, and appropriately deal with, contingencies 

and mission uncertainties that a pilot onboard a manned 

aircraft might otherwise be able to deal with.   

Surveillance
Mobile User
Interaction

& Utility

Rapid 

Deployment 

of Distributed 

Processes

 
Fig. 1 – “Unmanned Rotorcraft” and Other 

Autonomous Aerial Vehicle Applications 

 

An example of an unmanned rotorcraft performing a 

rapid deployment of distributed processes, as per Refs. 

3-4, is given in Fig. 2, a forest service “Sentinel” fire 

spotter small autonomous rotary-wing vehicle.  The 

forest fire tracking application has received wide-spread 

attention by the UAV research community, e.g. Refs. 5-

6.   

 

 
Fig. 2 – “Sentinel” fire-spotter 

 

But why worry specifically about defining metrics 

and tests for machine intelligence for unmanned 

rotorcraft?  It is generally recognized that rotorcraft are 

special -- and unique -- vehicles as compared to 

conventional fixed-wing aircraft.  Mastery of rotorcraft 

technologies is demanding, challenging, and inherently 

complex and multidisciplinary; this is especially true for 

unmanned rotorcraft.  One brief example, unmanned 

rotorcraft may not only have to have software capability 

for high levels of mission planning but may also have 

the capacity for controlling high-frequency (n-per-rev) 

on-blade active rotor controls as a function of some 

real-time operating condition(s).  Many other coupled 

aeromechanics and autonomous system technology 

issues may need to be considered in future unmanned 

rotorcraft design.  Control of variable geometry 

configurations for rotorcraft is yet another example.  

The design challenge becomes even more significant 

when a system of systems is being designed.  In this 

case, perhaps, a collective of heterogeneous vehicles 

could be concurrently designed to cooperatively work 

together, or, alternatively, an automated base camp 

might be designed to service and maintain unmanned 

rotorcraft.  A gamut of these and other possibilities, in 

terms of a multiplicity of intelligent systems and 

functions – for future unmanned rotorcraft is shown in 

Fig. 3.     
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• Advanced control strategies for active 

rotor/surface control & variable 

geometry configurations

• Intelligent vehicle health monitoring 

system

• Flight safety and load -limit monitoring 

& control

• Low- to mid-level flight profile/trajectory 

planning

• High-level mission planning and 

decision -making

• Coordination/cooperation with other 

robotic/autonomous assets

• Automated base camps

• Robotic/automated servicing & 

maintenance equipment

• Environmental control under severe 

conditions & remote -site deployment

• Advanced (secured) telecommunication, 

data analysis, & resource allocation 

planning

 
Fig. 3 – Unmanned Rotorcraft and a Potential Multiplicity of Intelligent Systems and Functions 

 

 

As it is essential for successful vehicle development 

and operational usage to define metrics for key aspects 

of autonomous aerial vehicle performance – this, of 

course, includes, in addition to the familiar rotorcraft 

design aeromechanics parameters, new metrics for 

autonomy, intelligence, and others.  If you cannot 

define and measure something, you cannot effectively 

expend effort to physically realize or improve 

something. Given this pressing need, why is it, then, so 

difficult to define and devise metrics for autonomy and 

intelligence?  Two reasons, perhaps.  First of all, it is 

never an easy process to define engineering standards 

for an emerging technology or a competitive research 

field of study.  Second, intelligence continues to be an 

intangible/indefinable, though obviously innate, quality 

to understand in humans let alone defining, devising, 

and measuring it in machines.  Fortunately, human 

beings are quite adept at forging ahead -- despite 

intangible, even metaphysical, concepts and questions -

- pragmatically working around such issues/questions 

as need be.  In this regards, intelligence falls within a 

special class of intangible concepts, or things, that 

could be collectively known as “I know it when I see 

it.”  It is the contention of this paper, that no single 

machine intelligence metric can be fully successful if it 

does not in some manner recognize and draw, in part, 

upon this very human characteristic of the intuitive 

grasp of the intangible.  The trick, of course, is to merge 

qualitative with quantitative attributes, to arrive at 

practical measures that can be used to engineer complex 

systems.  This is where the heritage of handling quality 

requirements comes into the forefront of enabling the 

definition of intelligence metrics for autonomous aerial 

vehicles -- more to follow later.   

 

Prior to proposing specific example of machine 

intelligence metrics, it is crucial to address the question 

as to what are the minimum general attributes of a good 

intelligence metric.   It is proposed that there are four 

essential attributes for good machine intelligence 

metrics: their formulation must be intuitive, their 

estimates must be generalize-able and predictable (from 

test-to-test, mission-to-mission, and operational-

environment-to-operational-environment), they can be 

tailored to specific application domains but must be at 

least broadly applicable within that domain, and they 

must have a graduated (near-continuous and not 

discrete) scale.   Intelligence metrics must be intuitive 

in the context that both the intelligent system 

user/customer and research communities must be able 

to quickly grasp, positively respond to, and concur with 

the key conceptual underpinnings of the intelligence 

metric.   Similarly, a good intelligence metric must be 

both generalize-able and predictable such that a result, 

stemming from a subset of tests or estimates, must be 

consistent when applied to a wider and more diverse set 

of tests, and/or test conditions.  The reliability and 

utility of a metric is greatly diminished if the metric 

results vary wildly from one test, or estimate, to another 

-- i.e. it cannot provide a generalize-able result.  

Further, a metric utility is also diminished if all key 

governing influences/factors cannot be established and 
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accounted for in the test/estimation methodology 

inherent in the metric -- i.e. the metric cannot be 

considered predictable.   

 

The proposed UAV Turing test’s (UTT) greatest 

strength lies in its intuitive formulation.  This is in large 

part because the test draws upon long established, or 

heritage, concepts and practices from the handling 

qualities research community.  The proposed UAV 

Turing test is inherently tailored to the autonomous 

aerial vehicle application domain, but how broadly 

applicable can it be defined such that the same resulting 

metric(s) might be applied to the wide range of aerial 

vehicles that might be considered UAVs?  In other 

words, can these same metrics be applied to a wide 

range of UAVs that includes remotely piloted, tele-

operated, optionally piloted, semi- and fully-

autonomous platforms?  For more discussion, as to 

autonomy versus intelligence for aerial vehicles, see 

Refs. 7-8.  In particular, Ref. 7 presented a level-of-

autonomy scale, ", that is defined in terms of ground-

station operator workload; refer to Fig. 4.  Other level-

of-autonomy scales have been defined in the literature, 

notably Refs. 9-12.  In particular, a level of autonomy 

scale for spacecraft systems, and planetary aerial 

vehicles in particular, was defined and expanded upon 

in Refs. 8 and 13.  The key difference in the work of 

Refs. 7, 8, 13 -- versus perhaps other work in the 

literature -- is the emphasis on attempting to integrate 

the defined metrics into aircraft and spacecraft 

conceptual design and system analysis processes.   

 

The proposed UAV Turing test has to be carefully 

structured so as to address the question of graduated 

intelligence metric scaling.  The original “imitation 

game” version of the Turing test is a discrete metric.  

(Yes/no, is it a machine or a human being that is being 

interacted with or observed?)  Such a simple yes/no 

discrete metric is inadequate as an intelligence metric 

for UAVs.  This quandary will be discussed further 

later in the paper.    
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Fig. 4 – Levels of Autonomy in Terms of Ground-

Station Operator Workload (from Ref. 7) 

II. The Basic Proposal 

Perhaps what is required is a “Turing Test” for 

UAVs.  This idea was first suggested in Ref. 7.   The 

Turing Test was first described in Ref. 14 – referred 

therein as the “imitation game” (perhaps this was a 

unfortunate label as it seems to compound the 

continuing debate as to whether the Turing test is a 

valid measure by which machine intelligence can be 

judged, e.g., Refs. 15-16).  In short, the Turing test for 

evaluating machine intelligence can be posed as 

follows: during the course of a blind-test general (non-

constrained with respect to subject matter) conversation 

via teletype, could a machine’s response be made to be 

indistinguishable from a person’s?  If so, Turing 

argued, by reason of this inability to distinguish 

between the human and machine, the machine would 

have to be successfully judged as capable of human-like 

“thinking.”  In this regards, a similar kind of question 

can be posed as to UAVs.   In effect, can a UAV, given 

its associated (semi or fully) autonomous systems, be 

made to fly so well, under realistic missions and 

operating conditions, that it appears to be 

(indistinguishable from) flown by a pilot or human 

operator (onboard or remotely piloting the vehicle)?    

 

Compare and contrast this approach to “challenge”-

style evaluations of autonomous systems such as the 

AUVSI (Association for Unmanned Vehicle Systems 

International) annual international aerial robotics 

competitions (Ref. 17) or the DARPA “Grand 

Challenges” (Ref. 18).   The weakness of the challenge 

approach to testing autonomous systems is perhaps the 

results cannot be generalized.  The inherent risk for 

such autonomy challenges is that they may be too 

tailored to specific mission types, and the operational 

environments employed, during the tests.   

 

Finally what is also required to help evaluate UAV 

autonomous system capabilities is essentially a “Turing 

Test” (Ref. 14) for autonomous aerial vehicles.  Such 

testing would have to be conducted by means of 

extensive mission simulations of the vehicle under the 

guidance of its autonomous system software.  Such 

autonomous vehicle mission simulations would also 

have to be benchmarked against missions “flown” with 

pilots/human-operators in the loop.  In turn, scoring 

criteria for such testing could be based upon 1. overall 

mission success metrics and 2. by “handling quality” 

metrics similar to the well-known Cooper-Harper pilot 

ratings, Ref. 19, used for manned aircraft.  Autonomous 

aerial vehicles would be considered to have 

successfully passed this “UAV Turing Test” if the 

aggregate mission success and handling qualities for the 

autonomous aerial vehicle matched or exceeded the 
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equivalent metrics for missions conducted with 

pilots/human-operators in the loop.    

 

 

Table 1.  Sample Notional “UAV Turing Test” 

Checklist 

 

Flight Phases Mission ”X” 

–

Autonomous 

Mission “X” 

– 

 “Piloted” 

   

Take-off (with x% 

probability – 

Gaussian distribution 

– of runway abort) 

  

…   

Navigating and flying 

waypoint-to-waypoint 

trajectories within 

prescribed precision 

  

…   

Landing (with z% 

probability of final 

approach abort) 

  

 

 

Alternatively, a third-party knowledgeable observer 

could provide the “UAV Turing Test” ratings of 

whether a vehicle is autonomous or “piloted” (i.e. 

“check” the boxes in Table 1 for each pertinent mission 

task element).  This observer, or reviewer, would also 

have the additional role of being able to override the 

scripted mission scenario and instigate failure modes 

and change of flight profile/plans.  If the majority of 

tasks are rated as “piloted” by the observer, when in 

reality the vehicle/simulation is fully- or semi- 

autonomously controlled, then the vehicle/simulation 

“passes” the “UAV Turing Test.”  In this regards, this 

UTT approach is more consistent with Turing’s original 

“imitation game” proposal (Ref. 14).   

 

The advantages of the UTT are: its artificial 

intelligence (AI) heritage with respect to the classic 

“imitation game” Turing test; its fundamentally 

intuitive nature; its heritage with respect to the 

aeronautics handling qualities community, as to 

accounting for “pilot rating” of aircraft, aircraft systems 

(both optimal and “degraded”), mission operations, and 

operating environments.   Because of this 

aforementioned heritage with respect to the handling 

qualities community, and by extension the broader 

aviation/user community, the proposed UAV Turing 

test has the greater potential for general adoption by 

that community.   It is essential, though, to define a 

graduate scale for the UTT.  A simple yes/no or 

pass/fail criterion, such as classic Turing test, is 

inadequate for autonomous aerial vehicle applications.  

Addressing how to best implement a gradated-scale -- 

versus a discrete yes/no or pass/fail -- intelligence 

metric is one of the chief objectives of this paper.  It is 

perhaps this lack of a graduated-scale that is one of the 

two key disadvantages of the classic “imitation game” 

Turing test that continues to foster considerable debate 

– and sometimes acrimony – within the artificial 

intelligence research community.  The other key 

disadvantage of the classic Turing test is perhaps in the 

unfortunate choice of the term “imitation game” that 

Turing used to introduce the concept.  The use of the 

term imitation, to many AI researchers, seems to by 

definition imply that the Turing test can never hold any 

validity as a test for machine intelligence.  More 

discussion will follow later in the paper on this debate 

within the AI community. If, as will be suggested, an 

acceptable graduated-scale can be devised for the UTT 

this will no doubt be of considerable enhancement to its 

utility as an intelligence metric.   

 

III. Why Care about this Issue?  The 

Justification for Measuring/Judging 

UAV Intelligence 

What are the key justifications for developing 

robust intelligence metrics for UAV?  Primarily, the 

justification fall in the following categories: 

development, acquisition, and operation.  In all three 

areas technical strides must be made in defining and 

evaluating autonomy and intelligence metrics.    

 

From a development perspective several issues 

stand out as to the imperative for defining robust and 

utilitarian metrics for autonomy and intelligence.     For 

example, autonomy as an emerging design driver -- in 

particular, in the context of a new technical discipline 

yet to be incorporated into aerospace multidisciplinary 

design and optimization and analysis – has been briefly 

discussed in Ref. 20.  Further, the implications of 

autonomy and intelligence metrics on the system 

analysis of aerial vehicle and spacecraft system has 

been discussed in Refs. 2, 7, 11-13; the emphasis of this 

work being primarily on assessing and prioritizing 

autonomous technology portfolios for given domain 

applications.   The technology portfolio tools outlined 

have continued application throughout the development 

cycle of aerospace systems.   Intelligent system metrics 

are discussed in Ref. 1 in the context as being a crucial 

element of defining design functional requirements, 

performing and evaluating conceptual designs, and 

aiding in the overall conceptualization process.    

 

As mission capability becomes more heavily 

influenced by aerial vehicle autonomy and intelligence, 
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then respective user-community acquisition 

departments will require more demanding criteria to 

discriminate between autonomous platforms being 

submitted by offerors.   This is especially true for 

autonomous aerial vehicles.  As the number of 

platforms, vendors, and missions increase, more 

rigorous autonomy and intelligence metrics, and 

associated test and evaluation criteria, will become 

essential.   This, in particular, is an important point: 

autonomy and intelligence metrics have to be testable, 

ideally in a manner consistent with traditional 

aerospace test and evaluation practices.  Additionally, 

the upgrade or modernization programs of early 

generation UAV assets will focus inevitably not only on 

more capable sensor/payload packages but also on the 

caliber of “brains” flying the platforms.    

 

The current primary utility for UAVs is 

surveillance.  From an operations perspective, to enable 

other, more challenging, missions will dictate higher 

levels of autonomy and intelligence.   Further, the user-

community for such platforms will need to be presented 

convincing demonstrations of sustained reliability, 

mission effectiveness, and system “trustworthiness” 

before the widespread acceptance of autonomous aerial 

vehicles for the more challenging missions.      Life 

cycle cost effectiveness for highly autonomous systems 

will be a major concern/issue for not only acquisition 

departments but the ultimate users/operators of such 

systems.  There are three key cost-effectiveness 

assumptions that underlie the current popularity of 

UAVs: first, UAVs can potentially have a lower per 

unit cost than a manned aircraft, second, under special 

circumstances and missions UAVs can be considered 

more expendable than manned aircraft, and, third, use 

of UAVs can significantly reduce operational costs.  As 

autonomous aerial vehicle are fielded these assumptions 

will come under increasing scrutiny as to their validity.   

Therefore, any and all autonomy and intelligence 

metrics will have to be of a general utility so as to be 

ultimately incorporated into life cycle cost estimation 

methodologies.   

 

IV. The UAV Turing Test and Other 

Intelligence Metrics 

There seems to be three general approaches to 

estimating, or rather judging, machine intelligence, 

denoted herein this paper as: mechanistic, emergent, 

and empirical.  The mechanistic approach estimates 

machine intelligence through prescribed functional 

relationships based on innate parametric characteristics 

of the intelligent and/or autonomous systems being 

studied.  Such innate parameters include number of 

sensors or input data provided to the system, number of 

lines of software defining the systems, etc.   Thus the 

mechanistic approach reasoning goes: the more 

complex the machine the more capable and therefore 

the more intelligent (though not necessary 

computationally efficient or, rather, elegant) the 

system.  The mechanistic approach has been examined 

in some depth, e.g. Refs. 7-8,13.  The emergent 

approach seeks to evaluate machine intelligence in 

terms of initiating or observing complex intelligent 

system behavior that is a priori unpredictable and/or 

nondeterministic from the initial set of fundamental 

rules/behaviors instantiated in the system.   In some 

regards this is the “complexity from simplicity” school 

of thought popular in recent artificial intelligence 

research.  An example of this approach can be found in 

Ref. 21.  Finally, the empirical approach seeks to 

validate or quantify autonomous and/or intelligent 

system performance in the context of, ideally physical 

but also simulated, demonstrations and field trials.  It is 

in this later category whereby the concept of robotic or 

autonomous vehicle competitions or challenges comes 

into play.  The UAV Turing test is but one example of 

the empirical approach to defining, or otherwise 

establishing, machine intelligence.    

 

 

V. “Imitation Game” Version of UAV 

Turing-Style Tests 

In order to continue with the discussion regarding 

the UTT, it is necessary to discuss some terminology.  

First, it is necessary to clarify the distinction between 

“piloted” versus “autonomous” (whether semi- or fully-

autonomous) operation of an aerial vehicle.    An aerial 

vehicle can be considered “piloted” in either the case 

where the pilot, or aircraft operator, is physically 

onboard the vehicle or is remotely, but directly 

providing the real-time flight control inputs, operating 

the aircraft.   A couple of examples for clarification are 

provided.  First, an aircraft, with or without passengers, 

with an operator (either onboard or remotely) providing 

only high-level -- neither continuous nor real-time input 

– mission commands and flight guidance should be 

considered as being at least semi-autonomous. Second, 

a manned aircraft, carrying passengers but having no 

operator (onboard or remotely) providing continual 

real-time flight control inputs, should be considered to 

be fully autonomous. Therefore, in this context most 

fielded UAV flying today would be considered to be 

“piloted,” albeit remotely, except for perhaps for a 

subset of mission tasks.  Considerable discussion is 

devoted in Ref. 7 to the topic of defining UAV 

autonomy levels.   
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Aeronautical design standard ADS-33E-PRF, Ref. 

22, defines a fundamental subset of mission task 

elements (MTE) for military rotorcraft.   These mission 

tasks include: hover, landing, slope landing, hovering 

turn, pirouette, vertical maneuver, depart/abort, lateral 

reposition, slalom, vertical re-mask, acceleration and 

deceleration, sidestep, deceleration to dash, transient 

turn, pull-up/pushover, roll reversal, turn to target, high 

yo-yo, and low yo-yo.  Several of these mission tasks 

should ideally performed in both good and degraded 

visual environments, as well as subject to identified 

system/control failures.   Obviously both other and/or 

additional mission tasks can also be considered in 

defining a UTT, depending on the type of vehicle and 

mission being considered.    

 

It is important to rank hierarchically such mission 

tasks into sub-groups of autonomous system 

“complexity.”  This is a refinement of concepts related 

to mission operational and environmental 

characterization as were introduced in Refs. 7-8,13.   To 

some degree, the likes of documents such as the U.S. 

Army’s aeronautical design standard ADS-33E-PRF for 

military rotorcraft handling qualities, Ref. 22, has 

already accomplished this.   

 

It is recommended that following principles be 

considered in attempting to perform the notional UAV 

Turing test: conduct the test to minimize 

observer/reviewer biases; conduct an adequate pre-test 

mission screening process to ensure that extraneous or 

inconsequential mission tasks and operational 

constraints are not introduced during the testing; take 

steps to ensure that a test is conducted such that a 

genuine blind-test is conducted; gather pilot or operator 

post-mission narrative comments; gather, in addition to 

the numerical rating data, observer/reviewer post-UTT 

narrative comments.  Human observers/judges are 

intrinsic to the UTT; psychology and social science 

studies into observer biases and behaviors needs to be 

accounted for, or accommodated, in the UTT 

experiment planning and conduct.  This question of 

observer biases and behaviors is a familiar one in 

sociological and psychological research; e.g. Ref. 23.   

Both the pilot/operator and observer/reviewer narrative 

comments, though not integral to defining UTT-derived 

intelligence metrics as soon will be seen, are 

nonetheless vital in refining and improving subsequent 

UTT exercises.   Such narrative comments, in addition 

to numeric ratings, are very much consistent with the 

practices of the handling qualities community.   

 

Some of the cues that might be used to differentiate 

between whether an aerial vehicle is being operated as a 

“piloted” or “autonomous” vehicle include: slowness of 

mission task execution; unsteadiness of flight 

maneuvers; use of two- versus three-dimensional 

rectilinear versus curvilinear trajectories; discrete or 

step-like, versus continuous and smooth, incremental 

attitude or position changes; (lack of) precision of flight 

maneuvers; severe or abrupt changes in attitude or 

position; failure to complete flight maneuvers or 

mission tasks; (poor) situational awareness of hazards, 

obstacles, and other aircraft flying in close proximity to 

the evaluated aircraft; manifestation of inadequate, or 

inappropriate, flight behaviors in response to (pre-

flight) unplanned/unanticipated changes in the mission 

tasks, or scope, and the operational environment.     

 

Three notional test/assessment protocols are now 

suggested for conducting the UTT.  The protocols are 

listed in an increasing order of complexity/effort.  The 

chief reason for multiple protocols is to attempt to 

decouple or delineate aircraft characteristics from 

autonomous system mission execution and decision-

making performance.    

 

Protocol # 1 “Observational Only” – 

 

This is the closest UTT analog to the classic Turing 

“imitation game.”  A random but comprehensive 

series of mission tasks are “flown,” or rather 

visually presented, to a group of subject matter 

expert reviewers (SME, in the case of autonomous 

aerial vehicles, would be manned-aircraft pilots 

and UAV operators), acting as “ground-observers,” 

via either simulation or flight tests.  An equal 

percentage of the “presented” mission tasks will in 

actuality be executed by pilots (either onboard or 

remotely piloting the aircraft, given the aircraft 

type/nature) or intelligent systems.  Care must be 

taken in the protocols used to sanitize data and 

visual images presented to the reviewers so as to 

not bias the information with non-critical cues.   

The reviewers will would rate each mission task, 

Ti , as being performed, in order of perceived 

“intelligence” guiding the vehicle, as follows: 

( Ti = 1) by a semi-autonomous system controlling 

the aircraft (whereby some high-level authority or 

decision-making is exerted by human operators); 

( Ti = 2 ) by a fully-autonomous system (whereby 

not authority or decision-making is exerted by 

human operators during the course of the mission 

or task); ( Ti = 3) by a junior/inexperienced pilot 

(either onboard or remotely piloting the aircraft); 

( Ti = 4 ) by a senior/experienced pilot (onboard or 

remotely piloting).  This spectrum of reviewer 

responses may seem overly convoluted but, in fact, 

allow the SME reviewers to deal in “shades of 

grey,” rather than absolutes, in their responses.  

(Note, in the above, that it is a (minor) debatable 
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point whether the rating assignments for the semi- 

and fully-autonomous systems should be swapped.)    

 

 

 

Protocol # 2 “Active Participation” – 

 

To partially decouple aerial vehicle handling 

qualities from the autonomy and intelligence 

assessment, this suggested protocol would have 

reviewers (ideally, though not necessarily, the 

same, or all of the, reviewers performing the UTT) 

participate in complementary remotely-piloted 

handling quality simulations/evaluations of the 

subject aircraft prior to performing the above 

described UTT evaluations.  The resulting handling 

quality assessments, i.e. Cooper-Harper ratings, 

would have two functions.  First, it would provide 

the UTT reviewers their own personal qualitative 

benchmarking of the difficulty or ease of flying the 

vehicle.  Second, the Cooper-Harper handling 

quality ratings could be quantitatively incorporated 

in the final derivation of intelligence metrics from 

the UTT evaluations.   

 

Protocol #3 “Benchmarked” – 

 

As an additional step towards attempting to 

decouple the aerial vehicle characteristics from the 

autonomous system technology evaluation, the 

following protocol is suggested.  In addition to 

reviewers evaluating the piloted versus 

autonomous status of a subject aerial vehicle, the 

reviewers would also perform the same 

evaluations, for the same mission tasks, against a 

generic aircraft model maintained as a benchmark 

model for sustained autonomy and intelligence 

evaluations.   

 

Inevitably the proposed UAV Turing test is a 

holistic assessment of the aircraft flight characteristics, 

the sensor or instrumentation implementation, and the 

autonomous systems employed.  This coupling can be 

moderated to some degree by adopting the second or 

third UTT protocols as suggested above.   However, 

this vehicle, sensor, and autonomous-system coupling 

inherent in the UTT assessment is not intrinsically 

undesirable.   For the foreseeable future the trend will 

be to acquire complete or integrated aircraft solutions 

for unmanned rotorcraft and other autonomous aerial 

vehicles.   

 

The results for the above protocol suggestions can 

be rolled up into one notional UTT intelligence metric, 

"#
* , as has been previously suggested.  Alternate 

definitions of metrics, of course, could be proposed 

based on UTT results; however, the following 

expression is a reasonable foundation for future study 

of this issue.   Equation 1 summarizes a definition for 

the proposed metric consistent with the first UTT 

protocol (“Observational Only”) noted in the above.  

The inherent assumption in Eq. 1, and the first UTT 

protocol, is that all tasks are equally weighted with 

respect to difficulty and the need/requirement for 

intelligence guiding the vehicle through an individual 

mission task.  The suggested second and third protocols 

attempt to, among other things, take into account 

differing levels of task difficulty for both for the 

“guiding intelligence” as well as the intrinsic handling 

qualities of the vehicle itself.    

 

"#
*
1+$( ) =

a

4NT

Ti

i=1

NT

%  

 

 (1a) 

And 

 

" =
1

NT

Ti

i=1

NT

#  

 (1b) 

 

Where the i
th

 mission task receives a mean rating (the 

average based on the aggregate of all observers or, 

rather, reviewers) of Ti ; NT  is the number of mission 

tasks being rated; a  is a prescribed constant.   The 

parameter " is the stated level of autonomy of the 

subject autonomous aerial vehicle.   It is important to 

note that, though all mission tasks performed as a part 

of the UTT are rated and, further, UTT tasks are 

performed by both pilots, or human operators, and by 

autonomous systems, only the subset of tasks 

performed by the autonomous system (as known only 

by the UTT organizers) are incorporated in the Eq. 1 

and, later, Eq. 2 intelligence metric estimates by means 

of the rating array, T .  Finally, note that the mean 

rating, " , falls within the range 0 " # " 4 .    

 

A linear trend is assumed between the mean 

observer/reviewer UTT ratings, " , and the UTT 

intelligence metric, "#
* .  This linear trend described by 

Eq. 1 can be seen in Fig. 5.   As can be seen in Fig. 5 

and Eq. 1 there is an assumed dependence of aerial 

vehicle intelligence on the same vehicle’s level of 

autonomy.   In other words, the higher the level of 

autonomy, the greater the vehicle intelligence required 

in order to successfully conduct missions.   One 

consequence of Eq. 1 is that one might question why if 

the level of autonomy is zero.  In other words, as the 
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vehicle is requiring the full attention of a human 

operator to maintain real-time control of the vehicle, 

how can the aerial vehicle be still considered to exhibit 

some small modicum of intelligence?   The answer lies 

in the considering aspects of aerial vehicle control that 

occur outside of operator conscious control or reaction 

times; this would include such things as stability 

augmentation systems and high-frequency active rotor 

or surface controls which arguably provide some 

semblance of intelligence to an aircraft even if the 

vehicle trim state, flight path trajectory, and overall 

mission planning and decision-making are fully under 

the control of a human operator.    

 

 

0

2

4

6

8

10

0 1 2 3 4

Mean Reviewer Rating of Mission Tasks

U
A

V
 T

u
ri

n
g
 T

es
t 

In
te

ll
ig

en
ce

 

M
et

ri
c

Level of Autonomy (LOA) = 3

LOA = 4

LOA = 5

a = 1.666

 
 

Fig. 5 – First Protocol Functionality 

 

 

A somewhat more complicated expression, Eq. 2, 

can be defined for "#
*  to be consistent with the second 

(“Active Participation”) and third (“Benchmarked”) 

suggested UTT protocols.   

 

 

"#
*
1+$( ) =

a

4NT
g h( )

H iTi

G i
i=1

NT

%  

 

 

g "
1

NT
G j

j=1

NT#  

 

 

h "
1

NT
H j

j=1

NT#  

 (2a-c) 

 

 

Where H i  and H j  is the Cooper-Harper handling 

quality rating for the i
th

 and j
th

 mission task for the 

subject aircraft respectively.  Further, G i  and G j  is 

the Cooper-Harper handling quality rating for the i
th

 and 

j
th

 mission task for the generic/benchmark aircraft 

model respectively.   The above weighting, in the form 

of G  and H  terms, implies that greater weight in the 

intelligence metric assessment is given to tasks that are 

harder to accomplish for a given mission (as 

represented by the set of tasks evaluated in the UTT) 

and a given subject aircraft (versus the generic, or 

benchmark, aircraft model).    

 

Equation 2 is fully consistent with the suggested 

UTT protocol #3.  Equation 2 devolves into a form 

compatible with UTT protocol #2 when the Eq. 3 

constraint is applied.  Finally, Eq. 2 reduces to Eq. 1, 

the protocol #1 form, given both the constraints noted 

in Eqs. 3 and 4.   

 

For protocol #2, then the following holds 

 

 

  

GNT
=GNT "1

=GNT "2
=K=G 2 =G1 = 1 

 

 (3) 

 

For protocol #1, then the following also applies  

 

 

  

HNT
= HNT "1

= HNT "2
=K= H 2 = H1 = 1  

 

 (4) 

 

Finally, given the above, it is assumed that the 

intelligence metric derived from the UTT, "#
* , can be 

related to the alternative (mechanistic approach) 

intelligence metric, "
*
 (Refs. 7-8,13), by means of Eq. 

5a-b.    

 

"#
*
$" * 

 

Or, to a first order,  

 

"#
*
= b" * 

 (5a-b) 

 

Where b is a prescribed constant such that 

0 < b " 1. The ability to straightforwardly map one set 

of metrics against another alternate set of autonomy and 

intelligence scales/metrics is an important attribute.    
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VI. Mission Simulation and UAV Turing 

Tests 

The handling qualities community has long 

recognized the mutual importance, and 

interdependence, of simulation (with varying levels of 

modeling fidelity) and flight testing to arrive at 

satisfactory design solutions for rotorcraft stability and 

control.  Often understated in the design process is the 

utility and overall importance of “mission simulation” 

to defining design functional requirements.  “Mission 

simulation” can be considered necessarily distinct from 

aerial vehicle simulations used to evaluate the detailed 

or final vehicle designs.  Mission simulation can use 

low-fidelity models for the aerial vehicles as long as 

high-fidelity modeling is performed as regards the high-

level mission tasks and operational and environmental 

constraints.   The goal of the mission simulation is to 

evaluate the suitability of identified subject systems in 

expediting, enabling, or improving the performance of 

the mission.   Ultimately the mission simulation is 

performed to evaluate the magnitude and probability of 

mission success.    Mission success has to be defined in 

the context of the particular application or mission that 

is being performed.  References 7 and 8 provided 

several examples of mission success metrics for high 

altitude long endurance UAVs and planetary aerial 

vehicles respectively.   

 

Given the inherent power of mission simulation 

tools, the following 4
th

 protocol () is proposed with 

respect to a UAV Turing test for defining autonomous 

aerial vehicle intelligence metrics.   

 

 

Protocol # 4 (“Fly-Off”) – 

 

Autonomous vehicle mission simulations and flight 

demonstrations would also have to be 

benchmarked against missions “flown” with 

pilots/human-operators in the loop.  In turn, scoring 

criteria for such testing could be based upon both 

quantitative mission success metrics (unique to 

each mission) and by turning to analog “handling 

quality” metrics similar to the well-known Cooper-

Harper pilot ratings used for manned aircraft.  

Autonomous aerial vehicles would be considered 

to have successfully passed this “UAV Turing 

Test” if the aggregate mission success metrics and 

handling qualities for the autonomous aerial 

vehicle matched or exceeded the equivalent metrics 

for missions conducted with pilots/human-

operators in the loop.   

 

A final conjectural expression, Eq. 6a-c, can be 

defined for "#
*  to be consistent with this fourth protocol.  

This metric definition embodies the following 

functional assumptions: (1) the intelligence metric can 

be assumed to be directly proportional to both the level 

of autonomy and the relative mission success ratio, i.e. 

"#
*
$% and "#

*
$ sA sP , and (2) the intelligence metric 

asymptotically approaches some constant value as 

autonomous system enabled mission success 

approaches some very large (relative) value, i.e. 

"#
*
$ constant  as sA sP "# .   Both constraints are 

accounted for in the definition given in Eq. 6a-c.   

 

 

"#
*
1+$( ) = c 1% e

%d sA sP( )& 

' 
( 

)

*
+ 

 

Where  

 

 

sA "
1

NM

Sk

k=1

NM

#
Autononomous

 

 

 

sP "
1

NM

Sk

k=1

NM

#
Piloted

 

 (6a-c) 

 

 

Note that, in the above, that c  and d  are prescribed 

constants and " is the vehicle’s stated level of 

autonomy.  It should be further noted that adherence, or 

consistency, with the stated level of autonomy should 

be checked/validated during the same set of mission 

simulations that define the mean value of mission 

success, sA .  If human operator (hands on) interaction 

with the aerial vehicle is greater than that allowed by 

the stated level of autonomy, ", (refer, for example, to 

Fig. 4) then either the set of mission simulations would 

be at least partially invalidated or the level of autonomy 

would need to be revised downward.  Figure 6 

illustrates the basic functional properties of Eq. 6a-c.   
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Fig. 6 – Fourth Protocol Functionality 

 

 

The fourth suggested UTT protocol is perhaps the 

best choice, of those presented in this paper, for a 

metric to assess missions, and mission tasks, dominated 

by higher-level mission complexity and required 

decision-making as well substantial operational 

uncertainty.  Use of the relative mission success ratio, 

sA sP , decouples the vehicle aeromechanics 

characteristics from the autonomous system 

characteristics.  Alternatively, measurement of the 

absolute values of sA  and sP  can give insight into the 

suitability of a subject aircraft – irrespective of the 

intelligent system guiding/operating it – performing a 

given mission; i.e. if sA  and sP  are both lower than the 

required target values then the aerial platform itself 

might not be suitable for the given mission studied.  In 

this regards, the third and fourth protocols are 

nominally equivalent in the sense that the performance 

– and hence the intelligence assessment – of the aerial 

vehicle’s autonomous systems is being evaluated and 

not other potentially extraneous factors.   The fourth 

protocol can potentially find great utility in the early 

phases of vehicle and autonomous systems 

development.   

 

VII. Potential Objections to Turing-Style 

Tests for Intelligent Systems: Practical 

and Philosophical 

The classic Turing test has come under considerable 

scrutiny in the AI community over the last couple of 

decades.  The strongest objections of “strong” AI (can 

machines, or rather machines, be made to ultimately to 

“think,” particularly using “symbolic” types of 

approaches) and the Turing test, in particular, stems 

from arguments first presented in Ref. 15.  This is 

unfortunate as it potentially reflects a shift from the 

type of empiricism required for the UTT from within 

the AI community.   

 

Those AI researchers who debate the question of 

whether the Turing test truly measures machine 

intelligence (or embodies the key aspects of “thinking” 

machines) are missing the point entirely, or indeed 

whether machines can ultimately be made to think at 

all, e.g. Ref. 15.  As Ref. 16 has pointed out the Turing 

test represents one of many potential empirical criterion 

for studying machine performance, for one or more 

applications, against a (penultimate) benchmark. Some 

researchers, for example Ref. 24, have gone to so as to 

argue that other benchmarks may, at least in the 

interim, be valuable in evaluating the progress of AI 

efforts; such benchmarks being animals and insects.  

For micro aerial vehicles, biomimetic, and/or 

“morphing” aerial vehicles, is it not plausible to, in fact, 

argue that human operators are not the pertinent 

benchmarks for the performance (from a flight control 

perspective) of such vehicles but that benchmark should 

instead be “lower-order” animals?  Be that as it may, 

we are currently discussing autonomous aerial vehicle 

performance versus human operators or pilots, not 

against the flying skills of avian or flying insects.    

 

The above not withstanding, let us stick to the 

empirical and the pragmatic.  Let us leave the (AI) 

philosophy, as it has been said, to the philosophers.  It 

is wholly appropriate to consider the Turing test as a 

conceptual model for defining a series of tailored 

empirical tests and test methodologies, one example 

being the use of independent observers, to judge the 

performance, utility, and overall effectiveness of the 

emerging application domain of autonomous aerial 

vehicles.  Other research considering the feasibility of 

Turing-style tests for UAVs can be found in Refs. 25-

26.   

 

VIII. Additional Considerations 

Will a UAV Turing test truly be able to meet the 

technical and programmatic requirements typical of 

rotorcraft development efforts as to successfully aid in 

the safe, timely, and efficient introduction of 

autonomous aerial vehicles into the national airspace?  

This is, of course, yet to be determined.   In the above 

discussion a number of attributes for a “good” set of 

autonomy and intelligence metrics were discussed.  

Further, any such set of metrics needs to consider not 

only these attributes for good metrics as well as the 

goals and objectives, in terms of vehicle development, 

acquisition, and operations, in employing said metrics.   

Until then considerable discussion and research will 

continue as to defining and using autonomy and 
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intelligence metrics for autonomous aerial vehicles and 

other “intelligent systems” – see for example Refs. 27-

29.   

 

As mission complexity demands greater mission 

planning sophistication, then the UAV Turing test will 

become less of a satisfactory standalone intelligence 

metric.  Additional metrics will likely need to be 

incorporate to assess the satisfactory performance of 

aerial vehicle autonomous systems embodying high 

levels of mission planning.  Such potential metrics 

include the mechanistic autonomy and intelligence 

metrics of Refs. 7-8,13.  Alternatively, though, the set 

of evaluated mission task elements in the UTT can be 

expanded with tasks of increasing complexity and 

sophistication as partial compensation and, therefore, 

extend applicability of the UTT derived metrics.     

 

Though the focus of this paper has been on 

intelligence metrics for UAVs, it should be readily 

apparent that similar Turing-style tests could be devised 

for other intelligent system application domains.  At 

first, envisioning the resulting diverse collection of 

metrics and test methodologies for different domains 

may seem counterproductive.  Ideally, those who might 

argue, it would seem far better that a general unifying 

set of metrics should instead be the goal rather than a 

tailored set of domain-specific metrics.   If indeed such 

a general unifying set of metrics is ultimately devised 

then, probably, it should be adopted.   But, until then, 

taking a pragmatic engineering perspective, there is 

nothing fundamentally wrong with domain-specific 

intelligence metrics – as long as they address the key 

questions regarding aerial vehicle functional 

requirements, as affected by vehicle intelligence, that 

are/will be demanded by developers, users/customers, 

and regulatory bodies.  (Some of these questions having 

been discussed earlier in the paper for autonomous 

aerial vehicles.)   

 

Concluding Remarks 

Likely more than one set of intelligence metrics 

(based perhaps on a combination of mechanistic, 

emergent, or empirical – of which, the UAV Turing test 

is one example – estimation approaches) will be applied 

in assessing the intelligence of autonomous aerial 

vehicles.  This result, a multiplicity of metrics, is not 

necessarily an undesirable outcome.  But, in proposing 

an intelligence metric that has twin parentage from 

classic work from both the aeronautics handling quality 

community, e.g. Cooper-Harper pilot ratings, and the 

AI research community, the classic “imitation game” 

Turing test, it is anticipated that the proposed “UAV 

Turing test” can potentially have broad appeal and 

utility.    

 

In the end, though, it is not solely a question of what 

is the optimum set of autonomy and intelligence metrics 

to apply to unmanned rotorcraft, and autonomous aerial 

vehicles in general, but rather how will such metrics be 

effectively employed to arrive at real engineering 

solutions to development of these aircraft.  Therefore, 

the definition of such metrics must be tailored so as to 

find this utility throughout the complete aircraft 

development cycle – including, perhaps most 

importantly, early incorporation into the system 

analysis and conceptual and preliminary design stages.   
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