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Abstract: Introduction: Right ventricular (RV) systolic dysfunction (RVsD) is a common complication
of coronavirus infection 2019 disease (COVID-19). The right ventricular free wall longitudinal
strain parameter (RV-FWLS) is a powerful predictor of mortality. We explored the performance of
RVsD parameters for predicting 30-day mortality and the association between RV-FWLS and 30-day
mortality. Methods: COVID-19 patients hospitalized at Amiens University Hospital in the critical
care unit with transthoracic echocardiography were included. We measured tricuspid annular plane
systolic excursion (TAPSE), the RV S’ wave, RV fractional area change (RV-FAC), and RV-FWLS. The
diagnostic performance of RVsD parameters as predictors for 30-day mortality was evaluated by
the area under the receiver operating characteristic (ROC) curve (AUC). RVsD was defined by an
RV-FWLS < 21% to explore the association between RVsD and 30-day mortality. Results: Of the
116 patients included, 20% (n = 23/116) died and 47 had a RVsD. ROC curve analysis showed that
RV-FWLS failed to predict 30-day mortality, as did conventional RV parameters (all p > 0.05). TAPSE
(21 (19–26) mm vs. 24 (21–27) mm; p = 0.024) and RV-FAC (40 (35–47)% vs. 47 (41–55)%; p = 0.006)
were lowered in the RVsD group. In Cox analysis, RVsD was not associated with 30-day mortality
(hazard ratio = 1.12, CI 95% (0.49–2.55), p = 0.78). Conclusion: In severe COVID-19 pneumonia,
RV-FWLS was not associated with 30-day mortality.

Keywords: right ventricle dysfunction; strain; COVID-19; speckle tracking; pneumonia

1. Introduction

Right ventricular systolic dysfunction (RVsD) is a common feature [1] of severely
ill coronavirus disease 2019 (COVID-19) patients with cardiac involvement, increasing
morbidity and mortality [2]. In the intensive care unit (ICU), RVsD can be assessed by
transthoracic echocardiography (TTE), a non-invasive, routine, simple bedside ultrasound
technique [3]. TTE evaluation of the RV systolic function is crucial and recommended for
the medical management of COVID-19 pneumonia [4]. However, the diagnosis of RVsD is
challenging, requiring a multiparametric approach, and depends on the parameter used [5].
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The RV free wall longitudinal strain (RV-FWLS), based on the bi-dimensional speckle
tracking (2D-STE) method, is a prognostic, reliable, and accurate tool for the evaluation
of RV systolic function in cardiovascular diseases [6]. RV-FWLS in a healthy individual
is, on average, −30% [7], and a cut-off of −21% seems to be able to detect RVsD [5,6].
In COVID-19, RV-FWLS could be an interesting tool to identify patients with RVsD and
increased mortality risk. RV-FWLS seemed to be reduced in COVID-19 patients compared
to controls or reference values and represents a more powerful predictor of mortality than
conventional RV parameters [8]. However, in COVID-19 pneumonia requiring mechanical
ventilation, several studies found that RV-FWLS was not associated with the severity
of the disease [9], cardiac biomarkers [10], and mortality [9–12]. Several known factors
influencing the RV strain value (loadings conditions, heterogenous, and desynchronization
of myocardial contractility) are indeed encountered in COVID-19 infection. The debate
is still ongoing, and data are required to routinely use the RV-FWLS for mortality risk
stratification in severe COVID-19 pneumonia admitted to the ICU.

We aimed to explore the performance of RVsD parameters (TAPSE, RV-S’, RV-FAC
and RV-FWLS) measured in TTE for predicting 30-day mortality in severe COVID-19
pneumonia patients. We also evaluated the feasibility of RV-FLWS and the association
between RVsD defined by an RV-FLWS < 21% and 30-day mortality.

2. Materials and Methods
2.1. Population

Adult patients admitted to our ICU for documented severe COVID-19 pneumonia
with a TTE performed within 48 h of ICU admission were prospectively included in
the study. Exclusion criteria included patients with atrial fibrillation during the TTE
exam, permanent ventricular pacing, pregnancy, patients under extracorporeal membrane
oxygenation (ECMO), and those with poor image quality for RV strain analysis. Patients
were included on the day when TTE was performed.

2.2. Ethics

This is an ancillary study of a prospective cohort study of patients with COVID-19
infection hospitalized in the ICU at Amiens University Hospital (NCT04354558).

2.3. Data

Data from electronic data and medical reports were collected prospectively. A positive
RT-PCR confirmed SARS-Cov2 infection on a nasopharyngeal swab or bronchoalveolar
lavage on admission to our critical care unit. The simplified acute physiology score II
evaluated the severity of illness upon ICU admission [13]. Vasopressor use was assessed
by the SOFA cardiovascular (SOFA cv) score [14]. The different epidemic waves were
characterized by three periods: (1) period A (between 28 February 2020 and 1 June 2020),
(2) period B (between 1 September 2020 and 15 April 2020), (3) and period C (between
12 December 2020 and 15 March 2022). The 30-day and ICU all-cause mortality were
collected.

2.4. TTE Measurement

Trained operators performed TTE within 48 h of ICU admission. The TTE echocar-
diography protocol was used following the American Society of Echocardiography guide-
lines [15]. Echocardiographic images were obtained by a high-quality commercially avail-
able ultrasound system (CX 50, Philips Healthcare, Paris, France). All operators had a level
III competence of general adult TTE [16].

RV size: We measured the RV basal, mid-cavity, and longitudinal linear dimensions
in an RV-focused apical four-chamber view. RA volume was measured on the apical four-
chamber view with 2D volumetric measurement based on tracings of the blood tissue
interface and disc summation technique. RV dilatation was defined when the end-diastolic
RV/LV area ratio was >0.6 in a four-chamber or subcostal view [5]. Acute cor pulmonale
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(ACP) was defined as RV dilatation (end-diastolic RV/LV area ratio > 0.6) associated with
septal dyskinesia [17].

RV systolic function: RV conventionnal and 2D-strain parameters are summarized in
Figure 1. We measured conventional RV parameters (TAPSE, RV-S’, and RV-FAC) according
to international guidelines [18]: the RV-S’ wave was measured in the apical four-chamber
view using Doppler tissue imaging mode (Figure 1A). TAPSE was measured using M-mode
with a cursor placed at the junction of the lateral tricuspid leaflet and the RV-free wall
(see Figure 1B). RV systolic and diastolic areas were measured in the apical four-chamber
view in 2D mode. RV-FAC was calculated by subtracting the end-systolic area from the
end-diastolic area and dividing this value by the end-diastolic area (see Figure 1C,D).
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Figure 1. Measurement of the RV conventional parameters and the RV-FWLS in a RV-focused apical
four-chamber view. (A) RV-S’ wave measured in tissular Doppler imaging. (B) TAPSE measure in
M-mode. (C,D) End-diastolic RV area and end-systolic RV area measured for RV-FAC. (E) Automatic
RV-FWLS measured by the QLAB AutoStrain Software.

RV 2D-strain analysis: RV-FWLS was obtained using 2D AutoStrain software (Au-
toStrain, QLAB version 15, Philips Medical Systems, Andover, MA, USA) in an RV-focused
four-chamber view at 50 to 70 frames/s. Fully automated RV-FWLS were measured by the
software. We performed manual editing to fit RV myocardial wall thickness. The RV-FWLS
was automatically calculated as the average of the three segments (basal, mid, and apical)
of the RV-free wall (Figure 1E). The longitudinal strain was defined as the percentage of
myocardial shortening relative to the original length and presented as a negative value,
with a larger negative strain value reflecting better shortening. We used the absolute value
of RV-FWLS for sampler interpretation.

2.5. Statistical Analysis

Data are expressed as mean ± standard deviation (SD), median (interquartile range),
or numbers (percentage), as appropriate. Firstly, a receiver-operating characteristic curve
(ROC) was built to assess the prediction performance of RV-FWLS, TAPSE, RV-S’ wave, and
RV-FAC for 30-day mortality. The area under ROC curves (AUC) of RV parameters was
compared using Delong’s test. Secondly, the general population was dichotomized into
two groups according to the presence of RVsD defined by an RV-FWLS < 21%. Variables
were compared between groups (RVsD and non-RVsD group) using Mann–Whitney or
Chi-square tests. Univariate and multivariate COX models were performed to evaluate
independent factors associated with RV dysfunction. All factors with a p value < 0.05 in
univariate analysis were included in the Cox model. The Kaplan–Meier method was used to
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plot the survival curves between the two groups, compared with the log-rank test. To assess
intra-operator and inter-operator reproducibility for offline analysis, data of 10 patients
were randomly selected and analyzed by the same operator and another operator with
an interval of at least one week between the two analyses. The reproducibility of RV
parameters was evaluated using the intraclass correlation coefficient (ICC). A statistical test
was significant when the p-value was under 0.05. All p values are the results of 2-tailed tests.
Statistical analyses were performed using SPSS software version 24 (IBM Corp, Armonk,
NY, USA).

3. Results

Between 28 February 2020 and 1 March 2022, 404 consecutive patients were hospital-
ized in our ICU with COVID-19 pneumonia. Among the 232 patients with the inclusion
criteria, 116 patients were excluded, notably 40 patients (35%) due to poor TTE image
quality and 64 patients (55%) under ECMO (see Flow Chart, Figure 2). The feasibility of
RV-FWLS was 74% (n = 116/156). The study population was divided into two groups
according to the presence of an RV dysfunction defined by an RV-FWLS < 21%. The study
included one hundred and sixteen patients, with 69 patients in the no-RVsD group and 47
in the RVsD group.
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Demographics and biological and computed tomography data of the two groups are
summarized in Table 1. There was no difference in age, SAPS II score, medical history,
or biological and computed tomography data. In the RVsD group, there was a tendency
toward a higher troponin level (27 (8–95) ng mL−1 vs. 16 (6–36) ng mL−1, p = 0.06).

Table 1. Demographics, biological and computed tomography data before TTE.

Variables No RVsD
(n = 69)

RVsD
(n = 47) p

Age (years) 60 (59–68) 62 (59–73) 0.39

BMI (kg m−2) 30.4 (25.7–34.1) 30.2 (26.6–34.9) 0.67

Male gender (n; %) 45 (65) 33 (70) 0.68
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Table 1. Cont.

Variables No RVsD
(n = 69)

RVsD
(n = 47) p

SAPS II score 32 (20–56) 39 (24–61) 0.29

Medical history
No history 10 (14) 7 (15) 0.99
Hypertension 34 (49) 24 (51) 0.99
Diabetes 16 (23) 14 (30) 0.51
Dyslipidemia 18 (26) 18 (38) 0.22
Smoking (former or active) 12 (17) 10 (21) 0.63
Chronic renal disease 5 (7) 5 (10 0.52
COPD/asthma 16 (23) 4 (9) 0.08
Coronary or peripheral artery disease 4 (6) 7 (15) 0.17
Valvular heart disease 2 (3) 5 (10) 0.12

CT scan (n = 107/116) 62 (89) 45 (95)
Frosted glass 59 (95) 44 (97) 0.63
Consilodation 37 (62) 27 (64) 0.99
Crazy Paving 19 (32) 9 (22) 0.36
Lung involvement > 50% 30 (43) 22 (46) 0.99
Pulmonary embolism 1 (2) 4 (9) 0.15

Biological data before TTE
Lactate (mmol−1) 1.7 (1.3–2.1) 1.9 (1.3–2.3) 0.16
Serum creatinine (µmol L−1) 66 (54–88) 70 (54–88) 0.61
BNP (pg mL−1) 59 (31–101) 79 (34–243) 0.12
Troponin Tc HS (ng mL−1) 16 (6–36) 27 (8–95) 0.06
Procalcitonin (µg L−1) 0.40 (0.18–0.75) 0.57 (0.13–1.60) 0.47
C reactive protein (mg L−1) 150 (96–215) 160 (84–268) 0.62

Time to first symptom to ICU admission (days) 8 (5–10) 8 (6–12) 0.44

Period of hospitalization in ICU *
- Period A 16 (23) 9 (19) 0.65
- Period B 13 (19) 6 (13) 0.45
- Period C 40 (58) 32 (68) 0.33

Data are presented as median (interquartile range)) and number (percentage). BMI: body mass index. BNP: brain
natriuretic peptide; CT: computerized tomography. COPD: chronic obstructive pulmonary disease; SAPS: simpli-
fied acute physiology score. TTE: transthoracic echocardiography. * period A (between 28 February 2020 and
1 June 2020), period B (between 1 September 2020 and 15 April 2020) and period C (between 12 December 2020
and 15 March 2022).

There was no difference between the two groups regarding vasopressor and invasive
mechanical ventilation during the TTE exam (Table 2). For TTE parameters, there was
no difference in RV size values (basal, mid cavity, and longitudinal). The left ventricular
ejection fraction was similar between the two groups (p = 0.57). For RV systolic conventional
parameters, patients in the RVsD group had a more impaired TAPSE (21 (19–25) mm vs. 24
(21–27) mm, p = 0.03) and RV-FAC (41 (34–47) % vs. 47 (41–54) %, p = 0.006). As was defined,
RV-FWLS was lowered in the RVsD (17.5 (15.3–19.0) % vs. 26.7 (24.1–30.1) %, p = 0.0001).

Table 2. Hemodynamics, TEE parameters and outcomes.

No RVsD
(n = 69)

RVsD
(n = 47) p

Hemodynamic parameters during TTE
Heart rate (bpm) 82 (74–92) 87 (74–102) 0.14
Systolic arterial pressure (mmHg) 130 (114–144) 127 (113–146) 0.71
Mean arterial pressure (mmHg) 86 (73–97) 86 (80–95) 0.53
Diastolic arterial pressure (mmHg) 70 (58–80) 69 (61–79) 0.44
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Table 2. Cont.

No RVsD
(n = 69)

RVsD
(n = 47) p

Mechanical ventilation, n (%) 37 (54) 32 (70) 0.12
PaO2 (mmHg) 76 (65–92) 80 (71–107) 0.12
Vasopressor use, n (%) 19 (27) 13 (28) 0.99

TTE parameters
RV basal dimension (mm) 45 (40–51) 44 (38–50) 0.21
RV mid-cavity dimension (mm) 38 (29–43) 37 (32–41) 0.54
RV longitudinal dimension (mm) 77 (69–85) 76 (70–84) 0.83
RV EDA (cm2) 21 (16–26) 21 (17–24) 0.94
RV ESA (cm2) 11 (7–14) 11 (9.5–15) 0.23
RV EDA/LV EDA 0.68 (0.55–0.92) 0.67 (0.57–0.87) 0.91
Acute cor pulmonale, n (%) 18 (26) 18 (38) 0.22
RA volume (mL) 33 (27–35) 32 (27–40) 0.63
RA area (cm2) 14.6 (9.6–19.2) 14.6 (7.1–20.5) 0.61
Left ventricular ejection fraction (%) 64 (53–70) 63 (53–73) 0.57

RV Systolic Function Parameters
TAPSE (mm) 24 (21–27) 21 (19–25) 0.03
RV-S’ (cm s−1) 16 (13–19) 16 (13–19) 0.91
RV-FAC (%) 47 (41–54) 41 (34–47) 0.006
RV-FWLS (%) 26.7 (24.1–30.1) 17.5 (15.3–19.0) 0.0001

Outcomes (n,%)
Ventilator acquired pneumonia 34 (49) 28 (61) 0.56
Renal replacement therapy 10 (14) 7 (15) 0.99
Pulmonary embolism 4 (6) 5 (11) 0.48
Cardiogenic shock 3 (4) 6 (13) 0.15
Veno-venous ECMO 8 (12) 4 (9) 0.76
Tracheotomy 10 (15) 3 (7) 0.23
Time under mechanical ventilation (days) 18 (11–30) 18 (10–27) 0.47
30-day mortality 13 (19) 10 (21) 0.82
ICU mortality 17 (25) 10 (21) 0.81
ICU stay (days) 11 (6–29) 17 (7–31) 0.27

Data are presented as median (interquartile range) and number (percentage). EDA: end-diastolic area; ECMO: ex-
tracorporeal membrane oxygenation; ESA: end-systolic area; ICU: intensive care unit. RV: right ventricle; RA: right
atrial; RV-FAC: right ventricle fractional area change; RV-FWLS: right ventricle free wall longitudinal strain; RV-S’: right
ventricle S’ wave; TAPSE: tricuspid annular plane systolic excursion; TTE: transthoracic echocardiography.

RV-FWLS and conventional RV parameters were included in a ROC analysis (Figure 3A)
to estimate the probability of 30-day mortality and failed to identify patients with 30-day
mortality. AUCs were near 0.5, and all p values were above 0.05. No cut-off values were
determined. There was no difference in ICU complications or the 30-day mortality rate
between the two groups (n = 13/69 vs. 10/47, p = 0.82; Table 2).

The RVsD defined by the RV-FWLS < 21% (HR = 1.12, CI 95% (0.49–2.55), p = 0.78)
was not associated with 30-day mortality in univariable Cox analysis (Table 3). In Cox
multivariable analysis, age > 65 years (p = 0.001), acute cor pulmonale (p = 0.0001), and
SAPS II (p = 0.005) remained independently associated with 30-day mortality. The analysis
of survival curves by the Kaplan–Meier curves showed no significant differences between
the two groups (log-rank test at 0.79, Figure 3B). The reproducibility of RV-FWLS was
excellent, with an ICC of 0.84 CI 95% (0.57–0.96) and an ICC of 0.87 CI 95% (0.55–0.97) for
the intra-operator reproducibility (Appendix A, Table A1).
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HR (95%CI) p HR (95%CI) p

SAPS II (for each point) 1.03 (1.01–1.05) 0.02 1.04 (1.01–1.06) 0.005

Age > 65 years old 5.01 (2.10–12.37) 0.001 7.51 (2.63–21.44) 0.0001

Mechanical ventilation * 1.41 (0.57–3.46) 0.45 - -

RV-FWLS < 21% 1.12 (0.49–2.55) 0.78 - -

Acute cor pulmonale * 3.48 (1.48–8.14) 0.004 7.53 (2.58–21.9) 0.0001

Pulmonary embolism before TTE 0.91 (0.12–6.77) 0.92 - -

SOFA cv * 1.47 (0.61–3.51) 0.38 - -

Period of inclusion
- Period A 0.54 (0.24–2.11) 0.72 - -
- Period B 0.72 (0.21–2.41) 0.59 - -
- Period C 1.15 (0.62–3.68) 0.36 - -

* Factors recorded during TTE exam. CI: confidence interval; CV: cardiovascular; HR: hazard ratio; SAPS: simpli-
fied acute physiology score; SOFA: sepsis organ failure assessment; RV: right ventricle; RV-FWLS: right ventricle
free wall longitudinal strain; TTE: transthoracic echocardiography.

4. Discussion

The main findings of the present study can be summarized as follows: (1) RVsD
defined by the RV-FWLS occurred in 40% of patients, (2) conventional and RV-FWLS
parameters failed to predict 30-day mortality, (3) RV-FWLS was not associated with 30-day
mortality, (4) and the feasibility of RV-FWLS in ICU by TTE was 74%.

4.1. RV-FWLS and RV Dysfunction

RVsD is a common complication of COVID-19 (prevalence range 2% to 51%), increasing
mortality, notably [2] especially when RVsD is associated with RV dilatation and acute
cor pulmonale. Diagnosis of RVsD depends on the RV systolic parameters used. [2]. The



J. Clin. Med. 2022, 11, 3629 8 of 11

predominance of longitudinal-oriented muscle fibers has led to the widespread use of
RV systolic parameters based on RV-free wall longitudinal motion (TAPSE, RV-S, or RV-
FWLS). In our study, the prevalence of RVsD was 40%, according to the recommended
RV-FWLS cutoff value. One of the characteristics of COVID-19 is combined lung injuries
(alveolar damage, interstitial edema, cell proliferation, fibrosis) and immunothrombosis
(microvascular, deep venous thrombosis, arterial and pulmonary embolism) [19], which
increase RV afterload, promoting RV dilatation and thus RV dysfunction.

4.2. Performance of RV Parameters for Predicting 30-Day Mortality

RV-FLWS is a promising and robust predictor of major cardiovascular events in several
myocardial diseases [20]. At the beginning of the COVID-19 pandemic, the RV-FWLS
seemed to be an attractive clinical tool for identifying patients with poor clinical outcomes,
contrary to conventional parameters. In the Li study, conventional RV (TAPSE and RV-FAC)
and RV-FWLS impairment, associated with gender and ARDS, were powerful predictors
of mortality. The optimal cut-off for RV-FWL was −23%, 43.5% for RV-FAC, and 23 mm
for TAPSE [8]. In our study, RV-FWLS and conventional parameters (TAPSE, RV-S’, and
RV-FAC) failed to identify patients with an increased 30-day mortality. In a multicentric
study of hospitalized COVID-19 patients, RV dysfunction defined by TAPSE < 17 mm, or
an RV-S’ < 9.5 cm−1 or an RV-FAC < 35%, was not associated with hospital mortality [21].
At the bedside, the clinical interpretation of the cutoff value of RV-FWLS proposed by many
authors is challenging because it is within the normal range in healthy subjects [8] or far
away from the recommended threshold in cardiovascular disease [10].

4.3. RV-FWLS and 30-Day Mortality

We defined the RVsD from the recommended RV-FWLS value. However, we did not
find any association between RV-FWLS and 30-day mortality, while others have previously
reported such an association in COVID-19 patients [22]. However, our results are close to
those of similar studies. In the Kim study, the median RV-FWLS was −22 [−27.2, −18.6]%
and was not associated with COVID-19 disease severity in a logistic regression analysis [23].
In the Park study (n = 153 patients), RV-FWLS values were not different between survivors
and non-survivors (−14.48 ± 5.63 vs. −14.77 ± 5.88, p = 0.88). In a multivariable COX
analysis, RV-FWLS was not associated with mortality [10], contrary to age > 65 years old
and the presence of an acute cor pulmonale.

We believe that our results can be explained by several pathophysiological factors
encountered in COVID-19 pneumonia. First, COVID-19 pneumonia is frequently associated
with RV dilatation or acute cor pulmonale (38% of patients in the RVsD group). Altered
ventricular geometry and heterogeneity of myocardial contraction are well-known factors
that can compromise the measured strain value [24,25]. Secondly, TTE was performed
at an early stage of COVID-19, so patients with RVsD probably benefited from early
medical optimization to avoid hemodynamic failure. As with other studies in this field, the
variability of the timing of the echocardiography between the admission and examination
for RV systolic function assessment was important [8,26]. It is unlikely that one single
measurement at the initial stage of COVID-19 disease could accurately predict mortality in
the complex intensive care setting.

4.4. Feasibility of RV-FWLS in Critically Ill Patients

The main limitation of using RV-FLWS as a parameter in the clinical bedside routine
to stratify a patient’s mortality risk is its feasibility. Although the TTE protocol was
performed by level III operators with an automatic RV myocardial border delimitation and
dedicated RV mode, 40 patients (26%) were excluded from our study. The Bleakly study
assessed RV systolic function in critically ill COVID-19 patients, and the feasibility was
57% (49/90) [12]. This poor feasibility rate can be explained by the following factors: firstly,
in the ICU, the adequate acoustic window is often impaired by mechanical ventilation,
COVID-19 lung injuries (B lines, subpleural consolidation [27]), and suboptimal patient
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positioning. Secondly, RV-FWLS measurement requires an RV-focused four-chamber apical
view, obtained with a more lateral transducer position than that used for a conventional
apical-four chamber view [6], which is challenging in sedated and curarized patients.

In conclusion, this lack of feasibility and the problematic interpretation of RV-FWLS
cutoff values are probably why experts of the European Society of Intensive Care Medicine
reported that RV strain does not add significant information value to the interpretation of
RV function [3]. Even if RV-FWLS seems promising, its use in intensive care to stratify the
risk of patient mortality does not seem relevant.

4.5. Limitations

We acknowledge that the main limitations are the small sample size and the mono-
centric character of this study. However, our patient population is more significant than
other studies on RV strain in COVID-19 patients [22]. Our study excluded patients under
ECMO. Thus, it does not represent patients with the most severe ARDS. ECMO delivers a
non-pulsatile blood flow and improves RV function by decreasing the RV afterload through
a correction of the hypercapnia and the implementation of ultra-protective ventilation.
These elements interact with RV diastolic and systolic function, making the interpretation
of echocardiographic parameters challenging. We only analyzed RV-FWLS. For RV systolic
assessment, RV longitudinal strain should be reported as the RV free wall deformation
because the septal strain is considered as a part of left ventricular systolic function as-
sessment. A catheterization study showed that RV-FWLS might better reflect RV systolic
function than RV global longitudinal strain [28]. In addition, most studies assessing the
cutoff and the prognostic values of longitudinal strain measured RV-FWLS [6]. The value
of RV-FWLS depends on how it is measured. The software package, dedicated RV mode,
determining the ROI (semi-automatically or automatically), and myocardial approach can
make it challenging to compare RV strain results across studies [6]. As recommended, our
study used an automated, endocardial approach on an RV-focused apical four-chamber
view [6]. The RV-FWLS inter and intra-observer reproducibility assessed by ICC was >0.8,
indicating good reliability [29].

5. Conclusions

In a cohort of COVID-19 pneumonia hospitalized in the ICU, RV-FWLS and RV
conventional (TAPSE, RV-S’, and RV-FAC) parameters failed to predict 30-day mortality.
The feasibility of RF-FWLS was 76% and RVsD defined by the RV-FWLS < 21% was not
associated with 30-day mortality. The use of RV-FWLS in the ICU to stratify the mortality
risk of COVID-19 pneumonia did not seem relevant. Further studies with a larger sample
size are mandatory to confirm our findings.
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Appendix A

Table A1. Reproducibility of RV conventional and strain parameters.

ICC for Intra-Operator CI 95% ICC for Inter-Operator CI 95%

TAPSE 0.97 0.80–0.99 0.95 0.94–0.98

Onde S’ 0.98 0.97–0.99 0.95 0.93–0.97

RV-FAC 0.79 0.64–0.96 0.80 0.68–0.96

RV-FWLS 0.87 0.55–0.97 0.84 0.57–0.96

CI: confidence interval; ICC: intraclass correlation; RV-FWLS: right ventricle free wall longitudinal strain; RV-S’:
right ventricle S’ wave; TAPSE: tricuspid annular plane systolic excursion.
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