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Abstract

Deep learning (DL) has been successfully applied to the diagnosis of ophthalmic diseases. However, rare diseases are commonly

neglected due to insufficient data. Here, we demonstrate that few-shot learning (FSL) using a generative adversarial network (GAN)

can improve the applicability of DL in the optical coherence tomography (OCT) diagnosis of rare diseases. Fourmajor classes with a

large number of datasets and five rare disease classes with a few-shot dataset are included in this study. Before training the classifier,

we constructed GANmodels to generate pathological OCT images of each rare disease from normal OCT images. The Inception-v3

architecture was trained using an augmented training dataset, and the final model was validated using an independent test dataset.

The synthetic images helped in the extraction of the characteristic features of each rare disease. The proposed DL model demon-

strated a significant improvement in the accuracy of the OCT diagnosis of rare retinal diseases and outperformed the traditional DL

models, Siamese network, and prototypical network. By increasing the accuracy of diagnosing rare retinal diseases through FSL,

clinicians can avoid neglecting rare diseases with DL assistance, thereby reducing diagnosis delay and patient burden.
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1 Introduction

In the USA, a rare disease is generally defined as a condition

with a prevalence of no more than one in 1250 individuals;

however, the exact prevalence rate for most of these diseases

is currently not available [1]. In primary care, a lack of aware-

ness and cognitive factors are considered to be the main rea-

sons for frequent misdiagnosis because clinicians cannot fo-

cus on all rare diseases at the same time [2]. Rare retinal

diseases affect a limited number of patients; however, they

impose a significant burden on society. Most patients with

such retinal diseases often encounter diagnostic delays during

the screening stage. However, recent artificial intelligence-

based diagnostic or screening tools have targeted diseases that

have a high prevalence, including diabetic retinopathy and

age-related macular degeneration [3]. Because of the lack of

sufficient clinical data, it is necessary to improve the accuracy

of diagnosing rare retinal diseases [4]. Optical coherence to-

mography (OCT) is the most important diagnostic tool for

screening rare retinal and optic nerve diseases, and it uses a

light wave-based mechanism to provide three-dimensional

retinal structural information [5]. Since the introduction of

the deep learning (DL) algorithm, automated diagnosis for

detecting multiple diseases from OCT imaging has attracted

considerable attention [6]. However, previous studies using

OCT images have been unable to detect rare diseases.

Machine learning techniques have successfully improved

clinical decision support in the field of ophthalmology [7, 8].

In particular, the recent availability of large volumes of retinal

image data has enabled DL techniques to make significant

contributions to diagnostic tasks [9]. However, conventional

DL models are still unable to accurately extract disease char-

acteristics from the insufficient clinical data that is available.

The use of limited datasets for conventional deep learning

training brings an over-fitting problem and may cause critical-

ly low classification performance in the validation set [10, 11].
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As large quantities of data are labeled by clinicians, the current

approaches have been limited to the few retinal diseases that

have a high prevalence. These DL models may disregard the

rare diseases for which they are not trained due to the lack of

sufficient labeled data [12]. However, humans can learn new

disease categories using a few characteristic images that are

available. To accurately detect rare diseases using an automat-

ed system, this gap between humans and DL needs to be

bridged. Recently, few-shot learning (FSL), which is a new

research area in the field of machine learning, has been receiv-

ing increasing attention because it requires a limited amount of

data for pattern extraction similar to human experts [13]. After

the introduction of generative adversarial network (GAN) for

data augmentation, the performance of FSL was significantly

improved due to the generation of synthetic images [14]. This

GAN-based FSL technique provides an intuitive solution for

utilizing conventional DL methods that have generally been

used for large databases.

Recently, few-shot learning techniques have been adopted

to diagnose rare diseases. Parbhu et al. showed that a proto-

typical network, which is a metric learning technique, is ef-

fective for dermatological disease diagnosis using real-world

imbalanced datasets [15]. Quellec et al. used a similar metric

learning technique using the K-nearest neighbor to classify

fundus photographs with rare diseases [12]. Few-shot metric

learning using Siamese networks has been used to detect plant

diseases with very small datasets [16]. A gradient-based meta-

learning approach has been used to improve diagnostic per-

formance with a few-shot skin disease dataset [17]. Burlina

et al. demonstrated the feasibility of using low-shot learning

based on automated data augmentation to classify fundus pho-

tographs with rare conditions [18]. Several researchers have

utilized generative models to enlarge training datasets in order

to improve the detection accuracy of diseases using very small

datasets [19, 20]. Few-shot learning based on data augmenta-

tion has also been used to detect pathological chest images of

patients with COVID-19 [21]. These previous studies demon-

strated that few-shot learning techniques could achieve reli-

able performance and outperform classical machine learning

models when using small training datasets.

To the best of our knowledge, no study has been conducted

on detecting rare diseases using the concept of FSL with OCT.

Therefore, the purpose of this study is to build a convolutional

neural network (CNN) model to detect rare diseases using

OCT images. Because limited training data is available on rare

retinal diseases, our approach was based on FSL using GAN-

based data augmentation. In particular, the cycle-consistent

GAN (CycleGAN) was adopted to generate images without

matching paired images. CycleGAN is a type of unsupervised

machine learning model used for mapping different image

domains, and it has demonstrated reliable performance in var-

ious academic fields. We conducted experiments to evaluate

the qualitative effectiveness of our method and to validate this

technique. We also compared the proposed method with other

well-known few-shot learning techniques.

2 Methods

This study was conducted using a publicly accessible OCT

image database obtained from a previous study by Kermany

[6] and additional anonymized OCT images of rare retinal

diseases collected by the authors. Figure 1 illustrates the FSL

methods used in our study. Our proposed method (Fig. 1(b))

involves transfer learning with GAN-based augmentation,

which comprises two stages: (1) development of CycleGAN

models for each rare disease for few-shot OCT image augmen-

tation and (2) fine-tuning training and validation of the DL

classification model. The backbone DL models for transfer

learning were pretrained using the ImageNet database.

2.1 Data collection

Figure 2 shows the data distribution and typical OCT images

of the major and rare diseases considered in this study. The

large database obtained from Kermany’s previous study

(https://data.mendeley.com/datasets/rscbjbr9sj/2) consists of

OCT images showing the characteristics of a normal retina

as well as that of major retinal diseases [6], including

diabetic macular edema [22], drusen [23], and choroidal

neovascularization [23], which are considered to be highly

prevalent diseases. This database was collected from various

eye hospitals and includes labeling data confirmed by expert

ophthalmologists. The detailed diagnosis procedure is

described in Kermany’s original work [6]. Additional retinal

image datasets were extracted from Google Images and

Google search engine by searching for keywords such as

central serous chorioretinopathy, macular telangiectasia,

macular hole, Stargardt disease, and retinitis pigmentosa.

These rare diseases were selected based on a previous

review on OCT diagnosis [24]. According to the Orphan

database, central serous chorioretinopathy [25], Stargardt

disease [26], and retinitis pigmentosa [27] are considered as

rare retinal diseases [28]. Because macular telangiectasia [29]

and macular hole [30] also have very low prevalence, it is

reasonable to consider them as relatively rare diseases. The

images showing the characteristics of these rare diseases were

manually classified by two board-certified ophthalmologists

with prior knowledge about data sources and related docu-

ments, and the ambiguous images were isolated to clarify

the image domains. Since the OCT images fitted perfectly

with the typical characteristics of each disease, OCT exami-

nation was sufficient to diagnose rare diseases in the present

study. There was no disagreement between the two ophthal-

mologists. The OCT images with rare retinal diseases collect-

ed by our team are available at the Mendeley Data repository
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(https://data.mendeley.com/datasets/btv6yrdbmv). The

detailed links of the collected OCT image sources are listed

in Supplementary Materials.

2.2 Characteristics of the datasets

Table 1 shows the OCT characteristics and epidemiologic data

of retinal diseases. The initial training dataset contained a total

of nine classes, including 26,860 normal retinas, 11,348 dia-

betic macular edema, 8616 drusen, 37,205 choroidal neovas-

cularization, 25 central serous chorioretinopathy, 20 macular

telangiectasia, 25 macular hole, 15 Stargardt disease, and 12

retinitis pigmentosa images. The aim of extracting these ex-

tremely imbalanced datasets was to diagnose rare retinal

diseases using the FSL framework. For the test dataset, we

collected 250 normal retinas (sampled from the original test

dataset to balance the major classes), 250 diabetic macular

edema, 250 drusen, 250 choroidal neovascularization, 5 cen-

tral serous chorioretinopathy, 4 macular telangiectasia, 5 mac-

ular hole, 4 Stargardt disease, and 4 retinitis pigmentosa

datasets. The training and test datasets were split randomly,

and they exhibited no overlap.

2.3 Few-shot image translation using CycleGAN

FSL learns new patterns from a limited number of training

datasets. There are mainly three popular categories of FSL,

namely meta-learning, metric learning, and augment-based

Fig. 1 Few-shot learning techniques for rare disease OCT diagnosis in

the present study. a Deep learning model using transfer learning without

augmentation. b Transfer learning model with data augmentation based

on generative adversarial networks (GANs). c Metric learning model

using a Siamese neural network. d Metric learning model using a

prototypical network

Fig. 2 Datasets pertaining to the optical coherence tomography (OCT) images of major and rare diseases considered in the present study
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techniques [31]. Inspired by previous works using GAN for

FSL [32, 33], we adopted CycleGAN-based augmentation for

rare retinal diseases to increase the accuracy of diagnosis.

CycleGAN was developed to overcome the limitation of

paired data when two generators and two discriminators are

used. Figure 3 shows the detailed framework of CycleGAN,

which is considered to be a powerful DL technique that per-

forms image domain transfer and face transfer. Because there

is no database that includes both pathological OCT images

and matched normal OCT images, supervised GAN tech-

niques, such as conditional GAN and Pix2Pix, are not appli-

cable in this study. CycleGAN is a type of unsupervised ma-

chine learning technique used for mapping different domains,

and several researchers have already used it for few-shot and

small data domain transfer [32–34]. The detailed mathemati-

cal implementation of CycleGAN is described in

Supplementary Materials.

We developed CycleGAN augmentation models for each

rare retinal disease (central serous chorioretinopathy, macular

telangiectasia, macular hole, Stargardt disease, and retinitis

pigmentosa). The major classes did not require data augmen-

tation because they had sufficient OCT images to train con-

ventional DL models. Each CycleGAN model was trained

based on two domains, including normal retina and one spe-

cific rare disease. The few-shot OCT images with rare dis-

eases were augmented using both linear and elastic transfor-

mations. Linear transformation included left and right flip,

width and height translation from −5 to +5%, random rotation

from −30° to +30°, zooming from 0 to 20%, and random

brightness change from −10 to +10%. Elastic transformation

was achieved using a Gaussian kernel [35]. We defined this

transformation as “the basic augmentation step.” In our expe-

rience, 40% of the original images with basic augmentation

should be retained for training the classifier. In this training

step, 2000 normal retinal OCT images were randomly sam-

pled from Kermany’s study, and 2000 pathological images

were generated by basic augmentation with few-shot samples.

The five trained CycleGAN models translated normal OCT

images to match the pathological images with each rare dis-

ease. Expert ophthalmologists reviewed the generated images

and removed images possessing severe artifacts. A total of

5000 pathological OCT images, including 3000 CycleGAN-

based and 2000 basic augmented images, were prepared for

each rare disease to train the diagnostic classifier model.

To use a verified and pre-designed image generator, all the

input images needed to be resized to a pixel resolution of

256 × 256 × 3, which is the basic setup of a CycleGAN.

Therefore, we used the default parameter settings, that is, the

ADAM optimizer with a batch size of 1, to optimize the GAN

networks. To visualize the effect of CycleGAN-based aug-

mentation, the t-distributed stochastic neighbor embedding

(t-SNE) algorithm was executed using sampled instances.

The feature vectors from the last layer of the pre-trained

Inception-v3 model were extracted to train the t-SNE.

2.4 Development of CNN model

After data augmentation for rare retinal diseases, we trained

the deep CNN using the Inception-v3 model, which is the

most popular DL network developed by Google, to build a

multi-class diagnosis model. The Inception-v3 model has

been used successfully in many previous studies, demonstrat-

ing state-of-the-art performance with a saliency map [6, 9].

Figure 4 shows the training and validation processes. The first

validation scheme involved fivefold cross-validation using the

entire dataset including training and test datasets (Fig. 4(a)). In

Table 1 Optical coherence tomography characteristics and prevalence of retinal diseases in the present study

Disease OCT Characteristic Prevalence (per

10,000 individuals)

Rare disease category

CNV Disruption of retinal pigment epithelium, subretinal fluid, cystoid macular

edema, exudation, subretinal hemorrhages or scar

2.3% among

≥70 years [23]

Major ocular disease

DME Thickening of the fovea throughout the whole layer of the retina, cystoid

changes

~3.8% among

diabetes [22]

Major ocular disease

Drusen Retinal pigment epithelium layer deformation or thickening with irregularities

and undulations

4.8% among

≥50 years [23]

Major ocular disease

CSC Subretinal fluid under the central macula, foveal distortion 0.061% [25] Definitely rare disease*

Macular hole Retinal layer break and tissue defect involving the fovea 0.11% [30] Relatively rare disease

MacTel Temporal foveal cystic pit enlargement secondary to loss of outer nuclear

layer and ellipsoid zone

~0.022% [29] Relatively rare disease

Retinitis Pigmentosa mild inner retinal layer thinning and severe outer retinal layer thinning, cystic

macular lesions

0.17% [27] Definitely rare disease*

Stargardt disease disruption or complete loss of both outer retinal layers at fovea, thinning of

whole retinal layers

0.01% [26] Definitely rare disease*

CNV, choroidal neovascularization;CSC, central serous chorioretinopathy;DME, diabetic macular edema;MacTel, macular telangiectasia;OCT, optical

coherence tomography
* Included in the Orphanet rare disease database [28]
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this scheme, even during GAN training, the verification

datasets were thoroughly separated from the training sets so

that the GAN models could maintain full independence of the

verification sets. Because the independent test dataset for the

major classes was selected from Kermany’s previous work

[6], the second scheme involved training the CNN model

using the training set and validating it with the test dataset

(Fig. 4(b)). The final training dataset for the diagnostic FLS

models contained a total of nine classes (Fig. 2), including

26,860 normal retina, 11,348 diabetic macular edema, 8616

drusen, 37,205 choroidal neovascularization, 5000 central se-

rous chorioretinopathy, 5000 macular telangiectasia, 5000

macular hole, 5000 Stargardt disease, and 5000 retinitis

pigmentosa images (Fig. 3). A tenth of the training dataset

was used as the validation set to estimate how well the model

had been trained. We downloaded the Inception-v3 model,

which was pre-trained on the ImageNet database, and per-

formed fine-tuning of the weights of the pre-trained networks

(Fig. 1(b)). This process generally keeps the weights of some

bottom layers to avoid over-fitting and performs delicate mod-

ification of the high-level features. To use the images gener-

ated by CycleGAN for the CNN model, the size of the input

images for the Inception-v3 model was resized to a pixel res-

olution of 299 × 299 × 3. The model was trained with an ep-

och of 250 and a batch size of 10. The ADAM optimizer was

also used with a categorical cross-entropy loss. In our exper-

iments based on transfer learning, it tuned a fully connected

layer of the CNNs. The backbone convolutional layers of

Inception-v3 were left frozen, and the last fully connected

layer was trained using the ADAM optimizer.

Because there is a growing demand for explainable artifi-

cial intelligence methods [36], we adopted the Grad-CAM

Fig. 3 CycleGAN-based augmentation for rare diseases and image classification processes. The CycleGAN model was trained using the few-shot rare

disease OCT image, generating new pathological OCT images with rare diseases

Fig. 4 Two training and validation schemes for the deep learning model for major and rare disease classification. a Five-fold cross-validation using the

whole data set. b Independent test dataset validation
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technique to generate the saliency map. Grad-CAM visualizes

the decisional areas of the CNN model using the gradients of

any target flowing into the final convolutional network.

Finally, it produces heat-maps that highlight the important

area of interest and interprets the decision of the Inception-

v3 model.

Google CoLab Pro, which is a cloud service for dissemi-

nating the DL research, was adopted to implement the

CycleGAN and Inception-v3 models. Google CoLab Pro pro-

vides a development environment with Tensorflow-based DL

libraries and a robust graphic processing unit (GPU). This

enables rapid processing of a heavy DL network without the

need for a personal GPU.

2.5 Other types of few-shot learning

For comparison, FSL techniques based on metric-learning

were also implemented. A convolutional Siamese neural net-

work was developed to find the relationship between two

comparable classes [37]. Recently, researchers have reported

that Siamese networks perform well in complicated FSL tasks

with shared weights of the backbone CNN model [16]. We

used Inception-v3 as identical subnetworks for the classes,

and the Siamese network was designed as described in the

MATLAB 2020b (MathWorks Inc., Natick, MA, USA) ex-

ample (Fig. 2(c)). In this study, both the prototypical network

and K-nearest neighbor learn an embedding based on the

Euclidean distance to classify a new instance. To reduce the

feature space dimension, we used the Inception-v3 model

trained without data augmentation as a backbone CNN model

for both prototypical network and K-nearest neighbor tech-

niques. The prototypical network learns a metric space by

computing the distance to the prototype representations of

each class (Fig. 2(d)) [15]. We set the K value as 3 for the

K-nearest neighbor model according to Quellec’s work [12].

2.6 Segmentation model using a few-shot dataset

To verify that the segmentation of pathological lesions

with few-shot rare disease data is possible, we built an

additional segmentation CycleGAN model. The training

process was based on a total of 72 ground-truth images,

including the images of sampled major diseases and few-

shot rare diseases. In these images, the sub-retinal fluid,

intra-retinal cyst, and pigmented epithelial detachment

were manually labeled by two board-certified ophthalmol-

ogists. We performed basic augmentation of these ground-

truth images into 1000 images. Finally, 1000 augmented

ground-truth segmentation images and 1000 randomly

sampled pathological OCT images were used to train the

segmentation CycleGAN model.

2.7 Statistical analysis

The main focus of this study was the accuracy of the classifi-

cationmodel. The performance of the Inception-v3model was

evaluated based on the accuracies of the whole classes and

sub-group of rare diseases. The assessment of diagnostic per-

formance for each class was based on the area under the re-

ceiver operating characteristic curve (AUC). To establish the

performance of the imbalanced classification, we calculated

the unweighted Cohen’s κ values, relative classifier informa-

tion (RCI), and Matthews correlation coefficient from all the

classes [38, 39]. To evaluate our FSL from a clinical perspec-

tive, all the OCT images in the test dataset were reviewed by

an independent expert ophthalmologist who did not have any

prior information about the disease names, distribution, and

sources.

The basic augmentation step before training the GAN and

Incep t ion -v3 mode l s was pe r fo rmed us ing the

imageDataAugmenter and imgaussfilt functions with a

Gaussian kernel (with σ = 10 and α = 2) in MATLAB

2020b. We used CoLab’s CycleGAN tutorial page to develop

and validate the CycleGAN model. All these codes are avail-

able on the Tensorflow webpage (https://www.tensorflow.

org/tutorials/generative/cyclegan). We modified the data

input pipeline of the CycleGAN and Inception-v3 codes to

import our dataset.

3 Results

3.1 CycleGAN-based augmentation for rare retinal
disease

We developed our DL model using CycleGAN-based aug-

mentation in the challenging context of few-shot OCT images

for rare diseases. First, the CycleGANmodels generated OCT

images with rare diseases, including central serous

chorioretinopathy, macular telangiectasia, macular hole,

Stargardt disease, and retinitis pigmentosa, using the initial

training dataset. The final CycleGAN model for each rare

disease was trained for 100 epochs, which required approxi-

mately 20 h in the CoLab Pro environment. After training,

randomly sampled normal OCT images were translated into

pathological images for augmentation while maintaining the

structures of the choroid and peripheral retina.

In the initial exploratory experiment, the number of

CycleGAN-based augmented data was increased, and it

yielded the highest performance at 5000 OCT images per rare

disease class (2000 original images with basic augmentation

and 3000 CycleGAN-based augmented images) as shown in

Fig. 5. Additionally, Fig. 6 shows the acceptance rate for the

synthetic OCT images used to train the deep learning model

after review by the ophthalmologist. Stargardt disease and
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retinitis pigmentosa showed higher rejection rates than the

other rare diseases. The main reasons for the rejection of the

synthetic images were the overlapped feature, low quality, and

mode collapse. The results of the t-SNE algorithm shows that

the initial data without augmentation fails to visualize the mi-

nor groups with rare diseases (Fig. 7(a)). After the

CycleGAN-based augmentation for rare diseases, the minor

groups were easily clustered with improved generalizability

(Fig. 7(b)).

The use of CycleGAN-based synthetic images helped in

the accurate extraction of the characteristic features of each

rare disease, such as the sub-retinal fluid of central serous

chorioretinopathy and cavitation of the inner retina in macular

telangiectasia. During the image generation process, each case

requires approximately 0.2 s for execution. Figure 8 shows

examples of the pathological OCT images with rare diseases

generated using the CycleGAN model. This feature genera-

tion based on normal OCT images can be effective for

generating new samples to increase the intra-class variation

of the rare disease classes.

3.2 Performance of CNN diagnostic model

The overall classification performance of the deep learning

models for the first validation scheme of the five-fold cross

validation using the whole dataset is shown in Table 2, and the

best performance was observed in the transfer learning with

GAN-based data augmentation (proposed DL model). The

multiclass metrics of overall accuracy, Cohen’s κ, RCI, and

Matthews correlation coefficient pertaining to the best model

were 93.9%, 0.910, 0.969, and 0.911, respectively.

In the second validation scheme, the Inception-v3 model

was trained using the final training dataset and validated using

the test dataset. The training process required approximately

150 h for 250 epochs with fine-tuning for the proposed model.

In our CycleGAN-based DLmodel, the accuracy of diagnosis,

Fig. 5 Exploratory experiment for optimal data augmentation. Inception-v3 with augmentation using 5000 additional images for each rare disease (2000

original images with basic augmentation and 3000 CycleGAN-based augmented images) yielded the highest performance

Fig. 6 The acceptance rate for synthetic OCT images to train the deep learning model. The images were generated by the highly tuned CycleGAN

models for each rare disease. For each group, 100 synthesized samples were extracted randomly for evaluation by two ophthalmologists
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Cohen’s κ, RCI, and Matthews correlation coefficient were

92.1%, 0.896, 0.983, and 0.897 for the test dataset, respective-

ly (Table 3). Our proposed model demonstrated superior per-

formance in comparison with the other FSL techniques.

Regarding accuracy, the Siamese network and prototypical

network showed lower classification performance than the

transfer learning methods. A similar tendency was observed

for Cohen’s κ, RCI, and Matthews correlation coefficient

values, demonstrating that our proposed model outperforms

the other models in terms of multi-class classification. The

accuracy of diagnosis, Cohen’s κ, RCI, and Matthews corre-

lation coefficient of the ophthalmologist without prior knowl-

edge were 97.5%, 0.967, 0.956, and 0.968, respectively, and

the diagnostic performance of the human expert was better

Fig. 7 The feature space visualized using the 3D t-SNE technique. a t-SNE visualization of transfer learning without data augmentation. b t-SNE

visualization demonstrating the effect of the CycleGAN-based augmentation

Fig. 8 Examples of pathological OCT images with rare diseases generated by the CycleGAN. The rare disease classes include central serous

chorioretinopathy (CSC), macular telangiectasia (MacTel), macular hole, Stargardt disease, and retinitis pigmentosa
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than that of the FSL models. However, Table 4 shows that the

human expert conducted frequent misclassification of rare

diseases, considering the true positive rates per class. The

ophthalmologist’s true positive rates per class for diagnosing

central serous chorioretinopathy, macular hole, macular telan-

giectasia, retinitis pigmentosa, and Stargardt disease were

1.00, 1.00, 0.50, 0.25, and 0.50, respectively, whereas those

of our proposed model were 1.00, 1.00, 1.00, 0.75, and 0.75,

respectively.

The detection performance of each disease was evaluated

using the receiver operating characteristic curves (Fig. 9). The

AUCs of the DL models without augmentation, with only

basic augmentation, and with the proposed GAN-based aug-

mentation are not distinguishable in the major classes. In the

detection of rare diseases, the individual performance of the

DL models showed a significant improvement with our pro-

posed GAN-based augmentation. We also generated a salien-

cy map using the Grad-CAM technique by successfully visu-

alizing the characteristic pathological features for the predict-

ed evidence (Fig. 10).

Additionally, we performed experiments to evaluate the

dataset imbalance using the test dataset. After GAN-based

data augmentation, under-samplingwas performed by random

selection to control the data distribution. Figure 11 shows that

controlling the distribution of the dataset did not have a sig-

nificant impact on the classification results after data augmen-

tation. The MobileNet-v2 and ResNet models demonstrated

similar classification performance to that of the Inception-v3

model, which is used in this study (Supplementary Materials).

3.3 Additional experiments using other types of GAN
models

Because our method requires a limited amount of data to train

the CycleGANmodel, it is expected to be highly applicable in

the segmentation of OCT images of rare diseases. To deter-

mine the feasibility of our approach in a segmentation task, we

also trained the CycleGAN model using 72 manually seg-

mented OCT images and 1000 normal images (Fig. 12(a)).

By considering the mean Dice score, data augmentation using

50 ground truth segmentation images could generate en-

hanced OCT images highlighting the pathological features

with the mean Dice score of 0.784 (Fig. 12(b)). Although

the training dataset includes few-shot ground-truth segmenta-

tion images of rare diseases, the results indicate that the path-

ological features, such as sub-retinal fluid, intra-retinal cyst,

and pigmented epithelial detachment, were segmented

Table 2 Multiclass performance results pertaining to the nine-class classification of retinal diseases in the five-fold cross-validation using the whole

data set

Accuracy (%)

(mean±standard

deviation)

Unweighted Cohen’s κ

(mean±standard

deviation)

RCI

(mean±standard

deviation)

Matthews correlation

(mean±standard

deviation)

DL without augmentation 88.3 ± 4.8 0.833 ± 0.084 0.960 ± 0.039 0.835 ± 0.081

DL with basic augmentation 91.5 ± 4.4 0.876 ± 0.070 0.965 ± 0.028 0.878 ± 0.068

Proposed DL model using GAN 93.9 ± 4.5 0.910 ± 0.065 0.969 ± 0.028 0.911 ± 0.062

Convolutional Siamese neural network 83.4 ± 4.7 0.768 ± 0.127 0.943 ± 0.038 0.773 ± 0.122

Prototypical network 80.4 ± 5.1 0.748 ± 0.098 0.931 ± 0.040 0.750 ± 0.094

KNN with feature extraction (K=3) 90.9 ± 4.3 0.881 ± 0.071 0.966 ± 0.029 0.882 ± 0.062

DL, deep learning; KNN, K-nearest neighbor; RCI, relative classifier information

Table 3 Multiclass performance

results pertaining to the nine-class

classification of retinal diseases in

the independent test dataset

validation

Accuracy (%) Unweighted

Cohen’s κ

RCI Matthews correlation

DL without augmentation 88.4 0.847 0.916 0.848

DL with basic augmentation 91.3 0.886 0.953 0.887

Proposed DL model using GAN 92.1 0.896 0.983 0.897

Convolutional Siamese neural network 80.9 0.755 0.915 0.756

Prototypical network 80.8 0.753 0.933 0.755

KNN with feature extraction (K=3) 91.2 0.885 0.972 0.886

Human expert* 97.5 0.967 0.956 0.968

DL, deep learning; KNN, K-nearest neighbor; RCI, relative classifier information
*Categorizationwas performed by an expert ophthalmologist without previous knowledge of the probable disease

409Med Biol Eng Comput (2021) 59:401–415



Table 4 True positive rate per class pertaining to the nine-class classification of retinal diseases in the independent test dataset validation

Normal CNV DME Drusen CSC Macular hole MacTel Retinitis pigmentosa Stargardt disease

DL without augmentation 0.876 0.924 0.920 0.880 0.200 0.200 0.000 0.000 0.250

DL with basic augmentation 0.932 0.940 0.888 0.924 0.800 0.800 0.250 0.250 0.500

Proposed DL model using GAN 0.912 0.948 0.932 0.888 1.000 1.000 1.000 0.750 0.750

Convolutional Siamese neural network 0.784 0.860 0.807 0.784 1.000 1.000 1.000 0.500 0.750

Prototypical network 0.872 0.916 0.832 0.820 1.000 1.000 1.000 0.750 0.750

KNN with feature extraction (K=3) 0.944 0.936 0.916 0.904 0.600 0.800 0.000 0.000 0.000

Human expert* 1.000 0.988 0.980 0.956 1.000 1.000 0.500 0.250 0.500

CNV, choroidal neovascularization;CSC, central serous chorioretinopathy;DL, deep learning;DME, diabetic macular edema;KNN, K-nearest neighbor;

MacTel, macular telangiectasia; OCT, optical coherence tomography; RCI, relative classifier information

*Categorization was performed by an expert ophthalmologist without previous knowledge of the probable disease

Fig. 9 Comparison of the area under the AUC values of deep learning

(DL) without augmentation, DL with basic augmentation, and proposed

DL with CycleGAN-based rare disease augmentation using the

Inception-v3 model outputs for each disease. a Normal versus other

classes. b Diabetic macular edema versus other classes. c Drusen versus

other classes. d Choroidal neovascularization versus other classes. e

Central serous chorioretinopathy versus other classes. f Macular

telangiectasia versus other classes. g Macular hole versus other classes.

h Stargardt disease versus other classes. i Retinitis pigmentosa versus

other classes
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successfully in central serous chorioretinopathy and macular

telangiectasia (Fig. 12(c)).

4 Discussion

In this study, we investigated the feasibility of DLwith a GAN

technique for accurately detecting rare retinal diseases using

OCT images. We found that CycleGAN-based augmentation

could improve the diagnostic accuracy of rare diseases using a

conventional DL model with an interpretable explanation via

Grad-CAM. In addition, this GAN technique can be extended

to segmentation tasks using small datasets. To the best of our

knowledge, this is the first experimental study to construct a

few-shot DL model for OCT images considering rare disease

diagnosis using GAN-based augmentation.

A recent study emphasized the large amount of OCT data

required to train a DL model but did not investigate the feasi-

bility of FSL in OCT imaging [40]. To address the limitations

of traditional DL models, we first performed an experiment to

explore the feasibility of FSL in the OCT imaging domain.

We found that FSL could be a valuable tool for detecting rare

retinal diseases. Our FSL model using GAN-based data aug-

mentation performed better than an expert without prior

knowledge in diagnosing rare diseases considering the true

positive rate per class. This result strongly illustrated the fea-

sibility of applying FSL to improve the diagnostic accuracy of

rare diseases. Because there are less noisy features compared

to other image domains such as skin [15] and fundus photo-

graphs [18], OCT appears to be more suitable for image syn-

thesis and few-shot learning. However, it is important to note

that all the many synthetic images generated by the GAN

models were not acceptable for use. Therefore, considerable

effort and time to select acceptable images are needed to build

an accurate DL model. Moreover, it will be a huge challenge

to improve the diagnostic accuracy of both major and rare

diseases to a very accurate level for real clinical application.

This study aimed to increase the accuracy of DL in diag-

nosing rare retinal diseases while maintaining the diagnostic

performance for major diseases. Several previous studies have

focused on building DL models for the diagnosis of rare ret-

inal diseases, includingmacular hole [41], retinitis pigmentosa

Fig. 10 Example of pathological OCT images with saliency map using the Grad-CAM technique

Fig. 11 Experiments to evaluate dataset imbalance using the test dataset.

Under-sampling was performed by random selection. a The numbers of

OCT images used in each experiment. b The validation accuracies for

each experiment. c The validation results of Matthews correlation coeffi-

cient for each experiment
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[42, 43], and Stargardt disease [4]. However, these DLmodels

were designed for binary classification using normal and path-

ological image data. Therefore, a multiclass classification DL

model is necessary to detect not only rare diseases but also

major diseases such as diabetic retinopathy and age-related

macular degeneration [10, 44]. One study demonstrated that

CNN could classify five classes of OCT images using a large

dataset without augmentation [45]. A recent study using both

segmentation and multiclass classification networks improved

the performance using affine and elastic transformations [35].

Another study using fundus photographs demonstrated the

applicability of the FSL model based on principal component

analysis and k-nearest neighbor [12]; however, this approach

was limited by the lack of sufficient interpretability. This

study established that the accuracy of DL models and the

quality of the images generated using the few-shot setting

decreases significantly with a decrease in the amount of avail-

able data. We succeeded in improving the accuracy of OCT

diagnosis of rare diseases by using the GAN technique.

The main limitation of DL models in diagnosing rare reti-

nal diseases is the inability to generalize decision boundaries

from a very small number of datasets. DL using the FSL

technique enables the model to learn a new task with limited

information from a few instances by incorporating prior

knowledge [14]. FSL relieves the burden of collecting a large

amount of labeled data on rare diseases. In the medical field,

FSL can learn even from extremely imbalanced disease data

distribution using prior knowledge [12]. To solve this prob-

lem, several methods such as meta-learning, metric learning,

and data augmentation have been proposed [31]. As most FSL

methods are based on pre-trained DL networks, they generally

lack interpretability regarding their operation [46]. Previous

studies have demonstrated that GAN can improve FSL

models by generating training situations to learn better deci-

sion boundaries between categories [14]. Recent studies using

CT and MRI datasets have shown that the GAN-based data

augmentation technique significantly improves the perfor-

mance of machine learning models [47, 48]. GAN has also

been successfully applied to cancer cell classification with

insufficient training data [49]. CycleGAN has been used to

improve the breast mass classification accuracy using a small

dataset [50]. Consistent with previous studies using GAN-

based augmentation, the accuracy of diagnosing rare retinal

diseases was significantly improved using the CycleGAN

model in the OCT domain.

Unlike the studies aiming at developing new GAN-based

CNN models to accommodate the limited number of datasets

[49], we used a standard CNNmodel that utilizes CycleGAN-

based augmentation. This method is advantageous because

researchers can easily check the output images of

CycleGAN to assess the accuracy of the DL model.

Synthetic OCT images can generalize rare disease classes

based on a variety of normal OCT images and can guide the

CNN model to avoid over-fitting to specific images [51]. In

addition, the trained standard CNN model can be easily com-

bined with Grad-CAM to improve interpretability. Previous

studies have shown that CycleGAN is effective in generating

synthetic images with morphologic feature transformation and

Fig. 12 Additional CycleGAN model for pathological feature

segmentation; the training process is based on randomly sampled

pathological images. a Flow-diagram of the OCT dataset and the

CycleGAN model. b The segmentation accuracy (mean Dice score)

according to the number of training images. c Example of pathological

feature segmentation results generated by CycleGAN. Pathological

images include central serous chorioretinopathy, macular telangiectasia,

diabetic macular edema, and choroidal neovascularization
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in performing the segmentation task using a small number of

datasets [51, 52]. However, we established that synthetic im-

ages contain several artifacts; therefore, future studies should

be directed at increasing the quality of synthetic images gen-

erated by GAN with few-shot setting. Further clinical valida-

tion of the resulting synthetic images using real-world data

from clinics is also necessary.

This study has several limitations. First, the OCT images

generated by the CycleGANmodel have a low resolution of

256 × 256 pixels. This is because CycleGAN incurs a high

computational cost for training networks for high-

resolution applications. The low resolution may affect the

classification results of the DL model [53]. Second, this

study does not include a volumetric analysis for OCT. A

recent study demonstrated that there is a lack of standardi-

zation in the OCT acquisition and analysis protocol [40].

Future studies should consider the variations in OCT

images and devices. Third, the dataset includes a limited

number of rare disease classes. Although we attempted to

collect rare disease data from web-based sources, we could

not include all the retinal diseases that have been reported in

the existing literature. A recent study demonstrated that the

conventional DL model can classify over 100 disease

classes if the data is prepared for training [54]. We believe

that our CycleGAN-based augmentation for rare diseases

can be adopted to address similar classification problems

with a large number of classes.

5 Conclusions

In summary, our DL model using GANwas useful in improv-

ing the accuracy of OCT diagnosis of rare retinal diseases

while maintaining the diagnostic performance for major dis-

eases. In particular, the CycleGAN-based augmentation was

effective for the generalization of few-shot OCT images of

rare diseases to avoid over-fitting. Thus, by increasing the

accuracy of diagnosing rare retinal diseases via FSL, clini-

cians can avoid neglecting rare diseases with DL assistance,

thereby reducing diagnosis delay and social burden of

patients.
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