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Abstract. We consider the problem of deciding whether a given system of quadratic 
homogeneous equations over the reals has nontrivial solution. We design an algo- 
rithm which, for a fixed number of equations, uses a number of arithmetic operations 
bounded by a polynomial in the number of variables only. 

1. Introduction 

Let Gi = (x ,  qJix),  i = 1 . . . . .  m, be a family of  quadra t ic  forms on ~", so ~Fi, 
i = 1 . . . . .  m, are n x n real square symmetr ic  matr ices  and  ( . ,  -)  is the s tandard  
scalar  p roduc t  in R". Let S"-1 = {x e E", IlxH = 1} be the unit  sphere. We denote  
by [[qJil the usual  no rm of W: [l~Flt = max{ll~F(x)ll, x ~ S " - l } .  We consider  the 
following p rob lem:  

(1.1) Problem.  F ind  whether  there exists an x e S"-1 such that  

Gl(x  ) = " "  = Grn(X ) : O. 

Withou t  loss of general i ty  we assume that  IIq',tl < �89 for i = 1 . . . . .  m. 

In o ther  words  we are interested in whether  a given family of projective quadr ics  
has nonempty  intersection. We s tudy the computa t iona l  complexi ty  of  this 
problem.  If  m = 1, then P rob lem (1.1) has no solut ion if and  only if the form G 1 

* A preliminary version of this paper with a weaker result appeared in the Proceedings of STOC "92. 
This research was supported by the Mittag-Lettler Institute and KTH, Stockholm. 
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is definite. In this case the Sylvester criterion provides a polynomial algorithm. If 
m = 2, then the Toeplitz-Hausdorff theorem (see, for example, [11]) can be used 
to design a polynomial-time algorithm for the "generic" forms Gi. No such results 
seem to be known for m = 3. In this paper we prove the following main result. 

(1.2) Theorem. Assume that m is fixed. Then, for any n ~ ~ and any quadratic 
forms G 1 . . . . .  Gin: R" --* R, Problem (1.1) can be solved using a number of  arithmetic 
operations which is polynomial in n. 

Problem (1.1) is universal in a class of semialgebraic problems since an arbitrary 
system of polynomial equations and inequalities over the field R can be reduced 
to Problem (1.1). Of course, the number m of quadratic forms will be large in 
general. Usually, algorithms in real algebraic geometry have a complexity which 
is exponential in the number of variables (for an exposition of algorithmic 
problems in real algebraic geometry and the history of the subject see, for example, 
[14]-[16]). Theorem (1.2) allows the distinction of"  simple" systems of polynomial 
equations and inequalities, namely, those which can be reduced to a few quadratic 
equations. It also inspires a hope that other algorithmic problems of algebraic 
geometry involving intersections of a small number of quadrics can be solved 
polynomially. 

As the main tool to solve (1.1) we study the following optimization problem. 

(1.3) Optimization Problem. Let Fi = (x, ~ ix) ,  i = 1 . . . . .  k, be positive definite 
quadratic forms on R". Find 

l = max F,(x): x ~ . 
L i = I  

Without loss of generality we assume that Fi(x) > �89 z for i = 1 . . . . .  k. 

Putting k = 2m, F2i_l(x ) = IIxll  2 - G,{x), F2i(x) = Ilxll 2 + Gi(x) for i = 1 . . . .  , m 
for Problem (1.1) we conclude that }fl 

max~i=l Fl(x): x e S  "-1 = 'll  < 1 

if the forms G~ . . . . .  G,. have a 
common nontrivial zero, 

if the forms G1 . . . . .  G,. do not 
have a common nontrivial zero. 

The main part of this paper deals with Problem (1.3) and only in Section 4 do we 
consider the source problem (1.1) which initiates and justifies the study of (1.3). 
In Section 2 we characterize the optimal value l of(1.3) by constructing a univariate 
polynomial P of degree O(n k) such that P( / )=  0. In Section 3 we design a 
polynomial algorithm for (1.3) when k is fixed and the forms F 1 . . . . .  F k are in a 
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general position. We also construct a polynomial algorithm for pushing forms into 
general position. 

By arithmetic operations we mean addition, subtraction, multiplication, divi- 
sion, and comparision of real numbers. 

2. A Polynomial Equation for the Maximal Value 

Here we prove the following main result. 

(2.1) Theorem. Assume that k is f ixed. Then, for  any given n ~ ~ and any given 
quadratic forms F 1 . . . . .  Fk: R n ~ R, a univariate nonzero polynomial P(z) o f  degree 
not more than (k + 1)" n k such that P(l) = O, where l is the solution of  (1.3), can be 
computed. To do that a number of  arithmetic operations which is polynomial in n 
(the degree of  this polynomial is linear in k 2) can be used. 

Let I denote the identity n x n matrix. Consider an expansion 

(2.2) det-1/2(I  - ~ t i~i~--  1 + ~ q(ml . . . . .  mk) ' t~  . . . .  t~ ~ 
k i = 1  / O~ml  . . . . .  mk 

in a small neighborhood of the point tl = "'" = tk = O. Our first lemma deals with 
the geometric meaning of the coefficients q(m~,. . . ,  ink). 

Let F(z) = S~ | x ~-1 exp{ -x}  dx be the usual Gamma function and let ds be 
the measure on the sphere S n- ~. 

(2.3) Lemma. The following identity for  the coefficients of(2.2) holds: 

I _n/2. F(ml + "'" + mk + n/2) 
q ( m l ,  . . . .  ink) = 2 ~ m-~ ( ~" "~k S" d s"-' V~'(s) " " V~k(s) ds. 

Proof. Put G(x) = F~(x)  ' ' '  F'~*(x). For r > 0 set S(r) = {x: llxll = r E} and ~(r) = 
Ss(,) G(s)ds, where ds is the measure on the sphere S(r) induced from R ~. Since 
G(x) is homogeneous of degree 2m = 2(m 1 + "" + ink) w e  have 

~ ( r )  ----- ~ / ( 1 ) "  r n+ 2 m -  1. 

Therefore we have 

G(x)" e x p { -  Ilxll 2} dx = ~k(1). r n + 2 m - 1  exp{--r  2} dr 
n 

= � 8 9 1 6 2  m +  . 
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The left-hand side integral is equal to 

~m fR ,, Ot~ '~ --- t~, ~ exp{-  Ilxll 2 + q f~ (x )  + ' "  + t~Fk(x)} dx 
n = . . . = t k = O  

To compute the last integral the well-known formula for the integral over •" of 
the exponential function of a quadratic form can be used (see, for example, [10]). 
So we have 

f a  e x p { - - I l x l l 2 + t l F l ( x ) + " ' + t k F k ( X ) } d x = n " / 2 " d e t - 1 / 2 ( I - -  ~" t~@i) i=1 

Finally we obtain 

q(ml . . . . .  mR ) = n-. /2,  lr(ml + . . .  + m k + n/2) ~k(1), 
2" ml!"" mk! 

and the proof follows. [] 

We also need the following result which is known in many different forms. 

(2.4) Lemma. Let H: ~n ~ R be a continuous function which is positive on S"-1. 
Assume that p: S ~- 1 ~ R is a continuous density such that p(s) > 0 for all s E S ~- ~. 
Then 

(~sn-lnm+l(s)p(s)ds~ 
lim \ ~ -~_~H~(s )~s  } = m a x { H ( x ) : x e s " - l } "  

/ n -~  q- r 

Proof. For the one-dimensional interval this result is proved, for example, in 
Section 2, Chapter 5, w Ex. 199 of [13]. We omit the proof for S"- ~ since it is 
completely analogous. [] 

(2.5) Corollary. Let us f ix  al . . . . .  a k ~ N and denote Qi = q(al + i . . . . . .  a k + i). 
Then, for any j ~ N, 

lim Qj +i = kkJ. lj ' 
i~+oo Qi 

where l is the maximal value in (1.3). 

Proof. Put p(s) = F~l(s)'"F~k(s) and H(s) = Fl(s) . . .  Fk(S ) in Lemma (2.4). Then 
using Lemma (2.3) we deduce that limi_.+ ~ Qi+I/Qi = kk'l .  Since Qj+i/Qi = 
I-I J,= t (Qi+,/Q~+,-1) the proof follows. [] 
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In the previous version of this paper [2] an analogous relation was used to 
design an approximate algorithm for solving (1.1). 

To prove Theorem (1.2) we need a computational version of one result of Gessel 
(see Theorem 2 of [5]) on rational power series in few variables. 

Let Z( t l  . . . . .  tk) be a polynomial in complex variables t~ . . . . .  t k with constant 
term 1 and let ct be a complex number. Let us consider the expansion 

Z - ' ( t l  . . . . .  tk) = 1 + ~ .  ( (mj  . . . .  , mk) �9 t 1 "' . . . .  t k 
0 < ~ l l , . . . , m k  

in a small neighborhood of the point tl . . . . .  t k = 0. Then Theorem 2 from [5] 
asserts that there exist polynomials ro(m 1 . . . . .  mk) . . . . .  ra(ml . . . . .  ink), not all equal 
to zero, such that 

d 
(2.6) 

j = o  
rj{ml . . . . .  mk) '~(ml  + j . . . . .  mR + j)  = 0 

for all m l ,  . . . ,  m k. 

In fact, in [5] a more general result is proved not only for polynomials but 
also for rational functions. We need explicit estimates of d and of the computa- 
tional complexity of these polynomials rj. The desired estimates can be easily 
extracted from the proof in [5], but since [5] does not deal with computational 
complexity questions we briefly describe its method. We assume that the poly- 
nomial Z is given by its coefficients. To compute a polynomial means to compute 
its decomposition into a sum of monomials. 

(2.7) Lemma. Le t  us f i x  k. For  any given �9 and any given polynomial Z such that 
deg Z < v, polynomials rj(m 1 . . . . .  ink), j = 0 . . . . .  d, can be computed such that (2.6) 
holds, d < (k + 1)' v k, and deg r / <  k" (k + I)" v k for  all j .  To compute these poly- 
nomials r j it is necessary to perform v ~ arithmetic operations. 

Proof. We follow Theorem 2 of [5] converting the proof into an algorithm and 
adding explicit estimates. 

Let us c hooseDe  N. For fl = (ill . . . . .  flk) e N k , j  e NO:ill + "'" + flk + k ' j  < D, 
let us consider the following family of functions: 

t ~ ' 7 - I  Z - ~ ( t l  . . . . .  tk) = Uj, B(tl . . . . .  tk)" Z-~-~  . . . . .  tk). 
Ot l t3tk i= 1 Oil./  

Here U~. a are polynomials of degree at most D" v. These polynomials U j, a can be 
computed in a straightforward way using (D.  v) ~ arithmetic operations. It turns 
out by counting arguments that if D is chosen so that 

k k ~,k + 1,]' 
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then the polynomials Uj.p are linearly dependent. If {cj.p} are the coefficients of 
this dependence, then we put 

rj(mt . . . . .  mk) = ~-I (m, + j)[ ~, cJ.p(ml + j )p , . . . (mk + j)P~. 

Thus we have deg rj < D for all j. We can rewrite rj as a sum of monomials in 
ml . . . . .  mk using D ~ arithmetic operations. 

Hence the problem is reduced to finding a linear dependence between certain 
polynomials Uj, p in k variables of degree less than D-v. We can choose 
D = k. (k + 1). v k, so d < (k + 1)" v k. Now we obtain the desired estimates. []  

We need the following purely technical result on the expansion of the determi- 
nant of a matrix of polynomials. 

(2.8) Proposition. Le t  us f i x  k e N. Then, for  any given n x n square matrices 
A o . . . . .  Ak, the expansion o f  

be computed using n ~ arithmetic into a sum o f  monomials in tl . . . . .  t k can 
operations. 

Proof. First we note that the degree of Z does not exceed n. Note that the 
determinant of an n x n square matrix can be computed using O(n 3) arithmetic 
operations. Therefore computing the values of Z( t l  . . . . .  tk) in points 

(t l  . . . . .  tk) ~ [0 :  n]  k 

from the resulting system of linear equations using n ~ arithmetic operations we 
obtain an explicit decomposition of Z( t l  . . . . .  tk )  into a sum of monomials. []  

Now we can prove the main result of this section. 

P r o o f  o f  Theorem (2.1) .  Let us denote 

Z(t I . . . . .  tk)= d e t ( / -  ,=1 ~ t,(l),). 

So Z( t l  . . . . .  tk) is a polynomial in t I . . . . .  t k of degree not more than n. The 
fight-hand side of (2.2) is the expansion of Z -  1/2(t I . . . . .  tk) into a power series in 
t~ . . . . .  t k. By Proposition (2.8) we obtain an explicit decomposition of Z( t  I . . . . .  tk) 
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into a sum of monomia l s  in t: . . . . .  t k. Then by L e m m a  (2.7) using n Otk2) arithmetic 
operat ions we compute  polynomials  ro(m I . . . .  , rag) . . . . .  ra(ml . . . . .  ink) , not  all equal 
to zero, such that  

tl 

y, 
j=0 

rj(rnt . . . . .  mk)" q (ml  + j . . . . .  m k + j)  = 0 

for all ml . . . . .  mk. Here d _< (k + 1). n k. 

Let us choose a~ . . . . .  a k such that  ru(ax . . . . .  ak) ~ 0 for some u. Let us put 

Q i = q ( a l + i  . . . .  , a k + i ) ,  R : ( i ) = r : ( a ~  + i  . . . . .  a k + i ) ,  j = O  . . . . .  d, i e N .  

So we have got a polynomial  recursion 

d 
Y~ R~(i). O,+j = 0 (,) 

j=O 

for all i e ~ ,  where Rj are polynomials  not  all of which are identically zero. Let 
g = max{deg R j , j  = 0 . . . . .  d}, so Rj(i) = r i g + lower-order  terms. Divide each 
summand  of (,) by Q,. i g as i ~ + oo. Since by Corol lary (2.5) 

lim Qi+j /Qi  = kkJ" lJ, 
i~+oo 

we obtain finally the desired polynomial  equation: 

d 

~j" k k j"  I j = O. 

j=o 

d So we put P(z)  = ~ ' = o  ai .  k kj" z j. Since by L e m m a  (2.7) we have that  

deg r~ _< k" (k + 1)- n k 

for all j, we get the desired est imate of the complexity of the algorithm. [ ]  

Remark .  In the proof  above we show that  for a certain choice of a l , . . . ,  a k the 
sequence q(a~ + i . . . . .  a k + i) is polynomial ly  recursive. In fact, this sequence is 
polynomial ly  recursive for any al  . . . . .  a k (see [12]). However ,  known bounds  on 
the degree of  the resulting polynomial  equat ion are much  worse than for a 
sequence with a "gener ic"  start ing point. 

Example .  If  k = 1, then l is the maximal  eigenvalue of the matr ix  r Then we 
have X(/) = 0, where X is the characteristic polynomial  of degree not  more  than n. 
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3. M a x i m u m  in a General Posit ion 

Here we consider the case of "general position" in (1.3). We begin with the 
following standard result. 

(3.1) Lemma.  L e t  x ~ S n -  1 be  a point where the maximum l in (1.3) is attained. 
Then for some positive t l . . . . .  t k the following equation holds: 

( I -  ~" tiOi) 

Proof. Note that the maximum of H = ~k= ~ In F~ on S"- ~ is also attained in x. 
Thus for the differential dH we get 

k 1 

Fi(x )  Oi(x  ) = ~." x 
i=1 

for some 2 e R. Applying ( . ,  x )  to both sides of the relation we deduce that 
2 = k .  []  

It is known that in the space of real symmetric n x n matrices the set of matrices 
of corank r is a real analytic submanifold of codimension r(r + 1)/2 (see, for 
example, the corollary on p. 994 of the English translation of [1]). From this it 
can be derived that, for k symmetric n x n matrices O~ . . . . .  �9 k in general position, 
the following condition holds: 

( ~ ) X/1 + 8 k -  1 
rank I - -  t i 'Oi  > n 

i=1 2 

for all tx, . . . ,  tk ~ R. 
The words "in general position" mean that the last inequality holds for all 

matrices from an open dense set in the vector space of all k-tuples (Ox . . . . .  Ok) of 
symmetric n x n matrices. In fact, for us it is essential that the corank of a linear 
combination cannot be greater than a certain function in k alone. We say that 
O1 . . . . .  Ok are in general position if 

(3.2) r a n k ( I -  i=t ~ ti'Oi) >-n- f (k )  

for all tl . . . . .  tk ~ R, where f ( k )  is a certain function such that 

x/q- + 8k - 1 
f(k) > 

2 

For example, f(k) = k can be chosen. 
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Instead of Problem (1.3) we now consider the following "yes-or-no"  problem. 

(3.3) Problem. For  given a, e e  N, decide whether t l -  a l < e, where l is the 
maximal value in (1.3). 

The idea of the following result was suggested by A. Megretsky. 

(3.4) Theorem. Assume  that k is f ixed .  Then, f o r  given quadratic f o rms  F ~ . . . . .  Fk : 
~" ~ ~ such that (3.2) holds and any given a, ~ e ~, Problem (3.3) can be solved 
using a number  o f  ari thmetic operations which is polynomial  in n. 

k P r o o f  Let us denote H(x)  = l-[i= 1 Fi(x). Put  

By Lemma (3.1) it follows that  l = max{H(x): x e s/}, whereas by (3.2) we deduce 
that d is a semialgebraic set of dimension not more than k + f ( k ) .  Here it is 
essential that  dim d is bounded  by a function in k alone. We construct a 
decomposi t ion of the set d into a union of (possibly intersecting) semialgebraic 
sets {~,,: m e M} called pieces such that, for each piece M,,, the problem 

(3.4.1) given b e ~, decide whether H(x)  > b for some x e M,, 

reduces to solving a system of algebraic equations and inequalities in at most  
k + f ( k )  variables. The number  card M of such pieces is bounded by a polynomial  
in n. The answer to Problem (3.3) is "yes" if for some m e M and b = a - e the 
answer to Problem (3.4.1) is "yes"  and for all m e M and b = a + e the answer to 
Problem (3.4.1) is "no." 

An index m e M consists of a number  r e N such that n - f ( k )  < r < n and of 
a pair  (I, J), where I, J = {1 . . . . .  n}: card I = card J = r. For  t = (tl . . . . .  tk) let us 
denote the matrix I - ~ =  1 ti" Oi by ~(t) and its r x r submatrix with row indices 
in I and column indices in J by ~(t;  I, J). Put  

Tm= {t = (t 1 . . . . .  tk) such that all (r + 1) x (r + 1) minors  of q~(t) are 
equal to 0 and det ~(t; 1, J) ~ 0}. 

Then define 

r162 = {x  ~ S " -  1: @(t)x = 0 for some t e Tin}. 

N o w  we can design the desired system of polynomial  equations and inequalities 
for solving (3.4.1). To simplify notat ion we assume that the nonsingular submatrix 
q~(t; I, J) occupies the upper left-hand side corner of  the matrix ~(t). Let us denote 
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by u~(t),j = r + 1 . . . . .  n, the vector consisting of the first r entries of thej th  column 
of ~(t). Finally put 

f-~(t; I, J)- lufi) for the first r coordinates, 
for thejth coordinate, 
elsewhere. 

Then 

~ , , = {  ~ 2jxj(t) ,) . jeR, t~Tm, j=~+ 2jxj(t) 2 = 1 ) .  
j = r +  1 1 

Using Proposition (2.8) we obtain an explicit representation of the entries of 
tl~(t; I, J)-1 as rational functions in tt . . . . .  t k. Now it is clear that (3.4.1) is written 
as a system of polynomial equations and inequalities in at most k + f(k) variables 
tt . . . . .  t k, 2,+ 1 . . . . .  2 n. Since the degree of these equations and inequalities is O(n) 
and their number is polynomial in n when k is fixed then (see, for example, 1-14] 
and [ 15]) it follows that Problem (3.4.1) can be solved using a number of arithmetic 
operations which is polynomial in n (the degree of this polynomial is linear in the 
number of variables, i.e., in k + f(k)). Since card M < n" n 2'y(k) we have reduced 
the initial problem (3.3) to a set of problems of type (3.4.1) whose cardinality is 
bounded by a certain polynomial in n. []  

Now we describe a way to disturb effectively given matrices ~i ~ ~ to ensure 
(3.2) with f (k)  = k. Here we basically follow [7] although we present a weaker 
construction (in [7] a sharp bound for f(k) is achieved). 

(3.5) Theorem. Assume that k is fixed. Then, for any given symmetric n x n 
matrices r . . . . .  ~k and any given e > 0, n x n matrices ~1 . . . . .  ~k such that 
condition (3.2) holds with f(k)  = k and I I ~  - ~alJ < ~ can be constructed using a 
number of arithmetic operations which is polynomial in n. (The degree of this 
polynomial is linear in k.) 

First we reduce the problem to the following one, written in symmetric form. 

(3.5.1) Problem. Given real symmetric matrices Ao . . . . .  A k and e > 0 find sym- 
metric matrices .~, i = 0 . . . . .  k, such that IIA~ - -4ill < e for all i and 

rank t~-.4i >- n - k 
l 

for all complex to . . . . .  tk, not all of which are equal to 0. 
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If (3.5.1) can be solved in polynomial time, then Theorem (3.5) is proved. One 
has to choose A o = I, A i = Oi, i = 1 . . . . .  k, and then put ~i = Gt fll  G, where G is 
a nondegenerate matrix such that GtAoG = I and ~ are computed with regard 
to e/2 (we assume that e < �89 

Let B~, i = 0 . . . . .  k, be the following diagonal matrices: 

Bi( j  ' j )  = j i. 

Then for the family Bi, i = 0 . . . . .  k, condition (3.2) obviously holds with f ( k )  = k. 
We construct the desired deformation of Ai using B~. 

(3.6) Lemma. There  ex is t  not more than N = n O(k) different numbers z �9 C such 
that 

rank t i ' ( A i + z ' B  i < n - k  
\ i = 0  

f o r  some t o . . . . .  tk, not all o f  which are equal to O. 

P r o o f  Let us consider two complex projective spaces pk  = {t = (t o: tl : ' " :  tk)}, 

p l  = {z = (Zo:Zl) } and the algebraic variety 

{, ) } V = t, z) �9 pk x p l :  rank ti. z l  �9 A~ + t~" Zo" B i  < n - -  k 
k i = O  

together with the projection pr: V--* pl ,  (t, z)~--~z. The image pr(V) is a certain 
subvariety in p1 such that the point (1 : 0) does not belong to the image. Therefore 
pr(V) is a finite set in p1 and the number of points in pr(V) does not exceed the 
number of irreducible components of V. Note that V can be defined by O(n 2k) 
polynomial equations of degree not more than n in 2k + 2 variables w~j = ti '  zj of 
p2k + 1. To estimate the number of irreducible components of V the results of [6] 
and [3] (see also [8]) can be used. []  

P r o o f  o f  Theorem (3 .5) .  We design an algorithm for Problem (3.5.1). For a given 
e choose sufficiently small 6 > 0 such that 116" Bill < e for i = 0 . . . . .  k. Then let us 
put consecutively z = 0, 6 / N ,  2 . 6 / N  . . . . .  3, Ai  = Ai + z .  Bi, where N is an upper 
bound from Lemma (3.6). Note that, for any given z, condition (3.2) can be tested 
using a number of arithmetic operations which is polynomial in n, since it reduces 
to solving systems of polynomial equations in a fixed number of variables. By 
Lemma (3.6) it follows that for at least one z from these N the matrices Ai are 
desired. Another way to get such a z is to use a quantifier elimination method 
(see [ 15] and [16]) which has polynomial complexity since the number of variables 
is fixed. []  
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4. Feasibility Testing 

N o w  we turn to P rob lem (1.1) and prove  the main  result of this paper.  

P r o o f  o f  Theorem (1.2) .  O u r  a lgor i thm is the following. First we construct  the 
forms F 1 . . . . .  F k as in Section 1. Then we have to check whether  l = 1 where l is 
the solution of (1.3). Let  us construct  the polynomial  P as in Theorem (2.1). If P 
does not vanish on 1, then G1 . . . . .  Gm have no c o m m o n  nontrivial  root  and we 
are done; thus we m a y  assume that  P(1) = 0. Then we find a number  6 > 0 such 
that  1~ - ctj[ > 6 for any two different real roots  of the polynomial  P. To  do this 
we divide P by g.c.d. (P(z), dP/dz), reducing to the case of polynomial  without  
multiple roots, and then estimate 6 using the usual discriminant a rgument  (see, 
for example,  [4]). To  compute  such a 6 it is necessary to perform a number  of 
ar i thmetic operat ions  which are polynomial  in deg P, and therefore are polynomial  
in n. Then usiqg Theorem (3.5) we construct  a per turbat ion  Fi ~ ffl, i = 1 . . . . .  k, 
such that  I1 - 11 < 6/2, where 

7 = max{Pl(x)-- ' /r  X E S"-  1}. 

Finally, using Theorem (3.4) we check whether  I l - 11 < 6/2. If  the inequality holds, 
then there exists a c o m m o n  nontrivial  root  of G1 . . . . .  G~. Otherwise these forms 
have no c o m m o n  nontrivial  root.  []  

We conclude the paper  with two remarks.  
O u r  a lgori thm is designed for arbi t rary  real data. If the forms G1 . . . . .  Gm are 

given by their rational coefficients, then it can be checked that  the size of all 
numbers  involved in the a lgori thm is bounded  by a polynomia l  in the input size 
and  thus our  a lgor i thm is strongly polynomial  in the number  of  variables. 

Theorem (1.2) gives us n ~ as an upper  bound  for the complexity of an 
algori thm. Gr igor ' ev  told the au thor  that  using ideas from [9] an est imate n ~ 
can be achieved. He  also noted  that  an est imate O(log m n) for the parallel 
complexi ty  can be achieved. 
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