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Abstract  —  The adjoint variable method for frequency 

domain design sensitivity analysis is proposed for the 
optimization of wire and printed structures analyzed by the 
Method of Moments (MoM). We focus on the construction of 
the adjoint system using a feasible technique which requires 
only minor modifications of existing MoM codes. The 
solution to the adjoint problem is obtained with very little 
overhead once the original problem is solved. The gradient of 
the objective function is consequently computed through a 
single analysis regardless of the number of the design 
parameters. The concept is illustrated through the design of a 
Yagi-Uda array and a rectangular patch antenna using 
suitable MoM simulators.  

I. INTRODUCTION 

System design sensitivity analysis (DSA) concerns the 
relationship between design variables, which are assigned 
by the engineer, and the system response (or state 
variables), which is determined by the laws of physics 
governing the system’s behavior. Its purpose is to evaluate 
the sensitivity of the system’s response to variations of the 
design parameters. Design sensitivity information is 
crucial in a number of engineering problems such as 
optimization, statistical and yield analysis, as well as 
tolerance analysis. In this paper, we focus on the 
implementation of the adjoint-based DSA for gradient 
optimization with full-wave frequency domain EM solvers. 

The adjoint variable method (AVM) for DSA is an 
efficient design approach to complex linear and nonlinear 
problems. It has been proposed in areas such as structural 
design [1], circuit theory [2]-[6], control theory, etc. 
Adjoint sensitivities for circuit CAD can be found even in 
undergraduate courses [7]. Adjoint techniques have 
already been implemented in commercial structural design 
software based on the finite-element method (FEM) [1]. At 
the same time, the AVM has attracted very little attention 
in full-wave EM analysis. 
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e adjoint-based DSA of microwave structures has 
rically been formulated in terms of circuit concepts 

ugh Tellegen’s theorem rather than field concepts. It is 
red to as the adjoint network method (ANM). The 
applications of the ANM to microwave circuit 

lems were published in the early 1970s when network 
itivities were calculated on both voltage-current [3]-
and S-parameter bases [6], [8], [9]. Later, Alessandri 
. [10] applied the ANM to the analysis of microwave 
its whose subnetworks are represented by Y-

meters. Typically, the ANM considers the sensitivity 
single state variable [4], which makes its applications 
lem specific. It is not immediately obvious how the 
 can be utilized in a full-wave analysis. 

cently, a technique was proposed for exact sensitivity 
ysis with the FEM [11]. A similar approach was later 
ied to problems solved in terms of the MoM, and the 
dary layer concept was proposed to reduce the 

putational load [12]. In effect, this technique is based 
the direct differentiation method (DDM) [1], an 
ient approach to the sensitivity analysis of distributed 
onse functions. This technique stops short of defining 
exploiting the concept of adjoint sensitivities. 
e give the mathematical background of the AVM and 
uss its implementation in exact sensitivity analysis of 
r, time-harmonic EM problems. Three major issues 
iscussed: (i) the adjoint problem; (ii) the procedure to 
iently evaluate the gradient of the response function; 
(iii) the formulation of the objective function in 

int-based gradient optimization. The AVM approach 
ases substantially the efficiency of the current CAD 
 based on full-wave frequency domain analysis such 
e FEM and the MoM. This is due to the fact that the 
ctive function and its gradient are computed through a 
le analysis. 

II. ADJOINT-BASED DESIGN SENSITIVITY 

ere, we present the basic concepts of the AVM for 
 in the case of a general linear problem. The 
rtance of this discussion arises from the fact that most 

wave solvers reduce a theoretical model of the EM 
lem to a system of linear equations through a variety 



of discretization techniques. Neither the theoretical models 
nor the discretization techniques are discussed hereafter 
because the formulation of the AVM assumes that the 
problem has already been properly reduced to a system of 
linear equations. We should note that the AVM can be 
extended to the DSA of nonlinear systems. Nonlinear 
circuit sensitivities and feasible approaches to their 
estimation are discussed in [7],[13]. 

Consider the linear system of equations arising from the 
discretization of an EM problem 
 ( )Z x I = V  (1) 
Here, x is the vector of designable parameters, I is the 
state variable vector, e.g., complex currents in the MoM. V 
is the global excitation vector. Z is a matrix whose 
coefficients depend on the structure’s geometry and 
materials. Often, the Z-coefficients are explicit functions 
of the discretization grid nodes as is the case in the FEM. 
This can be advantageous, since it allows the computation 
of the exact sensitivities of the Z matrix instead of using 
finite-differences. Note that the solution I is an implicit 
function of the design parameters x. 

We define a general function ( ), ( )f x I x , which is the 

response function of the linear system. This function has to 
be differentiable in all its arguments. It may have explicit 
dependence on the design parameters x. It depends on the 
solution I  of (1), and therefore, has an implicit 
dependence on x as well. The objective is to determine the 
sensitivity of f with respect to the design parameters x, i.e., 
 f∇ x , subject to ZI = V  (2) 

where ∇ x  is defined as the row operator 

 
1 2 nx x x

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
x �  (3) 

Assuming that the Z  matrix is not singular, the following 
expression for ∇ x I  is obtained from (1): 

 1 ( )−  ∇ = ∇ − ∇ x x xI Z V ZI  (4) 

where I, V and ( )ZI  are column vectors, e.g., 

 1[ ]T
mI I=I �  (5) 

In ( )∇ x ZI , I , which is the solution of (1) at the current 
design, is held constant during the differentiation. For 
clarity, (4) is rewritten as 

 1 , 1,2, ,
i i i

i n
x x x

−  ∂ ∂ ∂= − = ∂ ∂ ∂ 

I V Z
Z I �  (6) 

Equation (4) is the basis of the direct differentiation 
method (DDM) [1]. It provides the means of efficient 
calculation of the gradient of each of the state variables. 
There is no need for additional Z matrix LU-factorization 
since this has been already done at the analysis stage of the 
current design. The solution of (6) can be used to calculate 
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ef f f∇ = ∇ + ∇ ⋅ ∇x x I x I  (7) 

re 

1 2 mI I I

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
I �  (8) 

gradient e f∇ x  reflects the explicit dependence of 

), ( )I x  on x. The DDM, although similar to the 

, stops short of defining the general adjoint problem; 
 thus, does not make use of the associated 
putational benefits. 
e adjoint problem can be derived from (4) and (7), 
h lead to 

1 ( )ef f f −  ∇ = ∇ + ∇ ∇ − ∇ x x I x xZ V ZI  (9) 

vector 

[ ]11ˆ T T
f f

−−   = ∇ = ∇   
T

I II Z Z  (10) 

w introduced. It is a solution to the equation 

[ ]ˆ T
f= ∇T

IZ I  (11) 

is referred to as the adjoint variable vector. Equation 
 describes the adjoint problem. The factored TZ  
ix is obtained easily from the factored Z  matrix of 
riginal system. The sensitivities can now be computed 
rms of the original solution I  and the adjoint solution 
s 

ˆ ( )e Tf f  ∇ = ∇ + ∇ − ∇ x x x xI V ZI  (12) 

ations (11) and (12) form the basis of the AVM. The 
ices / ( 1, , )ix i n∂ ∂ =Z �  in ( )∇ x ZI  may be 
ytically available. If this is not the case, one can 
ys resort to the finite-difference approximation 
/ ix  (i=1,� ,n) [13]. This would require n additional 
atrix fills. However, the analytical evaluation of 

ix∂  would typically be equivalent to an additional Z-
ix fill. Thus, analytically available / ix∂ ∂Z  matrices 
mportant not so much to the computational efficiency 
e algorithm but rather to its accuracy. 
e accuracy of the sensitivity estimation via (12) is not 
gly affected if the / ix∂ ∂Z  matrices in the MoM are 
oximated by finite differences. This is due to the 
ly linear dependence of the majority of the elements of 

/ ix∂ ∂Z  matrix on small perturbations ix  (from 1 to 
 of a geometrical design parameter (see also [13]). 
 key to the construction of the adjoint problem is the 

int excitation vector in (11) ˆ [ ]Tf= ∇ IV . It is evident 

the response function f has to be differentiable in kI  

1, , )m� . The accuracy of the adjoint solution ˆΙ  
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Fig. 1. The geometry of the Yagi-Uda array. 
 

depends strongly on the accuracy of V̂ . Numerical tests 
show that inaccurate finite-difference approximations of 

V̂  may result in deterioration of the sensitivity analysis 
via (12). 

The AVM has significant computational advantages in 
comparison with the traditional calculation of the 
sensitivities through the finite-difference approach (FDA). 
The AVM generates the response and its sensitivities 
through a single analysis regardless of the number of 
design parameters n. Certain post-processing is required; 
however, its computational requirements do not exceed 
those of one system analysis. In contrast, the FDA 
performs (n+1) full analyses. The AVM has better 
computational efficiency in comparison with the DDM as 
well. In the DDM, according to (6), n back substitutions of 
the factored Z matrix are needed to compute /f∂ ∂x . In 
AVM, according to (11) and (12), there is only one back 
substitution needed regardless of n: the one used to 
compute Î . 

III. DEFINING AN OBJECTIVE FUNCTION 

An objective function f may be a suitable least p th or 

minimax real valued function [3],[5] of the state variables 

kI  ( 1, ,k m= � ). The response in the frequency domain 

analysis is typically a complex valued function. The 
complex error ( )je ω  containing sampled frequency 

domain responses [3], [5] can, for example, appear in a 
least p th objective function as 

 
1

| ( ) |j
j

f e ω= ∑ p

p
 (13) 

where jω  denotes the jth frequency of interest. Then, 

 { }2Re | ( ) | ( ) ( )j j j
j

f e e eω ω ω− ∗∇ = ∇∑ p  (14) 

It is recommended that f and, therefore, ( )je ω  be 
analytically differentiable in kI  ( 1, ,k m= � ), so that the 
adjoint excitation V̂  is readily computed at the current 
design. 
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2. The progress of the objective function and the input 
dance of the Yagi-Uda design. 

IV. RESULTS 

put Impedance of a Yagi-Uda Array 

e first example is the optimization of the input 
dance of the Yagi-Uda array, whose initial design is 
n in Fig. 1. The analysis is based on Pocklington’s 
tion using pulse subdomain basis functions. The 
ctive function is defined as 

( ) ( ) /inf Z Z Z= −x  (15) 

re 73Z = Ω . The vector of design parameters is 

1 1[ ]T
n nl s , where 1 1 /nl l λ=  and 1 1 /n ns s λ= . The 

lt of the optimization is shown in Fig. 2. At each 
tion, only one LU-factorization of the Z-matrix is 

ormed. The adjoint excitation V̂  has only one nonzero 
ent because the objective function ( )f x  depends on a 

le state variable: the current at the driver’s base. The 
al design is obtained as [0.5243 0.2607]T=x . 

put Impedance of a Rectangular Patch Antenna 

e AVM technique is applied to the optimization of a 
ostrip-fed rectangular patch antenna with an inset, for 
put impedance of 50 Ω . The design parameters are 

ength of the patch L, its width W and the depth of the 
 S. The design problem is formulated as 

( ) ( )2 2
( ) Re{ } 50 Im{ }in inf Z Z= − +x  (16) 

re [ ]TL W S=x . The analysis is based on the electric 
 integral equation (EFIE). The discretization is based 
riangular basis functions [14]. The progress of the 
gn during the optimization is shown in Fig. 3. The 
l design is [50  90  14]T=x  (mm). The optimal 

gn is [51.51  96.39  15.004]T=x  (mm). 
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Fig. 3. The progress of the objective function and the input 
impedance of the patch antenna design. 
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Fig. 4. The progress of the objective function for the gain 
optimization of the Yagi-Uda array. 

 

C. Maximum Directivity of a Yagi-Uda Array 

The directivity of the Yagi-Uda antenna of Fig. 1 is 
optimized by maximizing the radiation intensity in the 
direction of maximum radiation ( 90 , 90 )θ ϕ= =  

 
2

( ) ( 90 , 90 )zf A θ ϕ= − = =x  (17) 

where zA  is the only non-zero component of the magnetic 
vector potential generated by the antenna. The design 
space is 3 4 5[ ]T

n n ns s s=x , where the subscript n denotes 
normalization with respect to the wavelength λ . In this 
case, the objective function depends on all currents kI  
( 1, , )k m= �  and the adjoint excitation V̂  is a full column 
vector. The initial design is the one optimized for 

73inZ = Ω , with [0.34 0.34 0.34]T=x . The optimal 
design is [0.3735 0.4471 0.4353]T=x . The gain of the 
antenna at the initial design is (0) 12.75G =  (11.06 dB). 
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r the optimization is completed, (9) 15.08G =  (11.78 
 

V. CONCLUSIONS 

 feasible adjoint variable method to design sensitivity 
ysis with frequency domain full wave EM solvers is 
osed. A theory and possible implementations of 
int-based gradient optimization of high-frequency 
tures are presented. Important issues related to the 
ulation of the adjoint system, the accuracy of the 
itivity estimation and the objective functions are 
ssed and illustrated through MoM analysis. 
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