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Abstract. Container-based virtualization is the most popular solu-
tion for isolating resources among users in a shared testbed. Container
achieves good performance but makes the code quite complicated and
hard to maintain, to debug and to deploy. We explore an alternative
philosophy to enable the isolation based on commodity OS, i.e., utiliz-
ing existing features in commodity OS as much as possible rather than
introducing complicated containers. Merely granting each user-id in the
OS a dedicated and isolated network address as well as specific routing
table, we enhance the commodity OS with the functionality of network
namespace isolation. We posit that an OS’s built-in features plus our
feather-weight enhancement meet basic requirements for separating ac-
tivities among different users of a shared testbed. Applying our proto-
type which has been implemented, we demonstrate the functionality of
our solution can support a VINI-like environment with marginal cost of
engineering and tiny overhead.
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1 Introduction

It is evident that large-scale testbeds in wide-area network such as PlanetLab
[13, 14] are viable for bringing innovations in computer networks. The proposal
for GENI (Global Environment for Network Innovations) also stresses the sig-
nificance of building such a testbed. Isolation of resources, i.e., enabling an en-
vironment where individual experiments will not be affected by the other ones,
is a mandatory feature of such platforms. PlanetLab calls such an isolated set
of resources as a “slice”.

Virtualization is an instrument to implement isolation. There is a wide spec-
trum of virtualization technologies. Hypervisor-based solutions, like VMware [6]
and Xen [7, 8], provide flexibility for running arbitrary operating systems, but
are sub-optimal in scalability due to their computational overhead. A large-scale
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slice-based network testbed emphasizes the requirement for little overhead in
virtualization. Container-based solutions, VServer [3] and FreeBSD Jail [1], sat-
isfy this requirement and have been successfully utilized in PlanetLab and Em-
ulab [12], respectively. OpenVZ [5] and its commercial counterpart, Virtuozzo,
also fall into the category of the container-base approaches. Container-based vir-
tualization is considered suitable for a planetary scale test-bed, since it is often
“light-weight” and enables over thousands of slices to run concurrently. However,
when it comes to “light-weightness”, we must consider not only the low overhead
in performance, but also for that in deployment, including implementation, in-
stallation, daily maintenance and continuous upgrading. The PlanetLab kernel
is based on VServer that requires a large amount of patches to the stock kernel
and the patches may not necessarily keep up with the kernel development. Miss-
ing the latest hardware support in the kernel sometimes means we cannot utilize
the cutting edge features of processors and devices in the testbed. The desire of
having an isolation approach light-weight in both performance and deployment
encourages new explorations on virtualization techniques.

We observe that most commodity operating systems already implement se-
curity isolation to some extent. It applies file/directory access permissions and
disk quotas towards user ids, and offers CPU and bandwidth scheduling re-
garding processes and communication sessions, respectively. In the light of this
observation, we pose a question: Can we support isolation only with standard
OS features? The term “standard features” means functionality built-in into the
current or a near-future native OS. Employing the standard features as much as
possible should save the cost for deployment and incur a marginal extra overhead
in performance. We elect to add a slight enhancement to the standard feature for
network namespace isolation, thus, call our solution “feather-weight” isolation.

The term “network namespace” refers to a set of named entities in the net-
work stack, including network interfaces, IP addresses, ports, forwarding and
routing tables, as well as the sockets. It is one of the most important resources
to be isolated but the isolation has not yet supported by any of current commod-
ity operating systems. Early PlanetLab once took the user id in the commodity
OS as the handle for a slice without network namespace isolated, and later the
emphasis on security, scalability and enabling dedicated root environment lead
to the choice of VServer as a virtual execution environment, where network
namespace is isolated within a VServer container.

In this paper, we re-visit this early idea of user-id-based isolation and try to
enhance it for network namespace isolation. The key of the solution is assigning
IP addresses and policy-based route tables to user ids and enforcing separated
usage in interface, address, port space, routing and bandwidth. A caveat is, for
this feather-weightness, we may have to tradeoff the rigorous and secure root
environment isolation. Fortunately, however, in most cases, root environment
may not be necessary.

A parallel work, the Linux network namespace (NetNS) [2], addresses the
same requirement for network namespace isolation. It clones the network stack
into a container that is identified by a process id of a shell, and thus the shell
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has an independent set of virtual interface, address, port space and socket space.
NetNS has to modify the whole network stack and also other parts of OS kernel,
such as filesystem. It is based on the container concept that is advantageous
in performance but not so in deployment. It makes the NetNS code hard to
maintain and to keep up with the evolution of the commodity OS.

This paper makes three contributions. First, unlike NetNS and any other
solutions, this paper suggests the philosophy of enhancing commodity OS with
isolation without over-engineering. Second, it puts this design philosophy into
practice for the network namespace isolation, realizing the mechanism for iso-
lating IP addresses and route tables within a user id. Finally, it demonstrates
that our prototype implementation enables a VINI-like environment where we
can experiment with new network architectures and services with marginal cost
of engineering.

The rest of the paper is organized as follows. Section 2 summarizes the prob-
lem in enabling network namespace isolation in commodity OS and motivates
our work from the observations on the drawbacks of the container-based NetNS.
Section 3 identifies what is required and what is obtained with the proposed so-
lution, especially for the separated routing tables. Section 4 demonstrates typical
routing experiments based on our solutions and Section 5 presents benchmark for
our prototype. Finally, Section 6 briefly concludes the paper with future work.

2 Related Work

We first identify what the current commodity OS supports for isolation and what
it falls short of.

2.1 Resource and Namespace Isolation in Native OS

Even without either full virtualization or containers, native OS, either UNIX or
modern Windows, facilitates resource and namespace isolation to some extent.

– Security Isolation: file systems protect file and directory access among user
ids. Currently the security isolation in native OS doesn’t hide one’s processes
and traffics from other users.

– Performance Isolation: disk quota in commodity OS controls storage usage
per user id. CPU scheduling is a basic function of any OS regarding process
management. Control Groups (cgroups) provides the aggregation for process
scheduling. User id can be used for the progress grouping definitely. For the
network bandwidth issue, traffic reshaping is applied for flows. In Linux op-
erating system, the tool “tc” coupled with the iptables controls the flow
according to its attributes like source or destination addresses, not related to
user id yet.

– Network Namespace Isolation: IP addresses and port space are currently
shared among user ids, without being isolated. Interfaces, routing tables are
the same. Policy-based Routing can support multiple routing tables, but the

Net Namespace Isolation 55



separation is not per user id. Therefore, the network namespace is what to-
day’s commodity OS does not support.

2.2 Linux Network Namespace (NetNS)

NetNS [2] is designed in response to the need of enabling network namespace
isolation in OS. It clones the network stack into private sets of network resources
to be assigned to one or several processes. The resource set includes device, IP
address, port space, route tables, sockets and so forth. Each set is assigned to a
shell process, which plays the role of the “container”. NetNS can be configured
with either Layer-3 router or the Ethernet bridging mode.

NetNS focuses only on network namespace isolation and thus it is much
simpler than OpenVZ or VServer. However, it is still a container-based solution
and accordingly suffers from the drawback of over-engineering. First, NetNS
conflicts with some existing components in the commodity OS. A well-known
case is sysfs, which must be patched until being able to co-exist with NetNS.
Second, NetNS takes a process-id of a shell as the handle for a container. It
implies a limitation that a “slice” implemented with such a container cannot run
multiple shells with the shared network namespace. Finally, the code complexity
causes a lot of troubles and bugs that hurt the stability in operation. For example,
our trial of NetNS in Fedora 8 Linux with kernel 2.6.26.8, compiled from natively
released source code, ends up with a hangup.

This observation on NetNS has motivated our exploration for a better and
lighter-weight solution for the network namespace isolation, which incurs less
cost not only in performance overhead but also in implementation and deploy-
ment than NetNS.

3 System Design

The objective of our system design is enabling network namespace isolation per
user-id in a commodity OS, treating the user-id as the handle for a slice. The
term “network namespace isolation” is defined as enabling following features
from the bottom of network stack to its top.

R1 A user-id is assigned by the system administrator to one (or more) net-
work interface(s), either physical or virtual, and not allowed to use the other
network interfaces.

R2 A user-id is assigned by the system administrator to one (or more) IP ad-
dress(es), either physical or virtual, and not allowed to use the other IP
addresses.

R3 A user-id is assigned by the system administrator to a forwarding table, and
not allowed to use the other forwarding table.

R4 A user-id is allowed to update the kernel forwarding table associated with
this user-id.
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We also have two constraints for the system design.

C1 Our solution must be transparent to applications. In other words, the exist-
ing applications must work without re-code and re-implementation. Binary-
compatibility must be held.

C2 Our solution must involve only the networking kernel of the OS, not to
conflict with other features or components, unlike NetNS.

C3 Our solution must enable new features, but leave the other existing features
as they are.

The last constraint may need clarification; for example, without our solution,
only the privileged user, root, can modify the route table in the kernel, while,
after our enhancement, regular users are allowed to change their own associated
route table but what the root can do is totally unchanged.

We design the system with three steps to meet the requirements of our design
objective. First, we enable the IP address isolation among user-ids. Then, we
apply PBR (Policy Based Routing) and traffic shaper with our modified OS
kernel to make forwarding tables and bandwidth isolated. Finally, we extend the
model through associating route table-id with the user-id, and separate the route
installation from RIB (routing information base) to FIB (forwarding information
base), from the user space to the kernel.

3.1 Isolating IP Addresses among Users

2 Isolation of IP addresses among users needs two components to be added to
the kernel: the data structure describing the assignment of addresses for user-ids
and the functions that ensure the separated address usage. The data structure
and the function are referred by socket system-calls transparently to the callers.

The data structure for address assignment to user-id is designed in the form
of an association of IP address and user-id. An entry (IP address, user id) means
the user-id is able to use the IP address. Considering the scalability, the data
structure should be designed accessible with a hash function.

Semantically the user-address association changes the meaning of the “un-
specified” (or wild-card) IP address, which is defined with the macro IN ADDR ANY
for IPv4 and IN6 ADDR ANY for IPv6, respectively. In a commodity OS, the
wild-card means any address configured with any interface of the host. In an
OS with user-specific address, however, a wild-card means any addresses among
those already assigned to the user-id of the process owner that raises the com-
munication.

The interpretation of wild-card complicates the port conflict detection. When
two sockets attempt to bind to the same port on the wild-card, the conflict hap-
pens when the process owners are associated with at least one common address.
Therefore, the port conflict detection routine should also check which addresses
2 The content of this part is covered by our previous work [11], which focuses on the

addressing architecture for slice computing but not other isolation issues for network
namespace.
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are used by each binding socket, i.e., finding out the user-address association for
the user-id of the owner of each socket.

Packet dispatch from a protocol stack to a socket is also affected by the
change of the semantics of wild-card. The protocol stack searches the socket
pool for a socket matching the destination (address, port)-pair of a packet. Pre-
viously, if a socket is bound to the wild-card, only port should be check for the
dispatching. Now the kernel must identify what the wild-card of a candidate
socket mean exactly and determine if this socket’s corresponding user-id really
owns the destination address in the packet to be dispatched.

Based on the above data structures, a variety of functions are added into the
socket system-calls and protocol stack.

– Sender address availability check: when a process tries to bind a specific ad-
dress for connection to send out packets directly with the specific source ad-
dress, the kernel checks if the process owner user-id is assigned with the
address.

– Listener address availability check: when a process tries to bind a specific
address for a daemon, the kernel checks if the listener process owner user-id
is assigned with the address.

– Address selection: when a process does not specify a source address but lets
the kernel choose one for itself in either of the above cases, the kernel filters
only those addresses assigned to the process owner user-id as the candidate
for the selection. More importantly, the commodity system also tries to select
the source address “closest” to the destination. Our modified kernel should
apply this algorithm with the addresses available for the process owner user-
id. The address selector also helps protocol stack to identify proper socket that
a connectionless datagram or a connection request is targeting.

Per-user address assignment directly results in the elimination of port conflict
among user-ids as in a commodity OS where users can share the use of a single
IP address, since the full port range of the dedicated IP address is available to
each user. We may change the minimum available port number for a regular
user-id from 1024 to 0. This is especially beneficial when each user wants to use
the well-known port number of the dedicated IP address, for example, to run
BGP speakers with a well-known port number such as 179.

Per-user address assignment is suitable for the circumstances where IP ad-
dresses are abundant, either in IPv4 or in IPv6, or in private IP addresses. Note
that our proposed system can assign even private IP addresses to each user-
id. Most virtual networks are using tunnels through private IPv4 addresses.
Considering this, our system is especially useful for network virtualization, as
demonstrated in Section 4.

3.2 Combining Address Separation with Other Features

Network namespace includes link interface, IP address, ports, routes and band-
width. After IP addresses have been isolated among user-ids, we can also isolate
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some of other resources among users by configuring those resources with the
user-specific addresses.

– Interface: interface is configured with one or more IP addresses. Therefore,
the use of each interface is isolated per user-id. However, only the use of the
interface is isolated, not its visibility—each user can see all the physical and
logical network interfaces on the host, knowing their addresses with commands
such as ifconfig and ip link.

– Routing: Policy-based Routing (PBR) can be used to define a separate route
(more precisely, forwarding) table for packets from a specific source address.
Therefore, we can let each user-id own and use a separate forwarding table
for packets originating from the address the user-id is assigned to, rather than
share the default table with others. RIB (routing information base) is managed
at the application layer. Therefore, it is naturally isolated when being run by
specific user-id. However, today’s commodity OS doesn’t allow unprivileged
user-id to run routing tools and to install RIB to the system FIB.

– Bandwidth: Traffic control tools in commodity OS (e.g., tc in Linux) support
shaping policies with respect to a source or a destination address. Configuring
tc with the rule specified by user-specific source or destination addresses, we
can schedule bandwidth utilization among user-ids.

– Raw socket: A commodity OS allows only processes running with the set-user-
id flag suid = 0 to open a raw socket. The purpose of this design is to prevent
users from applying raw socket to generate arbitrary malicious packets. A
program that needs a raw socket but to be run by a non-privileged user should
set the set-user-id flag correctly on its binary file. After IP addresses being
isolated among user-ids, we do not have to prevent a regular user from using
a raw socket any more. One who attempts to abuse a raw socket to forge a
packet can only stick one’s own IP address in the packet, since our system
prohibits the usage of the other IP addresses. Enabling a user’s program to
open a raw socket doesn’t need any further modification in the kernel. Once
a user writes such a program, the privileged user can set the set-user-id flag
of the executable correctly.

3.3 Routing Isolation

Isolating routing is extremely important for network experiments on virtual net-
works [9]. Although we mention in the discussed above that crafting PBR rules
with user-specific address can achieve routing isolation, running separate routing
protocols in different slices will not achieve this goal. The problem is that in a
commodity OS only the privileged user can install a route to the system FIB.
For this reason, we need to enable a regular user to update the FIB of the PBR
associated with his or her user-id in the following steps.

First, to enable the route installation from a regular user-id, it is necessary
to ask the kernel to accept the route update request from a the (non-privileged)
user-id through either ioctl commands or RTNETLINK socket messages.
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Second, once a regular user-id is allowed with route updates, it must be
ensured that a certain user may not interfere with the routes of the others. Note
that the privileged user can manipulate any tables.

When a table-id is specified in a route update request, the kernel must ensure
that the table-id is associated with the user-id. When the table-id is not specified,
then the kernel should find out which table is available for the request sender.

Therefore, to enable the comprehensive routing isolation, we have to add the
route table association into the kernel as well.

When any route table-id is not explicitly associated with a certain user-id,
it means this user wouldn’t like to change the route by itself and it doesn’t
need a separate route table at all. Accordingly it just shares (and only reads)
the default route table of the host, which is able to be update only by root. If
a non-privileged user, associated with the default table, sends a route update
request to the kernel, the kernel should reject the request and return the error,
“operation not permitted”.

As a summary of the system design, in Table 1, we list the features of isolation
enabled (marked with “

√
”) and not enabled (marked with “–”) by our solution,

compared with the container-based NetNS. We trade off only the privacy of slices
for gaining the simplicity in coding, maintenance and deployment.

Table 1. Network Namespace Isolation Supports

Isolation NetNS Our Solution
Interface

√ √
Address/port

√ √
Forwarding

√ √
(w/ PBR)

Routing
√ √

(w/ PBR)
Traffic Reshaping

√ √
(w/ tc)

Raw socket
√ √

(authorized by root)
Visibility/privacy

√
–

We have implemented the Linux kernel patches and tools for the user-id-based
network namespace isolation, with both IPv4 and IPv6. Readers are welcome to
try our code which is open-source and downloadable from online .3

The change involves three major parts: 1) new data structures associating
IP address, user-id and route table-id, and their manipulation functions, which
are used in new ioctl command as well as procfs parsers for the administrator
doing management over the user-address-table associations; 2) modifications in
socket system call instances, augmented with the user-id related behaviors; and
3) modifications in RTNETLINK message processing functions, enabling regu-
lar users to update route tables and dispatching the updates into proper table
corresponding to user-id.
3 See http://sourceforge.net/projects/uoa/ for details.
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4 Demonstration: A VINI Experiment

Our proposed user-id-based namespace isolation implemented in the Linux kernel
is minimal compared to the other container approach and can be easily apply
to any version of Linux kernel release. This is mainly because the modified
pieces are concentrated in the networking stack implementation of the Linux
kernel. In this section, we demonstrate that our proposed solution can serve as
a slice computing platform with network namespace isolated through achieving
a similar platform to VINI [9], which also aims to provide network namespace
isolation for a slice but using Linux VServer, a resource container virtualization
technique.

We arrange the demonstration with a simple configuration. As is shown in
Fig. 1, three computers running Linux with the modified kernel and physically
connected to the same network. In the implementation of VINI, nodes are con-
nected over the Internet, not necessarily within the same network. We separate
the virtual links via tunneling, to mimic the real environment.

Fig. 1. Nodes, networks and slices for the VINI experiment

Two users are running their own slices with user-ids, u00 and u11, respec-
tively 4 . Assigning proper addresses of tunnel interfaces to the users, we have
the topologies of the networks of the two slices separately defined. Fig. 1 depicts
that the networks on the two slices are configured with separated address blocks.
4 To be precise, user-ids of the same slice on different nodes could be vary. To simplify

the discussion, we specify the user names on all nodes identical to the name of the
slice and don’t discuss the detailed number of user-id in the operating system.
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4.1 Configurations

We suppose that address blocks 1.0.0.0/8 and 2.0.0.0/8 are assigned to u00
while blocks 10.0.0.0/8 and 12.0.0.0/8 to u11. The two users would run their
own networks with their own addresses, respectively. How do they arrange the
addressing and networking depends upon their needs.

Addresses and route tables: We assume that after a user has made the layout
of its in-slice network, the user informs the administrator of the platform to
configure the virtual interfaces, enabling virtual links. Here we apply the GRE
tunneling for this purpose and the ip tunnel/addr/link tools are utilized.

The administrative tool, uoamap, is used to configure the association of IP
address, user-id and route table-id. Table 2 presents the configurations that we
make for the nodes A, B and C, respectively.

Table 2. Address and route table associations

Config. Node u00 u11

A 1.254.1.2 (tun0) 10.254.1.2 (tun2)

10.1.3.1 (tun1)

IP addr. B 1.254.1.1 (tun0) 10.254.1.1 (tun2)

(iface) 1.254.3.1 (tun1) 10.254.3.1 (tun3)

C 1.254.3.2 (tun0) 10.254.3.2 (tun1)

10.1.3.2 (tun2)

table-id A B C 32800 32811

(rules)

0
@ from 1.0.0.0/8

from 2.0.0.0/8

1
A

0
@ from 10.0.0.0/8

from 12.0.0.0/8

1
A

Routing policies: data plane Rules for routing policies are configured directly
with the ip rule tool. According to the address block assignment, we apply
the policy that allow each slice’s network can transfer packets with the source
addresses within the blocks assigned to the slice. For our demonstration, we have
shown these rules in the Table 2.

Note that the VINI also supports interaction of real networks and in-slice
overlays. In such a case, source addresses of packets running over one’s slice may
not be restricted in the assigned address blocks. This can be supported with
applying rules regarding the incoming interface, e.g., ip rule add dev tun0
table 32800 on node A indicates that the packets coming through the device
tun0, which is configured with an address in u00’s slice, can traverse the node
A according to the route table with id 32800.

Links, addresses, tables and rules are all configured by the root on each
node. Afterwards, users have the freedom of manipulate their own route table
by either the manual configuration with ip route commands or the automatic
update with routing protocol daemons.
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Routing protocols: control plane In our demonstration, a routing protocol runs
as an application of regular user-id. Unlike the other container approaches, in
our solution, there are several minor limitations such as Quagga routing suite
has to be re-compiled by each user, because the installation path must be set to
the user’s home directory rather than the default /usr/local, and the daemons
must run with the context of the user-id itself rather than the default “zebra” or
“daemon”. In addition, we must disable Quagga’s check on the security capability.
All of these can be specified with the configure tool in the Quagga source.

After the Quagga suite is installed, a user has to edit the configuration files,
zebra.conf and bgpd.conf to define BGP peers. Finally, the user can start
both zebra and bgpd to start routing in its own slice. Since the BGP peering in
our demonstration is simple so for brevity’s sake, it is not shown here.

To meet the design goal of transparency to slice users, the table-id of a slice is
known only to the root while it is hidden to a regular user. The latter only sees
it as if it were the main table of the system and cannot see other users’ tables.
Therefore, it is not necessary to assign table-id in the zebra configuration.

4.2 RIB and FIB

BGP sessions are established between two application-layer peers, therefore their
RIB is naturally isolated. Our demonstration shows that the sessions are estab-
lished and not interfere each other. For example, for node A, we check both the
BGP session advertisement as well as the corresponding route table to verify our
design and implementation.

BGP tables: Each slice user applies telnet to the Quagga BGPd user interface
of any of its own sliver. On node A, u00’s BGP table can be accessed through
1.254.1.2 port 2605, while u11’s BGP session can be completely isolated of that
of u10.

Fig. 3 illustrates what we can achieve. The success of the BGP peer estab-
lishment verifies our PBR-based source address selection is working correctly.

Isolated FIB installation
PBR facility. Our design further realizes the isolation of route updates from RIB
to the user-specific FIB. We login as each user and run the ip route command
to check the installation of the routes.

In displaying the routes, we don’t specify the table-id and let the kernel
pick up the user-specific table-id automatically. Therefore, the separated route
display is also transparent to slices since it is not required that the slice user get
to know the detailed number of its table-id, which is not decided by itself but
decided by the local administrator (the root).

The successful establishment of BGP peers and the updates from BGP RIB to
kernel FIB validates that our solution has the ability to support comprehensive
routing isolation.

The data plane of in-slice routing is isolated through the
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bgpdA> show ip bgp

BGP table version is 0, local router ID is 1.254.1.2

Network Next Hop Metric LocPrf Weight Path

*> 1.0.0.0 1.254.1.1 0 0 2 i

*> 1.1.0.0/16 0.0.0.0 0 32768 i

*> 1.2.0.0/16 0.0.0.0 0 32768 i

*> 1.3.0.0/16 1.254.1.1 0 2 3 i

*> 2.2.0.0/16 1.254.1.1 0 0 2 i

*> 2.2.3.0/24 1.254.1.1 0 2 3 i

Total number of prefixes 6

(a) The RIB of u00’s slice at node A

bgpA> show ip bgp

BGP table version is 0, local router ID is 10.254.1.2

Network Next Hop Metric LocPrf Weight Path

* 10.0.0.0 10.1.3.2 0 30 20 i

*> 10.254.1.1 0 0 20 i

*> 10.1.0.0/16 0.0.0.0 0 32768 i

*> 10.2.0.0/16 0.0.0.0 0 32768 i

* 10.3.0.0/16 10.254.1.1 0 20 30 i

*> 10.1.3.2 0 0 30 i

* 12.2.0.0/16 10.1.3.2 0 30 20 i

*> 10.254.1.1 0 0 20 i

* 12.3.0.0/24 10.254.1.1 0 20 30 i

*> 10.1.3.2 0 0 30 i

Total number of prefixes 6

(b) The RIB of u11’s slice at node A

Fig. 2. Success of in-slice BGP peering

5 Performance Evaluation

This section describes our qualitative and quantitative evaluations on the the
proposed solution, showing it is light in both engineering and performance over-
head.

5.1 Qualitative Evaluation

The development needs only a small amount of coding for the kernel patch
and the management toolset. Totally, the kernel patch includes adding 10 and
modifying 3 header files in include/net, adding 8 and modifying 20 C source
files in net/ipv4 and net/ipv6 subdirectories. The kernel patch (diff result
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u00@uor: ~$ /sbin/ip route list

1.254.1.1 via 1.254.1.2 dev tun0

2.2.3.0/24 via 1.254.1.1 dev tun0 proto zebra

2.2.0.0/16 via 1.254.1.1 dev tun0 proto zebra

1.3.0.0/16 via 1.254.1.1 dev tun0 proto zebra

1.0.0.0/8 via 1.254.1.1 dev tun0 proto zebra

(a) The FIB of u00’s slice at node A

u11@uor: ~$ /sbin/ip route list

10.1.3.2 via 10.1.3.1 dev tun1

10.254.1.1 via 10.254.1.2 dev tun2

12.3.0.0/24 via 10.1.3.2 dev tun1 proto zebra

10.3.0.0/16 via 10.1.3.2 dev tun1 proto zebra

12.2.0.0/16 via 10.254.1.1 dev tun2 proto zebra

10.0.0.0/8 via 10.254.1.1 dev tun2 proto zebra

(b) The FIB of u11’s slice at node A

Fig. 3. Success of in-slice route installation from RIB to FIB

from stock to our kernel code) has only 3707 lines, 99KBytes, including inline
comments. The code involves only the networking kernel and is well decoupled
from other parts, and therefore it is easy to maintain and upgrade. In contrast,
either VServer or NetNS needs a big amount of coding, and the coding heaviness
is also the major reason causing the poor compatibility, resulting in troubles that
we have mentioned in Section 2.

In the deployment perspective, users of a node can directly use the proposed
solution as long as the root has configured its available address, virtual links (if
necessary) and routing table. Section 4 has demonstrated the simplicity of our
user-specific addressing and routing without any containers. In VServer solution,
it is necessary to establish containers and install frequently-used applications in
the containers one by one. In NetNS solution, the root needs to detach the default
namespace from a new shell process and then assign a virtual interface to it and
establish the new namespace. It is obvious that the workload to introduce our
user-specific addressing-routing approach is lower than them two.

Therefore, we are confident of the lightness of our solution in the terms of the
engineering for code maintenance and deployment. We need also verify the per-
formance scalability of the proposed solution. We conducted the following bench-
mark with our prototype implementation and compare it to the performance of
the stock kernel. In [10], one can find benchmark results for the container-based
solutions, where either VServer or NetNS is significantly poorer than the stock
kernel.
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5.2 Benchmarking

For the benchmark, two computers equipped with Intel Core2Quad CPU Q6700@
2.66GHz and 3.2GB memory are connected over a 1000 Mbps cross-wire Ethernet
link. One of them, (A), is installed the native Linux kernel 2.6.32 for Debian 5.0.3
and our patched kernel. It can be booted up with either. The other machine, (B), is
running with the native kernel. The benchmarking tool netperf [4] version 2.4.4
is used. netserver is running at (B) and (A) starts netperf.

Working with the kernel enabled with user-specific address and route table,
(A) is running with a certain number of IPv6 addresses, one-to-one associated to
the same number of user-ids. For a fair comparison, when the machine (A) runs
the stock kernel, i.e., users are not associated with specific addresses but share
them all, we also configure the same number of addresses to the interface, even
though processes always pick up the same one. Further, we run each test twice,
one round with source address unspecified while the other round with source
address specified. All the tests are conducted with source port unspecified at the
sender side, i.e., the kernel will perform port selection for connection or message
sending.

The netperf benchmarking is conducted with four types of test: TCP connec-
tion/close, UDP request/response, TCP streaming and UDP streaming. Tests
are run by one user among a group, every user of which is assigned with a ded-
icated IPv6 address. Performance impact of the user group size is depicted in
Fig. 4.

TCP streaming and UDP request/response are the most popular types of
applications applying TCP and UDP, respectively. Our benchmark shows that
the performance of TCP streaming and UDP request/response are not impacted
by the patch for the user-specific addressing and routing. Actually, for the TCP
streaming, either the address availability check or the port conflict detection is
done only once for a session at the connection establishment stage. The check
for the address availability must consume some CPU time but this could be
ignored in the macro observation for the end-to-end throughput. For UDP re-
quest/response, the check and detection is done for every request, and the ad-
dress availability check consumes also the ignorable amount of CPU time.

The TCP connection/close and UDP streaming benchmarking, however,
present an unexpected behavior, where the patched kernel performs even better
than the stock kernel when the user group is getting quite large. This can be ex-
plained with the principle of port selection. Because the user-specific addressing
decreases the probability of the port conflict, when the number of concurrent
sessions gets high, stock kernel suffers higher port conflict rate and it must take
more time to find an unoccupied port number for a new socket. TCP connec-
tion/close leaves a lot of sockets in the TCP TIME WAIT state and they hold
the use of their port for a quite long period in comparison to the action of
connection establishment, while UDP streaming also causes a lot of long-living
sockets occupying port numbers in use. Therefore, the affect of port conflict is
apparent in these two types of benchmark.
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Fig. 4. Performance comparison: user-specific addressing vs. stock kernel

To summarize the benchmark, we state that even the current full-fledged
prototype of our user-specific addressing and routing can achieve the end-to-end
performance not worse (but sometimes better) than the commodity OS, for most
cases of Internet applications.

The lightness in run-time overhead makes our user-specific addressing-routing
approach competing with a container based solution like VServer. Without con-
tainer, our solution can easily support up to 4K slices (actually, 4K is the max-
imum number of IP addresses that are able to be configured with a network
interface card in Linux) over a PC and have good performance. While a 102 GB-
capacity disk is hard to support more than hundreds of VServer guests because
each guest has to consume at least tens of MB for the basic container facility.

What we trade off for the scalability is the root environment for a slice. On
the other hand, in the privacy-sensitive circumstances, we cannot shield a slice’s
activity from being viewed by another.

6 Conclusions

This paper explores the feasibility of supporting isolation for slices in a com-
modity OS with as few modifications as possible and only within the networking
kernel. For this purpose, we design and implement the idea of isolating IP ad-
dresses and routing tables among user-ids on top of a commodity OS. Our min-
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imal modifications to the stock kernel together with the well-developed policy-
based routing (PBR) facility successfully validate that the philosophy of minimal
engineering can provide comprehensive isolation for network namespace. Mean-
while, the performance overhead is light enough to ensure the performance of
the modified kernel not worse than the commodity OS stock kernel. The num-
ber of slices supported by the user-specific addressing and routing can reach the
limit of the maximum IP addresses that a commodity OS can configure with a
network interface.
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