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Abstract

Face Anti-spoofing gains increased attentions recently in

both academic and industrial fields. With the emergence

of various CNN based solutions, the multi-modal(RGB,

depth and IR) methods based CNN showed better perfor-

mance than single modal classifiers. However, there is

a need for improving the performance and reducing the

complexity. Therefore, an extreme light network architec-

ture(FeatherNet A/B) is proposed with a streaming module

which fixes the weakness of Global Average Pooling and

uses less parameters. Our single FeatherNet trained by

depth image only, provides a higher baseline with 0.00168

ACER, 0.35M parameters and 83M FLOPS. Further-

more, a novel fusion procedure with “ensemble + cas-

cade” structure is presented to satisfy the performance pre-

ferred use cases. Meanwhile, the MMFD dataset is col-

lected to provide more attacks and diversity to gain bet-

ter generalization. We use the fusion method in the Face

Anti-spoofing Attack Detection Challenge@CVPR2019 and

got the result of 0.0013(ACER), 0.999(TPR@FPR=10e-2),

0.998(TPR@FPR=10e-3) and 0.9814(TPR@FPR=10e-4).

1. Introduction

Currently, face recognition is an important way for iden-

tity authentication systems. However, it confronts with

the challenge caused by face spoofing attacks such as the

2D/3D Presentation Attack. Therefore, it is important

to equip the system with robust anti-spoofing algorithms.

Anti-spoofing is usually regarded as a problem of binary

classification. Some works are texture-based using binary

∗Corresponding author

classifiers with handcrafted features[1, 2, 3, 4]. However,

these methods suffer from poor generalization because the

texture information varies with cameras/capture devices.

Another problem of texture-based approaches is that the

texture information is not as discriminative as the depth in-

formation on task of 2D presentation attack detection.

The depth information is more discriminative since the

depth of the real face is uneven, and the depth images of the

attacking face is plane. Atoum et al. [5] exploited the depth

supervised procedure. Nevertheless, the depth information

is estimated from RGB image and not as accurate as the

depth image captured by depth camera such as RealSense

3001.

Recently, deep learning techniques are widely used to

extract deep features[6, 7, 8], which have richer semantical

information compared to traditional handcrafted features.

Hence utilizing the deep learning for face PAD has been

widely used recently.

However, there is a new trend that face recognition is

gradually moving to the mobile devices or embedded de-

vices. This requires the face anti-spoofing algorithms to

run with less computation and storage costs. From this per-

spective, the design of deep learning based anti-spoofing al-

gorithms become more challenge in the mobile or embed-

ded environments. Thus, it is necessary to develop a light-

weight deep learning algorithm so that spoofing detection

can be used.

To address the issues of computational and storage costs,

we design a light-weight CNN architecture (named as

FeatherNet) which gets a higher accuracy and computa-

tional complexity. Firstly, FeatherNets have a thin CNN

stem, thus the computational cost is less. Secondly, a

new architecture (named as Streaming Module) is proposed,

which has better performance in terms of accuracy than the

1 https://realsense.intel.com/



Figure 1. Our depth faces feature embedding CNN structure. In the last 7×7 feature map, the receptive field and the edge (RF2) portion of

the middle part (RF1) is different, because their importance is different. DWConv is used instead of the GAP layer to better identify this

different importance. At the same time, the fully connected layer is removed, which makes the network more portable.

Global Average Pooling (GAP) approach.

We also design a new fusion classifier architecture which

assembles and cascades several models learned from multi-

modal data, i.e., the depth and IR data, to generate better

prediction accuracy than single depth models. Although

the depth image is discriminative on 2D presentation at-

tack detection, multi-modal fusion can boost the perfor-

mance further due to its complementary and generalization

capability[9]. The new fusion procedure has been applied

to face anti-spoofing competition@CVPR2019 and showed

the result of 0.0013 (ACER), 0.999 (TPR@FPR=10e-2),

0.998 (TPR@FPR=10e-3) and 0.9814 (TPR@FPR=10e-4)

in the test dataset.

The major contributions of this paper are summarized

as follows: a).An extremely light CNN architecture with a

Streaming Module which has good performance; b).A novel

fusion procedure with “ensemble+cascade structure which

outperforms the single model classifiers; c).A new Multi-

Modal Face Dataset (MMFD) is collected which will be re-

leased recently and a new data augmentation algorithm is

applied on training.

2. Related work

The related work is reviewed in two categories in chrono-

logical order: traditional and CNN based methods.

Traditional: Face anti-spoofing is treated as a binary

classification problem by traditional SVM (Support Vector

Machine), through two steps as below:

1) Crafted features detection: Various filters were used to

detect the points to present the feature. The widely adopted

features include: Local Binary Patterns (LBP) [10, 3, 1],

Scale Invariant Feature Transform (SIFT)[11], Speeded-Up

Robust Features (SURF)[4], histogram of oriented gradients

(HOG)[2, 12], Difference of Gaussian (DoG)[12].

2) Liveness or not classification through SVM or Ran-

dom Forest[13].

However, Wang et al. [14] indicated that the feature de-

tection is greatly influenced by the environment, for exam-

ple the lighting condition. Furthermore, the feature detec-

tion shows limited features, and the feature points don’t pro-

vide as many features’ information as those CNN methods

could bring with the huge data sets.

CNN based: There are mainly three types of CNN based

PAD.

1) Using RGB single frame with binary supervision[7,

8]: Most approaches just adopt the final fully-connected

layer to distinguish the real and fake faces. While Li et al.

[7] proposed a way to link the deep partial features (from

CNN) and Principle Component Analysis (PCA) to reduce

the dimension, and lastly they used SVM to distinguish real

and fake faces. Patel et al. [8] applied the action features

(such as eye blinking) to enhance the state of the art. And

the researchers found that this can still be improved through

multiple supervisions.

2)Using RGB multi-frame with depth or rPPG (remote

photoplethysmography) supervision[5, 15]: Two different

types of supervision are applied: depth or rPPG. Different

frames are also captured by the shift of camera and frames

to anticipate the depth. Moreover, researchers analyzed the

presentation attack and video-based pulse detection. Live

Faces could show some blood signal through rPPG but not

in fake face. Recently, Liu et al. [16] proposed a procedure

which uses single frame to regression depth map and uses

multi-frame to predict rPPG, which is a good way to dis-

tinguish living face. This network architecture combining

CNN and RNN, could simultaneously estimate the depth

map and rPPG signal of the face.

3)Recently, Zhang et al. [9] provided a large-scale multi-

modal dataset, namely CASIA-SURF, which consists of 3

modalities data (RGB, depth and IR). It provides a strong

baseline to make full use of these features by fusing multi-



modal data through a three-stream network.

There are two main aspects to enhance for the multi-

modal method: (1) The baseline performance of CASIA-

SURF still has a lot of room to improve; (2) The adop-

tion of light-weight network architecture that can benefit

more edge side applications. In next section, an extreme

lite network architecture is proposed which uses depth and

IR information as supervision respectively to learn comple-

mentary models, achieving a well trade-off between perfor-

mance and computational burden. Furthermore, a novel fu-

sion classifier with “ensemble + cascade” structure is pro-

posed for the performance preferred use case.

3. Approach

In this section, we will introduce the details of the Feath-

erNets. Inspired by the equal importance gap of Global Av-

erage Pooling (GAP) in face tasks, a new Streaming module

is adopted in the FeatherNets which can provide a strong

baseline for Face Anti-spoofing. Furthermore, to achieve

higher performance, the “ensemble + cascade” fusion pro-

cedure will be proposed.

3.1. FeatherNet Architecture Design

The existing anti-spoofing networks[8, 7, 15, 14] have

the problems of large parameters and weak generalization

ability. For this reason, FeatherNets architecture is pro-

posed, targeting a network as lite as feather.

3.1.1 The Weakness of GAP for Face Task

Global Average Pooling (GAP) is employed by a

lot of state-of-the-art networks for object recognition

task, e.g.ResNets[17], DenseNet[18] and some light-

weight networks, like MobilenetV2[19], Shufflenet v2[20],

IGCV3[21]. GAP has been proved on its ability of re-

ducing dimensions and preventing over-fitting for the over-

all structure[22]. However, for the face related tasks,

Wu[23] and Deng[24] have observed that CNNs with GAP

layer are less accurate than those without GAP. Meanwhile,

MobileFaceNet[25] replaces the GAP with Global Depth-

wise Convolution (GDConv) layer, and explains the reason

why it is effective through the theory of receptive field[26].

The main point of GAP is ”equal importance” which is not

suitable for face tasks.

As shown in Figure 1, the last 7 × 7 feature map is de-

noted as FMap-end, each cell in FMap-end corresponds to a

receptive field at different position. The center blue cell cor-

responds to RF1 and the edge red one corresponds to RF2.

As described in[27], the distribution of impact in a recep-

tive field distributes as a Gaussian, the center of a receptive

field has more impact on the output than the edge. There-

fore, RF1 has larger effective receptive field than RF2. For

our face anti-spoofing task, the network input is 224 × 224

images which only contain the face region. As above analy-

sis, the center unit of FMap-end is more important than the

edge one. GAP is not applicable to this case. One choice

is to use fully connected layer instead of GAP, this will in-

troduce large number of parameters to the whole model and

increase the risk of over-fitting.

3.1.2 Streaming Module

Figure 2. Streaming Module. The last blocks’ output is down-

sampled by a depthwise convolution[28, 29] with stride larger than

1 and flattened directly into an one-dimensional vector.

To treat different units of FMap-end with different im-

portance, Streaming Module is designed, as shown in the

Figure 2. In Streaming Module, a depthwise convolution

(DWConv) layer with stride larger than 1 is used for down-

sampling whose output, is then flattened directly into an

one-dimensional feature vector. The compute process is

represented by equation (1).

FVn(y,x,m) =
∑

i,j

Ki,j,m · FINy(i),INx(j),m (1)

In equation 1, FV is the flattened feature vector while N =

H
′

×W
′

× C elements (H
′

, W
′

and C denote the height,

width and channel of DWConv layer’s output feature maps

respectively). n(y, x,m), computed as equation (2), de-

notes the nth element of FV which corresponds to the (y, x)
unit in the mth channel of the DWConv layer’s output fea-

ture maps.

n(y, x,m) = m×H
′

×W
′

+ y ×H
′

+ x (2)

On the right side of the equation (1), K is the depthwise

convolution kernel, F is the FMap-end of size H×W×C (H,

W and C denote the height, width and channel of FMap-end

respectively). m denotes the channel index. i,j denote the

spatial position in kernel K, and INy(i), INx(j) denote the



Figure 3. FeatherNets’ main blocks. FeatherNetA includes BlockA & BlockC. FeatherNetB includes BlockA & BlockB. (BN: BatchNorm;

DWConv: depth wise convolution; c:number of input channels.)

corresponding position in F. They are computed as equation

(3), (4).

INy(i) = y × S0 + i (3)

INx(j) = x× S1 + j (4)

S0 is the vertical stride and S1 is the horizontal stride.

A fully connected layer is not added after flattening feature

map, because this will increase more parameters and the

risk of overfitting. Meanwhile, related experiments are pro-

cessed to verify the reason for removing the fully connected

layer, as show in Table 4.

Streaming module can be used to replace global average

pooling and fully connected layer in traditional networks.

3.1.3 Network Architecture Detail

Besides Streaming Module, there are BlockA/B/C as

shown in Figure 3 to compose FeatherNetA/B. The detailed

structure of the primary FeatherNet architecture is shown in

Table 1. BlockA is the inverted residual blocks proposed

in MobilenetV2[19]. BlockA is used as our main build-

ing block which is shown in the Figure 3(a). The expan-

sion factors are the same as in MobilenetV2[19] for blocks

in our architecture. BlockB is the down-sampling module

of FeatherNetB. Average pooling (AP) has been proved in

Inception[30] to benefit performance, because of its ability

of embedding multi-scale information and aggregating fea-

tures in different receptive fields. Therefore, average pool-

ing (2 × 2 kernel with stride = 2) is introduced in BlockB

(Figure 3(b)). Besides, in the network ShuffleNet[20], the

down-sampling module joins 3 × 3 average pooling layer

with stride=2 to obtain excellent performance. Li et al.

[31] suggested that increasing average pooling layer works

well and impacts the computational cost little. Based on the

above analysis, adding pooling on the secondary branch can

learn more diverse features and bring performance gains.

The performance comparison between using the auxiliary

branch (BlockB in Figure 3(b)) and not using the branch

(BlockC in Figure3(c)) is showing in the Table 4. BlockC

is the down-sampling Module of our network FeatherNetA.

BlockC is faster and with less complexity than BlockB. Ac-

cording to our experiment in Table 2, FeatherNetA used less

parameters.

Input Operator t c

2242×3 Conv2d,/2 - 32

1122×32 BlockB 1 16

562×16 BlockB 6 32

282×32 BlockA 6 32

282×32 BlockB 6 48

142×48 5xBlockA 6 48

142×48 BlockB 6 64

72×64 2xBlockA 6 64

72×64 Streaming - 1024

Table 1. Network Architecture: FeatherNet B. All spatial convolu-

tions use 3 × 3 kernels. The expansion factor t is always applied

to the input size, while c means number of Channel. Meanwhile,

every stage SE-module[32] is inserted with reduce = 8. And Feath-

erNetA replaces BlockB in the table with BlockC.

After each down-sampling stage, SE-module[32] is in-

serted with reduce = 8 in both FeatherNetA and Feather-

NetB. In addition, when designing the model, a fast down-

sampling strategy[33] is used at the beginning of our net-

work which makes the feature map size decrease rapidly

and without much parameters. Adopting this strategy can

avoid the problem of weak feature embedding and high pro-

cessing time caused by slow down-sampling due to limited



Figure 4. Multi-Modal Fusion Strategy: Two stages cascaded, stage 1 is an ensemble classifier consisting of several depth models. Stage 2

employs IR models to classify the uncertain samples from stage 1.

computing budget[34]. The primary FeatherNet only has

0.35M parameters.

The FeatherNets’ structure is built on BlockA/B/C as

mentioned above except for the first layer which is a fully

connected. As shown in Table 1, the size of the input im-

age is 224 × 224. A layer with regular convolutions, in-

stead of depthwise convolutions, is used at the beginning to

keep more features. Reuse channel compression to reduce

16 while using inverted residuals and linear bottleneck with

expansion ratio = 6 to minimize the loss of information due

to down-sampling. Finally, the Streaming module is used

without adding a fully connected layer, directly flatten the

4× 4× 64 feature map into an one-dimensional vector, re-

ducing the risk of over-fitting caused by the fully connected

layer. After flattening the feature map, focal loss is used di-

rectly for prediction. The related ablation experiments are

shown in the Table 4. When we added the fully connected

layer, the performance dropped.

3.2. MultiModal Fusion Method

The main idea for the fusion method is to use cascade in-

ference on different modals: depth images and IR images.

The model trained based on depth data could provide a high

baseline (approximately 0.003 ACER in test set). Accord-

ing to our experiments, the IR data could provide a good

performance in fake judgement for those samples that depth

modal is not sure about. The cascade structure has two

stages, as show in the Figure 4:

Stage 1: An ensemble classifier, consisting of multiple

models , is employed to generate the predictions. These

models are trained on depth data and from several check-

points of different networks, including FeatherNets. If the

weighted average of scores from these models is near 0 or 1,

input sample will be classified as fake or real respectively.

Otherwise, the uncertain samples will go through the sec-

ond stage.

Stage 2: FeatherNetB learned from IR data will be used to

classify the uncertain samples from stage 1. The fake judge-

ment of IR model is respected as the final result. For the real

judgement, the final scores are decided by both stage 1 and

IR models.

4. Experiments

The preliminary work will be introduced firstly, such as

the evaluation metrics, datasets used for training, the pro-

posed data augmentation method, the training settings of

the FeatherNets and the baseline models. Secondly, the per-

formance of the trained models (including FeatherNets) will

be showed. Thirdly, the comparative experiments are used

to show the validity of the MMFD dataset. Finally, the ef-

fectiveness of the network design is verified by ablation ex-

periments.

4.1. Preliminary Work

4.1.1 Evaluation Metrics

For the performance evaluation, the following commonly

used metrics[2] will be introduced: Attack Presentation

Classification Error Rate (APCER), Normal Presentation

Classification Error Rate (NPCER) and Average Classifica-

tion Error Rate (ACER). ACER is treated as the evaluation

metric, in which APCER and NPCER are used to measure

the error rate of fake or real samples, respectively. Besides,

the other metrics[9] are also used, such as TPR@FPR=10E-

2, 10E-3, 10E-4.



Figure 5. (a)Training set contains attacks 4,5,6 (b)Validation and

test sets contains attacks 1,2,3

.

4.1.2 Datasets

Two datasets are used in the experiments: CASIA-

SURF[9] and the proposed Multi-Modal Face Dataset

(MMFD).

CASIA-SURF is the largest publicly available dataset

for face Anti-spoofing, provided by Surfing Technology[9].

It consists of 1,000 subjects with 21,000 videos and each

sample has 3 modalities (i.e., RGB, Depth and IR), as

shown in Figure 5. There are 6 attack ways of this dataset:

Attack 1: One person holds his/her flat face photo where

eye regions are cut from the printed face. Attack 2: One

person holds his/her curved face photo where eye regions

are cut from the printed face. Attack 3: One person holds

his/her flat face photo where eyes and nose regions are cut

from the printed face. Attack 4: One person holds his/her

curved face photo where eyes and nose regions are cut from

the printed face. Attack 5: One person holds his/her flat face

photo where eyes, nose and mouth regions are cut from the

printed face. Attack 6: One person holds his/her curved face

photo where eyes, nose and mouth regions are cut from the

printed face.

MMFD In order to make the model more robust, more

attack ways of diverse faces are collected. Then we sort

out a dataset which is consisted of 15 subjects with 15415

real samples and 28438 fake samples, namely Multi-Modal

Face Dataset (MMFD).

And each sample also has 3 modalities (RGB, Depth,

IR). They are treated by the similar way as CASIA-SURF

with a little modification. Besides the 6 attack ways of

CASIA-SURF, 2 new attack ways are added. Attack A: One

person holds his/her flat face photo where eyes and mouth

regions are cut from the printed face. Attack B: One per-

son holds his/her curved face photo where eyes and mouth

regions are cut from the printed face. The presenters turn

their head left/right/up/down to get different samples. Other

variations on the presenters include: wearing glasses or not;

opening mouth or not; moving face close to and far away

from the camera; showing different emotions, e.g. happy,

angry, sad and so on.

Collecting and masking steps are proposed to obtain the

final images. Collecting: Intel RealSense SR3002 cam-

era is used to generate RGB, Depth, IR and aligned-RGB

frames simultaneously. RGB frame is 1280 × 720 resolu-

tion, Depth, IR and Aligned-Depth frames are 640×480 res-

olution. Masking: Dlib[35] is used to detect the bounding-

box of face for RGB frame and Aligned-Depth frame. And

the face region is passed into PRNet[36] to estimate the

depth. To generate the mask image, the depth value of each

pixel is checked in face box. If it is larger than 0.5, 1 will be

sent otherwise 0 will be sent into mask image. At last, the

RGB, Depth and IR images are multiplied with the mask,

and only the face region is saved to files.

4.2. Implementation Detail

4.2.1 Data Augmentation

Figure 6. depth image augmentation.(line 1): CAISA-SURF real

depth images; (line 2): MMFD real depth images; (line 3): our

augmentation method on MMFD.

There are some differences in the images acquired by

different devices, even if the same device model is used. As

shown in the Figure 6. The upper line is the depth images

of the CASIA-SURF data set. The depth difference of the

face part is small. It is difficult for the eyes to distinguish

whether the face has a contour depth. The second line is the

depth images of the MMFD dataset whose outline of the

faces are clearly showed. In order to reduce the data differ-

ence caused by the device, the depth of the real face images

is scaled in MMFD which can be seen in the third line of

Figure 6. The way of data augmentation is as Algorithm 1:

2 https://realsense.intel.com/



Model ACER TPR@FPR=10E-2 TPR@FPR=10E-3 Params FLOPS

ResNet18[9] 0.05 0.883 0.272 11.18M 1800M

Baseline[9] 0.0213 0.9796 0.9469 – –

FishNet150(our impl) 0.00144 0.9996 0.998330 24.96M 6452.72M

MobilenetV2(1)(our impl) 0.00228 0.9996 0.9993 2.23M 306.17M

ShuffleNetV2(1)(our impl) 0.00451 1.0 0.98825 1.26M 148.05

FeatherNetA 0.00261 1.0 0.961590 0.35M 79.99M

FeatherNetB 0.00168 1.0 0.997662 0.35M 83.05M

Table 2. Performance in validation dataset. Baseline is a way of fusing three modalities data (IR, RGB, Depth) through a three-stream

network. Only depth data is used for training in the other networks. FeatherNetA and FeatherNetB have achieved higher performance with

less parameters. Finally, the models are assembled to reduce ACER to 0.0.

Algorithm 1 Data Augmentation Algorithm

1: scaler ← a random value in range [1/8, 1/5]

2: offset← a random value in range [100, 200]

3: OutImg ← 0
4: for y = 0→ Height− 1 do

5: for x = 0→Width− 1 do

6: if InImg(y, x) > 20 then

7: off ← offset

8: else

9: off ← 0
10: end if

11: OutImg(y, x)← InImg(y,x) * scaler + off

12: end for

13: end for

14: return OutImg

4.2.2 Training Strategy

Pytorch[37] is used to implement the proposed net-

works. It initializes all convolutions and fully-connected

layers with normal weight distribution[38]. For optimiza-

tion solver, Stochastic Gradient Descent(SGD) is adopted

with both learning rate beginning at 0.001, and decaying

0.1 after every 60 epochs, and momentum setting to 0.9.

The Focal Loss[39] is employed with α = 1 and γ = 3.

4.3. Result Analysis

4.3.1 How useful is MMFD dataset?

A comparative experiment is executed to show the valid-

ity and generalization ability of our data. As shown in Ta-

ble 3, the ACER of FeatherNetB with MMFD depth data is

better than that with CASIA-SURF[9], though only 15 sub-

jects are collected. Meanwhile, the experiment shows that

the best option is to train the network with both data. The

results of using our FeatherNetB are much better than the

baselines that use multi-modal data fusion, indicating that

our network has better adaptability than the third-stream

ResNet18 for baseline.

Network Training Dataset ACER in Val

Baseline CASIA-SURF 0.0213

FeatherNetB CASIA-SURF depth 0.00971

FeatherNetB MMFD depth 0.00677

FeatherNetB
CASIA-SURF+

MMFD depth
0.00168

Table 3. Performance of FeatherNetB training by different

datasets. Column 3 means the ACER value in the validation

dataset of CASIA-SURF[9]. It shows that our dataset MMFD gen-

eralization ability is stronger than baseline of CASIA-SURF. The

performance is better than the baseline method using multi-modal

fusion.

4.3.2 Compare with other network performance

As show in Table 2, experiments are executed to compare

with other network’s performance. All experimental results

are based on depth of CASIA-SURF and MMFD depth im-

ages, and then the performance is verified on the CASIA-

SURF verification set. It can be seen from the table 2 that

our parameter size is much smaller, only 0.35M, while the

performance on the verification set is the best.

4.3.3 Ablation Experiments

A number of ablations are executed to analyze different

models with different layer combination, shown in Table 4.

The models are trained with CASIA-SURF training set and

MMFD dataset.

Why AP-down in BlockB: Comparing Model1 and

Model2, Adding the Average Pooling branch to the sec-

ondary branch (called AP-down), as shown in block B of

Figure 3(b), can effectively improve performance with a

small number of parameters.

Why not use FC layer: Comparing Model1 and

Model3, fully connected (FC) layer doesn’t reduce the er-

ror when adding a fully connected layer to the last layer of

the network. Meanwhile, a FC layer is computationally ex-

pensive.



Why not use GAP layer Comparing Model3 and

Model4, it shows that adding global average pooling layer at

the end of the network is not suitable for face anti-spoofing

task. They will reduce performance. For more details,

please refer to Section 3.

Model FC GAP AP-down ACER

Model1 × × × 0.00261

Model2 × × X 0.00168

Model3 X × × 0.00325

Model4 X X × 0.00525

Table 4. Ablation Experiments.

5. Competition details

Based on CASIA-SURF[9], the Face Anti-spoofing chal-

lenge@CVPR2019 has been organized, aiming at compil-

ing the latest efforts and research advances from the com-

putational intelligence community in creating fast and accu-

rate face spoofing detection algorithms3. This dataset pro-

vides a multi-modal dataset (RGB, Depth, IR) which is cap-

tured by Intel RealSense SR300. And it contains data for

training, verification and the final evaluation.

Our fusion procedure (described in section 3.2) is ap-

plied in this competition. Meanwhile, the proposed Feath-

erNets with depth data only can provide a higher baseline

alone (around 0.003 ACER). During the fusion procedure,

the selected models are with different statistic features, and

can help each other. For example, one model’s characteris-

tics of low False Negative (FN) are utilized to further elim-

inate the fake samples. The detailed procedure is described

as below:

Training: The depth data is used to train 7 models:

FishNet150 1, FishNet150 2, MobilenetV2, FeatherNetA,

FeatherNetB, FeatherNetBForIR, ResNet GC. Meanwhile,

FishNet150 1, FishNet150 2 are models from different

epoch of FishNet. The IR data is used to train FeatherNetB

as FeatherNetBforIR.

Inference: The inference scores will go through the “en-

semble + cascade” process. The algorithm is shown as Al-

gorithm 2.

Competition Result: The above procedure is used to

get the result of 0.0013 (ACER), 0.999 (TPR@FPR=10e-2),

0.998 (TPR@FPR=10e-3) and 0.9814 (TPR@FPR=10e-4)

in the test set and showed excellent performance in the Face

Anti-spoofing challenge@CVPR2019.

6. Conclusion

We propose an extreme lite network architecture (Feath-

erNetA/B) with Streaming module, to achieve a well trade-

3 http://chalearnlap.cvc.uab.es/workshop/32/description/

Algorithm 2 Ensemble Algorithm

1: scores[]←
score FishNet150 1,

score FishNet150 2,

score MobilenetV2,

score FeatherNetA,

score FeatherNetB,

score ResNet GC
2: mean score← mean of scores[]

3: if mean score > max threshold || mean score <

min threshold then

4: final score← mean score

5: else if score F ishNet150 1 < fish threshold then

6: final score← score F ishNet150 1
7: else if score FeatherNetBForIR < IR threshold

then

8: final score← score FeatherNetBForIR

9: else

10: mean score←
(6 * mean score + score FishNet150 1) / 7

11: if mean score > 0.5 then

12: final score← max of scores[]

13: else

14: final score← min of scores[]

15: end if

16: end if

off between performance and computational complexity for

multi-modal face anti-spoofing. Furthermore, a novel fu-

sion classifier with “ensemble + cascade” structure is pro-

posed for the performance preferred use cases. Meanwhile,

MMFD dataset is collected to provide more diverse samples

and more attacks to gain better generalization ability. All

these are used to join the Face Anti-spoofing Attack Detec-

tion Challenge@CVPR2019. The experiment and the com-

petition results show that the proposed method can achieve

excellent performance.
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tino, and Sébastien Marcel. Can face anti-spoofing coun-

termeasures work in a real world scenario? In 2013 inter-

national conference on biometrics (ICB), pages 1–8. IEEE,

2013.

[4] Zinelabidine Boulkenafet, Jukka Komulainen, and Abdenour

Hadid. Face antispoofing using speeded-up robust features

and fisher vector encoding. IEEE Signal Processing Letters,

24(2):141–145, 2017.

[5] Yousef Atoum, Yaojie Liu, Amin Jourabloo, and Xiaoming

Liu. Face anti-spoofing using patch and depth-based cnns.

In 2017 IEEE International Joint Conference on Biometrics

(IJCB), pages 319–328. IEEE, 2017.

[6] Litong Feng, Lai-Man Po, Yuming Li, Xuyuan Xu, Fang

Yuan, Terence Chun-Ho Cheung, and Kwok-Wai Cheung.

Integration of image quality and motion cues for face anti-

spoofing: A neural network approach. Journal of Vi-

sual Communication and Image Representation, 38:451–

460, 2016.

[7] Lei Li, Xiaoyi Feng, Zinelabidine Boulkenafet, Zhaoqiang

Xia, Mingming Li, and Abdenour Hadid. An original face

anti-spoofing approach using partial convolutional neural

network. In 2016 Sixth International Conference on Image

Processing Theory, Tools and Applications (IPTA), pages 1–

6. IEEE, 2016.

[8] Keyurkumar Patel, Hu Han, and Anil K Jain. Cross-database

face antispoofing with robust feature representation. In Chi-

nese Conference on Biometric Recognition, pages 611–619.

Springer, 2016.

[9] Shifeng Zhang, Xiaobo Wang, Ajian Liu, Chenxu Zhao,

Jun Wan, Sergio Escalera, Hailin Shi, Zezheng Wang, and

Stan Z Li. Casia-surf: A dataset and benchmark for

large-scale multi-modal face anti-spoofing. arXiv preprint

arXiv:1812.00408, 2018.

[10] Tiago de Freitas Pereira, André Anjos, José Mario De Mar-
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