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In the context of statically-typed, class-based languages, we investigate classes that can be extended
with trait composition. A trait is a collection of methods without state; it can be viewed
as an incomplete stateless class. Traits can be composed in any order, but only make sense
when imported by a class that provides state variables and additional methods to disambiguate
conflicting names arising between the imported traits. We introduce FeatherTrait Java (FTJ), a
conservative extension of the simple lightweight class-based calculus Featherweight Java (FJ) with
statically-typed traits. In FTJ, classes can be built using traits as basic behavioral bricks; method
conflicts between imported traits must be resolved explicitly by the user either by (i) aliasing
or excluding method names in traits, or by (ii) overriding explicitly the conflicting methods in
the class or in the trait itself. We present an operational semantics with a lookup algorithm,
and a sound type system that guarantees that evaluating a well-typed expression never yields a
message-not-understood run-time error nor gets the interpreter stuck. We give examples of the
increased expressive power of the trait-based inheritance model. The resulting calculus appears
to be a good starting point for a rigorous mathematical analysis of typed class-based languages
featuring trait-based inheritance.
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Theory—Syntax and Semantics; D.3.2 [Programming Languages]: Language Classifications—
Object-oriented languages; D.3.3 [Programming Languages]: Language Constructs and
Features—Classes and objects; Inheritance; F.3.3 [Logics and Meaning of Programs]: Studies
of Program Constructs—Object-oriented constructs
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1. INTRODUCTION

“Inside every large language is a small language
struggling to get out ...” [Igarashi et al. 2001]

“... and inside every small language is a sharp
extension looking for better expressivity ...”

Inheritance is commonly viewed as one crucial feature of object-oriented languages.
There are essentially three kinds of inheritance, namely, single inheritance, multiple
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inheritance (including mixin-based inheritance and trait-based inheritance), and
object-based (delegation-based) inheritance.
Single inheritance is the simplest model, adopted, e.g., in Java [Sun 2007] and
C# [Microsoft 2007]. The inheritance relation forms a tree, and a derived class can
inherit methods and variables only from its parent class.
Object-based inheritance, also called delegation-based inheritance, adopted,
e.g., in Self [Ungar and Smith 1987] and Obliq [Cardelli 1995]. It is the most
flexible inheritance model based on the idea that objects are created dynamically
by modifying existing objects used as prototypes. An object created from a given
prototype may add new methods or redefine methods supplied by the prototype;
this may change the object type. Any message sent to the created object is handled
directly by it if it contains the corresponding method, otherwise the message is
“passed back”, i.e., delegated to the prototype. Because of the extreme dynamicity
w.r.t. the class-based model, even in the presence of a single parent inheritance,
static type-checking is very difficult [Liquori 1997; 1998; Di Gianantonio et al.
1998].
Multiple inheritance is a richer but debated model (adopted, e.g., in C++
[Stroustrup 1997]): a derived class can inherit from many parent classes (forms
an inheritance directed acyclic graph).

Compared with single inheritance, multiple inheritance adds additional run-time
overhead (potentially involving dynamic binding). The literature presents a rich list
of potential problems with multiple inheritance, including the fork-join inheritance,
the diamond-problem, the yo-yo problem, access to overridden methods, and the
complication of type-checking in the presence of parametric classes. Among this
more flexible inheritance model, two concepts have been developed in the past few
years

(1) Mixins. There are essentially two kinds of mixins, mixin-classes and mixin-
modules.
A mixin-class is like a class (it contains defined methods, that is, interface-
types and bodies, or deferred methods, that is, only interface-types) that can
be applied to various parent classes in order to extend them with the methods
contained in the mixin-class itself. Mixin-classes are named and can be applied
to a parent class. The concept of mixin-classes, invented in the 90’s by Bracha
and Cook [Bracha and Cook 1990], has been studied in the recent years by,
among others, Flatt, Krishnamurthi, and Felleisen [M. Flatt 1998], Bono, Patel,
and Shmatikov [Bono et al. 1999], and in the contexts of an extension of Java,
by Ancona, Lagorio, and Zucca [Ancona et al. 2003], and by Allen, Bannet,
and Cartwright [Allen et al. 2003].
A mixin-module (introduced to solve implementation inheritance problems) is
a module which supports deferred components. Mixins are named and can
be composed using an ad hoc algebra (e.g., merge and restrict operations).
Mixin-modules were introduced by Bracha [Bracha 1992], and have been studied
more recently by Duggan and Sourelis [Duggan and Sourelis 1996], Findler and
Flatt [Findler and Flatt 1998], Flatt and Felleisen [Flatt and Felleisen 1998],
Wells and Vestegaard [Wells and Vestergaard 2000], Ancona and Zucca [Ancona
and Zucca 2002b; 2002a], and Hirschowitz, Leroy, and Wells [Hirschowitz et al.
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2004].

(2) Traits. Defined by Schärli, Ducasse, Nierstrasz, Wuyts, and Black [Schärli
et al. 2003; Ducasse et al. 2006], these have recently emerged as a novel
technique for building composable units of behaviors in a dynamically-typed
language à la Smalltalk. Intuitively, a trait is just a collection of methods,
i.e., behaviors without state. Derived traits can be built from an unordered
list of parent traits, together with new method declarations. Thus, traits are
(incomplete) classes without state. Traits can be composed in any order.
A trait makes sense only when “imported” by a class that provides state
variables and possibly some additional methods to disambiguate conflicting
names arising among the imported traits. The order for importing traits in
classes is irrelevant.
Historically, traits, intended as a collection of state1 and behavior, have been
originally employed in the pure object-based languages Self [Ungar and Smith
1987], or in the language Obliq [Cardelli 1995], or for the encoding of classes
as records-of-premethods in the Object Calculus by Abadi and Cardelli [Abadi
and Cardelli 1996].
More recently, typed traits, intended as pure behavior without state, have been
introduced by Fisher and Reppy in an object-based core calculus for the Moby
programming language (of the ML [Milner et al. 1997] family) [Moby Team
2007; Fisher and Reppy 2004]. Then, traits have been immerged in Igarashi,
Pierce, and Wadler Featherweight Java by Liquori and Spiwack [Liquori and
Spiwack 2004], studied by Smith and Drossopoulou in Java setting [Smith and
Drossopoulou 2005], and implemented by Odersky et al. in the class-based
language Scala [Scala Team 2007], and in the new language Fortress by Allen,
Chase, Luchangco, Maessen, Ryu, Steele, and Tobin-Hochstadt [Allen et al.
2005]. Here, programs are first type-checked and then executed, forgetting
type information; in this way compilation ensures the absence of message-
not-understood run-time errors, enhancing greatly safety and speeding-up the
compiled code.

Contributions. FeatherTrait Java (FTJ), described in this paper, conservatively
extends the simple calculus of Featherweight Java (FJ) by Igarashi, Pierce, and
Wadler [Igarashi et al. 2001] with statically-typed traits. The main aim is to
introduce the typed trait-based inheritance in a class-based calculus à la Java;
the calculus features mutually recursive class declarations, object creation, field
access, method invocation and override, method recursion through this, subtyping
and simple casting. Just as with FJ, some of the features of Java that we do
not model include assignment, interfaces, overloading, base types (int, boolean,
String, etc), null pointers, abstract method declaration, shadowing of superclass
fields by subclass fields, access control (public, private, etc), and exceptions.
Since FTJ provides no operations with side effects, a method body always consists
of return followed by an expression.

The main contributions of this paper are

1This is in contrast to traits of [Schärli et al. 2003; Ducasse et al. 2006].
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(1) We define the calculus FTJ, a conservative extension of FJ featuring trait
inheritance. Multiple traits can be inherited by one class, and conflicts between
common methods defined in two or more inherited traits must be resolved
explicitly by the user either by (i) aliasing or excluding method names in traits,
or by (ii) overriding explicitly the conflicted methods in the class that imports
those traits or in the trait itself.

(2) We define a simple type system that type-checks traits when imported in classes,
resulting in a sharp and lightweight extension of the type system of FJ. This can
be considered as a first step in adding a powerful but safe form of trait-based
inheritance to the Java language.

Outline of the paper. The paper is structured as follows. In Section 2, we review
the untyped trait-based inheritance model and we present the main ideas underlying
our typed trait-based inheritance model for Java. In Section 3, we present the syntax
of FTJ, together with some useful notational conventions. Section 4 presents the
operational semantics, while Section 5 presents the type system of FTJ. Section
6 presents the main meta-theoretical results. Section 7 presents a few examples
of using traits in FTJ. Section 8 discusses related work and Section 9 concludes.
Appendices A and B contain the full formal system, while Appendix C contains the
full proofs.

The presentation is kept as simple as possible, with a syntax and a semantics
for FTJ made as close as possible to this of FJ, few definitions and few theorems.
Some knowledge of the syntax, semantics and type system of FJ may be helpful in
reading this paper. A preliminary version of this work appeared in June 2004 as
an INRIA technical report [Liquori and Spiwack 2004].

2. TRAIT-BASED INHERITANCE

We start this section with a brief presentation of the main concepts of traits, using
FTJ syntax. One useful feature of trait-based inheritance is that when a conflict
arises between traits included in the same class (e.g., a method defined in two
different traits), then the conflict is signaled and it is up to the user to explicitly
and manually resolve the conflict. Three simple rules can be easily implemented in
the method-lookup algorithm for that purpose

(1) Methods defined in a class take precedence over methods defined in the traits
imported by the class.

(2) Methods defined in a composite trait take precedence over methods defined in
the imported traits.

(3) Methods defined in traits (imported by a class) take precedence over methods
defined in its parent class.

The above rules are the simple recipe of the trait-based inheritance model. They
greatly increase the flexibility of the calculus that uses traits.

Another property of trait-based inheritance is that a class that imports traits is
semantically equivalent to a class that defines in situ all the methods defined in
traits. This can be done via flattening, which immediately suggests how to build a
compiler translating FTJ code into FJ code, via code duplication.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.
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A trait can import from other traits. Hence, it requires methods that are not
defined in the trait itself, those methods being useful in order to “complete” its
behavior. In FTJ syntax

trait T1 {String p(){return ‘‘hello’’;}}
trait T2 {String p(){return ‘‘world’’;}}
trait T3 imports T1 T2

{String m(){return (...this.p()...);} p is a required method
String p(){return ‘‘hello world’’;} p is an overriding method
String n(){return (...this.q()...);}} q is a required method

Trait T3 imports traits T1 and T2, overrides p, and q is still a required method

Observe that a trait is by definition potentially incomplete, i.e., it cannot be
instantiated into a “runnable” object, since they have no instance variable, and
it can lack some method implementations, e.g.

trait T4 {Object p(){return (...this.r()...);}} r is a required method
trait T5 {Object q(){return (...this.s()...);}} s is a required method
trait T6 imports T4 T5

{Object m(){return (...this.p()...);} p is a required method
Object n(){return (...this.q()...);}} q is a required method

Trait T6 imports traits T4 and T5, and r and s are still required methods

Conflict Resolution. When dealing with trait inheritance, conflicts can arise; for
example a class C might import two traits T1 and T2 defining the same method p
with different behavior. Conflicts between traits must be resolved manually, i.e.,
there is no special or rigid discipline to learn how to use traits. Once a conflict is
detected, there are essentially three ways to resolve the conflict (below, “winner”
denotes the body selected by the lookup algorithm)

(1) Overriding a new method p inside the class. A new method p is redefined
inside the class with an new behavior. The (trait-based) lookup algorithm will
hide the conflict in traits in favor of the overriding method defined in the class.
In FTJ syntax

class C extends Object
imports T1 T2 each trait defines a (different) behavior for p

{...;... instance vars and constructor
D p(...){...}} new behavior for p, the winner

(2) Aliasing the method p in traits and redefining the method in class.
The method p is aliased in T1 and T2 with new different names. A new behavior
for p can be now given in the class C (possibly re-using the aliased methods
p of T1 and p of T2 which are no longer in conflict). In FTJ syntax

class C extends Object
imports T1 with {p@p_of_T1}2 T1 aliases p with p of T1

T2 with {p@p_of_T2} T2 aliases p with p of T2
{...;... instance vars and constructor

2In the original model of [30], m@n was denoted by n->m.
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D p(...){...}} new winner behavior for p, it may use p of T1/2

(3) Excluding the method p in one of the traits. One method p in trait T1
or T2 is excluded. This solves the conflict in favor of one trait. In FTJ syntax

class C extends Object
imports T1 contains the winner method p

T2 minus {p} method p is now hidden
{...;...} instance vars, constructor and methods

A diamond problem occurs in the following situation. Let T be a trait with a method
p, and let T1 and T2 be two traits that inherit a method p from T. Then, a trait
or class that imports both T1 and T2 would ostensibly have two definitions for the
method p. One point of view is that this is harmless since both definitions for p
are the same. In contrast, Snyder [Snyder 1987] suggests that diamonds should
be considered as conflicts. The type system of FTJ statically detects all possible
diamond conflicts and considers them as legal, i.e., type-safe.

3. FEATHERTRAIT JAVA

In FTJ, a program consists of a collection of class declarations, plus a collection of
trait declarations and an expression to be evaluated.

3.1 Notational Conventions

—We adopt the same notational conventions and hygiene conditions as FJ, with the
following additions: the metavariable T ranges over trait names, and TA ranges
over trait alterations. TL (resp. CL) ranges over trait declarations (resp. class
declarations). TT (resp. CT) ranges over trait tables (resp. class tables), where a
trait table TT is a partial function from trait names to trait alterations, and a class
table CT is a partial function from class names to class declarations. Finally, K
(resp. M) ranges over constructors (resp. methods), f (resp. m, n, p, and q) ranges
over field names (resp. method names), e (resp. x) ranges over expressions (resp.
variables), and A, B, C, D, and E ranges over class names, and M⊥ (resp. (x, e)⊥)
ranges over methods (resp. method bodies) and the special failure value fail.

—Sequences of fields declarations, parameter names, method and trait declarations,
and trait alterations (vector notation) are assumed to contains no duplicate
names.

—As in FJ, we set the root class Object as the superclass of all classes: this class
has no methods nor fields, and does not appear in the class table CT.

3.2 Syntax

The syntax of FTJ is given in Figure 1: it extends the syntax of FJ. An FTJ program
is a triple (CT, TT, e) of a class table, a trait table, and an expression. A class

class C extends C imports3 TA {C f; K M}

3The keyword imports was preferred to the keyword implements (à la Java) because traits already
implements some methods.
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CL ::= class C extends C [imports TA]{C f; K M} Class Declarations

TL ::= trait T [imports TA]{M} Trait Declarations

TA ::= T | TA with {m@m} | TA minus {m} Trait Alterations

K ::= C(C f){super(f); this.f = f; } Constructors

M ::= C m(C x){return e; } Methods

e ::= x | e.f | e.m(e) | new C(e) | (C)e Expressions

Fig. 1. Syntax of FTJ

in FTJ is composed of field declarations C f, a constructor K, some new or redefined
methods M, plus a list of imported (and possibly altered) traits TA. A trait

trait T imports TA {M}

is composed of a list of methods M and some other traits TA imported by the trait
itself. All conflicts will be discovered using the trait checking rules, and resolved
using the class checking rule. As noted above, the “diamond problem” is not
considered as a conflict. Expressions are the usual ones of FJ.

3.3 Trait-based Inheritance in FTJ

We list the features of FTJ

—A method defined in a class has the same behavior as a method defined in a trait
and imported by a class.

—A class (or a trait) may import many traits: the composition order of traits does
not matter.

—A trait can be altered either by dropping a method name m, or by aliasing a
method name m with another method name n.

—A modified method lookup is implemented to deal with traits and trait alterations.

—A method defined in a class (resp. trait) takes precedence over, or overrides a
method defined in a trait and imported by the class (resp. trait).

—A diamond schema is accepted statically.

—A trait is type-checked only inside a class, i.e., inside a complete unit of behavior
(i.e. inside a class).

FTJ, is, like FJ, a functional calculus, i.e., there is no notion of state and no
assignment; for example, instead of assigning a different value to a variable, we
completely build another object from scratch with the new modified value in place
of the old one. The possibility to type-check traits only once (see conclusions), is
beyond the scope of this paper.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.
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4. OPERATIONAL SEMANTICS

The small-step operational semantics of FTJ is the same as that of FJ. The essential
difference between the two is the new lookup algorithm. The reduction relation,
given in Appendix A, defines the relation e −→ e′, read “expression e reduces to
expression e′ in one step”. As in FJ, the variable this denotes the receiver itself
(in the substitution). The first two rules (Run·Field) and (Run·Call) deal with field
lookup and method call, while the last rule (Run·Cast) is a typecast. As usual, these
reduction rules can be applied at any point of the computation, so the classical
congruence rules apply, which we omit here, as we omit the rules of subtyping,
proving judgments of the form A <: B (see Appendix A). The functions mbody
and fields are slight extensions of the corresponding functions in FJ. The mbody
function needs to be customized in order to find method bodies defined within traits
and altered traits. The mbody function calls another function, tlook, which deals
with trait lookup. The tlook function may call another function, altlook, which
deals with trait alterations lookup.

4.1 Lookup Algorithm

The lookup algorithm described in Appendix A takes in account the three simple
method-precedence rules. Extra complications w.r.t. the lookup in FJ arise because
of trait inheritance and because traits can be altered.

Field lookup. It is performed as in FJ (see Appendix A).

Method lookup. This is performed by the rules (MBdy·Cla) – first search in the
current class – (MBdy·Tr) – then search in all imported traits – and (MBdy·SCla) –
finally search in the direct parent class. The trait lookup function tlook searches the
method body of m only if m is not overridden in the class; this forces the uniqueness
of the search, otherwise a conflict would arise, since a method defined in the class
could have overridden method m. In particular, the rule (MBdy·Tr) is as follows

CT(C) = class C extends D imports TA {C f; K M}
m 6∈ meth(M) tlook(m, TA) = B m(B x){return e; }

mbody(m, C) = (x, e)
(MBdy·Tr)

Here meth is a function, defined in Appendix A, that collects method names.

Trait lookup. This is performed by the function tlook that, intuitively, searches
the body of the method m “traversing” a sequence of trait alterations. The two
simple inference rules are as follows

∃TA ∈ TA. altlook(m, TA) 6= fail

tlook(m, TA) = altlook(m, TA)
(Tr·Ok)

∀TA ∈ TA. altlook(m, TA) = fail

tlook(m, TA) = fail
(Tr·Ko)
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The auxiliary function altlook takes into account altered traits, i.e., traits with
dropped methods, or with aliased methods. Finding a method which has been
dropped or aliased is one of the key parts of the lookup algorithm.

Trait alteration lookup. The trait alteration lookup rules are detailed in Appendix
A. The most interesting trait alteration rules are the following ones

TT(T) = trait T imports TA {M}
B m(B x){return e; } ∈ M

altlook(m, T) = B m(B x){return e; }
(ATr·Found)

altlook(n, TA) = B n(B x){return e; }

altlook(m, TA with {n@m}) = B m(B x){return e; }
(ATr·Ali1)

m 6= p m 6= q altlook(m, TA) = M⊥

altlook(m, TA with {p@q}) = M⊥
(ATr·Ali2)

m 6= n

altlook(m, TA with {m@n}) = fail
(ATr·Ali3)

altlook(n, TA) = fail

altlook(m, TA with {n@m}) = fail
(ATr·Ali4)

—(ATr·Found) The function altlook succeeds to return the body of the method we
are looking for, since that method is found in the trait.

—(ATr·Ali1) When looking up a method m in a trait alteration where n is aliased
to m, we look up for the method with the former name n, and then we rename.
The condition m 6= n is not required since it is enforced by the type system.

—(ATr·Ali2) Recursive call. The conditions m 6= p and m 6= q guarantee that it is
another method which is aliased.

—(ATr·Ali3) Failure. The condition m 6= n is not necessary, since it is enforced
by the type system; however, it has been left to emphasize that the cases are
pairwise disjoints.

—(ATr·Ali4) Recursive call with failure. A failure is propagated in case the premise
fails.

Diamond inheritance. Let us extend the meth function to trait alterations, to
obtain the set of method name available in the alteration (see Appendix A). The
following definition will be useful to type-check traits and classes (key rules (Tr·Ok)
and (Cla·Ok)). Let def

= means equal by definition.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, ?? 20??.
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Definition 4.1 Method Intersection and Diamond Detection.

∩TA def
= {m | ∃TA1 6= TA2 ∈ TA. m ∈ meth(TA1) ∩meth(TA2)}

�TA def
= {m | ∃n, TA1. ∀TA2 ∈ TA. m ∈ meth(TA2) =⇒ m in TA2 P n in TA1}

Intuitively

—The set ∩TA denotes methods defined in more than one trait; it is used to detect
conflicts when importing traits.

—The set �TA denotes methods that potentially determine a diamond when dealing
with trait inheritance; such methods are expected to be “non-conflicting”, hence
accepted by the type system. The notation m in TA2 P n in TA1, read “m of TA1
behaves exactly as n of TA2”, will be introduced in the next paragraph.

In a nutshell: the set ∩TA detects every conflict in TA, while the set �TA detects
every diamond. A class declaration

class C extends D imports TA {C f; K M}

is well-formed only if the imported trait alterations imported by the class C satisfy
the constraint

∩TA \ �TA ⊆ meth(M)

ensuring that every conflict is resolved, i.e., every new-born conflict (∩TA)4 which
is not a diamond (�TA) is being overridden; The ⊆ relation, instead of the more
restrictive = relation, is given in order to make FTJ a conservative extension of FJ.

Method paths in trait alterations. To compute �TA, we need a relation proving
judgments of the form

m in TA1 P n in TA2

The meaning of this judgment is as follows: m is a method provided by trait TA1
that behaves exactly as method n provided by TA2 through any number of trait

4Note that conflicts are resolved recursively.
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declarations or alteration steps (paths). The most interesting rules are

TT(T) = trait T imports TA {M}
TA ∈ TA m ∈ meth(TA) \meth(M)

m in T P m in TA
(Path·Inh)

p in TA1 P n in TA2

m in TA1 with {p@m} P n in TA2
(Path·Ali1)

m in TA1 P n in TA2 m 6= p m 6= q

m in TA1 with {p@q} P n in TA2
(Path·Ali2)

m in TA1 P n in TA2 m 6= p

m in TA1 minus {p} P n in TA2
(Path·Exl)

—(Path·Inh) If a trait T inherits a method m directly from a trait alteration TA and
does not override it, then m of T behaves exactly as m of TA.

—(Path·Ali1) If p of TA1 behaves exactly as n of TA2, then m of TA1 with {p@m}
behaves exactly as n of TA2.

—(Path·Ali2) If m 6= p and m 6= q, and m of TA1 behaves exactly as n of TA2, then m
of TA1 with {p@q} behaves exactly as n of TA2.

—(Path·Exl) If m 6= p, and m of TA1 behaves exactly as n of TA2, then m of
TA1 minus {p} behaves exactly as n of TA2.

Reflexivity and transitivity rules are presented in Appendix A. Note that we could
have also a symmetry rule, although the resulting lookup would be less algorithmic.

Remark 4.2 Modified lookup rule.
If we drop rules (ATr·Ali1) and (ATr·Ali4) and (Path·Ali1) and we add the
“imperative-like” rule

altlook(n, TA) = M⊥

altlook(m, TA with {n@m}) = [this.m/this.n]M⊥
(ATr·Alias·Imp)

then the resulting system would still be sound (the curious reader can customize
proofs of Lemmas 2,3,4 in Appendix C). This allows one to convert recursive calls
via this to the new aliased name. The operation [this.m/this.n] is not strictly
speaking a substitution, but rather a replacement, since this.n is not a variable.
The purpose of such operation is to substitute every recursive and internal method
call to this.n by this.m. Moreover, we assume the replacement changes the name
of the method declaration, i.e.

[this.m/this.n](B n (B x){. . . this.n . . .}) def
= B m (B x){. . . this.m . . .}

The reason for this replacement is that in the aliased trait alteration TA with {n@m}
we want to alias method n with m without altering the rest of the trait. From an
external point of view, the aliased trait alteration will behave exactly as TA, except
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that the method n will be aliased. The (ATr·Alias·Imp) rule is not compatible with
rules (ATr·Ali1) and (ATr·Ali4) and (Path·Ali1) since it changes the body of the
method we are looking for in the premises.

5. THE TYPE SYSTEM

This section introduces the most innovative rules of the FTJ type system. The
full set of rules is presented in Appendix B. The type system has two steps: first,
expression typing as in any statically-typed language, proved as judgments of the
form

Γ ` e ∈ C

second, class type-checking (as in FJ) is performed. Since everything in classes is
explicitly typed, the system has only to check if the class declaration is correct. In
contrast to FJ, the type-checker of FTJ checks also conflict resolutions. The FTJ
type system proves judgments of the three forms

M OK IN C and TA OK IN C except m and CL OK

where the tables TT, and CT are left implicit in the judgments. Traits and trait
alterations are typed only w.r.t. a given class, the only complete unit of behavior
devoted to instantiate truly “runnable” objects. Separate compilation of traits is
possible but out of the scope of this paper. For more advanced proposals see [Fisher
and Reppy 2004] or [Liquori and Spiwack 2007].

Basic expression checking and valid type lookup. These rules (see Appendix B)
have no novelties w.r.t. the corresponding ones of FJ.

Method checking. Method type-checking rule is the same as in FJ (see Appendix
B).

Trait alteration checking. The following type-checking rules are the core of the
current paper. These rules derive judgments of the form TA OK IN C except m which
means that TA is well-typed w.r.t. a given class C where every method m must be
overridden. The rationale is as follows: every method occurring in the except part
refers to a body that cannot be type-checked in C, and it is overridden by another

N def
= {M ∈ M | ¬M OK IN C} TA OK IN C except m ∩TA \ �TA ⊆ meth(M)

trait T imports TA {M} OK IN C except meth(N) ∪ (m \meth(M))
(Tr·Ok)

altlook(n, TA with {m@n}) = M M OK IN C

TA OK IN C except p n 6∈ meth(TA)

TA with {m@n} OK IN C except p \ {m}
(Alias·Ok1)
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altlook(n, TA with {m@n}) = M ¬M OK IN C

TA OK IN C except p n 6∈ meth(TA)

TA with {m@n} OK IN C except (p \ {m}) ∪ {n}
(Alias·Ok2)

TA OK IN C except n m ∈ meth(TA)

TA minus {m} OK IN C except n \ {m}
(Exlude·Ok)

Some comments are in order

—(Tr·Ok) Ensures that every TA ∈ TA is well-typed. Intuitively
—We fetch all the methods N defined in the trait T that are not type-checked in
C.

—We type-check the set of altered traits TA in C, producing a set of illegal methods
(the except m part) corresponding to the methods of TA which do not type-
check in C.

—We check the key condition ∩TA \ �TA ⊆ meth(M), ensuring that every conflict
is resolved, and guaranteeing that the lookup algorithm provides the correct
conflict resolution.

—We build a new set of illegal methods for T w.r.t. C, that is, meth(N) ∪ (m \
meth(M)), i.e., the illegal methods of TA (meth(N)) plus the non-overridden
illegal methods from TA (m \meth(M)).

—(Alias·Ok1) Ensures that if TA is well-typed, and the body M of the aliased method
is well-typed in C, and the new name n is fresh in TA, then the altered trait is
well-typed. The new set of illegal methods is the set p less m (former method
name).

—(Alias·Ok2) Behaves as for (Alias·Ok1), except that M is not well-typed and n is
added to the set of illegal methods.

—(Exlude·Ok) If TA is well-typed, then excluding m just removes m from the set of
illegal methods.

Remark 5.1 Why not simply TA OK IN C?.
The reader may argue that a simpler set for type-checking traits would be more
appropriate, namely

M OK IN C ∩TA \ �TA ⊆ meth(M) TA OK IN C

trait T imports TA {M} OK IN C
(Tr·Ok′)

plus rules (Alias·Ok1), and (Exlude·Ok) (without the except part). This set of
rules enforces the well-known restriction saying that overriding a method in a trait
is possible only when the overridden method has the same type-interface. In this
case, the except part is empty. However, this restriction blocks the legal code of
Figure 2. Now the following two questions arise

—Are the above rules sound? Yes they are: but they block the legal code of Figure
2.
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trait T1 { int m(){return 1;}}
trait T2 { bool m(){return true;}}
trait T3 imports T1 T2

{String m(){return ‘‘hello world’’;} m is the winner method
String n(){return this.m();}} n will call the winner m

class A extends Object imports T3

{;A(){super();}} m of T3 is the winner, and n of T3 will call m of T3

class B extends Object imports T1 T2

{;B(){super();}
String m(){return ‘‘how are you?’’;} m is the winner method
String n(){return this.m();}} n of T3 will call the winner m

(new A()).n() return ‘‘hello world’’
(new B()).n() return ‘‘how are you?’’

Fig. 2. Blocked code

—Are the FTJ rules sound? Yes they are (see Section 6). Intuitively, (i) all methods
defined or inherited in traits (resp. in classes) are type-checked all at once except
for the illegal methods that are fetched and not type-checked (the except part),
and (ii) the lookup algorithm hide the (badly typed) methods that are overridden
in trait alterations or in classes. As such, bodies of method m in traits T1 and
T2 above are not type-checked and hence overridden by two new bodies of type
String in trait T3 and class B. This is one of the great achievements of the FTJ’s
type system.

Class checking. The FTJ’s type system culminates in the class checking rule

K = C(D g, C f){super(g); this.f = f; }
fields(D) = D g ∩TA \ �TA ⊆ meth(M)
M OK IN C TA OK IN C except m m ⊆ meth(M)

class C extends D {C f; K M TA} OK
(Cla·Ok)

Intuitively, this rule checks that all the components of the class are well-typed, and
that all conflicts are resolved. This type-checking rule ensures that FTJ is a proper
extension of FJ, thanks to both occurrences in the premises of the ⊆ symbol which
ensures compatibility whenever TA is empty. More precisely

—We fetch the constructor K and the fields g.
—We check the key condition ∩TA \ �TA ⊆ meth(M), ensuring that every conflict is

resolved (see the explanation about (Tr·Ok) above).
—We type-check all methods M defined in C.
—We type-check the set of altered traits TA in C, producing a set of illegal methods
m (the except part), i.e., the methods of TA which do not type-check in C.

—We check the condition m ⊆ meth(M), ensuring that the m illegal methods are
overridden with methods M of the class C.

Method type lookup and valid method overriding. These rules have no difficulties
(see Appendix B).
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6. PROPERTIES

Once the operational semantics and the type system are defined, the next step
is to prove that (i) the static semantics matches the dynamic one, i.e., types
are preserved during computation (modulo subtyping), that (ii) the interpreter
cannot get stuck if programs only include upcasts, and finally that (iii) the type
system prevents compiled programs from the unfortunate run-time message-not-
understood error.

The result we obtain in designing FTJ is that adding trait inheritance to FJ does
not break the elegance of the semantics of FJ nor does it make the meta-theory
excessively complicated. Of course, some care must be devoted when dealing with
trait alterations. Full proofs of the theorems are provided in Appendix C.

The Conflict Resolution Theorem proves that the conflicts are resolved for well-
typed programs. The conflicts are, mathematically, the sources of non-determinism
in the lookup algorithm - specifically in tlook. The theorem states that there is
none.

Theorem 6.1 Conflict Resolution.
If, for all Ci ∈ CL, we have Ci OK, then both mbody and mtype are functions.

Subject reduction proves that if an expression is typable and reduces to another
expression, then the latter expression is typable too has a type which is a subtype
of the type of the former.

Theorem 6.2 Subject Reduction.
If Γ ` e ∈ C and e −→ e′, then Γ ` e′ ∈ D, for some D <: C.

Then, progress shows that the only way for the interpreter to get stuck is by reaching
a state where a downcast is impossible. Let # means cardinality, as in [Igarashi
et al. 2001].

Theorem 6.3 Progress.
Suppose e is a well-typed expression

(1 ) If e includes new C(e).f as a subexpression, then fields(C)=T f and f ∈ f;
(2 ) If e includes new C(e).m(f) as a subexpression, then mbody(m, C) = (x, e0) and

#(x) = #(d).

In accordance with FJ, we define the notion of safe expression e in Γ if the type
derivation of the underlying (CT, TT) and Γ ` e ∈ C contains no downcast or stupid
cast (rules (Typ·DCast), and (Typ·SCast)). Recall that a stupid cast in FJ is needed
to ensure the Subject Reduction Theorem. Then, we show that our semantics
transforms safe expressions to safe expressions, and, moreover, type-casts in a safe
expression will never fail.

Theorem 6.4 Reduction preserves safety.
If e is safe in Γ, and e −→ e′, then e′ is safe in Γ.

Theorem 6.5 Progress of safe programs.
Suppose e is safe in Γ. If e has (C)new D(e) as a subexpression, then D <: C.
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T1 {int m(){return this.f+1;}
int n(){return this.f*10;}
int p(){return this.q()+10;}}

T2 {int m(){return this.f+2;}
int n(){return this.f*20;}
int q(){return this.m()+this.n();}}

T3 {int m(){return this.f+3;}
int n(){return this.f*30;}}

class A extends Object imports T1 minus {m} T2 minus {n}
{int f; A(int f){super();this.f=f;}}

class B extends Object imports T1 minus {n} T2 minus {m}
{int f; B(int f){super();this.f=f;}}

class C extends Object imports T1 with {m@m_T1} T2 with {n@n_T2}
{int f; C(int f){super();this.f=f;}
int m(){return this.m_T1()+this.n_T2()}
int n(){return this.m_T1()*this.n_T2()}}

class D extends A imports T3

{; C(int f) {super(f);}
int p(){return this.q()+100;}
int q(){return this.m()*this.n();}}

receiver this.m() this.n() this.p() this.q()

(new A(3)) 5 30 45 35

(new B(3)) 4 60 74 64

(new C(3)) 64 240 314 304

(new D(3)) 6 90 640 540

Fig. 3. Synthetic example

7. EXAMPLES

Synthetic Example à la [Goldberg and Robson 1983]. The example in Figure 3
defines three simple traits and four classes that import those traits, some of them
altered. The table summarizes all possible method calls (we assume types and
algebras for integers).

Funny Example à la FTJ. The example in Figure 4 shows how traits do not break
legal code5. The ability to compose traits containing the same method name and
different, incompatible, signatures is one of the key result of the present paper. The
ability also to detect and type-check innocuous methods inherited via a diamond
is another achievement of FTJ. Roughly speaking, this corresponds to accept all
“safe” Smalltalk-like trait based feature that would not raise exceptions of the shape
message-not-understood at run-time.

8. RELATED WORK

In the past few years, many proposals for languages with typed traits have emerged.
The first paper about trait inheritance in statically-typed languages is the one of
Fisher and Reppy [Fisher and Reppy 2004], presenting a core calculus (hereafter
called TcoreMoby) featuring traits for the programming language Moby. Quitslund

5Disclaimer: The names used here are chosen only for the purpose to show the power of combining
traits with different types. There is absolutely no political message inside.
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trait Freedom {Independence declaration(){return ...;}
Human Rights acclamation(){return ...;}
Food freedom food(){return ‘‘Turkey’’;}}

trait Democratic imports Freedom

{Kerry program(){return ...;}}
trait Republican imports Freedom

{Bush program(){return ...;}
Food freedom food(){return ‘‘Freedom fries’’;}}

trait Outsider imports Democratic with {program@program demo}
{Chirac program(){return ...;}
Food freedom food(){return ‘‘French fries’’;}}

class One Candidate extends Object class Two Candidate extends Object

imports Democratic imports Republican

{...; {...;
One Candidate(){super();} Two Candidate(){super();}
Object merge(){return ... Object merge(){return ...

this.declaration() ... this.declaration() ...

this.acclamation() ... this.acclamation() ...

this.program() ... this.program() ...

this.freedom food() ... this.freedom food() ...

this.program demo();} this.program repub();}
Object ask(){return this.merge();}} Object ask(){return this.merge();}}

class Three Candidate extends Object class Four Candidate extends Object

imports Outsider imports

Democratic with {program@program demo}
Republican with {program@program repub}}

{...; {...;
Three Candidate(){super();} Four Candidate(){super();}
Object merge(){return ... Object merge(){return ...

this.declaration() ... this.declaration() ...

this.acclamation() ... this.acclamation() ...

this.program() ... this.program() ...

this.program demo();} this.program demo();

Object ask(){return this.merge();}} this.program repub();}
Object ask(){return this.merge();}
Blair program(){return ...;}
Food freedom food(){return‘‘Fish&Chips’’;}}

(new One Candidate()).ask() a merge of Freedom, Kerry program, and Turkey
(new Two Candidate()).ask() a merge of Freedom, Bush program, and Freedom fries
(new Three Candidate()).ask() amerge of Freedom,Kerry andChirac programs, andFrench fries
(new Four Candidate()).ask() a ‘‘strange’’merge of Freedom,Blair, Bush, andKerry programs

and Fish and Chips ...

Fig. 4. Funny example

and Black [Quitslung 2004] presented the first implementation of traits in Java
setting. Odersky et al. present an interesting implementation of typed traits for the
Scala language [Scala Team 2007]. Recently, Smith and Drossopoulou formally adds
traits to Java [Smith and Drossopoulou 2005] (thereafter called Chai). Nierstrasz
and Ducasse and Schärli [Nierstrasz et al. 2006] formalize an untyped mechanism to
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compile FTJ into plain Java by exploiting the flattening property of traits. Finally,
the new language Fortress by Allen, Chase, Luchangco, Maessen, Ryu, Steele, and
Tobin-Hochstadt [Allen et al. 2005] also feature traits-as-types. We shortly review
these proposals and compare it with FTJ.

(TcoreMoby). It adds statically-typed trait-based inheritance to an object-based
calculus with first-class functions of the ML family. Fisher and Reppy have the
same interest in typed traits as we do, and historically this paper can be considered
as the first attempt to type-check statically traits. The key points of TcoreMoby
are that (a) two traits can be combined only if they are disjoint, and that (b) one
method can be overridden by another only if it has the same type interface, and
that (c) in TcoreMoby traits can be type-checked only once. The paper comes with
the full set of proofs. Our FTJ relaxes point (a) and (b), and leaves point (c) for
further work (see [Liquori and Spiwack 2007]).

(Chai). It adds statically-typed trait-based inheritance to Java; in fact there are
three dialects defined: Chai1,2,3. As for TcoreMoby, the key points in Chai are that
(a) two traits can be combined only if they are disjoint, and that (b) one method
can be overridden by another only if it has the same type interface, and that (c)
in Chai2,3 traits can be type-checked only once, and that (d) in Chai3 traits can be
substituted for one another dynamically. The paper comes with proof sketches for
the theorems of Chai1, and soundness theorems for Chai2,3, whose proofs are not
yet published. Our FTJ can be compared with Chai1: the biggest difference is that
FTJ relaxes point (a) and (b), making the type system more expressive than Chai1.
Moreover, FTJ comes with a full metatheory. Point (c) is left for further work (see
[Liquori and Spiwack 2007]).

(Scala). It features traits as specific instance of an abstract class; thus the
abstract modifier is redundant for it. Traits in Scala are a bit like interfaces in
ClassicJava [Flatt et al. 1998], since they are used to define object types by specifying
the signature of the supported methods. Besides in Scala the composition order of
trait is irrelevant. A solid implementation is available on the Scala web site. A
Featherweight Scala formal model with related meta-theory remains to be fleshed
out.

(Fortress). The language specifications was published on the SUN’s web-site at
the end of 2005. This language features traits-as-types (i.e. a trait is like an interface
in Java with some concrete method bodies inside), and objects are trait instances,
obtained by completing the imported trait by the body declaration of the abstract
methods. A formal model with related meta-theory remains to be fleshed out.

We compare below some of the above proposals on typed traits having a formal
static and dynamic semantics.

(1) TcoreMoby is a core calculus for languages of the ML family, whereas FTJ and
Chai are core calculi for Java-like languages (Java is a notable example, not the
absolute target).

(2) TcoreMoby and Chai are imperative, i.e., they have a notion of state and store,
whereas FTJ is purely functional.
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(3) TcoreMoby allows one to define a method only inside a trait definition, whereas
FTJ and Chai allows one also to define method in class definitions: methods
defined in classes take precedence over methods defined in traits.

(4) TcoreMoby and Chai allow trait compositions only if the traits to be composed
are disjoint, i.e., no common methods, whereas FTJ permits one to compose
traits even if they share common methods: in this case all common methods
must be overridden in the trait itself to be disambiguated.

(5) TcoreMoby considers method override inside traits as a derived operation,
whereas FTJ considers it as native; methods defined inside a trait take
precedence over methods imported the trait itself.

(6) TcoreMoby aliases a method m with n by copying the body of m and associating
to the method name n, and FTJ also does. Moreover, see Remark 4.2, a sound
variant of FTJ could alias m in n and replace in the body of m every occurrence of
this.m by this.n; in both cases, m will be is removed from the illegal methods.

(7) TcoreMoby evaluates traits to trait values (this correspond to a linking phase),
whereas FTJ only type-checks a trait w.r.t. a class that imports that trait.

(8) TcoreMoby and Chai feature this and super, whereas FTJ supports only this.
(9) TcoreMoby has a type-system that features polymorphic-types and polymorphic-

traits, whereas that of FTJ type-system features only first-order types.
(10) TcoreMoby and Chai subtype system features width subtyping, and FTJ also

does.
(11) TcoreMoby does not have constructors, whereas FTJ and Chai do.
(12) TcoreMoby and Chai2 type-check traits only once with a special type that keeps

tracks of the required and the provided methods, whereas FTJ type-checks a trait
only inside a class C, recording the methods that are illegal (the except part of
the trait typing judgment). Illegal methods can be overridden with a complete
different type, provided that all methods that refers to those methods will
continue to type-check it in the class C. TcoreMoby and Chai1,2,3 are unable to
type-check the examples of Section 7. This is because both proposals enforce the
constraint that overriding a method in a trait is possible only when we respect
the same type-interface as the the overridden one, as explained in Remark 2.
In contrast, the FTJ type system relaxes this constraint and permits overriding
a method in a trait with a different type-interface.

9. CONCLUSIONS

In this paper, we have presented a formal development of the theory of FTJ, a
statically-typed, purely functional, class-based language featuring classes, objects,
and trait inheritance. Among the possible future directions, we list some questions
on our agenda.

—The type system presented allows one to type-check traits only within classes; in
fact, when typing a class, all requirements of all traits (the except part) must
be resolved inside the class itself, otherwise the created instances would generate
a message-not-understood upon some non-implemented message send. Type-
checking traits only once is a reasonable feature to be added as in TcoreMoby and
Chai2. This suggests extending our type system for FTJ with ad hoc types for
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traits. Here, traits can be type-checked only once and considered as regular types,
as Java-like interfaces with precise behavior. We are developing two solutions
for that: a simpler and a more complex one. In the simpler solution, [Liquori
and Spiwack 2007], a trait can be seen either as a potentially incomplete class
where objects can be assigned but not instantiated, i.e., as an interface with
some behavior inside but no state: this extension can be achieved by adding and
modifying few rules in the FTJ type system. Another more complete solution
would consider traits as potentially incomplete units of behaviors, where objects
can be assigned and partially evaluated: to do this it could be encouraging to
start from of a previous work on potentially incomplete objects [Bono et al. 1997]
in an object-based setting. Other hints can be found in the theory of modules and
mixins [Hirschowitz et al. 2004], and in the linking phase of [Fisher and Reppy
2004].

—It would be interesting to add bounded polymorphic-types or even generic-types;
those extension will greatly improve the usefulness of statically-typed traits.

—It would be interesting to extend FTJ with imperative features.
—We would like to explore the impact of trait inheritance for the language C#;

although this language is quite similar to Java, it has its peculiarities, which
should be carefully interleaved and kept compatible with typed traits.

—We would like to compare the Fortress lookup algorithm with the FTJ lookup
algorithm.

—Finally, it is our opinion that trait-based inheritance could be fruitfully applied
to Aspect-Oriented Programming (AOP) à la Kiczales et al. [Kiczales et al.
1997], and Variation-Oriented Programming (VOP) à la Mezini [Mezini 2002],
and Object-based Programming (OBP) à la Self [Ungar and Smith 1987].
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A. SYNTAX AND SEMANTICS OF FTJ
Syntax

CL ::= class C extends C [imports TA]{C f; K M} Class Declarations

TL ::= trait T [imports TA]{M} Trait Declarations

TA ::= T | TA with {m@m} | TA minus {m} Trait Alterations

K ::= C(C f){super(f); this.f = f; } Constructors

M ::= C m(C x){return e; } Methods

e ::= x | e.f | e.m(e) | new C(e) | (C)e Expressions

Subtyping

C <: C
(Sub·Refl)

C <: D D <: E

C <: E
(Sub·Trans)

CT(C) = class C extends D {. . .}

C <: D
(Sub·Cla)

Small-step semantics

fields(C) = C f

(new C(e)).fi −→ ei
(Run·Field)

mbody(m, C) = (x, e0)

(new C(e)).m(d) −→ [d/x, new C(e)/this]e0
(Run·Call)

C <: D

(D)(new C(e)) −→ new C(e)
(Run·Cast)
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Congruence

e −→ e′

e.f −→ e′.f
(Cgr·Field)

e −→ e′

e.m(e) −→ e′.m(e)
(Cgr·Receiver)

ei −→ e′i

e.m(. . . , ei, . . .) −→ e.m(. . . , e′i, . . .)
(Cgr·Args)

ei −→ e′i

new C(. . . , ei, . . .) −→ new C(. . . , e′i, . . .)
(Cgr·New)

e −→ e′

(C)e −→ (C)e′
(Cgr·Cast)

Field lookup

fields(Object) = •
(Field·Top)

CT(C) = class C extends D {C f; K M TA}
fields(D) = D g

fields(C) = D g, C f
(Field·Cla)

Method body lookup

CT(C) = class C extends D {C f; K M TA}
B m (B x){return e; } ∈ M

mbody(m, C) = (x, e)
(MBdy·Cla)

CT(C) = class C extends D {C f; K M TA}
m 6∈ meth(M) tlook(m, TA) = B m(B x){return e; }

mbody(m, C) = (x, e)
(MBdy·Tr)

CT(C) = class C extends D {C f; K M TA}
m 6∈ meth(M) tlook(m, TA) = fail mbody(m, D) = (x, e)⊥

mbody(m, C) = (x, e)⊥
(MBdy·SCla)
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Trait lookup

∃TA ∈ TA. altlook(m, TA) 6= fail

tlook(m, TA) = altlook(m, TA)
(Tr·Ok)

∀TA ∈ TA. altlook(m, TA) = fail

tlook(m, TA) = fail
(Tr·Ko)

Trait alteration lookup

TT(T) = trait T imports TA {M}
B m(B x){return e; } ∈ M

altlook(m, T) = B m(B x){return e; }
(ATr·Found)

TT(T) = trait T imports TA {M}
m 6∈ meth(M) tlook(m, TA) = M⊥

altlook(m, T) = M⊥
(ATr·Inh)

altlook(n, TA) = B n(B x){return e; }

altlook(m, TA with {n@m}) = B m(B x){return e; }
(ATr·Ali1)

m 6= p m 6= q altlook(m, TA) = M⊥

altlook(m, TA with {p@q}) = M⊥
(ATr·Ali2)

m 6= n

altlook(m, TA with {m@n}) = fail
(ATr·Ali3)

altlook(n, TA) = fail

altlook(m, TA with {n@m}) = fail
(ATr·Ali4)

m 6= n

altlook(m, TA minus {n}) = altlook(m, TA)
(ATr·Exl1)

altlook(m, TA minus {m}) = fail
(ATr·Exl2)
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Method names

meth(C m(C x){return e; }) = {m}
(Mth·Mth)

TT(T) = trait T imports TA {M}

meth(T) = meth(M) ∪meth(TA)
(Mth·Tr)

meth(TA with {m@n}) = (meth(TA) \ {m}) ∪ {n}
(Mth·Ali)

meth(TA minus {m}) = meth(TA) \ {m}
(Mth·Exl)

Method paths in trait alterations

m ∈ meth(TA)

m in TA P m in TA
(Path·Refl)

m in TA1 P p in TA2 p in TA2 P n in TA3

m in TA1 P n in TA3
(Path·Trans)

TT(T) = trait T imports TA {M}
TA ∈ TA m ∈ meth(TA) \meth(M)

m in T P m in TA
(Path·Inh)

p in TA1 P n in TA2

m in TA1 with {p@m} P n in TA2
(Path·Ali1)

m in TA1 P n in TA2 m 6= p m 6= q

m in TA1 with {p@q} P n in TA2
(Path·Ali2)

m in TA1 P n in TA2 m 6= p

m in TA1 minus {p} P n in TA2
(Path·Exl)
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B. THE TYPE SYSTEM OF FTJ
Method type lookup

CT(C) = class C extends D imports TA {C f; K M}
B m(B x){return e; } ∈ M

mtype(m, C) = B→ B
(MTyp·Self)

CT(C) = class C extends D imports TA {C f; K M}
m 6∈ meth(M) tlook(m, TA) = B m(B x){return e; }

mtype(m, C) = B→ B
(MTyp·Tr)

CT(C) = class C extends D imports TA {C f; K M}
m 6∈ meth(M) tlook(m, TA) = fail

mtype(m, C) = mtype(m, D)
(MTyp·Super)

Valid method overriding

mtype(m, D) = D→ D0 implies C = D and C0 = D0

override(m, D, C→ C0)
(M·Ov)

Basic expression typing

Γ ` x ∈ Γ(x)
(Typ·Var)

Γ ` e0 ∈ C0 mtype(m, C0) = D→ C

Γ ` e ∈ C C <: D

Γ ` e0.m(e) ∈ C
(Typ·Call)

fields(C) = D f Γ ` e ∈ C C <: D

Γ ` new C(e) ∈ C
(Typ·New)

Γ ` e0 ∈ C0 fields(C0) = C f

Γ ` e0.fi ∈ Ci
(Typ·Field)
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Γ ` e0 ∈ D D <: C

Γ ` (C)e0 ∈ C
(Typ·UCast)

Γ ` e0 ∈ D C <: D C 6= D

Γ ` (C)e0 ∈ C
(Typ·DCast)

stupid warning Γ ` e0 ∈ D C 6<: D D 6<: C

Γ ` (C)e0 ∈ C
(Typ·SCast)

Method Intersection and Diamond Detection

∩TA def
= {m | ∃TA1 6= TA2 ∈ TA. m ∈ meth(TA1) ∩meth(TA2)}

�TA def
= {m | ∃n, TA1.∀TA2 ∈ TA. m ∈ meth(TA) =⇒ m in TA2 P n in TA1}

Method typing

CT(C) = class C extends D imports TA {. . .}
x:C, this:C ` e ∈ F override(m, D, C→ E) F <: E

E m(C x){return e; } OK IN C
(Mth·Ok·Cla)

Trait typing

N def
= {M ∈ M | ¬M OK IN C} TA OK IN C except m ∩TA \ �TA ⊆ meth(M)

trait T imports TA {M} OK IN C except meth(N) ∪ (m \meth(M))
(Tr·Ok)

altlook(n, TA with {m@n}) = M M OK IN C

TA OK IN C except p n 6∈ meth(TA)

TA with {m@n} OK IN C except p \ {m}
(Alias·Ok1)

altlook(n, TA with {m@n}) = M ¬M OK IN C

TA OK IN C except p n 6∈ meth(TA)

TA with {m@n} OK IN C except (p \ {m}) ∪ {n}
(Alias·Ok2)

TA OK IN C except n m ∈ meth(TA)

TA minus {m} OK IN C except n \ {m}
(Exlude·Ok)

Class typing

K = C(D g, C f){super(g); this.f = f; }
fields(D) = D g ∩TA \ �TA ⊆ meth(M)
M OK IN C TA OK IN C except m m ⊆ meth(M)

class C extends D imports TA {C f; K M} OK
(Cla·Ok)
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C. THE FULL PROOFS

The following lemma proves that the method path relation only designs paths for
existing methods.

Lemma C.1 Non Virtual Paths.
If m in TA1 P n in TA2, then m ∈ meth(TA1) and n ∈ meth(TA2).

Proof. By induction on the derivation of m in TA1 P n in TA2.

—(Path·Refl) Clear since TA1 = TA2.
—(Path·Trans) Straightforward by induction hypothesis.
—(Path·Inh) By hypothesis of the rule we have that m ∈ meth(TA2), and, by rule

(Mth·Tr), m ∈ meth(TA1).
—(Path·Ali1) By induction hypothesis we have that m ∈ meth(TA1) and n ∈

meth(TA2), and, by rule (Mth·Ali), we get m ∈ meth(TA1 with {p@m}).
—(Path·Ali2) By induction hypothesis we have that m ∈ meth(TA1) and n ∈

meth(TA2), and, by rule (Mth·Ali), we get m ∈ meth(TA1 with {p@q}).
—(Path·Exl) By induction hypothesis we have that m ∈ meth(TA1) and n ∈

meth(TA2), and, by rule (Mth·Exl), we get m ∈ meth(TA1 minus {p}).

The following lemma ensures that altlook provides a method with the proper name.

Lemma C.2 Naming Soundness.
If altlook(m, TA) = M⊥, then either M = fail or M = B m (B x){. . .}.

Proof. By straightforward induction on the derivation of altlook(m, TA) = M.

The following lemma proves that a method path relation preserves the body of the
method. It is the first step for proving determinism of well-typed programs.

Lemma C.3 Diamond Proto-Soundness.
If m in TA1 P n in TA2, then altlook(n, TA1) = B n(B x){return e; } implies
altlook(m, TA2) = B m(B x){return e; }.

Proof. By induction on the derivation of m in TA1 P n in TA2.

—(Path·Refl) Clear since TA1 = TA2.
—(Path·Trans) Straightforward by induction hypothesis.
—(Path·Inh) Since m 6∈ meth(M), the rule (ATr·Inh) can apply to TA1, which implies

the result.
—(Path·Ali1) The rule (ATr·Ali1) (resp. (ATr·Ali4)) can apply to TA1, which

implies the result.
—(Path·Ali2) Since m 6= p and m 6= q, the rule (ATr·Ali2) can apply to TA1, which

implies the result.
—(Path·Exl) Since m 6= p, the rule (ATr·Exl1) can apply to TA1, which implies the

result.

The following lemma proves that if a trait is well-typed, then meth refers to the set
of methods where altlook does not fail.
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Lemma C.4 meth Soundness.
If TA OK IN C except m, then m ∈ meth(TA) if and only if altlook(m, TA) 6= fail.

Proof. By induction on the derivation of altlook(m, TA).

—(ATr·Found) Then altlook(m, TA) 6= fail and from rule (Mth·Tr), we have
m ∈ meth(TA).

—(ATr·Inh) Then altlook(m, TA) 6= fail ⇐⇒ ∃TAi ∈ TA. altlook(m, TAi) 6= fail.
Thus we have, by induction hypothesis

altlook(m, TA) 6= fail ⇐⇒ ∃TAi ∈ TA. m ∈ meth(m, TAi) ⇐⇒ m ∈ meth(TA)

The latter comes from rule (Mth·Tr) and the statement m 6∈ meth(M).
—(ATr·Ali1) Then TA = TA1 with {n@m}. Since TA is well-typed, we have that
n ∈ meth(TA1) and m 6∈ meth(TA1). Then, by induction hypothesis, we have that
altlook(n, TA1) 6= fail, and thus altlook(m, TA) 6= fail, and rule (Mth·Ali) states
that m ∈ meth(TA).

—(ATr·Ali2) Straightforward as for (ATr·Ali1).
—(ATr·Ali3) Clear.
—(ATr·Ali4) By induction hypothesis.
—(ATr·Exl1) Straightforward using rule (Mth·Exl).
—(ATr·Exl2) Clear.

We prove that altlook is a function when the program typechecks.

Lemma C.5 Conflict Resolution in Trait Alterations.
If TA OK IN C except m, then altlook( · , TA) is a function.

Proof. By induction on the derivation of altlook.

—(ATr·Found) Direct.
—(ATr·Inh) If tlook(m, TA) = fail, then the property obviously holds. Else, by

induction hypothesis, for all TAi ∈ TA, altlook( · , TAi) is a function.
◦ If m 6∈ ∩TA, then, there is a unique TAi ∈ TA where altlook(m, TAi) 6= fail.
◦ If m ∈ ∩TA, then, since TA is well-typed, the rule (Tr·Ok) enforces that m ∈ �TA.

Then, for all TAi ∈ TA, we have m ∈ meth(TAi) ⇒ m in TAi P n in TA1.
Moreover, we know that n ∈ meth(TA1), by Lemma C.1 (Non Virtual Paths),
which means that there is at least one altlook(n, TA1) = B n (B x){. . .} which
is derivable, by Lemma C.4 (meth Soundness). Thus, altlook(m, TAi) =
B m (B x){. . .} is derivable for all TAi such that m ∈ meth(TAi), by Lemma
C.3 (Diamond Proto-Soundness). To conclude, we know that altlook(·, TAi) is
a function which ensures they are all equal.

Which obviously gives the result.
—(ATr·Ali1) Then, TA = TA1 with {n@m}. The induction hypothesis ensures that

altlook( · , TA1) is a function. Then, it is straightforward.
—(ATr·Ali2) Straightforward as for (ATr·Ali1).
—(ATr·Ali3) Clear.
—(ATr·Ali4) By induction hypothesis.
—(ATr·Exl1) Straightforward as for (ATr·Ali2).
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—(ATr·Exl2) Clear.

The system is kept non-deterministic to emphasize the fact that the order of trait
composition does not matter in the result. We prove that all conflict are resolved
both for static (typing) and dynamic semantics.

Theorem C.1 Conflict Resolution.
If for all Ci ∈ CL, we have Ci OK, then both mbody( · , Ci) and mtype( · , Ci) are
functions.

Proof. We prove that mbody( · , Ci) is a function by induction on the derivation
of mbody(m, Ci), the proof for mtype( · , Ci) being similar.

—(MBdy·Cla) Direct.
—(MBdy·SCla) Straightforward by induction hypothesis.
—(MBdy·Tr) For all TAi ∈ TA, altlook( · , TAi) is a function, by Lemma C.5

(Conflict Resolution in Trait Alterations).
◦ If m 6∈ ∩TA then, obviously, there is a unique TAi ∈ TA where altlook(m, TAi) 6=

fail.
◦ If m ∈ ∩TA, then, since Ci is well-typed, the rule (Cla·Ok) enforces that m ∈ �TA.

Then, for all TAi ∈ TA, we have m in TAi P n in TA1. Moreover, we know
that m ∈ meth(TA1), by Lemma C.1 (Non Virtual Paths), which means that
there is at least one altlook(n, TA1) = B n (B x){. . .} which is derivable, by
Lemma C.4 (meth Soundness). Thus, altlook(m, TAi) = B m (B x){. . .} is
derivable, by Lemma C.3 (Diamond Proto-Soundness). To conclude, we know
that altlook(·, TAi) is a function. Which ensures they are all equal.

Which gives the result.

In the following, we suppose that the classes are well-typed, so that Theorem C.1
holds, and we can address mbody and mtype as mathematical functions. Moreover,
unless not explicitly mentioned, when citing proofs in [Igarashi et al. 2001], we mean
that they apply exactly for FTJ. From now on the lemma and theorem sequence is
the same as in FJ.

Lemma C.6 mtype Soundness.
If mtype(m, D) = C→ E, then mtype(m, C) = C→ E, for all C <: D.

Proof. The proof is as in [Igarashi et al. 2001]. By induction on the derivation
of C <: D.

Lemma C.7 Substitution lemma.
If Γ, x:B ` e ∈ D and Γ ` d ∈ A, where A <: B, then Γ ` [d/x]e ∈ C for some C <: D.

Proof. The proof is as in [Igarashi et al. 2001]. By straightforward induction
on the derivation of Γ, x:B ` e ∈ D.

Lemma C.8 Weakening.
If Γ ` e ∈ C, then Γ, x:D ` e ∈ C.

Proof. The proof is as in [Igarashi et al. 2001]. By straightforward induction
on the derivation of Γ ` e ∈ C.
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Lemma C.9 Method Body Type.
If mtype(m, C) = B → B and mbody(m, C) = (x, e), then, for some D with C <: D,
there exists A <: B such that x:B, this:D ` e ∈ A.

Proof. By induction on the derivation of mbody(m, C) = (x, e). If mbody(m, C) =
(x, e), then B m (B x){return e; } OK IN D for some D with C <: D and some B→ B.
Then, by Lemma C.6 (mtype Soundness), B→ B = mtype(m, C) holds.

—(MBdy·Cla) Immediate from (Cla·Ok) rule.
—(MBdy·Tr) Let CT(C) = class C extends D imports TA {C f; K M}. By

straightforward induction on the derivation of TA OK IN D except m.
—(MBdy·SCla) By induction hypothesis.

Lastly, we are ready to prove the main theorems.

Theorem C.2 Subject Reduction.
If Γ ` e ∈ C and e −→ e′, then Γ ` e′ ∈ D, for some D <: C.

Proof. The proof is as in [Igarashi et al. 2001].

Theorem C.3 Progress.
Suppose e is a well-typed expression.

(1 ) If e includes new C(e).f as a subexpression, then fields(C)=T f and f ∈ f.
(2 ) If e includes new C(e).m(f) as a subexpression, then mbody(m, C) = (x, e0) and

#(x) = #(d).

Proof. The proof is almost the same as in [Igarashi et al. 2001]. There is a
very little to add, just remember that we need Theorem C.1 (Conflict Resolution)
to achieve the full proof.

Theorem C.4 Reduction preserves safety.
If e is safe in Γ, and e −→ e′, then e′ is safe in Γ.

Proof. As in [Igarashi et al. 2001], this proof is just similar to the Subject
Reduction proof.

Theorem C.5 Progress of safe programs.
Suppose e is safe in Γ. If e has (C)new D(e) as a subexpression, then D <: C.

Proof. The proof is almost the same as in [Igarashi et al. 2001]. The only rule
that we can apply to derive the type of (C)new C0(e), if e is safe, is (Typ·UCast).
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