Featherweight X10: A Core Calculus
for Async-Finish Parallelism

Jonathan K. Lee Jens Palsberg

UCLA, University of California, Los Angeles
{jkenl,palsberg}@cs.ucla.edu

Abstract full language. Our hope is that other researchers will find it easy to
We present a core calculus with two of X10's key constructs for work either with FX10 as it is or with small extensions that meet

parallelism, namely async and finish. Our calculus forms a con- par\tll\?ulgr need?. e th . " eulus in t
venient basis for type systems and static analyses for languages... € demonstrate the USeluiness of our caicuius in o ways.

with async-finish parallelism, and for tractable proofs of correct- 'St We give a short proof of the deadlock-freedom theorem of
ness. For example, we give a short proof of the deadlock-freedom Saraswat and Jagadeesan [17]. They considered a much larger sub-
theorem of Saraswat and Jagadeesan. Our main contribution is et of X10 but stated the deadlock-freedom theorem without proof.
type system that solves the open problem of context-sensitive may- econd, we present a type system that solves the open problem
happen-in-parallel analysis for languages with async-finish paral- °f Context-sensitive may-happen-in-parallel analysis for languages
lelism. We prove the correctness of our type system and we reportW'th as_ync-flnlsh parallt_ahsm. We prove_the type system correctand
experimental results of performing type inference on 13,000 lines (N€N discuss our experience with type inference.
of X10 code. Our analysis runs in polynomial time, takes a total of . 1 ne goal of may-happen-in-parallel analysis is to identify pairs
28 seconds on our benchmarks, and produces a low number of falséf Statements that may happen in parallel during some execution
positives, which suggests that our analysis is a good basis for other° the program. May-happen-in-parallel analysis is also known
analyses such as race detectors. aspairwise reachability{9]. While the problem is u_ndeudable in
general and NP-complete under certain assumptions [18], a static
Categories and Subject DescriptordD.3 Programming Lan- analysis that gives an approximate answer is useful as a basis
guagesfformal Definitions and Theoty for tools such as data race detectors [6]. Researchers have de-
fined may-happen-in-parallel analysis for Ada [7, 13, 15, 16], Java
[12, 3], X10 [2], and other languages. Those seven papers specify
Keywords parallelism, operational semantics, static analysis polynomial-time analyses using pseudo-code, data flow equations
or set constraints, but they give no proofs of correctness with re-
; spect to a formal semantics. Additionally, the algorithms are either
1. Introduction intraprocedural, rely on inlining of method calls before the analy-
Two of X10's [5] key constructs for parallelism are async and sis begins, or treat call sites in a context-insensitive fashion, that is,
finish. The async statement is a lightweight notation for spawning merge the information from different call sites.
threads, while a finish statemefinish s waits for termination of We believe that when a program happen may execute two state-
all async statement bodies started while executing ments in parallel, it should be because the programintended
Our goal is to enable researchers to easily define type systemsit. Thus, may-happen-in-parallel information should be something
and static analyses for languages with async-finish parallelism, andthe programmer has in mind while programming, rather than some-
prove their correctness. For that purpose we provide a Turing- thing discovered after the programming is done. The data flow
complete calculus with a minimal syntax and a simple formal equations and set constraints used in previous work are great for
semantics. A program in our calculus consists of a collection of specifying what an analysis does, but are much less helpful for
methods that all have access to an array. The body of a methoda working programmer. We will use a type system to specify a
is a statement that can be skip, assignment, sequence, while loopmay-happen-in-parallel analysis that comes with all the advantages
async, finish, or method call. If we add some boilerplate syntax to of type systems: syntax-directed type rules and a well-understood
a program in our calculus, the result is an executable X10 program. approach to proving correctness [20]. In our case, we also get a
We call our calculus Featherweight X10, abbreviated FX10. straightforward way to do modular, context-sensitive analysis of
Featherweight X10 shares a key objective with Featherweight Javamethods, that is, a way to analyze each method just once and avoid
[8], namely to enable a fundamental theorem to have a proof that merging information from different call sites for the same method.
is concise, while still capturing the essence of the proof for the The advantage of syntax-directed type rules is that each rule con-
centrates on just one form of statement, and explains using only
local information why the may-happen-in-parallel information for
that statement is the way it is.
Permission to make digital or hard copies of all or part of this work for personal or The paper by Agarwal et al. [2] on an intraprocedural may-
classroom use is granted without fee provided that copies are not made or distributedhappen-in-parallel analysis for X10 first determines what cannot
for profit or commercial advantage and that copies bear this notice and the full citation happen in parallel and then takes its complement. In contrast,
s vt b2 15 10 AU our type System defines a modular, interprocedural may-happen-
in-parallel analysis without use of double negation. Additionally,

PPoPP’10, January 9-14, 2010, Bangalore, India. . . !
Copyright® 2010 ACM 978-1-60558-708-0/10/01. . . $10.00 our analysis comes with a proof of correctness plus experiments.

General Terms Algorithms, Languages, Theory, Verification

Naik and Aiken [14] presented a flow- and context-sensitive may- statements that are executing at the time of a method call may run
happen-in-parallel analysis for Java as part of a static race detectorin parallel with anything that may be executed in the method body.

Their problem differs from ours because Java has no construct like
finish. 2.1 First Example: Intraprocedural Analysis
Previous approaches to interprocedural analysis of concurrentne first example is from a PPoPP 2007 paper by Agarwal et al. [2,
programs include the paper by Barik and Sarkar [4] on X10, and the Figyre 4], with some minor changes.
paper by von Praun and Gross [19] on Java; both present analyses
that differ from may-happen-in-parallel analysis. The paper by void main() {
Barik and Sarkar mentions that a refinement of their analysis with S0: finish {
may-happen-in-parallel information is left for future work. S1: async {
For a programp, let MHP(p) be the true may-happen-in- S13: finish {
parallel information. Intuitively, if an execution gf can reach a S5: ...
state in which two statements with labélsandl, can both happen S6: async Si1
next, then(l1, l2) € MHP(p), and only such pairs are members of S7: async S12
MHP(p). We will show how to compute a conservative yet precise }
approximation oMHP(p). In our case, a conservative approxima- S8:
tion is a superset dfIHP(p). }
Our approach is to assign a tyjpeto a program; every program 82:
has a type. IntuitivelyF is a method summary for each method }
in the program. Each summary is a p@lt, O), whereM is may- S3:
happen-in-parallel information ari@dis a helper set that we explain ~ }
in a later section. Our correctness theorem (Theorem 3) says that if

p has typeE, andE(f,) = (M, O), wheref, is the name of the F_ror_n this program, we gener_ate set constraints. anh set con-
main method, then straint is an equality of a set variable and a set expression, where
the set expression may use set union. In a later section, we will
MHP(p) € M show the constraints in detail (Figure 5), and explain how we gen-
In other words M is a conservative approximation BHP(p). erate and solve them.
If E is given, then we can do typhecking In practice, we want The output from our constraint solver says correctly #2amnay
to computeF from p, that is, we want to do typiaference without happen in parallel with each @6, s6, 57, S8, S11, ands12, as

any annotations or other help at all. For type inference we use theWell as with the entireinish statement. This is correct because

following approach. Fromp we generate a family of set constraints the async statemestt has the statemeis2 occurring after it, so

C(p), and then we solvé!(p) using a polynomial-time algorithm the entire body of the async may happen in parallel with S2.

that resembles the algorithms used for iterative data flow analysis. The output also says that1 ands12 may happen in parallel.

We prove the equivalence result (Theorem 4) that the solutions to This is correct because the two asyncs are not enclosed in separate

C(p) coincides with the types of. finish statements and thus may be executing until the end of the
The slogan of the overall approach could bee type system enclosing finish. Furthermore, the output says #Taands11 may

leads to syntax-directed type rules and a proof of correctness, happen in parallel. This is correct because the body of an async

the constraints lead to a polynomial time algorithm, and the type may run in parallel with any statement that occurs after it.

system and the constraints are equivalé@r use of types gives a The type inference algorithm found correctly that no other state-
high-level specification of the analysis, while the use of constraints ments may happen in parallel. In particular, the inner finish state-
for us is an implementation technique. ment ensures thatl 1 andS12 cannot run in parallel with the state-

In the following section we give two examples of skeletons Mments that follow the inner finish statement.
of programs in our core language, along with discussions of how We conclude that for this program our algorithm determines the
our analysis works. In Section 3 we present our core calculus, in best possible may-happen-in-parallel information.
Section 4 we show our type system, and in Section 5 we show)
how to generate and solve constraints. Finally, in Section 6 we 2-2 Second Example: Modular Interprocedural Analysis
discuss our experimental results for 13,000 lines of X10 code, and The second example illustrates the modularity and context-sensitive
in Section 7 we conclude. Three appendices give detailed proofs ofaspects of our analysis.
our theorems.

void £() { async S5 }

2. Examples void main() {

In this section we will give a taste of how our may-happen-in- S1: finish {
parallel analysis works, and what results it can produce. async S3
Let us first outline the main challenges for may-happen-in- £0
parallel analysis for async-finish parallelism. The key problems }
stem from async, finish, loops and method calls. An async state- go. finish {
ment allows the body to run in parallel with any statement that £0)
follows it. If the body of a finish statement executes an async (or async S4
a method call that executes an async), then only when the async }

completes execution will the finish statement itself complete exe- 3

cution. This means that any statement in the body of a finish state-

ment cannot run in parallel with anything that happens after the The output from our constraint solver says thatmay happen
finish statement. A loop requires determining which async state- in parallel with each 03, async S4, ands4, and thas3 may also
ments may occur in the body and recognizing that the body of the happen in parallel with the first ca() and withasync S5. Thisis

loop may run in parallel with those statements. Any bodies of async correct because the body of an async may run in parallel with any

statement that occurs after it, including after method boundaries. The the constructoc () initializes the array variable; for

Here,s3 will run in parallel with the callf (), which in turn will example, it might load the array’s contents from a file.
execute an async with bod3s. So, 83 may happen in parallel One array.An FX10 computation works with a single shared
with £(), async S5, andss. In the second inish, we havef () memory given by an integer array variable namedVe chose to
executing first which will allows5 to run in parallel withasync S4 work with an array variable instead of a family of integer variables
ands4. because of a subtlety in the X10 semantics of async. The body of
The type inference algorithm found correctly that no other state- an async statement can access variables outside the async statement
ments may happen in parallel. In particulat, and S2 are finish only if those variables are declaréndal, that is, they can be initial-
statements that prevent the bodysdf to run in parallel with the ized once but not updated later. We want to enable updates to vari-
body ofs2, and our algorithm determines tr&g cannot happen in ables, and therefore final integer variables are insufficient for our
parallel withs4. purposes. Instead we have a final integer array variable to which an
We conclude that also for this program our algorithm deter- array reference is assigned once, while the individual locations of
mines the best possible may-happen-in-parallel information. the array can be updated and read multiple times.

Let us contrast the results from our analysis (Section 4) with the MethodsFX10 contains methods and method calls to enable us
results from a context-insensitive analysis (Section 7) that mergesto show our context-sensitive may-happen-in-parallel analysis. For
information from different call sites. The context-insensitive anal- studies in which methods play no particular role, researchers can
ysis would say tha$3 may happen in parallel with4. The reason easily remove methods from the language.
is that the context-insensitive analysis will conservatively merge (i) A method in FX10 has no arguments, no local variables, no
the information from the first call site th&8 may be executing return value, and no mechanism for early return. The reason is
when methodf completes its execution with (ii) the information that the key problem for may-happen-in-parallel analysis stems
from the second call site that runs after the call completes ex- from procedure calls themselves. A static analysis may be context
ecution. The pair o83 ands4 is an example of a false positive: insensitive (that is, merge the information from different call sites),
the context-insensitive analysis infers that they may happen in par- or context sensitive (that is, separate the information from different
allel when in fact they cannot happen in parallel. In contrast, our call sites). As we will show in Section 7, for the case of may-

analysis doesn't produce this particular false positive. happen-in-parallel analysis, the difference is significant.
Informal semanticsThe semantics of FX10 uses the binary op-
3. Featherweight X10 erator|| in the semantics of async, it uses the binary openator
) the semantics of finish, and it uses the constdmd model a com-
3.1 Design pleted computation. A state in the semantics is a triple consisting

FX10 is a core calculus in which sequential computation is the de- of the program, the state of the arrayand a tred” that describes
fault, parallelism comes from the async statement, and synchro-the code executing. The internal noded adre either| or >, while

nization comes from the finish statement. the leaves are eithey or (s), wheres is a statement. ‘
A subset of X10The language X10, version 1.5, is the starting As an example of how the semantics works, we will now infor-
point for the design of FX10. From X10 we take: mally discuss an execution of the program in Section 2.2. Let us

focus on the code that is being executed and let us ignore the state
' of the arraya. The execution begins inain by executing the first
finish statement.

¢ a Turing-complete core consisting of while-loops, assignments
and a single one-dimensional integer array,

¢ methods and method calls, and

(finish { async S3 £() } S2) —

e the async and finish statements. (async 83 £()) > (S2) —
ihe missing statements and ignore the Iabals of statements. We () | (£O) > (52) -
: ((83) || (async S5)) > (S2) —

omit many features from X10, including places, distributions, and
clocks. ((s3) || (85)) > (82)

Conventions and omitted boilerplate syntdke grammar for
FX10 useskip in place of the empty statement “;”, and it specifies
abstract syntax so it omitg* and “}” for grouping of statements.
The grammar for FX10 also omits some boilerplate syntax that
is required to change an FX10 program into an executable X10
program. The boilerplate syntax consists of a main class plus one
other class with a final fieldh that contains a one-dimensional
integer array, a constructor, and then the methods from the FX10
program. For example, after we add the boilerplate syntax to the
program in Section 2.2, it reads:

The first step illustrates the semantics of finish and introduces
signal that the left-hand side of must complete execution before
the right-hand can proceed. The second step illustrates the seman-
tics of async and introducdisto signal thas3 andz () should pro-
ceed in parallel. The third step illustrates the semantics of method
call and replaces the call() with the bodyasync S5. The fourth
step again illustrates the semantics of async. The two sidgs of
can execute in parallel, which we model with an interleaving se-
mantics. When one of the sides completes execution, it will reach
the state,/. For example ifS3 — ,/, then the semantics can do
(83]| 85) — (v/ || S5) — S5. When als®5 completes execution,

public class Main { K - A - \
the semantics can finally proceed with the right-hand side.of

public static void main(String[] args) {
new C().main();

} 3.2 Syntax
} We usec to range over natural numbeks = {0,1,2,...}, and
class C { we usel to range over labels. Figure 1 shows the grammar for the
final int[:rank==1] a; abstract syntax of FX10.
public CO) { ... } An FX10 program consists of a family of methofis each with
void £() { /* unchanged */ } no arguments, return type void, and bogyWe usep(f;) to denote
void main() { /* unchanged */ } s;. Eachs,; can access a nonempty one-dimensional agrayth

} indices0..n — 1, wheren > 0. We used to range over natural

Program :
Statement :

void fi() { si },i € 1l.u
skip!

18

skip!

ald] =" e;

while (a[d] # 0) s
async' s

finish! s

fi()!
ald] +1

Instruction :

FExpression :

Figure 1. The grammar of Featherweight X10.

numbers up tew — 1: {0,1,2,...,n — 1}. When execution of the
program begins, input values are loaded into all elements of the
arraya, and if the execution terminates, the result isj]. Thus,

the arraya is fully initialized for all indicesd when computation
begins.

The body of each method is a statement. A statement is a se-
guence of labeled instructions. The labels have no impact on com-
putation but are convenient for our may-happen-in-parallel analy-
sis. Each instruction is either skip, assignment, while loop, async,
finish, or method call.

The right-hand side of an assignment is an expression that can
be either an integer constant or an array lookup plus one. An async
statementsync' s runss in parallel with the continuation of the
async statement. The async statement is a lightweight notation for
spawning threads, while a finish stateménhish’ s waits for
termination of all async bodies started while executing

It is straightforward to show that FX10 is Turing-complete, via
a reduction from the while-programs of Kfoury et al. [10].

Compared to the core language for async-parallelism of Abadi
and Plotkin [1], FX10 differs by having a finish statement and
methods, while their language has constructs of yield and block.

3.3 Semantics

Our semantics of FX10 is inspired by the semantics for a larger
subset of X10 given by Saraswat and Jagadeesan [17]. In FX10, all
code runs on the same place.

We will now define a small-step operational semantics for
FX10. In the semantics of while loops and method calls, we will
use the following operator on statements. ket s2 be defined as
follows:

sk:z'pl . 8o skipl So

(i 81) . 82 i(S1 .52)

Our semantic structures are arrays, trees, and states:

AeArray = N-—=Z
Tree: T == ToT | T|T | (s) |
State = Program x Array x Tree

We use A to denote the state of the array that is, a total
mapping from natural numberl to integers Z). The initial state
of a is calledAy. If ¢ is a natural number, theA(c) denotes the
corresponding integer. We also defiden expressionsd(c) = ¢
andA(ald] + 1) = A(c) + 1.

AtreeT) > Ts is convenient for giving the semantics of finish:
T1 must complete execution before we move on to execlifing
AtreeTy || T> represents a parallel executionBf and 75 that
interleaves the execution of subtrees, except when disallowed by
A tree (s) represents statemesitunning. A tree,/ has completed
execution.

A state in the semantics is a triple, A, 7). We will define
the semantics via a binary relation on states, writjend, 7") —
(p, A’, T"). The initial state of an execution @fis (p, Ao, (so))
wheresy is the body offy, and f, is the name of the main method.
Now we show the rules for taking a step frgm A, T'). Rules (1)—
(6) below cover the cases whefeis either of the form(Ty > T5)
or of the form(T: || T%), while Figure 2 shows the rules whefe
is of the form(s). There is no rule for the case @, A4, /).

(p, A,/ > T2) — (p, A, T2) (1)

(p7A7T1) - (p7A/7T1/)
(vaaTl > T2) - (p7 A/7T1/ > T2)

(p7A’ \/ “ TQ) - (p7A7T2)

&)
®)

(p7 AT H \/) - (pv A, Tl) (4)

(p7A,T1 p7AI7T1I)

) = (
0, AT || T2) — (p, AT || T2)
) = (

(p7 A,TQ p, A/7T2/) (6)
(vale H T2) - (pv A/7T1 H TQI)
We can now state the deadlock-freedom theorem of Saraswat
and Jagadeesan. Let™ be the reflexive, transitive closure of.

Q)

THEOREM 1. (Deadlock freedom)For every statép, A, T'),
eitherT = / or there existsd’, T" such that
(p7 A7 T) - (p7 Al7 T/)

Proof. See Appendix A.

4. May-Happen-in-Parallel Analysis

We use a type system to specify our modular, context-sensitive
may-happen-in-parallel analysis. Every program has a type (The-
orem 6) in our type system, which means that we can derive may-
happen-in-parallel information for all programs. We first define
three abstract domains and nine helper functions, and then proceed
to show our type rules.

4.1 Abstract Domains and Helper Functions

We useP(S) to denote the powerset of a set

We defineLabel Set = P(Label). We useA, B, O, R to range
over Label Set.

We defineLabel PairSet = P(Label x Label). We useM to
range ovetLabel PairSet.

We definel'ype Env = MethodName — (Label PairSet x
LabelSet). We useE to range ovefl'ype Env; we will call each
E atype environment.

Intuitively, we will use LabelSet for collecting sets of labels
of statements; we will usd.abel PairSet for collecting labels
of pairs of statements that may happen in parallel; and we will
useTypeEnv to map methods to statements that may happen in
parallel and to statements that may still be executing when the
method completes execution.

We define nine functions on the data s@&isee, Statement,
Label, LabelSet, and Label PairSet, see Figure 3.

The function callSlabels,(s) conservatively approximates the
set of labels of statements that may be executed during the execu-
tion of the statementin programp. The function callllabels, (T')
conservatively approximates the set of labels of statements that may
be executed during the execution of the t#eén programp. No-
tice thatT'labels is defined in terms oblabels. The function call
FSlabels(s) returns the singleton set consisting of the labes.of

(p, A, (skip')) — (p, A, V) @)

(p, A, (skip k) — (p, A, (k) (8)

(P, A, (ald) =" k) — (p, Ale:= A(e)], (k) ©)

(p, A, ((while' (ald] #0) s) k) — (p, A, (k) (if A(c)=0) (10)
(p, A, ((whilel (ald] £0)s) k) — (p,A,(s. (whilel (a[d] # 0) s) k)) (if A(c) #0) (12)
(P, A, ((async' 5) k) — (p, A, (s) || (k) 12)

(p, A, ((finish' s) k) — (p, A, (s) > (k)) (13)

(P, A, (£i0' k) — (p.A (si.k)) (wherep(fi) = s:) (14)

Figure 2. Operational semantics rules f@s, A, T') whereT is of the forms.

The function callF'Tlabels(T) conservatively approximates the parallel with7; and with7> when each of them starts execution.
set of labels of statements that can be executed next in th&'tree Second, we get the may-happen-in-parallel seffor- 7% by tak-

Notice thatF'Tlabels is defined in terms of'Slabels. The func- ing the union of the may-happen-in-parallel setforand the may-
tion call symcross(A, B) returns the union of the crossproduct of —happen-in-parallel set faF,. Third, there is no interaction between
A and B with the crossproduct oB and A. We needsymcross Ty andT5 that produces new pairs of labels of statements that may

to help produce a symmetric set of pairs of labels. The functions happen in parallel. This rule has a close cousin in Rule (55) for
Lecross, Scross, andT cross are convenient abbreviations of calls finish statements.

to symcross. The function callparallel(T") specifies for the tree Rule (47) says that for a treg || 1%, the analysis of’; must

T a set of pairs of labels of statements that are “executing in paral- take into account thal; may already be executing, and vice versa.
lel right now”, that is, for each pair, both can take a step now. No- We do that by extendin@ with labels from the appropriate subtree,

tice thatparallel is defined in terms ofymcross and FTlabels. for exampleT'labels(T2). This rule has a close cousin in Rule (54)
The functionparallel is central to our definition of correctness: for async statements.
for every reachable tre®, we must conservatively approximate Rule (48) says that we can type check a tf€eby typing the
parallel(T). statemens.

Rule (49) says that if a subtree has completed execution, then
4.2 Type Rules nothing runs in parallel with it.

Rule (50) says that the skip instruction runs in parallel with

We will use type judgments of three forms: the statements with labels R. The Lcross() function represents

F p:E every possible pairing of the labels & with skip’s label. Since
. skip does not generate statements that may run in parallel after the
pELR F T: M . .) .
execution of the skip, we see that the set of labels of instructions
pER = s:MO that may be executing when skip terminate®is
The first form of judgment says that progranis well typed and Rule (51) works similarly to the previous rule, with the excep-

that the methods ip have the types given big. The second form tion that we are additionally dealing with a substatement after the
of judgment says that tre® is well typed in a situation where skip statement. We see that the skip [abel may run in parallel with
R is a set of labels of statements that may run in parallel @ith ~ the R 1abels, which is represented via the uselafross(). We
when T starts execution, and/ is a set of pairs of labels such ~ NOW type the substatemesi where we retain the same for the

that for each paifly, l»), the instructions with labels andl, may genwronment because_ skip doesn't generatg anything that can run
happen in parallel during the execution®f We will call M the in parallel. The resulting) labels from thes; judgement will be
may-happen-in-parallel seThe third form of judgment says that ~ the O labels returned from the judgement fekip; s;. The may-
statement is well typed in a situation much like the previous one, happen-in-parallel setis the union of the set producedidyss()

now with the addition thaO is the set of labels of instructions that we have seen above and fhefrom thes; judgement.

that may be executing when the executionsoferminates. For Rule (52) is similar to Rule (51).

p,E,R - s : M,O, we will always haveR C O; in other Rule (53) is based on a conservative assumption: the loop
words,O can contain labels of both statements that started before Pody will be executed at least twice. Two iterations are suffi-
s and statements that started during the execution. & type cient to model situations in which the loop body may happen in

environmentE that maps a method namg to a pair (M;, O;) parallel with itself. The rule relies on the assumption when it in-
represents that during a call o, the pairs inM; may happenin cludesLeross(l, O1) andScrossy (s1, O1) in the may-happen-in-
parallel, and the statements with labelsGn may be executing ~ Parallel set. The rule also shows how we use thésethen typing
when the call tof; returns. a sequence of statements, which here is a sequence of a while loop

Figure 4 shows the type rules. andsq: we use the saD; as the set of labels of statements execut-

Rule (45) says that a program is well typed with a type envi- Nd at the beginning of execution ef. l _
ronmentE if each method body has the type specifiedfbyn a Rule (54) says that for a statementync’ si s2 the analysis
situation whereR = {). This rule enables modular type checking: ©Of s1 must take into account that may already be executing,
we only need to type check each method once, even though method@nd Vice versa. We do that by extendifgwith labels from the

calls may be made in situations wheke 0. appropriate statement, for exampiabels(s2). By adding the
Rule (46) says three things. First, the set of labelsf state- entire Slabels(s2) we make the conservative assumption that the
ments that may run in parallel with, > 7> whenT} > T, starts entire async body may run in parallel with the continuation, and

execution, are also the set of labels of statements that may run inViceé versa. Notice that the label s8% appears once in the first

Slabels : Program — (Statement — LabelSet)
Slabelsy, is theC-least solution to the following equations.

Slabels,(skip') = {I}
Slabelsp(skzp k) = {l}U Slabels,(k
Slabels,(ald] =" e; k) = {I} U Slabels,(k

Slabels,(while' (a[d] # 0) s k
Slabels,(async' s k
Slabels,(finish' s k
Slabels,(f:() k
Tlabels : Program — (Tree — LabelSet)

Tlabelsy(v/)
Tlabels,(Th > T)
)
)

= {l} U Slabels,(s) U Slabels,(k

)

))

))

) = {i}USlabelsy(s)U Slabels,(k
))

))

) = {l}USlabelsp(s;) U Slabelsy(k) if p(fi) = s:

(

(

((k)
= {l} U Slabels,(s) U Slabels, (k)

((k)

(

0
Tlabels,(Th) U Tlabelsy(T3)
Tlabels,(Th) U Tlabelsy(T3)

Tlabels, (T || T>

T'labels,({s) Slabelsy(s)
FSlabels : Statement — LabelSet
FSlabels(skip') = {I}
FSlabels(skzp ky = {l}
FSlabels(ald] =" ¢e; k) = {l}
FSlabels(while' (ald] #0)sk) = {I}
FSlabels(async sk) = {I}
FSlabels(finish' sk) = {I}
FSlabels(f:0)' k) = {i}
FTlabels : Tree — LabelSet
FTlabels(y/) = 0
FTlabels(Th >Tp) = FTlabels(Th)
FTlabels(T || To) = FTlabels(T1) U FTlabels(T>)
FTlabels({s)) = FSlabels(s)
symcross : LabelSet x LabelSet — Label PairSet
symcross(A,B) = (AxB)U(Bx A)
Lcross : Label x LabelSet — Label PairSet
Leross(l,A) = symcross({l}, A)
Scross : Program — (Statement x LabelSet — Label PairSet)
Scrossp(s,A) = symecross(Slabelsy(s), A)
Tcross : Program — (Tree X LabelSet — Label PairSet)
Tcrossp(T,A) = symcross(Tlabelsp(T), A)
parallel : Tree — Label PairSet
parallel(r/) = 0
parallel(Ty > Tz) = parallel(Ty)
parallel(Ty | T2) = parallel(Ty) U parallel(Tz) U symcross(FTlabels(T1), FTlabels(T2))
parallel({s))]

(15)
(16)
7
(18)
(19)
(20)
(1)

(22)
(23)
(24)
(25)

(26)
@7)
(28)
(29)
(30)
(1)
(32)

(33)
(34)
(35)
(36)

37

(38)

(39)

(40)

(41)
(42)
(43)
(44)

Figure 3. Helper definitions.

p=woid f;() { si },1..u
A
p7 I Si : 7
Fp: E (45)
p7E,RFT1IM1 p,E7RFT2:M2 (46)
p,E,R"Tl I>T2 : M1 UM2
p, E, Tlabels(Tz) URF Ty : M,
p, E,Tlabels(Th) URF Tz : M, @7)
p,E,RFTl H Ty : My U Ms
p,E,RFs:Ms,O
48
p7E7R|_<5>:M9 ()
_ 49
p,E,RE /0 (49)
p, B, RF skip' : Leross(l, R), R (50)
p,E,RFs1: M,O (51)
p, E, Rt skip! s1: Leross(l, R) U M, O
p,E,RFs1: M,0 (52)
p, E,RF a[d] =t e; s1: Leross(l, R) UM, O
p,E,R|—S1 ZM1,O1 p,E,O1|—821M2,02 (53)
p, B, R+ while' (a[d] # 0) s1 s2 :
Leross(l,01) U Scrossy(s1,01) U M1 U M2, O2
p, E, Slabelsp(s2) URF s1: M1, 01
p, E, Slabelsp(s1) URF so: Ma, Oo (54)
p, B, RF async' s1 s2 :
Leross(l, R) U M1 U Ma, O
p,E,RFSliMhOl p,E7RF822M2,02 (55)
p, E, Rt finish! s1 s2 : Leross(l, R) U My U Ma, O
E(fl) = (M“Ol) p,E,RUO; FEk: M’,O’ (56)
p.E,RF fi() k-
Leross(l, R) U symcross(Slabelsp(p(fi)), R) U
M; UM/,
O/

Figure 4. Type rules.

hypothesis and never again; let us explain why this seemingly

whens; starts execution so we uggin the typing ofs, to account
for that.

Rule (56) shows how to type check a call with an arbitr&ry
even though Rule (45) has only provided a type environment in
which methods have been type checked with= (). The type
environment says that fd® = 0, the setO; contains the labels of
statements that may be executing at the end of the call. We then
simply take the union ofR and O; and use that for typing the
continuationk. The may-happen-in-parallel set for the method call
containssymcross(Slabels, (p(fi)), R), a set that reflects that
anything that may happen in parallel with call may also happen
in parallel with the body.

The following soundness theorem says that for a programd
any treel reachable by executing the separallel(T') is a sub-
set of the the may-happen-in-parallel set determined by type check-
ing p. Intuitively, the type system conservatively approximates all
parallel(T).

THEOREM 2. (Soundness)f+ p : Eandp, E,0 - (so) : M and
(p, Ao, (s0)) =™ (p, A, T) thenparallel(T) C M.

Proof. See Appendix B. O
For a progranp, define

MHP(p) = | J{parallel(T) | (p, Ao, (s0)) =" (p, A, T) }

THEOREM 3. (Correctness)If - p : E and E(fo) = (M, O),

thenMHP(p) C M.

Proof. Immediate from Theorem 2. O

5. Type Inference

The type inference problem is: given a progranfind £ such that

F p : E. We will do type inference in two steps: first we rephrase
the type inference problem as an equivalent constraint problem, and
then we solve the constraint problem.

5.1 Constraints

Variables.For every statement we will generate three set vari-
ables:rs, os, andms. The variables; ando, will range over sets
of labels, while the variablen will range over sets of pairs of la-
bels. For every methofl we will generate two set variables; and
mys.

Kinds of constraintsWe will use two kinds of constraints. The
level-1constraints are of the forms:

/
v

C

/
cUv

strange phenomenon makes sense. In any typing judgement suckyherev is ans variable or arv variable,v’ is anr variable or an

asp,E,R + s1 : M1,01, we have thatD; is a union of R and
someQ’ (this is a lemma in our proof of correctness). The @ét
must be a subset dflabel s, (s1) as the async statement is the only
time where new labels are introduced i@ So, in the typing of
s2, the setSlabels,(s1) containsO’.

Rule (55) says that the sél; produced by the typing of the
finish body can be ignored. So, we use the iniftdor typing both
the finish bodys; and the continuatios., and thereby indicate

that we are disregarding whatever statements that may be running

as a result of executing . In other words, we don’t us@; in the
typing of s2. As a result, if any labels occur i@; that are not

in R, the rule reflects that the corresponding statements will not
happen in parallel withs2. The statements with labels iR that
were executing when; started execution may still be executing

o variable, ana: is a set constant. THevel-2constraints are of the
forms:

v o= v’

v = Leross(l,v)

v = Leross(l,v') U

v o= Lcross(l,v')UU U

v = Leross(l,v") U Scross(c,v’) Uv” uv™
v = Leross(l,v") U symecross(c,v’) Uv" Uv

wherev is anm variable,v’ is anr variable or arp variable,v”
andv’”’ arem variables] is the label associated with a statement,
andc is a set constant.

rso = {}
TSt = TSo
rs13 = {SQ} Ursi
rss = Tsi13
rse = TS5
rsi1 = {S7,512}Urge
0s11 = Ts11
rsy = {Sll} U7rse
rsi2 = TSt
0s12 = Ts12
os7 = {512} Urs?
0se = 087
0s5 = 086
rss = Tsi13
0sg = TS
0513 = 088
rs2 = {55,56,57,58,511,512,513} Urs:
052 = Ts2
051 = 052
rsy = Tso
0s3 = Ts3
0S50 0s3
msi Leross(S1,rs1) Umgiz Umge
mse Leross(S6,rss) Umgsii Umgsy
msi1 Leross(S11,rs11)
msr Leross(S7,rs7) Umsia
msiz Leross(S12,rs12)
mss Leross(S5,rs5) Umss
mss Leross(S8,rss)
msis Leross(S13,rg513) Umss Umgs
ms2 = Lcross(S2,rg2)
mss = Lcross(S3,rgs3)
mso Leross(S0,rs0) Umsi: Umgs

Figure 5. Constraints for the example program in Section 2.1.

Valuations.For a given system of constrair@slet L be the set
of labels that occur i€. Let D denote the domain ofaluationsof
the set variables: each functionihmaps each ando variable that
occurs inC to a subset of_, it maps eachn variable that occurs
in C to a subset of. x L, and, for convenience, it maps eagh
variable to a subset df and it maps eacin; variable to a subset
of L x L, without regard to whether thosgandm; variables occur
in C. It is straightforward to show th&® is a finite lattice.

Solutions.We say thatp € D is asolutionof the system of
constraints if for every constraint = rhs, we havep(v) =
(rhs). Here we userhs to range over the possible right-hand
sides of the constraints, and we usérhs) to denoterhs with
each variable’ occurring inrhs replaced withp(v').

Constraint generationWe useC(p) to denote the constraints
generated from a progragm and we use”(s) to denote the con-
straints generated a from statementWe will define C(p) and
C(s) below.

For each method; in p = wvoid fi() { si },1..u, we define
C(p) = U,(D;s U C(s:)). We defineD; to have the following
constraints:

rs, = 0 (57)
0i = o0 (58)
m; = Mg, (59)

Fors = skip' we defineC(s) = D, whereD; is defined by
the following constraints:
(60)
(61)

Fors = skip' s1 we defineC(s) = Ds U C(s1) where D
contains the following constraints:

Og = Ts

ms = Leross(l,rs)

= (62)
0s = 04 (63)
ms = Lecross(l,rs) Umsg, (64)

Fors = a[d] =" ¢; s1 we defineC(s) = Dy U C(s1) where
we defineD; to have the constraints below:

= (65)
0s = 04 (66)
ms = Leross(l,rs) Umsg, (67)

Fors = while' (a[d] # 0) s1 s2 we defineC(s) = D, U
C(s1) U C(s2) where we defineD; to have the following con-
straints:

Ts = 7rs 68
1 (

Ts = o0s 69
2 1 (

0s = o0s 70
2 (

Leross(l,0s,) U Scrossp(si,0s,) U
Mms, Ums,

me = ()(71)

Fors = async' s1 so we defineC(s) = D, U C(s1) U C(s2)
and defineD; to have the constraints:

rs, = Slabels(s2)Urs (72)
rsy, = Slabels(s1)Urs (73)

0s = 0, (74)
ms = Leross(l,rs) Ums, Ums, (75)

Fors = finish' s1 s2 we haveC(s) = Ds U C(s1) U C(s2).
We defineD; to have the following constraints:

Tsy = Ts (76)
Tsy = Ts 77)

0s = 0s, (78)
ms = Leross(l,rs) Ums, Ums, (79)

And finally for s = f;()! k we haveC(s) = D, U C(k). D is
defined to have the following constraints:

r, = rsUo; (80)

0s = Ok (81)
Leross(l,rs) U

ms = symcross(Slabels,(p(fi)),rs) U (82)

m; Umg

Types and constraints are equivalent in the sense of Theorem 4
below. Intuitively, a program has a type if and only if the constraints
are solvable. Additionally, we can map a type derivation to a solu-
tion to the constraint system, and vice versa. To state the theorem,

we need the following definition. Far € D, we say thatp extends
Eifandonly ifVf; € dom(E) : (p(mi), p(0:)) = E(fs).
THEOREMA4. (Equivalence)r p : E if and only if there exists a
solutiony of C'(p) wherep extendsE.

Proof. See Appendix C. O

Theorems like Theorem 4 that relate types and constraints have
been known since a paper by Kozen et al. [11].

5.2 Solving Constraints

We will now explain how to solve the constrain@qp) generated
from a progranp. Our solution procedure resembles the algorithms
used for iterative data flow analysis.

Notice that the constraints ifi(p) have distinct left-hand sides
and that every variable is the left-hand side of some constraint. This
enables us to define the function

F D—D
F X € D.Av.p(rhs)
(wherev = rhs is a constraint

It is straightforward to show thaf is monotone. SaF’ is a mono-
tone function from a finite lattic® to itself. The least-fixed-point
theorem guarantees thAthas a least fixed point. Moreover, it is
straightforward to see that the fixed pointsiofcoincide with the
solutions ofC'(p). Hence, the least fixed point df is the least
solution of C'(p) and thus we have shown the following theorem.

THEOREMb. C(p) has a least solution.

We solve the constraint§’(p) by executing the fixed-point
computation that computes the least fixed poinFofThe worst-
case time complexity i©(n°) wheren is the size of the constraint
system. Let us explain the reason for B¢én®) time complexity
in detail. First, we havé)(n) m variables that each can contain
O(n?) pairs, so we haved(n?) iterations. In each iteration we
considerO(n) constraints and for each one we must do a finite
number of set unions. If we represent each set as a bit vector with
O(n?) entries, then set union takéx(n?) time. The total is thus
O(n?) x O(n) x O(n?) = O(n®).

The guaranteed existence of a least solutiolC¢p) implies
thatp has a type, as expressed in the following theorem.

THEOREM 6. There existd such that- p : E.
Proof. Combine Theorem 4 and Theorem 5.

5.3

One approach to implementing type inference would be to solve
the constraints all at once. As an optimization of that, our imple-
mentation of type inference proceeds in three steps:

Implementation

1. solve the equations that defiféabels,
2. solve the level-1 constraints, and finally
3. solve the level-2 constraints.

The level-1 constraints don't involve: variables so we can solve
them without involving the level-2 constraints. Once we have a
solution to the level-1 constraints, we can simplify the level-2
constraints by replacing eachvariable ando variable with its
solved form. The simplified level-2 constraints are of the forms

v v
v = ¢

v = cUv”’

v = cUv UV

wherev, v, v"" arem variables, and is a set constant.

The equations that defif®labels are in the form of simplified
level-2 constraints and we solve them using the same iterative
approach that we use for level-2 constraints.

The constraints for FX10 are all we need to type inference
for the full X10 language; the remaining constructs generate con-
straints that are similar to those for FX10.

5.4 Example

From the program in Section 2.1, we generate the constraints listed
in Figure 5. As explained in Section 2.1, the output from our
constraint solver says correctly ttgst may happen in parallel with
each of8s, $6, 87, S8, S11, andsS12, as well as with the entire
finish statement, that11 andS12 may happen in parallel, and
thatS7 ands11 may happen in parallel.

6. Experimental Results

We ran our experiments on a system that has diil Xeon
CPUsrunning at 3.06GHz with 512 KB of cache and 4GB of main
memory.

We use 13 benchmarks taken from the HPC challenge bench-
marks, the Java Grande benchmarks in X10, the NAS benchmarks,
and two benchmarks written by ourselves. Figure 6 shows the num-
ber of lines of code (LOC), the number of asyncs and the number of
constraints. The number of asyncs includes the number of foreach
and ateach loops, which are X10 constructs that let all the loop it-
erations run in parallel. We can think of foreach and ateach as plain
loops where the body is wrapped in an async. Our own plasma sim-
ulation benchmark, called plasma, is the longest and by far the most
complicated benchmark with 151 asyncs.

Figure 6 shows a division of the asyncs into two categories:
loop asyncs and place-switching asyncs. Loop asyncs are asyncs
that occur in loops and are not wrapped in a finish; such asyncs
may happen in parallel with asyncs from different iterations of the
same loop. The vast majority of the loop asyncs occur in ateach and
foreach loops. Place-switching asyncs are based on a more general
form of async than what FX10 supports and are used to switch
between places. Our implementation handles the more general form
of async in exactly the same way as the asyncs in FX10. Most often
such place-switching enables data transfers or remote computation.
A common usage found in our benchmarks is creating a data value
such that it may be usable across async boundaries and then storing
that data in a buffer on the place where the data is needed. Note
here that for an ateach loop, we count the implicit async as a loop
async even though it also serves the purpose of place switching.

Our implementation of type inference for X10 first translates an
X10 program to a condensed form that closely resembles FX10,
and then it proceeds to generate and solve constraints. The con-
densed form has ten kinds of nodes, namely end, async, call, finish,
if, loop, method, return, skip, and switch, see Figure 7. The total
number of nodes is a good measure of the size of the input to our
type inference algorithm. Switch nodes are unlike anything we have
in FX10; we use them to accommodate various control-flow state-
ments. End nodes do not correspond to any program point in the
code, but act as place holders for our constraint system. Skip nodes
are all the various statements and expressions that don't affect the
analysis and represent blocks of code that don’t contain any method
calls, returns, asyncs or finishes.

Figure 6 lists the numbers of constraints, and Figure 8 lists the
time to do type inference and the executed number of iterations.
Method calls appear to add a significant amount of time to solve
the constraints, most notably seen in the number of iterations re-
quired to solve th&labels constraints. When an iteration for com-
puting label sets completes, a call site will need to propagate any
new labels to neighboring statements and eventually the enclosing

LOC #async #constraints —
total loop place switch| Slabels level-1 level-2
HPC challenge benchmarks:
stream 70 4 3 1 103 232 103
fragstream 73 4 3 1 103 232 103
Java Grande benchmarks:
sor 185 7 2 5 132 298 132
series 290 3 1 2 90 224 90
sparsemm 366 4 1 3 173 370 173
crypt 562 2 2 0 149 326 149
moldyn 699 14 6 8 241 596 241
linpack 781 8 3 5 225 547 225
raytracer 1,205 13 2 11 478 1,045 478
montecarlo 3,153 3 1 2 345 727 345
NAS benchmarks:
mg 1,858| 57 37 20| 1,028 2,518 1,028
Our own benchmarks:
mapreduce 53 3 1 2 40 96 40
plasma 4,623 151 120 31| 2,596 6,230 2,596
Figure 6. Experimental results: static measurements.
#nodes
Total End Async Call Finish If Loop Method Return Skip Switch
HPC challenge benchmarks:
stream 126 23 4 5 4 3 10 20 21 36 0
fragstream 126 23 4 5 4 3 10 20 21 36 0
Java Grande benchmarks:
sor 161 29 7 21 5 1 7 24 16 51 0
series 119 29 3 17 2 3 7 14 7 36 1
sparsemm 201 28 4 25 3 0 16 32 27 66 0
crypt 175 26 2 25 2 5 9 24 21 61 0
moldyn 316 75 14 25 14 2 29 36 22 99 0
linpack 286 61 8 42 6 10 19 25 17 98 0
raytracer 555 77 13 132 9 16 8 65 50 185 0
montecarlo 405 60 3 80 3 2 6 83 39 129 0
NAS benchmarks:
mg 1,320 292 57 248 52 40 68 122 87 354 0
Our own benchmarks:
mapreduce 52 12 3 5 2 0 3 8 4 15 0
plasma 3,200 604 151 505 84 93 231 170 221 1,140

1

Figure 7. Experimental results: number of nodes.

time space Number of iterations #pairs of async bodies that MHP
(ms) (MB) | Slabels level-1 level-2 total self same diff
HPC challenge benchmarks:
stream 153 5 3 2 2 5 4 1 0
fragstream 158 5 3 2 2 5 4 1 0
Java Grande benchmarks:
sor 219 6 5 2 3 13 6 3 4
series 230 9 4 2 4 1 1 0 0
sparsemm 225 8 4 2 3 3 2 1 0
crypt 218 8 4 2 2 2 2 0 0
moldyn 420 24 5 2 3 59 14 36 9
linpack 331 13 4 3 3 10 6 1 3
raytracer 3,105 173 5 2 4 49 13 24 12
montecarlo 1,403 132 6 2 4 4 3 1 0
NAS benchmarks:
mg 5,197 196 6 3 5 272 51 17 204
Our own benchmarks:
mapreduce 96 3 3 2 3 1 1 0 0
plasma 16,476 257 6 2 6 258 134 120 4

Figure 8. Experimental results: type inference.

analysis time spacé Number of iterations #pairs of async bodies that MHP
(ms) MB) | Slabels level-1 level-2 total self same diff

NAS benchmarks:

mg context-sensitive 5,197 196 6 3 5 272 51 17 204
mg context-insensitive 25,935 350 6 17 5 681 52 23 606
Our own benchmarks:

plasma context-sensitive 16,476 257 6 2 6 258 134 120 4
plasma context-insensitive 167,828 1,429 6 14 6 2,281 136 126 2,019

Figure 9. Experimental results: comparison of our context-sensitive analysis to a context-insensitive analysis.

method will need another iteration to disseminate new sets to its in the benchmarks and don't provide false positives unless the loop
callers. This effect does not appear when solving the level-1 and guard is always false which we believe is not the case in any of the
level-2 constraints; we believe that finish statements help limit the examples we closely examined, for the inputs we used.
propagation. Finish statements cap how far the sets can flow down
a call chain, which translates into fewer iterations. 7. Context-insensitive Analysis

For evaluation of the quality of our analysis, we focus on count-
ing pairs of labels of entire async bodies. Figure 8 shows the num-
ber of pairs of async bodies that may happen in parallel, according
to our analysis, together with three exhaustive and disjoint subcate-
gories. The legend of Figure 8 is: self = an async body may happen
in parallel with itself; same = two different async bodies in the same
method may happen in parallel; diff = two async bodies in different

We will now compare our context-sensitive analysis to a context-
insensitive analysis that merges information from different call
sites. Let us first explain how the context-insensitive analysis
works: it uses theameset variables and constraints as our context-
sensitive analysigxceptfor the following differences.

Variables.For every methodf;, we generate an extra set vari-

; ; bler;.
methods may happen in parallel. Let us discuss each of the column ’
in turn. A typical scenario for theelf category is: conc;?rr;?;rt?mt generationFor s = fi()" k we add the following

while (...) { async S1 } re C 1 (83)

Notice thatS1 may happen in parallel with itself. If we compare \ye also replace Rule (57) with the following constraint:
the self column to the total number of asyncs in the program, we can
easily determine how many asyncs appear in loops (or in methods Tsg =Ti (84)
called in loops) without a finish for wrapping the async. Most of The effect of these changes is a merge of thevariables from
the benchmarks have a high percentage of such asyncs, which wejifferent call sites. Thus, the context-insensitive analysis says that
expected as this is the easiest way to generate parallelism in X10.the method may happen in parallel with the labels in the sets for all
Some of the smaller benchmarks like series and mapreduce use jusihoser, variables at once.

one loop to do most of the processing, but also need to perform A subtlety is that for a context-insensitive analysis we can

some communication Which.is done Wit.h the other asyncs. . removeScross,(p(f:), R) from Rule (82) without changing the
In our benchmarks, a typical scenario for Samecategory is: analysis. This is because the pairs generatesidsyss, (p(f:), R)
while (... { will eventually be added anyway due to the newC r; constraint.

We ran the context-insensitive analysis on our benchmarks. For
finish async S1 the_11 smallest benchmarks, the runs used roughly the same amount
finish async S2 of time and space, and we got the exact same results. iny for. tlhe

} two Iargest benchmarks, plasma and mg, d!d th_e context-insensitive
} analysis produce any additional label pairs in the may-happen-

in-parallel sets. Figure (9) shows a comparison of our context-

Here,S1 andsS2 may happen in parallel because separate itera- sensitive analysis and a context-insensitive analysis of plasma and
tions of the loop run in parallel with each other. Such code is useful mg. The context-insensitive analysis requires more time and space,
when we don’t need synchronization among separate iterations ofand it produces many more pairs of async bodies that may happen
a loop but need a strict order of execution during a single iteration. in parallel.

The example is Section 2.2 is a typical scenario for the diff The increase in run time and space usage of the context-
category. For example, statemesfsandS3 may happen in parallel insensitive analysis compared to our context-sensitive analysis is
and are in separate methods. Most of the benchmarks have few pairsomewhat unsurprising. First, the context-insensitive analysis is
of async bodies in this category. However, one can easily move more conservative so the number of label pairs that are generated
a pair from thesamecategory to the diff category by moving an and copied through the constraint variables is higher. In particular,
async in a loop to a method that the loop then calls. In mg, we have the higher number of pairs increases the time required to perform
several methods with asyncs in their bodies that are called from the set operations. Second, the introduction of subset constraints
several different loops. Some calls were deeply nested in severalleads to an increase in the number of level-1 iterations. The reason
loop async bodies. is that each call site can contribute labels-fcand then the con-

We manually examined the type-inference output for stream, straint solver needs additional iterations to propagate the additional
fragstream, sor, series, sparsemm, crypt, and mapreduce to lookabels amongst the constraints.
for false positivesthat is, pairs of async bodies that our algorithm The increase in the number of label pairs is mostly for async
says can happen in parallel but actually can't. We found none! bodies in different methods. As far as we can tell, the increase is
For the other, larger benchmarks, the generated number of pairsdue to a few methods that are called in many different places. Such
is large and we performed only a brief examination and noticed no a method can easily have an overly conservativget that then
obvious false positives. Asyncs in the bodies of loops are typical leads to many spurious pairs. The reason is that call site contributes

async {

o ther; set for a method, and the set farwill be a subset 0b;,

to th t f thod d th t farwill b bset ob References

S0 nowo; has many elements to be paired with labels of statements 1] martin Abadi and Gordon D. Plotkin. A model of cooperative threads.
that follow each (;all. . . . In POPL, pages 29-40, 2009.

The exﬁimp'e In Sectl(_)n .2'2 |Ilustrat_es this effect. The statement [2] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and R. K. Shyama-
§3 is running at the beginning of the first c&ll), and so it will sundar. May-happen-in-parallel analysis of X10 program&RaPP
running when that call completes execution. Due to the merging of pages 183193, 2007.

'nformatlo.n from different call sites, the analysis finds tEatls. [3] Rajkishore Barik. Efficient computation of may-happen-in-parallel
also running at the end of the second aal). When the analysis information for concurrent Java programs.U6PC, pages 152—1609,
consider the statemeasync S4 that follows the second catl(), 2005.

it will conclude thatS3 andS4 may happen in parallel.

We thank Vivek Sarkar (personal communication, 2009) for the
following observation. The intraprocedural analysis of [2] ignores
function calls and uses the two finish statements to conclude3hat Grothoff, Allan Kielstra, Vivek Sarkar, and Christoph Von Praun. X10:
ands4 cannot happen in parallel. The context-insensitive analysis An object-oriented approach to non-uniform cluster computing. In
of function calls creates an infeasible datapath from the body of OOPSLA pages 519-538, 2005.
one finish statement to the body of another finish statement and [6] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O'Callahan,

therefore the spurious pair 88 ands4. In Cor]traSt’ our analysis Vivek Sarkar, and Manu Sridharan. Efficient and precise datarace
avoids such infeasible datapaths and doesn’t produce the spurious getection for multithreaded object-oriented programsPLiDI, pages

[4] Rajkishore Barik and Vivek Sarkar. Interprocedural load elimination
for optimization of parallel programs. IRACT, 2009.

[5] Philippe Charles, Christopher Donawa, Kemal Ebcioglu, Christian

pair of S3 ands4. 258-269, 2002.
. [7] Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the
8. Conclusion presence of procedures using a data-flow frameworkSylmposium

on Testing, Analysis, and Verificatigpages 36—48, 1991.

[8] Atsushi Igarashi, Benjamion Pierce, and Philip Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. A®PSLA pages
132-146, 1999.

Vineet Kahlon. Boundedness vs. unboundedness of lock chains: Char-
acterizing decidability of pairwise CFL-reachability for threads com-
municating via locks. ILICS pages 27-36, 2009.

We have presented a core calculus for async-finish parallelism
along with a type system for modular, context-sensitive may-
happen-in-parallel analysis. Type inference is straightforward: gen-
erate and solve simple set constraints in polynomial time. Com-
pared to a context-insensitive analysis, our context-sensitive analy- o]
sis is faster, uses less space, and produces better results.

Our experiments suggest that our analysis produces few false) i)
positives and should therefore be a good basis for other static[10] A- J- Kfoﬁry' Michael A'.I.Arb'b’.a”d RObIe”N' MoliA Programming
program analyses. In fact we have been unable to find any false Approach to Computabi |tySpr|nger-V§r ag, 1982. .
positives at all! One way a false positive can occur is if a program [11] _Dexter Kozen, Jgns Palsberg, and Michael |. Schwartzbach. _EfflClent
has a loop that is never executed: our analysis will analyze the loop ~ nference of partial typeslournal of Computer and System Sciences

anyway. For example: 49(2):306-324, 1994. _ _ _ .
[12] Lin Li and Clark Verbrugge. A practical MHP information analysis

while (...) { async S1 } for concurrent Java programs. IWKCPC, pages 194-208, 2004.

async S2 [13] Stephen P. Masticola and Barbara G. Ryder. Non-concurrency analy-
sis. InPPoPPR, pages 129-138, 1993.

[14] Mayur Naik and Alex Aiken. Conditional must not aliasing for static
race detection. IPOPL, pages 327-338, 2007.

Gleb Naumovich and George S. Avrunin. A conservative data flow
algorithm for detecting all pairs of statement that may happen in
parallel. INSIGSOFT FSEpages 24-34, 1998.

Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. An ef-
ficient algorithm for computing HP information for concurrent Java
programs. IlEESEC / SIGSOFT FSpages 338-354, 1999.

Suppose the while loop is never executed. Our analysis will
nevertheless say that ands2 may happen in parallel. We found
no occurrences of the above pattern in our benchmarks.

Our detailed proof of correctness is evidence that our core cal- (15]
culus is a good basis for type systems and static analyses for lan-
guages with async-finish parallelism, and tractable proofs of cor-
rectness. We leave further investigation of the precision of the anal- (16]
ysis to future work. While our analysis produces an overapproxi-
mation of may-happen-in-parallel information, one might use a dy- -
namic analysis that instead gives an underapproximation. The dif- [17] Vijay A. Saraswat and Radha Jagadeesan. Concurrent clustered pro-
ference between an overapproximation and an underapproximation gr_amm'ng' INCONCUR pages _353_367’ 2095- o
will shed light on the precision of the overapproximation. [18] Richard N. Taylor. Complexity of analyzing the synchronization

We can straightforwardly extend our calculus to support other structure of concurrent programecta Inf, 19:57-84, 1983.
features of X10. For example, a worthwhile extension of our cal- [19] Christoph von Praun and Thomas R. Gross. Static conflict analyis for
culus would be to model the X10 notion of clocks. Another idea multi-threaded object-oriented programs. RADI, pages 115-128,
is to support computation with multiple places by changing trees
of the formss to be of the form(P, s) where P is a place. A tree [20] Andrew Wright and_Matthias FeIIeise_n. A syntactic approach to type
(P, s) means that statemestis executing on placé. One could soundnessinformation and Computatigri15(1):38-94, 1994.
then consider refining our analysis by asking whether two state-
ments may happen in parallel on ts@meplace. We leave such an
analysis to future work.

AcknowledgmentdMe thank Christian Grothoff, Shu-Yu Guo,

Riyaz Haque, and the anonymous reviewers for helpful comments
on a draft the paper.

Appendix A: Proof of Theorem 1

(Deadlock freedom)For every statép, A, T), eitherT =
\/ or there existsA’, T such that(p, A, T) — (p, A", T").

Proof. We proceed by induction off. We have four cases. If

T = 4/, then the result is immediate.

If T = (s), then we have from Rules (7)—(14) that there exists

A’, T suchthatp, A, T) — (p, A", T").

If T = (T > T»), then from the induction hypothesis we have

that eitherT}y = / or there existsd’, T} such that(p, A, T1) —

(p, A", TY). If Ty =/, then(p, A, T') can take a step by Rule (1).
If there existsA’, Ty such that(p, A,T1) — (p, A’,T}), then

(p, A, T) can take a step by Rule (2).

(p, A, T1) — (p,A’,T1), and we have that eithef, = ,/ or
there existsd’, T such that(p, A, T2) — (p, A’,T3). In all four

cases, one of Rules (3)—(6) applies to endbled, T') to take a

step. This completes the proof of progress. O

|| T2), then from the induction hypothesis
we have that eithelm = ./ or there existsA’, 77 such that

Appendix B: Proof of Theorem 2
8.1 A Lemma about the Helper Functions

We begin with a lemma that states 19 useful properti@goicross,
Lcross, Scross, T'eross, Slabels, F'Slabels, andF'Tlabels.

LEMMA 7. 1. symcross(A, B) = symcross(B, A)

2.

16.

17.

18.
19.

IfA'C AandB’' C B
thensymcross(A’, B") C symcross(A, B).

. symcross(A, C)Usymcross(B, C) = symcross(AUB, C)

. Leross(l, AU B) = Leross(l, A) U Leross(l, B)

. Scrossp(s, AU B) = Scrossy(s, A) U Scrossy(s, B)

. Scrossp(s1, Slabelsy(sz)) = Scrossy(sz, Slabelsy(s1))
. Terossy(T, AU B) = Terossy(T, A) U Tcross, (T, B)
. Terossy (T, Tlabelsy(T2)) = Terossy(Ta, Tlabelsy(Th))
.Terossp(v/,A) =0

. IfR" C RthenTcross,(T,R') C Tcross,y(T, R).

. Slabelsp(sq . sp) = Slabelsy(sq) U Slabelsp(sy)

. F'Slabels(s) C Slabelsy(s)

. FTlabels(T) C Tlabels,(T')

. symcross(FTlabels(Ty), FTlabels(T>)) C

Terossp(Th, Tlabelsy(T2)

M(p, A, T) — (p, A, T") thenTlabels, (T") C Tlabels,(T).

If Slabelsy(s) = {I} U Slabelsy (k) then
Scrossp(s, R) = Leross(l, R) U Scross,(k, R).
If Slabelsp(s) = {1} U Slabelsy(s1) U Slabelsy(sz2) then
Scrossp(s, R) = Leross(l, R)U

Scrossp(s1, R) U Scrossp(sz2, R).
Tcrossp((s), R) = Scrossy(s, R)
If Tlabelsy,(T) = Tlabels,(T1) U Tlabelsy,(Tz) then
Tcrossp(T, R) = Terossp(Th, R) U Tcrossp (T2, R).

Proof.

1.

2.
3.

10.

By examining the definition ofymcross() we see this is
trivially true.

We also see that this is true by the definitiorsgfncross().
From Lemma (7.2) we have

1) symcross(A, C) C symcross(AU B, C) and

2) symcross(B, C) C symcross(AUB, C), therefore giving
us 3)symeross(A, C') U symeross(B,C) C symcross(AU
B, (). Suppose we havé € AU B and!’ € C. This
implies that! € Av I € B.Ifl € Athen(l,l') €
symecross(A,C). If | € Bthen(l,l") € symcross(B,C).
Thus we have thatymcross(AUB, C') C symcross(A, C)U
symcross(B, C), which with 3) gives us our conclusion.

. We unfoldLcross(), then apply (7.1), (7.3) and finally can use

the definitionLcross() again to reach our conclusion.

. We unfoldScrossy(), then apply (7.1), (7.3) and finally can

use the definitiorScross, () again to reach our conclusion.

. We unfold the definition obcross,(), apply (7.1) and finally

apply the definition oS cross, () to reach our conclusion.

. We unfoldT'cross,(), then apply (7.1), (7.3) and finally use the

definition of T'cross, () once again to get our conclusion.

. We unfold the definition of cross,(), apply (7.1) and finally

apply the definition ofl"cross, () to reach our conclusion.

. Unfolding the definition ofl'cross,() and thenTlabelsy()

gives usTcross,(y/, A) = symcross(d, A). From the defi-
nition of symcross() we have our conclusion.

Let us unfold the definition df'cross,() and then apply (7.2)
to reach our conclusion.

11. Let us perform induction os,. This gives us seven cases to
examine.
If sa = skip' then from the definition of we haves, . s, =
skip' s, and from Rule (16)Siabelsy(sq . sp) = {1} U
Slabels,(sy). From Rule (15) we havélabels,(sqa) = {l}.
From here we can use substitution to reach our conclusion.
If sa = skip' si then from the definition of we have
thats, . s, = skip' (s1 . sp). Using Rule (16) we have
Slabelsy(sa . sp) = {l} U Slabels,(s1 . sp). Using the in-
duction hypothesis we have that
Slabelsy(s1 . sp) = Slabelsy(s1) U Slabelsy(sy). We may

now substitute that in and use Rule (16) to get our conclusion

Slabelsy(sq . 5p) = Slabels,(skip' s1) U Slabels,(sy) =
Slabels,(sa) U Slabelsy(sp).

If s, = a[d] =' e; 51 then we proceed using similar reasoning
as the previous case.

If s« = while! (a[d] # 0) s1 s2 then from the definition of

. we haves, . s, = while' (a[d] # 0) s1 (s2 . s). From
Rule (18) we haveSlabels,(sq - sp) = {l} U Slabels,(s1) U
Slabels,(s2 . sp). Using the induction hypothesis we get
Slabelsy(sz . sp) = Slabelsy(s2) U Slabelsy(sp). We may
now substitute and use Rule (18) we gBtibelsy(sq - sp) =
Slabels,(while' (ad] # 0) s1 52) U Slabelsy(sy) =
Slabels,(sa) U Slabels,(sp)

If s = async' s1 s then we may proceed using similar logic
as the previous case.

If s, = finish! s1 s then we may proceed using similar logic
as the previous case.

If s, = fi()l k then from the definition of we haves, . s, =
£:0" (s1 . sp). From Rule (21) we havélabels, (s, . sp) =
{l} U Slabelsp(s;) U Slabelsy(k . sp) Wherep(f;) = s;.
From the induction hypothesis we have tRatbels, (k . sp) =
Slabels,(k)USlabelsy(sp). We substitute and use Rule (21) to
getSlabelsy(sa . sp) = Slabels,(f;()' k) U Slabelsy(sp) =
Slabelsy(sq) U Slabelsy(sp).

Let us perform case analysis enAs we examine each case
with the definitions off’Slabels() andSlabels, () we see that
the conclusion is obvious.

Let us perform induction of. This gives us four cases.

If T = /then examining the definitions we sE& labels(v/) =
T'labelsp(+/). The conclusion is obviously true.

If T = Ti > Tz then FTlabels(T) = FTlabels(Ty) and
Tlabels,(T) = Tlabelsy(T1) U Tlabels,(T2). From the in-
duction hypothesis we have th&afl"labels(T1) C Tlabels,(T1)
and thus we can see that our conclusion is true.

fT=T || T, then

FTlabels(T) = FTlabels(T1) U FTlabels(T>) and
Tlabels,(T) = Tlabels,(T1) U Tlabels,(T>). From the in-
duction hypothesis we have th@af"labels(T1) C Tlabelsy(T1)
and FTlabels(Tz) C Tlabels,(T2). From here it is easy to
reach our conclusion.

If T = (s) then examining the definitions we see
FTlabels(T) = FSlabels(s) and

Tlabels,(T) = Slabelsy(s). From (7.12) we reach our con-
clusion.

From (7.13) we have 'Tlabels(T1) C Tlabelsy(T1) and
2) FTlabels(Tz) C Tlabelsy(T2). From unfoldingT'cross()
we have 3)Y'crossy (11, Tlabels,(T2)) =
symecross(Tlabelsy(T1), Tlabelsy(T3)). Using (7.2) with 1)
and 2) gives us

4) symcross(FTlabels(T1), FTlabels(T2)) C
symcross(Tlabelsy(T1), Tlabelsp(T2)). From 3) and 4) we
have our conclusion.

15. Let us perform induction ofi. This gives us four cases.

12.

13.

14.

16.

If T'= /then we do not take a step.

If T = Ti > T then there are two rules by which we may take
a step.

Suppose we step by Rule (1) aitd = T5. From the defini-
tion of Tlabels,() we haveTlabels,(T) = Tlabels,(T1) U
Tlabels,(T>) and Tlabels,(T') = Tlabels,(T2). We see
from this that the conclusion is true.

Suppose we step by Rule (2) then we havd1)= T] > T
and 2) (p,A,Tv) — (p,A’,T1). Unfolding the definition
of Tlabels,() we have 3)I'labels,(T) = Tlabels,(T1) U
Tlabels,(T>) and

4) Tlabels,(T') = Tlabels,(T]) U Tlabelsy(T:). From
the induction hypothesis we have that Bjabels,(T]) C
Tlabels,(T1) and from here we easily may arrive at the con-
clusion.

If T'= T || T> then there are four rules by which we can step.
Suppose we step by Rule (3) then we may use similar logic as
the case wherg& = T3 > T and we step by Rule (1).

Suppose we step by Rule (4) then we proceed using similar
logic as the previous case.

Suppose we step by Rule (5) then we may use similar logic as
the case wher& = T3 > T and we step by Rule (2).

Suppose we step by Rule (6) then we may proceed using similar
logic as the previous case.

If T = (s) then we now perform induction anto give us an
additional seven cases.

If s = skip' then we step by Rule (7) aril’ = /. From
the definition of Tlabels() we haveTlabels,(T') = () and
Tlabels,(T) = {l}. Thus we see that the conclusion is true.

If s = skip' s; then we step by Rule (8) arl = (s;). We
see that by the definition dflabels() that Tlabels,(T') =
Slabels,(s1) andT labels,(T) = {I}USlabelsy(s1). We now
can easily arrive at the conclusion.

If s = a[d] =' ¢; s1 then we step by Rule (9) and proceed
using similar reasoning as the previous case.

If s = while' (a[d] # 0) s1 s2 then there are two rules by
which we may take a step.

Suppose we step by Rule (10) th&h = (s>). From the def-
inition of T'labels, () we haveTlabels,(T') = Slabelsy(s2)
andTlabels,(T) = {l} U Slabelsy(s1) U Slabels,(s2). The
conclusion is obvious.

Suppose we step by Rule (11) th&h= (s; . while' (a[d] #

0) s1 s2). From the definition ofl"labels,() and (7.11) we
haveTlabels,(T') = Slabelsy(s1) U {I} U Slabelsp(s1) U
Slabelsy(s2) = Slabels,(s) andTlabels,(T) = Slabelsy(s).
The conclusion is obviously true.

If s = async' s1 s» then we step by Rule (12) ar =
(s1) || (s2). Using the definition o labels, () we have
Tlabels,(T') = Slabelsy(s1) U Slabelsy(s2) and

Tlabels,(T) = {l} U Slabels,(s1) U Slabels,(s2). The
conclusion is now obvious.

If s = finish! s1 so then we step by Rule (13) aril =
(s1) > (s2). From the definition of"labels, ()

we getTlabels,(T') = Slabelsp(s1) U Slabelsy(s2) and
Tlabels,(T) = {l} U Slabels,(s1) U Slabels,(s2). The
conclusion is easily reached from here.

If s = f;()! s1 then we step by Rule (14) arlf = (s; . s1)
where p(f;) = s;. From the definition ofT'labels,() we
get Tlabels,(T') = Slabels,(s; . s1) and Tlabels,(T) =
{l} U Slabels,(si) U Slabelsy(s1). From (7.11) we have
Slabelsy(s; . s1) = Slabelsy(s;) U Slabelsy(s1). From here
we can easily arrive at our conclusion.

Let us unfold the definition afcross() to get

1) Scrossp(s,R) = symcross(Slabelsy(s), R). We may
now substitute to get 2¥cross,(s, R) = symcross({l} U

Slabels,(k), R). Let us apply the (7.3) to get

3) Scrossy(s, R) = symcross({l}, R)U
symcross(Slabels,(k), R). We may now use the definitions
of Leross() andScross, () achieve our conclusion.

Let us use the definition 8fcross() to get 1)Scrossy (s, R) =
symcross(Slabels,(s), R). We may substitute to get

2) Scrossp(s, R) = symecross({l} U Slabelsy(s1)U
Slabels,(s2), R). Using (7.3) we can get 3jcross, (s, R) =
symcross({l}, R) U symcross(Slabels,(s1), R)U
symcross(Slabels,(s2), R). We may now use the definition
of Leross() andScross,() to arrive at our conclusion.
UnfoldingT cross() gives us

1) Tcrossp((s), R) = symcross(T'labelsy(s), R). We un-
fold T'labels,() to get

2) Tcrossp((s), R) = symcross(Slabelsy(s), R). We apply
the definition ofScross, () to get our conclusion
Tcrossp((s), R) = Scrossy(s, R).

Let us unfold the definition &f cross,() to get

1) Terossp(T, R) = symcross(Tlabels,(T), R). Substitut-
ing the premise in 1) gives us 2)cross, (T, R) =
symcross(Tlabels,(T1) U Terossy(T2), R). We apply (7.3)
on 2) to get 3)'cross, (T, R) =

symcross(Tlabelsy(T1), R)Usymcross(Tlabelsy(Tz2), R).
Finally we apply the definition of'cross() on 3) to get our
conclusion,

Tcrosspy(T, R) = Tcrossy(Th, R) U Tcrossy(Ts, R).

17.

18.

19.

8.2 Unique Typing

We first observe that any label sBtand statemend will always
uniquely determinéV/ and O. We will use this property often to
show that types are equal.

LEMMA 8. If p, E,R + s : M1,0, andp,E,R + s :
thenM; = Ms andO; = Os.

Ms, O2

Proof. Let us perform induction os and examine the seven cases.

If s = skip' the conclusion is immediately obvious from
Rule (50).

If s = skip' s; then from Rule (51) we have }), E, R +
s1 : M{,01, 2) M1 = Leross(l,R) U My, 3) O1 = Of, 4)
p,E,R + s1 : M3,0%, 5) My = Leross(l, R) U M; and 6)
02 = 05. Using the induction hypothesis on 1) and 4) we get 7)
M{ = Mj and 8)O; = O%. Applying some substitution among
2),3),5),6),7) and 8) we arrive at our conclusidfy = M, and
01 = 0.

If s = a[d] =' e; s; then we may proceed using similar
reasoning as the previous case.

If s = while’ (a[d] # 0) s1 s2 then from Rule (53) we
have 1)p, E,R + s1 : Mi,01, 2)p, E,Of F sy : M{,OY,
3) M1 = Lcross(l,01) U Scrossp(s1,01) U Mi U M{', 4)
O1=0Y,5)p, E,RF s1: M5, 05,6)p, E,04 - 5o : M3/, O,
7) My = Leross(l,03) U Scrossy(s1,05) U My U My and 8)
O2 = O4. Let us apply the induction hypothesis on 1) and 5) to get
9) M{ = M3 and 10)0] = O5. From 10) we are able to apply the
induction hypothesis on 2) and 6) to get 1)’ = M4 and 12)

1 = O3. Using substitution with 9),10),11) and 12) in 3),4),7)

and 8) we get our conclusiall; = M> andO; = O-.

If s = async s1 s2 then from Rule (54) we have
1)p, E, Slabelsy(s2)UR - 51 : M1, 0%, 2)p, E, Slabels,(s1)U
R+ sy @ M{,0f, 3) Mi = Lcross(l,R) U Mj U MY,
4) 01 = 0Y, 5) p, E, Slabelsy(s2) U R + s1 : M3, 05, 6)
p, E, Slabelsy(s1) UR ' s2 : My, 0y, 7) My = Leross(l, R) U
M5 U M5 and 8)0O2 = O%. We may apply the induction hypothe-
sis on 1) and 5) and 2) and 6) to get®) = M3, 10) O] = Os,

11) My = MY and 12)07 = O4. Substituting 9),10),11) and 12)
in 3),4),7) and 8) we get our conclusidd, = M, andO; = Oa.

If s = finish! s1 s then we may proceed using similar
reasoning as the previous case.

If s = fi()' k then from Rule (56) we have 1E(f;) =
(M;,0;),2)p, E, RUO; + s1 : My, Oy, 3) M1 = Leross(l, R)U
symecross(Slabelsy(p(fi), R) U M; U My, 4) Oy Oy, 5)
p,E,R U O; sk @ M ,0;, 6) My = Lecross(l,R) U
symecross(Slabelsy(p(fi), R) U M; U M}/ and 7)O2 = Oj.
From applying the induction hypothesis with 2) and 5) we get 8)
M; = M, and 9)O;, = Oj. Substituting 6) and 8) in 3) we
get 10) M; = Ms,. Substituting 7) and 9) in 4) we obtain 11)
O1 = O2. From 10) and 11) we have our conclusion. O

The next lemma is similar to the previous lemma, but works for
trees: anyR andT uniquely determined/.

LEMMAS. If p, ELR - T : M andp, E,R - T : M’ then
M=M.

Proof. Let us perform induction off’. There are four cases.

If T = / then from Rule (49) we have 1)/ = § and 2)
M’ = (. Itis obvious that\l = M’.

If T = Ti > T» then from Rule (46) we have 1), E. R +
Ty : My, 2)p,E,R - To : Ma, 3) M = M; U My, 4)
p,E,R+Ti: M, 5 p E, R+ Ty : Myand 6)M' = M, U M,.
From the induction hypothesis applied to 1) and 4) and to 2) and 5)
we get 7)M; = Mj and 8)M> = Mj. From 3),6),7) and 8) we
seeM = M’'.

If T'=T, || T> then from Rule (47) we have
1) p, E, Tlabels,(T>) U R = Ty : My, 2) p, E, Tlabels,(T1) U
RETs: My, 3)M = M1UM>, 4)p, E, Tlabels,(T>)UR F Ty :
M;i,5)p, E, Tlabels,(T1)UR Tz : M3 and 6)M’ = M{UMs;.

We use the induction hypothesis on 1) and 4) and on 2) and 5) to
get 7)M; = Mj and 8)M, = M. From 3),6),7) and 8) we get
M=M.

If T = (s) then from Rule (48) we have), E,R F s :
Ms,0s,2)M = M, 3)p,E,RF s : M.,0.,) M' = M.
From Lemma (8) applied to 1) and 3) we have\) = M_. From
2),4) and 5) we haves = M'. O

8.3 Principal Typing

The following lemma shows that if a statement is typable with a set
R, then it will also be typable with a sét’. This is convenient for
showing the existence of a type when we perform induction in the
proofs of later lemmas; once we have such a type, we can then use
the unique-typing lemmas to relate the type to other types.

LEMMA 10.If p, E,R I s : M, O then there existd/’ and O’
suchthat, E,R' +s: M',0'.

Proof. Let us perform induction or. This gives us seven cases to
examine.

If s = skip' then from Rule (50) we ledd = Leross(l, R)
andO = R'.

If s = skip' s; then from Rule (51) we have b) E, R I s; :
M, O1. Using the induction hypothesis with 1) we have that there
exists M and O} such that 2p, E, R’ s; : M;,O}. Then by
Rule (51) we letM = Leross(l, R') U My andO = Oy.

If s = a[d] =' e; s1 then we proceed using similar logic as the
previous case.

If s = while' (a[d] # 0) s1 s2 then by Rule (53) we have
1) p,E,R F s1 M1,O1 and 2)p,E,01 F oso @ MQ,OQ.
Using the induction hypothesis with 1) and 2) we have that there
exists M1,M5,07 and O5 such that 3)p, E, R’ - s1 : M;, 0}
and 4)p, E,07 + s2 : M3, 05. Then from Rule (53) we let
M = Leross(l, R") U Scrossp(s1,01) UMy UM, andO = O5.

If s = async s1 so then by Rule (54) we have
1) p, E, Slabelsp(s2) URF s1 : M1,0; and
2)p, E, Slabelsp(s1) U R F sz : M2, O2. We may use the induc-
tion hypothesis with 1) and 2) go get that there exigt§ M;,0]
andOj such that 3p, E, Slabels,(s2) U R’ + s1 : M7,0; and
4) p, E, Slabels,(s1) U R’ s2 : M3, 05. Then from Rule (54)
we letM = Leross(l, R') U M{ U M3 andO = O4.

If s = finish! s1 s then from Rule (55) we have b) E, R I
s1: M1,01and 2)p, E, R | s2 : M2, O2. We use the induction
hypothesis with 1) and 2) to get that there exi&fs,M;,07 and
O5 such that 3p, E,R' + s1 : M{,07 and 4)p, E, R’ + s2 :
M3, Os. Then from Rule (55) we led/ = Leross(l, R') U Mj U
M5 andO = 04,.

If s = fi() k then by Rule (56) we have B(f;) = (M;, O;)
and 2)p, E,RUO; + k : M',O’. Using the induction hypothesis
with 2) we have that there existd” andO”’ such that 3p, E, R'U
O; -k : M" 0". With 1) and 3) we may apply Rule (56) with
M’ = Leross(l, R')Usymecross(Slabel, (p(f:)), R)UM;UM"
andO’ = O" to reach our conclusion. O

Again, we need a similar lemma for execution trees.

LEMMA 11.1f p, E,R = T : M then there existd/’ such that
p,E,R =T :M.

Proof. Let us perform induction off". There are four cases.

If T =,/ then by Rule (49) we led’ = 0.

If T = Ti > T» then from Rule (46) we have), E, R +
Ty : My and 2)p, E,R + T» : M,. We may use the induction
hypothesis with 1) and 2) to get that there exikt$ and M5 such
that 3)p, E,R' + Tt : M} and 4)p, E,R' + T, : M. By
Rule (46) we letM’ = M U M3.

If T = T1 || T» the we may use similar logic as with the
previous case.

If T = (s) then from Rule (48) we have b)) E, R+ s : M, O.
We use Lemma (10) with 1) and we have that there existsand
O” such thatp, E,R' -~ s : M",0". Then by Rule (48) we let
M =M". 0

The following lemma is our principal typing lemma for state-
ments. Intuitively, we have a mappingfrom a typing to a set of
typings, and if we produce a typirf for a statement with R = 0,
thenr(7") are exactly all the possible typings €fOur mappingr

Leross(l, R) U My, and 6)0 = O;. Using the induction hypothe-
sison 1) and 4) we get), = Scross,(s1, R)UM] and 8)0; =
R U Of. Let us substitute 7) in 5) to get 9 = Lcross(l, R) U
Scrossp(s1, R) U M;. By using Rule (16), Lemma (7.16) and
2) we getM = Scross,(s, R) U M{ = Scross,(s,R) U M’.
Finally using 3), 6), and 8) we may perform substitution to get
O = 0; = RUO}] = RUO’ and thus we have our conclusion.

If s = a[d] =' e; s1 we may proceed using similar reasoning
as the previous case.

If s = while' (a[d] # 0) s1 s2 then by Rule (53) we
have 1)p, E,0 + s1 : M{,0%, 2) p, E,0} + s2 : Mj,O4,
3) M’ = Lcross(l,01) U Scrossy(s1,01) U M] U M3, 4)
Ol = 0,2, 5)p7E,R = S1 ¢ M1,01, 6)p7E701 [So M2702,
7) M = Lcross(l,01) U Scrossy(s1,01) U M1 U M», and
8) O O>. From the induction hypothesis and Lemma (8)
applied to 2),5) and 6) we have 9 E,0 + s : My, Of,

10) My = Secrossp(s2,01) U My, 11) O3 = 07 U O3,
12) My = Scrossy(si, R) U Mj, 13) O1 = R U O}, 14)

My = Scrossp(s2,01) U M3y and 15)02 = O; U O3. Sub-
stituting 10) in 3); 12),13) and 14) in 7); 11) in 4); and 13) and
15) in 8) yields 16)M’ = Lcross(l,01) U Scross,(s1,07) U
M7 U Scrossp(s2,01) U My, 17) M = Leross(l, RU O1) U
Scrossp(s1, RUOT)U Scrossy(s1, R) UM U Scross,(s2, RU
01)U My, 18)0" = 07 U005 and 19)0 = RU O] U O%. Using
Lemma (7.4) and (7.5) on 17) we have 20) = Lcross(l, R) U
Scrossp(s1, R) U Scross,(s2, R) U Leross(1, O7)U
Scrossp(s1,01) U Scross,(s2,01) U M] U My,
Using Lemma (7.17) with Rule (18) on 20) we get 24) =
Scrossy(s, R) U Leross(l, 01) U Scrossy(s1, 01)U
Scrossy(s2,01) U M7 U M5 . We may substitute 16) in 21) to get
M = Scross,(s, R) U M’ and then substitute 18) in 19) to get
O=RUO'".

If s = async s1 s2 then by Rule (54) we have
1) p, E, Slabels,(s2) F s1 : M1,01%, 2) p, E, Slabels,(s1) +
s2 1 M5,05,3) M' = Leross(l,0) U M{ U My = Mj U My,
4) O' = 05, 5) p, E, Slabels,(s2) U R F s1 : Mp,01, 6)
p, E, Slabelsp(s1) UR & s2 1 Ma,02, 7) M = Leross(l, R) U
My U Ma, and 8)O = O2. We may apply the induction hypothesis
and Lemma (8) to 1),2),5) and 6) to get®@)F, 0 - s1 : My, OY,
10)p, E,0 & 5o : MY, 0%,
11) Mj = Scrossp(s1, Slabelsp(s2)) U MY,
12) M5 = Scross,(s2, Slabels,(s1)) U My,

consists simply of creating appropriate set unions. The idea is that13) O} = Slabels,(s1) U OF,

for a judgmenty, E, R F s : M, O, the statements with labels in
R may still be running whers terminates so if we have a judg-
mentp, £,0 - s : M’,O’, thenO must be the union of? andO’.
Also, those statement with labels fimay run in parallel with any
statement irs, hencelM is the union ofScross, (s, R) andM’.

LEMMA 12.p, E, R+ s: M, O if and only if there existd/’ and
O’ suchthat, E,0 F s: M',O" and M = Scross,(s, R) UM’
andO = RUO'.

Proof. =) We may use Lemma (10) with the premise to get that
there existsM’ andO’ such thatp, E,0 - s : M’,0’. We next
perform induction ors. We have seven cases to examine and show
thatM = Scrossy(s, R)U M’ andO = RUO'.

If s skip' then by Rule (50) and using the definition
of Leross() we have 1) M’ 0, 2) O 0, 3y M
symcross({l}, R),and 4)O = R. Using Rule (15) and the defini-
tion of Scross() we have 5)M = symcross(Slabels(s), R) =
Scrossp(s, R). We can now easily see from 1),2),4) and 5) that
M = Scross,(s, R)U M’ andO = RUO'.

If s = skip' 51 then by Rule (51) and the definition B&ross()
we have 1)p, E,0 + s1 : Mi,01, 2) M' = Lcross(l,0) U
M{ = M;,3)0 = O, 4)p,E,R+ s : M1,01,5) M =

14) M1 = Scrossp(s1, Slabelsy(s2) U R) U M{', 15) M-
Scrossp(s2, Slabelsp(s1) U R) U My and

16) O, = Slabelsy(s1)URUOS . We now substitute 11) and 12) in
3);14)and 15)in 7) to get 1)’ = Scrossy(s1, Slabelsy(s2))U
M7 U Scrossp(s2, Slabels,(s1)) U My and

18) M = Leross(l, R) UScrossy(s1, Slabelsy(s2) UR)U M/ U
Scrossp(s2, Slabelsy(s1) U R) U My'. Using Lemma (7.5) on
18) then substituting in 17) we get 19Y = Lcross(l,R) U
Scrossp(s1, R) U Scrossy(s2, R) U M'. We now apply

Lemma (7.17) with Rule (19) to get/ = Scross,(s, R) U M.
Finally from 4),8),13) and 16) we have = R U O’.

If s = finish! s1 s» then by Rule (55) we have b, E, () -
s1: M1,01,2)p, E,0 F s2 : M3, 0%, 3) M’ = Leross(l,0) U
M{ UM, = M, UM, 40" = 0, 5)p,E,RF s : M,Ou,
6)p, E,RF s2 : M2,02, 7Y M = Lcross(l, R) U My U Mo,
and 8) O = O.. Let us apply the induction hypothesis with
Lemma (8) on 5) and 6) to get M1 = Scross,(s1, R) U My,
10) O1 = RU O, 11) My = Scrossp(s2, R) U M3, and 12)
02 = RUO5. We may substitute 3),9) and 11) in 7) to get 18)=
Lcross(l, R) U Scrossp(s1, R) U Scrossp(s2, R) U M’. Using
Lemma (7.17) with Rule (20) we gétf = Scross,(s, R) U M.
Finally we see from 4),8) and 12) we hate= RU O'.

If s = fi() k then by Rule (56) we have 1F(f;) =
(M;,0;), 2) p, E,0; &+ k : My, 0y, 3) M’ = Lcross(l,0) U
symeross(Slabels, (p(f:)),0) U M; U My = M; U My, 4)
O =0;,5p,E,RUO; + k: My,O,6) M = Leross(l, R) U
symcross(Slabels,(p(fi)), R) U M; U My, and 7)O = Oy. We

23) MY = M3"” and 24)05 = O%”. Substituting 15) and 21)
in 3) and 16) and 22) in 4) to get 28}’ = Lcross(l,07) U
Scrossy(s1,01) U My U Scross,(s2,01) U My and 26)0’ =

O1 U O2. We apply Lemma (7.17) with Rule (18) on 25) to get
27) M’ = Scross,(s,01) U M1 U M>. We now substitute 26)

may apply the induction hypothesis with the premise and 2) and 5) and 27) in the premise and we get 28) = Scrossy(s, R) U

to get that there exist&!;/,M;” 0} andO}’ such that 8p, E, () -

My, 0y, 9) My, = Scross,(k,0;) UM/, 10)0;, = O; U0y,
1), E, 0 k: M;", 0y, 12) My, = Scross,(k, RUO;)U M,
and 13)0Or, = RU O; U O}'. We apply Lemma (8) with 8) and
11) to get 14)M;/ = M} and 15)0O; = O}’. We substitute 9) in
3)to get 16)M’ = M; U Scross,(k,0;) U M}, . Substituting 12)
and 14) and(f;) = s; in 6) gives us 17M = Lcross(l, R) U
symecross(Slabelsp(s;), R) U Scrossy(k, RUO;) U M; U Mj/.
Applying the definition ofScross, () and Lemma (7.5 to 17) gives
us 18)M = Lcross(l, R) U Scrossp(si, R) U Scross,(k, R) U
Scrossy(k,0;) U M; U M}. We substitute 16) in 18) to get 19)
M = Leross(l, R) U Scrossp(si, R) U Scrossy(k,R) U M'.
Applying Lemma (7.17) with Rule (21) on 19) to get 20J =
Scross,(s, R) U M’. Substituting 10) and 15) in 13) gives us 21)
Or = RUO;,. We substitute 4) and 7) in 21) to get 22)= RUO'.
With 20) and 22) we have our conclusion.

<) From Lemma (10) and the premise there exi&f§ and
O"” such thatp, E,R - s : M",0". If we showM"” = M and
0" = O thenwe will have our conclusionthatE, R + s : M, O.
We now will perform induction ors and examine the seven cases
and show that/”” = M andO” = O.

If s = skip' then from Rule (50) we have
1) M' = Leross(1,0) = 0,2) 0" = 0, 3) M" = Leross(l, R)
and 4)0” = R. Substituting 1) and 2) in the premise gives us
5) M = Scrossp(s, R) and 6)O = R. Unfolding the definition
of Scrossy() in 5) we have 7 = symcross(Slabelsy(s), R).
From the definitionsSlabels, () andLcross() applied to 7) we get
8) M = Lecross(l, R). From 3),4),6) and 8) we havkl” = M
andO” = O.

If s = skip' s1 then from Rule (51) we have b E, 0 F s; :
Mi,01, 2) M’ = Leross(l,0) U M = Mji, 3) 0" = 01, 4)
p,E,RF s1 : M{',07,5) M" = Lecross(l, R) U M{" and 6)
O" = Of. Let 7) My = Scrossy(s1, R) U M] and 8)0, =
RU Of. Then using the induction hypothesis we have 9V, R -
s1: M1, O1. From Lemma (8) on 4) and 9) we have 1) = M7’
and 11)0; = Of. Substituting 7) and 10) in 5) and 8) and 11) in
6) yields 12)M" = Lcross(l, R) U Scrossp(s1, R) U M and
13) 0" = R U 0f. Using Lemma (7.16) with Rule (16) on 12)
gives us 14)M" = Scross,(s, R) U Mj. Substituting 2) and 3)
in the premise gives us 15)/ = Scross,(s, R) U M; and 16)
O = R U Oj. From 13),14),15) and 16) we séd” = M and
0" =0.

If s = a[d] =' ¢; s1 then we may use similar reasoning as the
previous case.

If s = while' (a[d] # 0) s1 s2 then from Rule (53) we
have 1)p, E,0 + s1 : M{,01, 2)p, E,O1 F so : M}, 0%, 3)
M’ = Leross(l,01)UScrossy(s1, 01)UM{UM;, 4)O' = O3,
5)p,E, Rt s1: MJ,0/,6)p, B0} - s2: M},04, TYM" =
Leross(l,07) U Scrossy(s,07) U My’ U My and 8)0" = O3
Let 9) M; = Scross,(s1, R) U M1 and 10)0; = RU Of. Then
from the induction hypothesis we have 3 ¥, R+ s1 : My, Os.
Using Lemma (8) on 5) and 11) results in 1) = M7’ and 13)
01 = Of. From Lemma (10) there exisiig> andO- such that 14)
p, E,0 F s3 @ Ms,Os. Let 15) M3 = Scross,(s2,01) U M,
16) O3’ = 01 U 02, 17) M3 = Scrossp(s2, OF') U M2 and 18)
04" = 07 U O2. We use the induction hypothesis with 14),15)
and 16) and 14),17) and 18) to get 19)F, O] + s2 : M3, 05’
and 20)p, E,0f F s2 : M3”,0%". Using Lemma (8) on 2)
and 19) and 6) and 20) we get 21); = My", 22) O5 = O,

Scross,(s,01) U M{ U Mz and 29)0 = R U O} U Oz. Ap-
plying Lemma (7.5) to 28) results in 3Q)/ = Scrossp(s, R U
0}) U M} U Ms. Substituting 9),10),12),13),17) and 23) in 7) and
gives us 31" = Leross(l, RUO}) U Scross,(s1, RUOT) U
Scrossy(s1, R)UMiUScrossy(s2, RUOT)UM-. From substitut-
ing 10),13),18) and 24) in 8) we get 3Q)' = RUO7 UO-. Using
Lemma (7.5) allows us to simplify 31) to 33Y"" = Lcross(l, RU
0O1) U Scross,(s1, RUOT) UM U Scross,(s2, RUOT) U Ms.
Next we apply Lemma (7.17) with Rule (18) to get 34" =
Scrossp(s, R U O1) U M{ U M>. From 30) and 34) we have
M" = M and from 29) and 32) we have” = O.

If s = async s1 s2 then from Rule (54) we have
1) p, E, Slabels,(s2) F s1 : M1,01, 2) p, E, Slabels,(s1) +
s2 1 M5,05,3) M' = Leross(l,0) U My U M5 = M{ U M3,
4) O' = 05, 5) p, E, Slabelsp(s2) U R + s1 : M{', 07, 6)
p, E, Slabels,(s1)UR - s2 : M3, 08, 7)M" = Leross(l, R)U
Mi" U My and 8)0” = O3. From Lemma (10) there exists
M M5 ,07, andOy’ such that Op, E,0 + s; : M7, 07" and
10)p, E, 0 - s5 : MY, 0.
Let 11) My = Scrossy(si1, Slabels,(s2)) U My, 12) O1 =
Slabelsp(s2)UOY", 13) Mo = Scrossy(sz2, Slabels,(s1))UMy5’,
14) O, = Slabels,(s1) U Oy,
15) M{"" = Scrossp(s1, Slabelsy(s2) U R) U M{" 16) Of" =
Slabelsy(s2) URUOY", 1T) My = Scross,(s2, Slabels,(s1)U
R) U My and 18)03" = Slabelsy(s1) U R U O3’. We use the
induction hypothesis applied to 9),11), and 12); 10),13) and 14);
9),15) and 16); and 10),17) and 18) to get 29k, Slabelsy(s2) -
s1 : My, 01, 20) p, E, Slabelsp(s1) F sz My, 02, 21)
p, E, Slabelsy(s2) U R s1 : M{"', 07" and
22)p, E, Slabels,(s1) U R s : My"', 03" Using Lemma (8)
on 1) and 19); 2) and 20); 5) and 21); and 6) and 22) we have
23) M] = My, 24) O, = Oy, 25) M}, = My, 26) O = Oa,
27) M) = M, 28)0) = O}, 29) M} = MY" and 30)
04 = 0%”. We substitute 11),13),23) and 25) in 3) to get 31)
M’ = Scrossp(s1, Slabelsp(s2))UScrossy(s2, Slabels,(s1))U
M{" U M3’. Substituting 15),17),27) and 29) in 7) gives us
32) M" = Leross(l, R) U Scross,(s1, Slabels,(s2) U R) U
Scrossp(s2, Slabelsy(s1) U R) U My" U My”. We may apply
Lemma (7.5) and then substitute 31) in 32) to get 33) =
Leross(l, R) U Scrossp(si, R) U Scrossp(s2, R) U M’. Us-
ing Lemma (7.17) with Rule (19) on 33) gives us 3%’ =
Scrossy(s, R) U M'. From 4),8),14),18),26) and 30) we may per-
form substitutions to get 35p” = R U O’. By substituting the
premise in 34) and 35) we gat”’ = M andO” = O.

If s = finish! s1 sy then by Rule (55) we have b, E,(
s1: M1,01,2)p, E,0 F so : M3,04,3) M’ = Leross(l,0) U
M{UM} = M, UM}, 4)0' = 04, 5)p,E,R+ s, : M,0/,6)

p,E,RF s 1 MY, 05, 7) M"” = Leross(l, R) U M{' U M3
and 8)0" = Of. Let 9) M1 = Scrossp(si, R) U Mj, 10)

01 = RUOf, 11) My = Scrossp(s2, R) U M3 and 12)0, =

R U Oj. From the induction hypothesis applied with 1),9) and 10)
and 2),11) and 12) we get 13) E, R + s1 : M;,0; and 14)
p,E,R F s2 : M>,02. Using Lemma (8) on 5) and 13) and
on 6) and 14) we get 15)/; = My, 16) M> = M4 and 17)
O, = O3 . We substitute 9),11),15) and 17) in 7) to get 18§ =
Leross(l, R) U Scrossy(s1, R) U Scrossp(s2, R) U M{ U Ms,.
Using Lemma (7.17) with Rule (20) on 18) we get 18)" =
Scrossy(s, R) U M; U Mj. Substituting 4),12) and 17) in 8) gives

us 20)0” = R U O’. From the 3),19) and the premise we have
M" = M and from 20) and the premise we haW€ = O.

If s = f;()' k then by Rule (56) we have 1E(f:)
(M;,0;), 2) p, E,0; & k : Mj,,0y, 3) M’ = Lcross(l,0) U
symeross(Slabels, (p(fi)), 0) U M; UM, = M; UM;,4)0" =
05,5 p,E,RUO; + k : M, 0}, 6) M" = Lecross(l,R) U
symcross(Slabels,(p(fi)), R) U M; U M, and 7)O" = Oj.
Applying Lemma (10) with 2) we have that there existg,’
and Oy’ such that 8)p, E,0 + k : M;", O} . Let 9) M} =
Serossy(k,0i) U ML, 10) O = O: U O}, 11) MJ"" =
Scrossy(k, RU O;) U M}/ and 12)07"" = RUO; U O'“

We substitute 12) and 15) in 17) and substitute 14) and 16) in
18) to get 19)M; = Tcross,(Ti,R) U M and 20) M, =
Tcross,(Ts, R) U Mj. Substituting 6),21) and 22) in 3) yields
21) M = Tcrossy(Th, R) U Tcross, (T2, R) U M'. Finally we
use Lemma (7.19) with Rule (24) on 21) to get our conclusion
M =Tcrossy(T,R) UM’

If T = (s) then from Rule (48) we have), E,R F s :
M,,05,2)M = M,,3)p,E,0 s : M., O, and M’ = M_.
Using Lemma (12) with the premise on 1) we get5F, 0 + s :
M!,0Y and 6) M, = Scross,(s, R) U M}'. From Lemma (9)
we have that 7M. = M. Using Lemma (7.18) on 6) we get 9)

may apply the induction hypothesis with the premise, 8),9) and 10) M, = Tcross, (T, R) U M. We substitute 4),7) and 8) in 2) and

toget13)p, E,0; - k : M}, 0}”. We also use the induction hy-
pothesis with the premise, 8) 11) and 12) to getd 4y, RUO; -
k: M Op".Using Lemma (8) with 2) and 13) and with 5) and
14) gives us 15)7\4,C = M", 16)0;, = Oy, 17y M, = M;""
and 18)0O} = O}"". We apply Lemma (7 5) on 11) to get 19)
M = Scrossp(k R) U Scrossp(k,0;) U M}, Substituting
9),15) and 17) in 19) gives us 20Y,’ = Scross,(k, R) U Mj,.
Substituting 10),16) and 18) in 12) gives us 22} = R U O;,.
We substitute 20) in 6) then apply the definition%fross, () with
p(fi) = s; to get 22)M" = Lcross(l, R) U Scrossy(s:, R) U
Scross,(k, R)UM;UMj,. Applying Lemma (7.17) with Rule (21)
to 22) gives us 23" = Scross,(s, R) U M; U Mj,.. We may
substitute 3) in 24) to get 24)" = Scross, (s, R) U M'. Substi-
tuting 4) and 7) in 22) gives us 28)” = R U O’. Substituting the
premise in 24) and 25) gives Ug” = M andO” = O as desired.
O

Likewise, we need a version that applies to an execution tree.

LEMMA 13.p, E, R T : M if and only if there existd/’ such
thatp, E,0 =T : M"and M = Tcross,(T, R) U M.

Proof. =) From Lemma (11) there exisf&/’ such thap, E, () +
T : M'. We perform induction ofi" and in each of the four cases
we will show M = Tcross, (T, R) U M.

If T = ,/ then from Rule (49) we have 1)/ = @ and 2)
M’ = (. From Lemma (7.9) we have 3Jcross,(y/,R) = @
From 1), 2) and 3) we can see thet = T'crossy (T, R) U

If T =Ty > T> then by Rule (46) we have b E, R + T
M1,2)p7E RETy: M2,3)M M1UM2,4)p,E@FT1.
M{,5) p,E,0 - Tz : M} and 6)M’ = M} U M}. We may use
the induction hypothesis on 1) and 2) to gep/7F, 0 - Ty : M7,

8) M1 = Tcrossy(Ti,R) UM{',9)p,E,0 + T : My and 10)
My = Teross,(T», R) U My'. From Lemma (9) we have that 11)
Mi{ = My and 12)Mj; = My . Let us substitute 8),10),11) and
12) in 3) to get 13V = T'crossp(Th, R) U Tcrossy(T2, R) U
M1 U M3. From Rule (23) we may apply Lemma (7.19) on 13) to
get 14)M = Teross, (T, R) U M{ U Mj;. Finally substituting 6)

in 14) we getM = Tcross, (T, R) U M'.

If T'= T || T> then by Rule (47) we have
1) p, E, Tlabels,(T2) U R = T1 : Ma, 2) p, E, Tlabels,(T1) U
RE Ty : My, 3) M = My U My, 4) p, E, Tlabels,(T) F Ty :
M{, 5) p, E, Tlabels,(T1) = Tz : M5 and 6)M’ = M U M3,

From the induction hypothesis applied to 1),2),4) and 5) we get 7)

p,E,@ = T1 . M{/, 8)M1
M{,9)p,E,0F Tz : MY,
10) M, = Tcrossp(Tg, Tlabels,(T1))UR) UMY, 11)p, E,0 -
Ty : My" 12) M| = Tcrossp(Th, Tlabels,(T2)) U Mi", 13)

p, E, (Z) l— Ty : M4 and 14)M} = Tcross,(Ts, Tlabels, (T1)) U
M”’, From Lemma (9) applied to 7) and 11) and to 9) and 13) we
get 15)M{ = M{" and 16)M% = M}’. We use Lemma (7.7)
on 8) an(d 10))t0 ge/t/ 17%/[1 = Tcrossy(T1, Tlabels,(T2)) U
Tcrossy(T1, R) U My an

18) My = Tcrossy(Tz, Tlabels,(T1)) UTcrossy (T2, R) U

= Tcrossy(T1, Tlabels,(T2) U R) U

My

we getM = Tcross,(T, R) U M.

<) From Lemma (11) there existg” such thap, E, R+ T :
M". We also haveé- p : E from the premise. Using induction on
T we will examine the four cases and show that' = M which
will give us our conclusion that, E, R+ T : M.

If T = / then from Rule (49) we have 1)/” = () and 2)
M’ = (. From Lemma (7.9) we have 3)cross,(+/, R) = 0. Let
us substitute 2) and 3) in the premise to gedd)= (. From 1) and
4) we seeM” = M.

If T'= T > T> then from Rule (46) we have b)) E, R+ T :
M/, 2)p,E,R+ Ty : My, 3)M" = My UMY, 4)p,E,0 + T :
M., 5)p,E,0 + Ts : M} and 6)M’ = M| U Mj. Let 7) M}’ =
Tecrossy(Ti, R) U M{ and 8) My’ = Tcross, (T, R) U Mj.
Using the induction hypothesis with 4) and 7) and with 5) and 8)
we obtain Qp, E,R - Ty : M{" and 10)p, E,R Ty : M.
Using Lemma (9) on 1) and 9) and on 2) and 10) we get 11)
M{ = M{" and 12)M3 = M3". Substituting 6),7),8),11) and 12)
in 3) gives us 13" = Tcrossp (T1, R)UTcrossy (T2, R)YUM'.

We may use Lemma (7.19) with Rule (23) on 13) to get 14)
M" = Teross, (T, R) U M'. Comparing 14) to the premise gives
usM” = M.

If T'= T || T> then from Rule (47) we have
1) p, E, Tlabels,(To) U R = Ty : My, 2) p, E, Tlabels,(Ty) U
RFTo: MY, 3)M" = M UMY, &) p, E, Tlabels,(Ts) -
Ty : M, 5) p, E, Tlabels,(T1) & T» : M} and 6) M' =
M1 U M3, From Lemma (11) there exist/; and M> such that
7) p,E,@ F Ty : M; and 8)p,E,® F To : M. Let 9)
M{" = Tcross, (T, Tlabels,(Tz) U R) U My,

10) My" = Tcrossp(Te, Tlabelsy(Th) U R) U Mo, 11) M7 =
Tecrossy(Th, Tlabels,(T2)) U My and

12) My = Terossy(Te, Tlabelsy(Th)) U Mo.

Applylng Lemma (7.7) on 9) and 10) which gives us 1d)" =
Tcrossy(Th, R) U Terossy(T1, Tlabelsy(T2)) U My and 14)
M3" = Teross,(Te, R) U Teross,(Tz, Tlabels,(Ti)) U Ms.
Substituting 11) and 12) in 13) and 14), respectively, yields 15)
M{" = Tcross, (T, R)UM{" and 16)M3”" = Tcross,(Tz, R)U

M3 . Applying the induction hypothesis to 7) and 9); 8) and 10);
7) and 11); and 8) and 12) to get 17)E, Tlabels,(T>) U R +
Ty : M}", 18) p, E, Tlabels,(T) U R + T, : Mj’, 19)
p, E, Tlabels,(Tz) + Ty : My"" and 20)p, E, Tlabels,(T1) +
Ty : MY”. From Lemma (9) applied to 1) and 17); 2) and 18);
4) and 19) and 5) and 20) which gives us 2 = M7"

22) MY = MY’ 23) M| = M} and 24)M} = Mj". Sub-
stituting 6) 15),16),21),22),23) and 24) in 3) yields 2&)’ =
Tecrossy(Th, R) U Tcrossy(T2, R) U M'. We use Lemma (7.19)
with Rule (24) to get 27\M" = Tcross,(T, R) U M'. With 27)
and the premise we see that” = M.

If T = (s) then from Rule (48) we have), E,R F s :
M. 0!, 2)M" = M/, 3)p,E,0 - s : M,,0, and 4)M’' =
M. Using Lemma (12) with the premise on 1) we gep5F, 0 -

s: M O) 6) M) = Scross,(s, R) U M.’. From Lemma (8)
applied to 3) and 5) we get 7). = M_.". We now will substitute
4),6) and 7) in 2) to get 8}/ = Scross,(s, R) U M'. Applying

Lemma (7.18) and on 8) we get 9Y"' = T'cross,(T, R) U M’.
Upon comparing the premise with 9) we see thit = M. O

8.4 Preservation
In Rules (11) and (14) we use theperator to combine statements

25) Scrossp(s1, Slabelsy(sp)) = Scrossy(sp, Slabelsy(s1)).
From 23) and 25) we see that 26}ross,(ss, Slabels,(s1)) C
My. We now substitute 15) and 20) in 24) to get 2V); =
Scrossp(s1, Slabelsp(sy)) U M. Substituting 10) and 27) in 4)
gives us 28 = Lcross(l, R) U Scrossy(s1, Slabelsy(sp)) U

so we need a way to type check such combined statements. TheM7 U Ms U M,. From 27) we may simplify 28) to 29/ =

following lemma shows that a natural type rule fer . s is
admissible.

LEMMA 14.If p, E,R + sq : M,,0, andp, E,O, + sp :
My,Op andp, E,R + s, . sp : M,0 thenM = M, U M, and
O = Oy.

Proof. Lets = s, . sp. We will perform induction ons,. This
gives us seven cases.

If s, = skip' then by the definition of we have 1)s =
skip' s,. From Rule (51) we have 2), E,R + s, : Mj, 0}, 3)
M = Lecross(l,R) U My and 4)O = Oy. From Rule (50) we
have 5)M, = Lcross(l, R) and 6)O, = R. Substituting 6) in
the premise gives us) E, R + sy, : My, Op. From Lemma (8)
applied to 2) and 7) we get 8)f;, = M; and 9)O, = O;. Using
substitution of 5) and 8) in 3) and 9) in 4) we haVe = M, U M,
andO = Os.

If so = skip' s; then by Rule (50) and the definition ofve
have 1)s = skip' (s1 . s,). From Rule (51) we have), E, R -
(s1.8) : Mg,Op, 3) M = Leross(l, R) U Mg, 4) O = Oy,
5 p,E,R+ s1: Mi,01,6) My = Leross(l, R) U My and 7)
O, = O:. After substituting 7) in 5), we may use the induction
hypothesis to get 8, = M; U M, and 9)O, = Os. From
3),4),6) and 9) we arrive at our conclusion tidt= M, U M, and

= Op.

If s, = ald] = e; s1 then we proceed using similar reasoning
as with the previous case.

If s, = while' (a[d] # 0) s1 s2 then from the definition of
we have 1} = while' (a[d] # 0) s1 (s2 . s5). From Rule (53) we
have 2)p, E,RF s1: M1,01,3)p, E,O1 F (s2. sp) : My, O,
4) M = Lcross(l,01)UScrossp(s1, O1)UM1UMj, 5) O = O,
6)p, E,RF s1: M{,01,7)p,E,Of F 52 : M}, 0%, 8) M, =
Leross(l,01) U Scrossp(s1,01) U Mi U Mj and 9)0, = O5.
From Lemma (8) applied to 2) and 6) we have that M) = M
and 11)0; = Oj. Substituting 9) and 11) in 7) allows us to use the
induction hypothesis to get 12Y;, = M5 UM, and 13)0;, = O,.
From 4),5),8),12) and 13) we see thiddt= M, UM, andO = Os.

f s = async s sy then from the definition of we
have 1)s = async' s1 (s2 . s,). From Rule (54) we have 2)
p, E, Slabelsp(s2 . sp)UR & s1: Mi1,01,3)p, E, Slabelsy(s1)U
RFE (s2.8p) : Mp,Or, 4) M = Lcross(l, R) U My U My,
5) O = Oy, 6) p, E, Slabels,y(s2) UR + s1 @ M{,01, 7)
p, E, Slabels,(s1) U RF s2 1 M3, 05, 8) M, = Leross(l, R) U
M7{ U M} and 9)0O, = O5. By substituting 9) in 7) we are able to
apply the induction hypothesis and get 1@} = M} UM, and 11)
Or = Oy. Applying Lemma (12) to 2),6),7) and the £, O, +
sp : My, Oy from the premise gives us 12) E, 0 + s1 : My, Oy
13) My = Scrossp(s1, Slabelsp(sz . sp)UR)UM,y, 14)p, E,0 +
s1: My, Oy, 15) M{ = Scross,(s1, Slabels,(s2) U R) U M,,
16)p, E,0 F so : My, O,, 17)O5 = Slabels,(s1) U RUO,, 18)
p, E,0 F sy : M.,0, and 19)M, = Scrossy(sp, Oq) U M..
From Lemma (8) applied to 12) and 14) we get 2W), =
M.. We may substitute 9) and 17) in 19) to get 24), =
Scrossp(sy, Slabelsp(s1) URUOy) U M.. Using Lemma (7.11)
on 13) we get
22) M1 = Scrossp(si, Slabelsy(s2) U Slabelsy(sy) U R) U
M,,. Applying Lemma (7.5) to 21) and 22) yields 23), =
Scrossp(sy, Slabelsy(s1)) U Scrossy(sy, RUO,) U M, and 24)
My = Scrossp(s1, Slabelsy(sy)) U Scrossy(s1, Slabelsy(s2) U
R) U M,,. Using Lemma (7.6) we have

Leross(l, R) UM U M;U M,. Finally substituting 8) in 29) gives
usM = M, U M, and then substituting 5) in 11) gives @s= O

If sa = finish' s1 so then from the definition of we obtain
1) s = finish! 51 (s2 . s5). From Rule (55) we have 2), E, R -
S1 ¢ M1,01, 3) p,E,R (o (52 . Sb) : Mk,Ok, 4) M =
Leross(l, R) U My U My, 5)O = Oy, 6)p, E, R+ s1 : M1, 01,
Np,E,RF s : M3, 0%, 8 M, = Leross(l, R) U Mj U M
and 9)O, = Oj. From Lemma (8) applied to 2) and 6) we have
10) M; = Mj. By substituting 9) in 7) we may apply the induction
hypothesis to get 11)4, = M3 U M, and 12)0O; = Oy. From
4),5),8),10),11) and 12) we hawd = M, U M, andO = O,

If s, = f;()! k then from the definition of we get 1)
s = fiO! (k. sp). From Rule (56) we have 2F(f)) =
(Mi,Oi), 3) p,E,RUO; + (k . Sb) : MllmO;c’ 4) M =
Leross(l, R) U symcross(Slabels,(p(fi)), R) U M; U My,
50 = 05,6 pE,RUO; - k @ M,Or, 7) M, =
Leross(l, R) U symcross(Slabel,(p(fi)), R) U M; U M;, and
8) O, = Ox. Applying the induction hypothesis with the premise,
3) and 6) gives us 9M;, = M U M, and 10)0;, = O,. From
4),5),7),8),9) and 10) we havel = M, U M, andO = O,. O

When we step by Rule (3) and (4) in the proof of Preservation,
we will need this helper lemma.

LEMMA 15. If p, ELR =T : M andp, E,R' - T : M’ and
R C RthenM’' C M.

Proof. Using Lemma (13) on the premise we haveolJy, 0 - T :
Moy, 2) M = Tecross,(T, R) U My, 3)p, E,0 - T : My and 4)
M’ = Tecross,(T, R') U M. Applying Lemma (9) to 1) and 3)
gives us 5)M, = M{. We use Lemma (7.10) with the premise to
get 6)Tcross, (T, R') C Tcross,(T, R). From 2),4),5) and 6) it
is easy to see that/’ C M. O

We are now ready to prove preservation.

LEMMA 16.If - p : Eandp, E,0 - T : M and (p, A,T) —
(p, A’, T"), then there existd/’ such thatp, E,0 - T’ : M’ and
M C M.

Proof. From Lemma (13) there exists&/’ such that O)p, £,
T' : M'. We will now showM’ C M. We perform induction on
T and examine the four cases.

If T'= ,/thenT does not take a step.

If T'= Ty > T> then there are two rules by which we may take
a step.

Suppose we step by Rule (1) we have thaf1)= T». We may
substitute 1) in 0) to get 2), E,() ~ T» : M’ From Rule (46)
we have 3)p, E,0 - Ty : My, 4) p,E,0 - Tz : M, and 5)
M = M; U M,. From Lemma (9) applied to 2) and 4) we have
that 6) M’ = M>. We see the that/’” C M from 5) and 6).

Suppose we step by Rule (2) we havell)= T > T and 2)
(p, A, T1) — (p, A’, T{). Substituting 1) in 0) gives us 3) £, -
T > T» : M'. From Rule (46) we have 4), E,) - Ty : My, 5)
pE,0F Ty : My, 6) M = My UM, 7)p,E,0 + T} : M,
8)p,E,0 - T» : M5and 9)M’' = M; U M. From Lemma (9)
applied to 5) and 8) we have 10> = Mj. We may apply the
induction hypothesis with 4) and 2) and get that there exigfs
such that 11p, E,0 = Ty : M{ and 12)M; C M;. Using
Lemma (9) on 7) and 11) we get 1B); = M;'. From 6),9),10),12)
and 13) we see thatl’ C M.

If T'=T) || T> then there are four rules by which we may take
a step.

Suppose we step by Rule (3) we then hav@“1)= T». We may
substitute 1) in 0) to get 2), E,0 - T» : M’. From Rule (47) we
have 3)p, E, Tlabels,(T2) & Ty : M, 4) p, E, Tlabels,(T1) +
T> : M2 and 5)M = M; U M,. We can immediately see that 6)
() C Tlabels(Ty). We also apply Lemma (15) on 2),4) and 6) to
get 7)M’ C M>. We may see from 5) and 7) that’ C M.

Suppose we step by Rule (4) then we proceed using similar
reasoning as the previous case.

Suppose we step by Rule (5) then we havdl)= Ty || T»
and 2) (p, A, T1) — (p, A’,T{). Substituting 1) in 0) yields
3)p,E,0 - Ty || T : M'. From Rule (47) we have 4)
p, E,Tlabelsp(T2) & Tv : M, 5) p, E, Tlabelsy(T1) + Ts :

M, 6) M = My U Ma, 7) p, E, Tlabels,(Tz) = T : M{, 8)

p, E, Tlabels,(T]) = T> : M3 and 9)M' = M; U M3. Using
Lemma (13) on 4),5),6) and 7) gives us 0¥, 0 - T : My, 11)

My = Tcrossy(T1, Tlabelsy(T2)) UMy, 12)p, E,0 & Ts : M3/,

13) My = Tcrossy(Ts, Tlabels,(T1)) U My, 14)p, E, 0 = T :
M1",15) M| = Tecross, (T, Tlabels,(T2))UM;", 16)p, E,(

T @ My and 17)M5 = Tcrossy(Te, Tlabels,(T1)) U M.
From using the induction hypothesis applied to 2),10) and 14) and
using Lemma (9) we get 18)/;” C M;'. We use Lemma (9)
on 12) and 16) to get 19)45 = MJ’. Using Lemma (7.8) and
substituting 11),13),15),17) and 19) in 6) and 9) results in 20)
M = Terossy(Ta, Tlabels,(T1)) U My U My and 21)M' =
Tcrossy(Ts, Tlabels,(T1)) U M{" U M3 . We use Lemma (7.15)
with 2) to get 22)Tlabels,(T{) C Tlabels,(T1). We now use
Lemma (7.10) with 22) to get 23)cross, (T, Tlabels,(Ty{)) C
Tcrossp (T2, Tlabelsy(T1)). From 18),20),21) and 23) we may
getM’ C M.

Suppose we step by Rule (6) the we may proceed using similar
logic as the previous case.

If T = (s) then we now perform induction enwhich gives us
an additional seven cases.

If s = skip' then we take a step by Rule (7) and have 1)
T = /. We may substitute 1) in 0) to get 2) E,0 + / : M.
From Rule (49) we have 3)/’ = (. From 3) we see that/’ C M.

If s = skip' s1 then we take a step by Rule (8) and have 1)
T' = (s1). We may substitute 1) in 0) to get) E, 0 - s1 : M.
Using Rule (48) we have 3), E,0 + s : My, O, 4) M = M, 5)

p, E,0F s1: M., O, and 6)M' = M/. From Rule (51) we have
Np,E,0F s1: Ms,,0,, and 8)M; = Leross(l,0) U M, .
We may use Lemma (8) on 5) and 7) to get\d} = M,,. From
4),6),8) and 9) we see that’ C M.

If s = a[d] =' e; s1 then we step by Rule (9) then we may
proceed using similar logic as the previous case.

If s = while' (a[d] # 0) s1 s2 then there are two rules by
which we may take a step.

Suppose we step by Rule (10) then we hav&1)= (s»). We
substitute 1) in 0) to get 2), E,0 F (s2) : M'. Let 3) R = 0.
From Rule (48) we have 4), E, R F (s) : M, 5) M = M, 6)

p, E, R+ (s2) : M} and 7)M' = M. From Rule (53) we have 8)
p,E,RF s1: Ms,,0s,,9)p,E,0s F s2: Ms,,Os, and 10)

M, = Leross(l, Os,)UScrossy(s1, Os,)UMs, UM, . Applying
Lemma (12) to 6),8) and 9) we get IA)E, 0 + so : MY, O, 12)

Mg = Scrossp(s2, R)U M, 13)p, E,0 - s1 : M{,, 04, 14)

Os, = RUOY,15)p,E,0 + s2 : M{,, 04, and 16)Ms,
Scrossy(s2,0s,) UMy, From Lemma (8) applied to 11) and 15)
we get 17)M. = M. Substituting 14) and 17) in 16) gives us 18)
M, = Scrossy(s2, RUOY,) U M. Using Lemma (7.5) on 18)
results in 19\, = Scrossp(sz, O,) U Scrossy(sz2, R) U M.
From 12),17) and 19) we have 20). C M,,. Finally from
5),7),10) and 20) we havkl’ C M.

Suppose we step by Rule (11) then we hav@™1)= (s; . s).
Substituting 1) in 0) givesus) E, R+ s1 .s: M'. Let3)R =
(. From Rule (48) we have 4), E, R\ s : M, 04, 5) M = Ms,
6)p, E,RF s1.5: M., O,and 7)M’ = M.. From Lemma (10)
there existsM{, ,M:,,0;, and O}, such that 8)p, E, R + s :
M;,,05, and 9)p,E, Oy + s M, O.,. We may use
Lemma (14) with 6),8) and 9) to get 10Y; = M}, U M,. From
Rule (53)we have 1), E, Rt s1: M1,01,12)p, E,01 s :
My, 02,13) M, = Leross(l, O1) U Scrossp(s1, O1) UMy UMa,
14)p, E, 0L, + s1 : Mi,01,15)p,E,0} + sz : Ms, 05 and
16) M., = Lcross(l,0%) U Scross,(s1,01) U M{ U Mj. Us-
ing Lemma (8) with 8) and 11) we have 1#y;, = M and
18) O;, = O:. Applying Lemma (12) to 11) and 14) gives us
19)p, E,0 F s1 : M{,07, 20) My = Scross,(s1, R) U MY,
21)0, = RUOY, 22)p,E,0 + s = MJ",0}, 23) Mj
Scrossy(s1,0%,) U Mi" and 24)07 = Of, U OY’. We apply
Lemma (8) to 19) and 22) to get 28Y; = M;"” and 26)07 =
O7". Let us substitute 18) and 26) in 24) to get ZF) = O, UOY'.

We substitute 21) in 27) to get 28); = RUOY UOY = RUOY.
From 21) and 28) we get 29); = O}. Substituting 29) in 15)
we get 30)p, £, O1 F s2 : MY, O4. Using Lemma (8) on 12) and
30) yields 31)M> = M. We now substitute 13),20) and 21) in 5)
to get 32)M = Lcross(l, RU Of) U Scross,(s1, R U OY) U
Scrossy(s1, R)UM;i" UMo,. Using Lemma (7.5) we may simplify
32) to 33)M = Lcross(l, RU Of) U Scrossy(s1, RUOY) U
M U M,. Substituting 10),16),17),20),23),25) and 31) in 7) re-
sults in 34)M’ = Scrossy(s1, R) U My’ U Leross(l, RUOY) U
Scrossp(s1, RUOY)U Scrossp(s1, RUOY)U M/ U M. From
34) we use Lemma (7.5) and simplify to 38}’ = Lcross(l, R U
O7) U Scrossp(s1, RUOY) U M U Ms. From 33) and 35) we
seeM’ C M.

If s = async' s1 s» then we take a step by Rule (12) and
have 1)7’ (s1) || (s2). We substitute 1) in 0) to get 2)
p, E,0F (s1) || (s2) : M'. Let 3)T1 = (s1) and 4)Tz = (s2).
From Rule (47) we have 5), E, Tlabels,(T2) + (s1) : Mj,

6) p, E, Tlabels,(T1) + (s2) : My and 7)M’' = M| U M.
From Rule (48) we have §), E,0 - s : Ms,0,,9) M = M,
10) p, E, Tlabels,(Tz) + s : M., 0., 11) M] = M.,
12) p, E, Tlabels,(T1) + sz : M:,, 0%, and 13)Ms; = M.,.
From Rule (54) we have 14), E, Slabelsy(s2) F s1 : M1, O,
15) p, E, Slabelsy(s1) b s2 1 M2,02 and 16)M; = My U
M,. From the definition ofT'labels() we may simplify 10)
and 12) to 17)p, E, Slabelsp(s2) + s1 : M, ,0%, and 18)
p, E, Slabels,(s1) + sz : Mg,,Os,. We use Lemma (8) on
14) and 17) and on 15) and 18) to get 1@}, = Af; and 20)
M{, = M. From 7),9),16),19) and 20) we hat¢’ C M.

If s = finish! s1 so then we step by Rule (13) which gives us
1) T’ = (s1) > (s2). Substituting 1) in 0) results in 2), E,0 +
(s1) > (s2) : M'. From Rule (46) we have 3} E, 0 F (s1) : M7,
4)p,E,0 F (s2) : My and 5)M’' = M| U Mj;. From Rule (48)
we have 6p, E,0 + s : Ms,05, VM = M;,8)p, E,0 I s71 :
M., 0. ,9) M{ = M., 10)p, E, - so : M.,, O, and 11)
Mj; = M{,. From Rule (55) we get 1), E,0 + s1 : M;,,Os,,
13)p, E,0 + s2 : M,,, O, and 14)M, = Leross(l,0) U M, U
Ms,,. Using Lemma (8) on 8) and 12) and on 10) and 13) gives
us 15)M,, = M, and 16)Ms, M, . Substituting 14),15)
and 16) in 7) gives us 17}/ = Lcross(l,0) U M, U Mg,. We
substitute 9) and 11) in 5) to get 18] = M., U M¢,. From 17)
and 18) we sed/’ C M.

If s = f:()" k then we step by Rule (14) which gives us 1)
p(fi) = s; and 2)T" = (s; . k). Froml p : E and Rule (45) we
also have 3)E(f;) = (M;,0;) and 4)p, E,0 + s; : M;,O;.
Substituting 2) in 0) gives us §), E,0 +~ s; . kK : M’'. From
Rule (48) we have 6p, E,0 + s : Ms,0O,, 7) M = M;, 8)

p,E,0F s . k: M, O,and 9)M' = M_.. Using Rule (56) on
6) gives us 10p, E, O; - k : My, Ok, 11) M, = Lcross(l,0) U
symeross(Slabelsy(s;),0) U M; U My, = M; U M. Applying
Lemma (14) with the premise, 4), 8) and 10) gives 1Zj =
M; U My. From 7),9),11) and 12) we get/ = M’ and thus
M' C M. O

8.5 Approximation
We now prove that our type system produces a label paidset

existsM" such thatp, E,0 = T' : M"” andM” C M’. Finally,
fromM"” C M’ andM’ C M,we haveM” C M. This completes
the proof of Claim B and therefore the proof of Claim A.

To prove the soundness theorem itself, suppese : FE,
p,E,0 F (so) : M and (p, Ao, (so)) —* (p,A,T). From
Fp:E pE0F (so): Mand(p, Ao, (s0)) —" (p, A, T) and
Claim A, we have that there exisid’ such thaip, E,0 - T : M’
andM'’' C M. Fromp,E,0 - T : M’ and Lemma (17) we have
parallel(T) C M'. SinceM' C M, we haveparallel(T) C M,

O

such that if two statements can execute in parallel, then the pairing as desired.

of their labels will appear id/.
LEMMA 17.1f p, E,0 & T : M thenparallel(T) C M.

Proof. Let us perform induction off". There are four cases.

If T = /then from Rule (49) we have 1) = (. From the
definition of parallel(), 2) parallel(T) = (. From 1) and 2) we
seeparallel(T) C M.

If T = Ty > T» then from Rule (46) we have b) E,(0 - T :

My, 2)p,E,0 + Ty : My and 3)M = M; U Ms. From the
definition of parallel() we have 4parallel(T) = parallel(Ty).

Using the induction hypothesis on 1) yieldgyallel (T1) C M;

and From 3),4) and 5) we hayarallel(T) C M.

If T'=T: || T2 then from Rule (47) we have
1) p, E, Tlabels,(T>) F Th : M, 2) p, E, Tlabels,(Th) = T :

M, and 3)M = M,UM,. We apply Lemma (13) to 1) and 2) to get
A)p, E,0F T1 : M{,5) M1 = Tcross, (T, Tlabels,(Tz))UMj,
6)p, E,0 Ty : Mjand 7)Mz = T'cross,(Ts, Tlabelsy(T1)) U

M. Using Lemma (7.8) and substituting 5) and 7) in 3) gives us
8) M = Tcrossy(Ti, Tlabelsy(T>)) U M U Mjy. Using the in-
duction hypothesis on 4) and 6) yields8)rallel(T1) C M; and

10) parallel(T>) € Ms. Unfolding the definition ofparallel()
gives us 1l)parallel(T) = parallel(Th) U parallel(Tz) U
symcross(FTlabels(T1), FTlabels(T2)). Using Lemma (7.14)
gives us

12) symcross(FTlabels(T1), FTlabels(Tz)) C
Tcrossp(Th, Tlabels,(T2)). From 8),9),10),11) and 12) we have
parallel(T) C M.

If T = (s) then from the definition oparallel() we have
parallel(T) = O which makegarallel(T) C M trivial. O

8.6 Soundness
We are now ready to prove Theorem 2, which we restate here:

Theorem (Soundness)f - p : E, p, E,0 - (so) : M and
(p, Ao, (s0)) =™ (p, A, T) thenparallel(T) C M.

Proof. We will first show that:

ClaimA:lf-p: E,p, E,0 F (so) : M and(p, Ao, (so0)
(p, A, T), then there existd/’ such thap, E,0 - T :
andM’ C M.

) ="
M/

It is sufficient to show that:

Claim B: For allé: if = p : E, p, E,0 = (so) : M and
(p, Ao, (s0)) —"* (p, A, T), then there existd/’ such that
p, E,0-T: M andM’' C M.

We proceed by induction anln the base case o= 0, we have
(so) = T and we can chooskl’ = M. Fromp, E,{ - (s¢) : M
and(so) = T andM’ = M, we immediately have, E,0 - T :

M’ andM’ C M. In the induction step, suppose we have Claim
B for a particulari, and conside(p, Ao, (s0)) —* (p, A, T) —

(p, A’, T"). From the induction hypothesis, we ha¥€ such that

p, E,0 T : M andM’' C M.From-p: E,p, E,0 =T : M’
and(p,A,T) — (p, A’,T") and Lemma (16), we have that there

Appendix C: Proof of Theorem 4

Let o, 9 be valuations of the set variables in two, possibly differ-
ent, constraints systems We say that) agree on their common

domain if for all v € dom(p) Ndom(¢)) : p(v) = P (v). If v,
agree on their common domain, then we define

v € dom(y) U dom(2)). { if v € dom(e)

otherwise
LEMMA 18.p,E,R F s :
solution ¢ to C(s) where o(r;) = R and p(os)
p(ms) = M andy extendst.

Proof. <) Let us now perform induction os and examine the
seven cases.

If s = skip' then from constraints (60-61) we haved(r,) =
p(0s) and 2)p(ms) = Leross(l, ¢(rs)). Substituting the premise
in 1) and 2) gives us 3R = O and 4)M = Lcross(l, R). We may
apply Rule (50) with 3)and 4)toget E, R+ s : M, O.

If s skip' s; then from constraints (62-64) we have
1) o(rs) = @(rs;), 2) ¢los) = ¢(os;) and 3) p(ms)
Leross(l, o(rs)) U p(ms,). Let 4) p(ms,) = M. Substitut-
ing the premise and 4) in 1),2) and 3) gives ugb}¥ ¢(rs,), 6)

p(0s;) and 7)M = Leross(l, R) U M, . From the definition
of C() we haveC(s1) C C(s). We see that sincg is a solution
to C(s), ¢ is also a solution ta’(s1). Sincey is a solution to
C(s1) and extendsZ we may use the induction hypothesis with
4),5) and 6) to get 8p, E, R -+ s1 : My, 0. Using 7) and 8) we
may use Rule (51)toget E, R+ s: M,O.

If s = a[d] =' ¢; s1 then we proceed using similar logic as the
previous case.

If s = while' (a[d] # 0) s1 s2 then from constraints (68-
71) we have 1)p(rs) = ¢(rs,), 2) p(rsy) = ¢(0s,), 3) p(0s)
p(0s,) @and 4yp(ms) = Leross(l, p(0s,))UScrossy(s1, (o,))U
P(msy) Up(ms,). Let5)p(os,) = O1, 6) p(ms,) = My and 7)
p(ms,) = M>. Substituting the premise, 5), 6) and 7) in 1),2),3),
and 4) gives us 8R = ¢(rs,), 9) ¢(rs,) = O1,10)O = p(0s,)
and 11)M = Leross(l,O1)UScrossp(s1, O1) UM UM,. From
the definition ofC(s) we haveC(s1) C C(s) andC(sz2) C C(s).
Sincey is a solution ta” (), ¢ is also a solution to bot&'(s;) and
C(s2). Sinceyp is a solution taC'(s1) andC'(s2) andy extendsk
we use the induction hypothesis with the 5),6),7),8),9) and 10) to
get :|.2)p7 E,RFs1: M;,01 and 13)1), E,01F s2: M2,0. We
may now apply Rule (53) with 11),12) and 13) to gel, R |- s :

M, 0.

If s = async' s1 s2 then from constraints (72-75) we obtain
1) p(rs,) = Slabelsp(s2) U (rs), 2) o(rs,) = Slabelsy(s1) U
@(rs), 3) p(os) = p(0s,) @and 4)p(ms) = Leross(l, o(rs)) U
p(ms,) Up(ms,). Let 5)p(ms,) = Mi, 6) p(ms,) = M and
7) ¢(0s,) = Oi1. Substituting the premise, 5) and 6) in 1),2),3)
and 4) gives us 8p(rs,) = Slabelsp(s2) U R, 9) p(rs,) =
Slabels,(s1) UR, 10)O = ¢(os,) and 11)M = Leross(l, R) U
M; U M;. From the definition o’ (s) we haveC(s1) C C(s) and
C(s2) € C(s). Sinceyp is a solution taC'(s), ¢ is also a solution
to both C(s1) and C(sz2). Sincey is a solutlon toC(s1) and
C(s2) andy extendsE we use the induction hypothesis with the
premise,5),6),7),8),9) and 10) to get 12, Slabels,(s2) UR
s1: Mi,01 and 13)p, E, Slabelsp(s1) U R F s2 : Ma, O. Using
Rule (54) with 11),12) and 13) gives psE, R+ s : M, O.

If s = finish! s1 so then from constraints (76-79) we get
1) o(rs;) = @(rs), 2) o(rs;) = @(rs), 3) p(0s;) = p(0s)
and 4) p(ms) = Lcross(l,p(rs)) U o(ms,) U @(ms,). Let
5) p(ms,) = M, 6) p(ms,) = M and 7)p(0s,) = Os.
Substituting the premise, 5) and 6) in 1),2),3) and 4) results in
8) @(Tsl) = R, 9) ¢(rs,) = R, 10) @(052) = O and 11)

M = Lcross(l, R) U My U M,. From the definition of”'(s) we

o(v)
Y(v)

M, O if and only if there exists a
O and

U

haveC(s1) C C(s) andC(s2) C C(s). Sincey is a solution

to C(s), ¢ is also solution to bott€(s1) andC(sz2). Becausep

is a solution toC(s1) and C(s2) and ¢ extendsE we use the
induction hypothesis with the premise,5),6),7),8),9) and 10) to get
12)p,E,R F s1 : M1,01 and 13)p, E,R F s2 : M2,0. We
apply Rule (55) with 11),12) and 13) to getE, R+ s : M, O.

If s = fi() k then from constraints (80-82) we have 1)
@(rr) = @(rs) U p(oi), 2) p(or) = ¢(os) and 3)¢p(ms) =
Leross(l, go(rs))Usymcross(Slabelsp((fi)), e(rs))Up(m;)U
p(my). Let 4) p(m;) = M; and 5) ¢(o;) = O;. Let 6)
o(myk) = M. Substituting the premise,4),5) and 6) in 1),2)
and 3) gives us 7)(r) R U Oy, 8) p(ox) = O and 9)
M = Leross(l, R)Usymcross(Slabelsy (p(fi)), R)UM; U My.
From the definition ofC(s) we haveC'(k) C C(s). Sinceyp is a
solutionC(s), ¢ is also a solution t@’ (k). Becausep is a solution
to C(k) and ¢ extendsE, we may apply the induction hypoth-
esis with 6),7) and 8) to get 1), E,R U O; + k : M;,O.
From the premise we have thatextendsE which gives us 11)
E(fi) = (p(mi),p(0:)). From 9),10) and 11) we may apply
Rule (56) and obtaip, £, R+ s : M, O as desired.

=) Let us perform induction os and examine the seven cases.

If s = skip' then by Rule (50) we have Y = Lcross(l, R)
and 2)O = R. Let us construct a solutiop that extendsE
and such that 3p(rs) = R, 4) ¢(os) = O and 5)p(ms) =
M. We substitute 1),2) and 3) in 4) and 5) to get#lo,) =
R and 7)p(ms) = Leross(l, (rs)). From 8) and 9) we see
constraints (60-61) are satisfied. From 3),4),5) we see that the other
conditions of the conclusion are also satisfied.

If s = skip' s; then by Rule (51) we have b E,R s1 :
Mi,01, 2) M = Leross(l,R) U M1 and 3)O = O;. From
the induction hypothesis to 1) we have a solutipnto C(s1)
which extendsE where 4)p1(rs,) = R, 5) ¢1(0s,) = O1 and
6) v1(ms,) = My.Let7)p = 1[rs — R,ms — M, 0, — O].
From the definition of extension with 4),5) and 6) we have 8)
p(rs) = R, 9) ¢(o0s) = O, 10) p(ms) = M, 11) p(rs,) = R,
12) p(0s;) = O and 13)p(ms,) = M;. From 8) and 11)
we have 14)p(rs) = ¢(rs,). From 3),9) and 12) we get 15)
v(0s) = (0s,). From 2),8),10) and 13) we obtain 16 m;) =
Leross(l, o(rs)) U ¢(ms,). Sincep extendsp:, ¢ also extends
E and is a solution ta”(s1). With 14),15) and 16) we satisfy
constraints (62-64) and thys is a solution toC'(s). From 8),9)
and 10) we satisfy the additional conditions of the conclusion.

If s = a[d] =' ¢; s1 then we proceed using similar logic as the
previous case.

If s = while' (a[d] # 0) s1 s2 then from Rule (53) we have
1)p,E,R Fos1: Ml,Ol, 2)p,E,O1 Foso: MQ,OQ, 3)M =
Leross(l,01) U Scrossy(s1,01) U M1 U M and 4)0 = O-.
Applying the induction hypothesis to 1) yields a solutign to
C(s1) that extends® and 5)¢1(rs,) = R, 6) ¢1(0s,) = O1 and
7) ¢1(ms,) = Ma. Applying the induction hypothesis to 2) yields
a solutiony, to C'(s2) that extends” such that 8)p2(rs,) = O1,

9) p2(0s,) = O2 and 10)p2(ms,) = M. Notice thatp; and
2 agree on their common domain. Let 13)= 1 U @2. We
have thaty is a solution to bothC(s;) and C(sz), and thaty
extendsE. From our definition ofp, we have 12)p(rs,) = R,
13) ¢(0s,) = O1, 14) p(m.,) = M, 15) o(rs,) = O1, 16)
©(0s,) = Oz and 17)p(ms,) = M. From 11) we have 18)
o(rs) = R, 19)p(0s) = O and 20)p(ms) = M. From 12) and
18) we have 21)(rs) = ¢(rs,). From 13) and 15) we get 22)
v(0s,) = ¢(rs,). Combining 3),13),14),17) and 20) gives us 23)
w(ms) = Leross(l, p(0s,)) U Scross(si, ¢(0s,)) U p(ms,) U
»(ms,). We use 4),16) and 19) to get 24jo,) = (os,). We see
from constraints (68-71) are satisfied by 21),22),23) and 24) and
sinceyp satisfiesC(s1) andC(s2) it is a solution toC'(s). From
18),19) and 20) we satisfy the other conditions of the conclusion.

If s = async s1 s then from Rule (54) we have

1)p, E, Slabelsy(s2) URF s1: M1,01, 2)p, E, Slabelsp(s1)U
Rt sy : My, 02,3) M = Leross(l, R) U My U Mz 4) O = O-.
Applying the induction hypothesis to 1) yields a solutign to
C(s1) that extendsE and 5)p1(rs,) = Slabels,(s2) U R, 6)
v1(0s;) = O1 and 7)p1(ms,) = Mi. Applying the induction
hypothesis to 2) yields a solutigp, to C(s2) that extend€2 and
8) pa(rs,) = Slabelsp(s1) U R, 9) p2(0s,) = Oz and 10)
p2(ms,) = M. Notice thatp, and g, agree on their common
domain. Let 11)p = ¢1 U 2. We have thatp is a solution
to both C(s1) and C(sz2), and thaty extendsE. We will now
show thaty is a solution toC'(s). From our definition ofp we
have 12)p(rs,) = Slabelsp(s2) U R, 13) p(0s,) = O1, 14)
p(ms,) = My, 15)p(rs,) = Slabelsy(s1)UR, 16)¢(0s,) = O2
and 17)¢(ms,) = M. From 11) we have 18p(r;) = R, 19)
p(0s) = O and 20)p(ms) = M. From 12) and 18) we have 21)
o(rs;) = Slabelsy(s2) U ¢(rs). From 15) and 18) we get 22)
p(rs,) = Slabelsy(s1) U ¢(rs). Combining 3),14),17),18) and
20) gives us 23p(ms) = Leross(l, o(rs)) U o(ms,) U p(ms,).
We use 4),16) and 19) to get 24)os) = ¢(o0s,). We see from

Theorem (Equivalence)- p : E if and only if there exists
a solutiony of C'(p) whereyp extendsE.

Proof. <) We have a solutiop of C'(p) whereyp extendsE. From
constraints (57-59) we have for gl defined inp, 1) ¢(rs,) = 0,
2) p(0i) = ¢(os;) and 3)p(m;) = ¢(ms,). Substituting the
premise thatp extendsE in 2) and 3) gives us 4p(os,) = O;
and 5)p(ms;) = M;. SinceC(s;) C C(p), we see that is a
solution toC/(s;). Sincey is a solution toC/(s;) andy extends
E then using Lemma (18) with 1),4),5) and the premise we get
for eachi, 6) p, E,0 + s; : M;, O;,. Sincep extendsE then for
all : 7) E(fi) = (¢(m:), ¢(0:)). Substituting 2),3),4) and 5) in
7) gives us 8)E(f;) = (M;, O;) which is we can rewrite as 9)
E ={f; — (M;,0;) }. From 6) and 9) we may use Rule (45) to
gett p : E as desired.

=) From Rule (45) we have 1F = {f; — (M;,0;)}
and for alli 2) p, E,0 + s; : M;,O;. We apply for eachi
Lemma (18) to 2) to get a solutiap; to C/(s;) that extendsZ and
3) wi(rs;) = 0, 4) pi(0s;) = O; and 5)p;(ms,) = M;. Notice
that all they; agree on their common domain. Letg)= J, ¢:,

constraints (72-75) are satisfied by 21),22),23) and 24) and since'Ve Will now show thaty is a solution toC'(p). We have that

o satisfiedC'(s1) andC(s2) itis a solution toC'(s). From 18),19)
and 20) we satisfy the other conditions of the conclusion.

If s = finish' s, so then from Rule (55) we get), E, R -
s1: M1,01,2)p, E,RF s2 : Ma,02,3) M = Leross(l, R) U
M, U M and 4)O = O2. Applying the induction hypothesis to 1)
yields a solutionp; to C(s:) that extend€ and 5)¢1 (7s,) = R,

6) v1(0s,) = O1 and 7)1 (ms,) = M. Applying the induction
hypothesis to 2) yields a solutign, to C'(s2) that extends® and

8) a(rs;) = R, 9) p2(0s,) = O2 and 10)pz(ms,) = Moa.
Notice thaty: and 2 agree on their common domain. Let 11)
» = 1 U @a2. We have thatp is a solution to bothC'(s1) and
C(s2), and thatp extendsE. We will now show thatp is a solution
to C(s). From our definition ofy we have 12)p(rs,) = R,
13) p(0s,) = O1, 14) p(ms,) = M, 15) @(rs,) = R, 16)
p(0s,) = Oz and 17)p(ms,) = M. From 11) we have 18)
p(rs) = R, 19)p(0s) = O and 20)p(ms) = M. From 12) and
18) we have 21)(rs) = ¢(rs,). From 15) and 18) we get 22)
p(rs) = @(rs,). Combining 3),14),17),18) and 20) gives us 23)
p(ms) = Leross(l, o(rs)) U o(ms,) U o(ms,). We use 4),16)
and 19) to get 24p(0s) = ¢(0s,). We see from constraints (76-
79) are satisfied by 21),22),23) and 24) and sipcatisfieC (s1)
andC'(s2) itis a solution toC'(s). From 18),19) and 20) we satisfy
the other conditions of the conclusion.

If s = fi() k then we have 1E(f;) = (M;,0;), 2)p, E, R U
O; F k: My, Oy,

3) M = Leross(l, R) U symcross(Slabelsy(p(fi)), R) U M; U
M;, and 4)O = Oy. We may apply the induction hypothesis on
2) to get a solutionp, to C'(k) that extendsE and 5)py (k) =
R U Oy, 6) wk(ok) = O and 7)@k(mk) = M. Let8)p =
pr[rs — R,ms — M, o, — O]. From the definition of extension
with 5),6) and 7) we have 9(r;) = R, 10) p(0s) = O, 11)
p(ms) = M, 12) ¢(rr) = R U O;, 13) p(ox) = Oy and
14) o(my) = Mj;. Sincep extendsE we use the definition
of extension with 1) to get 15p(0;) = O; and 16)p(m;) =
M;. From 12) and 15) we get 1%(rx) = (rs) U (0:).
Using 4),10) and 13) we obtain 18)(0s) = ¢(or). Combining
3),7),8),9),11) and 16) we get 19 ms) = Lcross(l, p(rs)) U
symecross(Slabels, (p(fi)), e(rs)) U p(m:) U p(my). We letp
be our solution as we see that it is a solutiorCts;) and satisfies
constraints (80-82) and thus is a solutiondds). Additionally,
from 10) we also see that also extendsZ. From 9),10) and 11)
we satisfy the remaining conditions of the conclusion. O

We are now ready to prove Theorem 4, which we restate here:

is a solution to eachC(s;) and thaty extendsE. All we must
show then is that constraints (57-59) are satisfied. From 1) we see
7) E(f;) = (M;, O;). Sincep extendsE and using the definition
of extends we get 8¢ (f;) = (p(ms), ¢(0:)). From 7) and 8) we
get 9)¢(m;) = M; and 10)p(0;) = O;. From 3) and 6) we get
11) p(rs;) = 0. Using 4),6) and 10) we have 12)os;,) = O;.
From 5),6) and 9) we have 13)(ms,) = M;. Substituting 10

in 12) gives us 14)p(os,) = ¢(0;). We substitute 9) in 13) to
get 15) p(ms;) = ¢(m;). From 11),14) and 15) we see that
constraints (57-59) are satisfied and sigcextendsE we have
reached our conclusion. O

