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ABSTRACT

The presented work inside this thesis aims to raise the degree of automation in analog circuit

design. Therefore, a framework was developed to provide the necessary mechanisms in order to

carry out a fully automated analog circuit synthesis, i.e., the construction of an analog circuit

fulfilling all previously defined (electrical) specifications.

Nowadays, analog circuit design in general is a very time consuming process compared to a

digital design flow. Due to its discrete nature, the digital design process is highly automated and

thus very efficient compared to analog circuit design. In modern Very-Large-Scale integration

(VLSI) circuits the analog parts are mostly just a small portion of the overall chip area.

Although this small portion is known to consume a major part of the needed workforce. Paired

with product cycles which constantly get shorter, the time needed to develop the analog parts of

an integrated circuit (IC) becomes a determinant factor. Apart from this, the ongoing progress

in semiconductor processing technologies promises more speed with less power consumption

on smaller areas, forcing the IC developers to keep track with the technology nodes in order

to maintain competitiveness. Analog circuitry exhibits the inherent property of being hard to

reuse, as porting from one technology node to another imposes critical changes for operating

conditions (e.g., supply voltage) - mostly leading to a full redesign for most of the analog

modules. This productivity gap between digital and analog design resembles the primary

motivation for this thesis.

Due to the availability of commercial sizing tools, this work deliberately focuses on the

construction of circuit topologies in distinction to parameter synthesis, which can be obtained

with a dedicated sizing tool. The focus on circuit construction allows the development of a

framework which allows a full design space exploration. This thesis describes the needed concepts

and methods to realize a deterministic, explorative analog synthesis framework. Despite this, a

reference implementation is presented, which demonstrates the applicability in current analog

design flows.
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ZUSAMMENFASSUNG (GERMAN ABSTRACT)

Die in dieser Dissertation vorgestellten Arbeiten verfolgen das Ziel, den Grad der Automa-

tisierung des Entwurfs von integrierten analogen Schaltungen zu erhöhen. Hierfür wurde ein

Framework entwickelt, welches die benötigten Mechanismen bereitstellt, um eine voll automati-

sierte analoge Schaltungssynthese durchführen zu können, d.h. die Konstruktion einer analogen

Schaltung, welche alle zuvor definierten (elektrischen) Spezifikationen erfüllt.

Der analoge Entwurfsprozess ist heutzutage ein sehr zeitintensives Unterfangen, insbesondere

im Vergleich mit dem digitalen Entwurfsprozess. Durch seine diskrete und damit etwas abstrak-

tere Natur ist der digitale Entwurfsprozess sehr effizient, u.a. da dem Designer Werkzeuge zur

Verfügung stehen, die ein hohes Maß an Automatisierung ermöglichen. In modernen integrierten

Schaltungen mit einem hohen Integrationsgrad machen die analogen Schaltungsteile zumeist nur

einen kleinen Anteil der gesamten Fläche aus. Trotzdem sind der Aufwand und somit die Kosten

des Entwurfs unverhältnismäßig groß verglichen mit den digitalen Teilen. Einhergehend mit im-

mer kürzer werdenden Entwurfszeiten wird der analoge Teil auf einem Mikrochip zunehmend der

beherrschende Kosten- und Zeitfaktor. Darüber hinaus verspricht der Fortschritt der Prozess-

technologien höhere Geschwindigkeiten mit geringerem Energieverbrauch bei kleinerer Fläche,

was die Hersteller dazu zwingt, Schritt zu halten, um weiterhin konkurrenzfähig zu bleiben.

Analoge Schaltungen haben die inhärente Eigenschaft schwer wiederverwertbar zu sein, da das

Portieren von einem Technologieknoten zum Nächsten nicht selten einher geht mit veränderten

Betriebsbedingungen, wie bespielsweise verringerten Versorgungsspannungen. Dies führt zumeist

zu einem vollständigen Neuentwurf der meisten analogen Schaltungsteile. Diese daraus entste-

hende Produktivitätslücke bei der Synthese zwischen analogen und digitalen Schaltungen ist die

Hauptmotivation für diese Arbeit. In Letzterer werden neuartige, deterministische Verfahren

zur vollautomatischen Synthese von analogen Schaltungen vorgestellt und demonstriert. Dabei

konzentriert sich das hier vorgestellte Framework mit dem Namen FEATS überwiegend auf die

Topologiesynthese.

Die in Abbildung 2 dargestellte Relation zwischen eingebrachtem Expertenwissen und der

Anzahl der Schaltungen ist eine weitere Kernmotivation für den Entwurf des hier vorgestellten

Frameworks. Hierbei werden verschiedene vorgestellte Konzepte in Bezug zueinander gesetzt.

Wichtig ist insbesondere der Handentwurf von Schaltungen, der sich am linken Rand der Abbil-

dung befindet; dabei kommt ausschließlich Expertenwissen in Form eines Analogdesigners zum

Einsatz. Dem gegenüber steht der absolut naive Ansatz (Bellsche Zahl), welcher alle möglichen
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Zusammenfassung (German Abstract)

Expertenwissen

Biblothek [MCR95] Klumperink [KBN01]

Geometrische [dMH04] Erste Evolutionäre [KL95]

FEATS

Hierarchisch Evolutionär [MPSG09]

Erweit. Evolutionäre [AII03]Assistent [SKP05]

Von Hand Bellsche Zahl

Anzahl der Schaltungen

Abbildung 1: Illustration des Zusammenhangs zwischen eingebrachtem Expertenwissen und

der Anzahl der generierten Schaltungen. FEATS bezeichnet das hier vorgestellte Synthesefra-

mework.

Schaltungen generiert und die richtige in dieser Menge zu finden versucht. Dieser rein theoreti-

sche Ansatz wird ausführlich beleuchtet und definiert zusätzlich den sogenannten Entwurfsraum

für Schaltungen. Die Abbildung soll darüber hinaus das Ziel veranschaulichen, welches in dieser

Dissertation verfolgt wird. Eine Diskussion der Konzepte, welche sich darüber hinaus in der

Abbildung befinden, ist auch der vorliegenden Arbeit zu entnehmen.

Im Mittelteil werden die wesentlichen Konzepte und Algorithmen präsentiert, die Verwen-

dung finden. Dabei werden zunächst die benötigten Eingabedaten beleuchtet:

Komponenten entsprechen den atomaren Bauteilen einer elektrischen Schaltung. Diese wer-

den in einer abstrakten Form beschrieben (z.B.: hochohmiger Widerstand, präzise Kapa-

zität oder Schalttransistor) und für die Synthese mit einem entsprechend Bauteil aus der

Zieltechnologie verknüpft.

Basisblöcke bestehen aus einer oder mehreren Komponenten und können auch als funktionale

Blöcke gesehen werden. Diese können ebenfalls vom Benutzer frei angepasst, hinzugefügt

und ersetzt werden.

Schaltungstemplates repräsentieren die Hierarchien in dem vorgestellten Framework. Dieses

sehr ausdrucksstarke Element des Framework erlaubt die Beschreibung von beliebig tiefen

Hierarchien, hierbei liegt der Fokus auf der Wiederverwendbarkeit, d.h. ein zuvor entwi-

ckeltes Schaltungstemplate kann ohne weitere Anpassungen in ein anderes Schaltungstem-

plate eingebettet werden, um so beliebig komplexe analoge Module zu beschreiben und zu

synthetisieren.

Der Syntheseablauf ist im Wesentlichen in drei Schritte unterteilt, welche man in Abbil-

dung 2 sehen kann. Zunächst werden die Eingabedaten für die Synthese vorbereitet. Hierbei
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Zusammenfassung (German Abstract)

werden primär die Basisblöcke betrachtet, die zunächst als Grundlage zum Generieren weiterer

Basisblöcke benutzt werden. Daraufhin werden abschließende Konsistenzprüfungen an den Ba-

sisblöcken vorgenommen und zusätzliche (automatisch zu generierende) Informationen in eben

diesen untergebracht. Schließlich folgt noch ein wichtiger letzter Schritt: Die Klassifizierung der

vorliegenden Basisblöcke in sogenannte abstrakte Basisblöcke. Es werden mehrere Basisblöcke zu

einem abstrakten Basisblock zusammengelegt, abhängig von dessen Eingangs- bzw. Ausgangs-

spezifikationen. Dieser Schritt zielt darauf ab, die Berechnugskomplexität des Synthesealgorith-

muses zu verringern und entspricht im weitesten Sinne einem Verhaltensmodell getriebenen

Analogentwurf.

Komponenten
Basis-

blöcke

Schaltungs-

templates

Vorbereiten der Synthese

Synthese Algorithmus

Schaltungsauswertung

Generiere

Komplementäre

Basisblöcke

Vorbereiten

der

Basisblöcke

Generiere

Abstrakte

Basisblöcke

Konstruktive

Synthese

Topologie

Expansion

Schaltungs-

analyse

Fremdsoftware

Fremdsoftware

Aufgaben

Distributor

Fremdsoftware

Fremdsoftware

Abbildung 2: Vollständiger Syntheseablauf mit allen wesentlichen Bestandteilen

Der Synthesealgorithmus sowie dessen Schritte auf dem Weg zu einer fertigen Schaltung wer-

den ausführlich besprochen, um dem Leser einen genauen Einblick in die internen Algorithmen

und Konzepte zu ermöglichen. Hierbei werden (Synthese-)Regeln eingesetzt, die verschiedene

Entwurfsschritte (möglichst abstrakt) realisieren und darüber hinaus eine konsistente Schnitt-

stelle für die Manipulation und Analyse von Schaltungen darstellen.
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Zusammenfassung (German Abstract)

Konstruktive Synthese benutzt konstruktive Regeln sowie destruktive Regeln um Topologien

zu generieren, welche ausschließlich aus abstrakten Basisblöcken bestehen. Der gesamte

Entwurfsraum wird dabei exploriert und wird in seiner Ausdehnung nur von den destruk-

tiven Regeln begrenzt.

Topologie Expansion ist der nächste Schritt, in dem die zuvor generierten Topologien zu

realen Schaltungen expandiert werden.

Schaltungsanalyse realisiert einen sehr wichtigen Vorauswahlschritt. Hierbei ist das Ziel die

Schaltungen möglichst frühzeitig aus der Synthese auszuschließen, falls sich Eigenschaften

finden lassen, die diese mit einer hohen Wahrscheinlichkeit als untauglich klassifizieren.

Der Letzte dieser drei Schritte ist ebenso im Detail beschrieben. Dabei handelt es sich einer-

seits um einen Isomorphiealgorithmus, welcher zuverlässig Schaltungen aussortiert, die mehrfach

vorhanden sind. Andererseits wird eine schnelle Analyse präsentiert, welche Schaltungen mit in-

vertierter Verstärkung identifiziert und von der folgenden Dimensionierung ausschließt. Darüber

hinaus werden in diesem Schritt die propagierten elektrischen Nebenbedingungen in ein Sys-

tem von Ungleichungen zusammengefasst. Dieses lässt sich im Folgenden auf nicht-Lösbarkeit

überprüfen und liefert in diesem Fall eine zuverlässige Voraussage, ob dies bei einer tatsächlichen

Realisierung der Schaltung ebenso eintreten wird.

Aufgaben

Distributor
WiCkeD

TCP/IP

WiCkeD
TCP/IP

WiCkeD

T
C
P
/IP

WiCkeD

T
C
P
/
IP

Fremdsoftware

Fremdsoftware

Fremdsoftware

Fremdsoftware

Fremdsoftware

SPICE

SPICE

SPICE

SPICE

Abbildung 3: Illustration der asynchronen Aufgabendistribution.

Die automatisierte Dimensionierung der Schaltungen ist unabdingbar um Analogsynthese zu

betreiben. In FEATS wird dies durch ein kommerziell verfügbares Produkt namens WiCkeD rea-

lisiert. Letzteres ermöglicht eine automatisierte, Skript-getriebene Dimensionierung einer Schal-

tung. Die hierfür benötigten Daten werden vollautomatisch vom Framework erzeugt und be-

reitgestellt. Ein wichtiges Merkmal des realisierten Konzeptes ist die asynchrone Verteilung von

(Dimensionerungs-) Aufgaben an eine beliebige Anzahl von Fremdsoftwareinstanzen, d.h. der
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Zusammenfassung (German Abstract)

Aufgaben Distributor dient nicht nur der Evaluierung respektive, Dimensionierung der Schal-

tungen, sondern ist wie in Abbildung 3 zu sehen auch noch für das transparente Skalieren der

verfügbaren Softwarekapazitäten verantwortlich.

Abschließend werden umfangreiche Analysen und Ergebnisse des vorgestellten Frameworks

präsentiert. Hierbei wird die Möglichkeit ergriffen, anhand von realen Schaltungssynthese Bei-

spielen den Ablauf des Syntheseprozesses im Detail zu beleuchten. Die hier gewählten Beispiele

sollen eine möglichst breite Abdeckung der möglichen Einsatzgebiete von FEATS repräsentieren:

Operationsverstärker dienen als Referenzschaltung, entsprechend wird demonstriert wie das

Framework mit Leichtigkeit eine Vielzahl von Lehrbuchschaltungen sowie ungewöhnliche

Schaltungen generiert und erfolgreich bzgl. gewünschter Spezifikationen dimensioniert.

Elliptischer Tiefpass Filter 3. Ordnung präsentiert die Skalierbarkeit des vorgestellten

Frameworks. Dabei wird die Synthese in mehreren Hierarchien ausgeführt, um in der

höchsten Hierarchie eine fertige Schaltung zusammensetzen zu können. Das hierbei

vollständig automatisiert synthetisierte Analogmodul enthält mehr als 200 Transistoren

und präsentiert eindrucksvoll die Leistungsfähigkeit der hier vorliegenden Methode.

Zusammengefasst läßt sich feststellen, dass die hier vorgestellten Konzepte die Möglichkeit

bieten, den Entwurf von analogen Schaltungen um signifikante Größenordnungen zu beschleu-

nigen. Darüber hinaus wird demonstriert, dass die analoge Schaltungssynthese während des

Entwurfsprozesses zahlreiche Vorteile bieten kann, die dazu führen, dass schneller bessere Schal-

tungen erzeugt werden, die Produktivität des Designers wird massiv erhöht und schließlich kann

dieser seine Fähigkeiten gezielter einsetzen und auf die echten Probleme des Analogentwurfs

richten, anstatt Tage oder sogar Wochen auf den manuellen Schaltungsentwurfprozess zu ver-

schwenden.

vii



Zusammenfassung (German Abstract)

viii



LIST OF ABBREVIATIONS

AAHS analog artificial hormone system

ABB abstract basic block

AC alternating current, also analysis type in

SPICE simulators

ADC analog to digital converter

API application programming interface

BB basic block

BLR block length rule

CAP capacitor

CAS computer algebra system

CMFB common-mode feedback amplifier

CMOS a technolgy or configuration utilizing

nMOS and pMOS devices

CMRR common-mode rejection ratio

CNT carbon nanotubes

CPU central processing unit

CTR circuit template rule

DAC digital to analog converter

DC directed current, also analysis type in

SPICE simulators

DUT device under test

EDA electronic design automation

EER elementary electric rule

ELIPLP elliptical low pass filter

EXPROPS extract properties rule

FD fully differential

FDA fully differential operational amplifier

FEATS framework for explorative analog

topology synhtesis

GI graph isomorphism complexity class

I/O input and output

IBR initial block rule

IC integrated circuit

IEEE Institute of Electrical and Electronics

Engineers

IIP3 third-order intercept point

ISO (circuit) isomorphism rule

ITRS International Technology Roadmap for

Semiconductors

IVR input voltage range

LIB library rule

LU decomposition algorithm to solve a

square system of linear equations

MOS metal–oxide–semiconductor field-effect

transistor

NB2R no block twice rule

nMOS a MOS device with a channel contain-

ing mostly electrons

NP nondeterministic polynomial time com-

plexity class

OFET organic field-effect transistor

OMR output match rule

OP single-ended operational amplifier
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List of Abbreviations

OPCORE operational amplifier core

OTA operational transconductance amplifier

OTFT organic thin film transistor

OVR output voltage range

P polynomial time complexity class

P1db 1db gain compression point

pMOS a MOS device with a channel contain-

ing mostly holes

PSRR power supply noise rejection ratio

RC-net resistor and capacitor network, mostly

in the context of (active) filters

RES resistor

SKLP Sallen-Key low pass filter

SNDR signal-to-noise and distortion ratio

SoC system on chip

SPICE simulation program with integrated

circuit emphasis

SYM EER symmetric elementary electric rule

SYM FEAS symbolic feasibility rule

SYM GAIN symbolic gain rule

SYM PRE pre symbolic rule

TCP/IP transmission control proto-

col/internet protocol

TIR topology isomorphism rule

TRAN transient analysis in SPICE simulators

VLSI very-large-scale integration

VVOER voltage-to-voltage only at end rule

w.l.o.g. without loss of generality
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LIST OF SYMBOLS

abstract basic block (abb) a black box con-

taining one or more BBs sharing the

identical I/O characteristic

basic block (bb) an electrical basic building

block representation with an actual

transistor-level implementation

big O (O) landau symbol to describe asymp-

totic behavior of algorithms

circuit (c) a circuit representing a physical re-

alization

circuits (C) an unordered set of circuits

design space (DS) design space seen as cross-

product of PS and STS

devices (M) an unordered set of devices

equivalence class (eqcls) an unordered set of

objects sharing the combination set of

invariant properties

equivalence classes (EQCLS(c)) set of

equivalence classes associated with the

circuit c

graph (G) a representation of object vertices

connected through edges

ground (VGND) name of the reference net or

simply ground

hash (hash(x)) hash associated with object x

integer (N) integer numbers

invariant properties (EQPROPS(x)) set of

invariant properties associated with x

invariant property (p) a property associated

with a specific IV i

invariants (IV) an unordered set of invariants

label (L(x)) label associated with object x

nets (N) an unordered set of nets

parameter space (PS) n-dimensional space

spanned by the number of parameters

n

partition (P c) a partition of circuit c into sub-

sets s

performance space (PERF ) n-dimensional

space spanned by the number of per-

formances n

power set (P(x)) power set of a set x

structure space (STS) a set of circuit struc-

tures

subset (s) subset, which may contain vertices

supply (VDD) name of the net the supply volt-

age is made available

threshold voltage (VTHp/n
) CMOS threshold

voltage voltage for either p or n type

devices

topologies (T ) an unordered set of topologies

topology (t) a topology (containing ABBs ex-

clusively)

vertex (u) another vertex inside a graph

vertex (v) a vertex inside a graph

vertices (V ) an unordered set of vertices
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CHAPTER

ONE

INTRODUCTION

Analog circuit synthesis is inevitably a long term goal for the industry. To accomplish this,

various ideas have been investigated and brought to publications (see Section 3.1). The ongoing

advances in processing technologies introduces this very need. The current scientific commu-

nity around analog circuit synthesis may merely be divided into circuit construction, parameter

synthesis and layout generation. The presented methodology focusses on the construction of

circuits, which involves the generation of the circuits themselves (see Chapter 5) and despite

that, the preselection (see Chapter 6) of feasible circuits for the following sizing.

Expert-knowledge

Library-based [MCR95] Klumperink [KBN01]

Geometric Prog. [dMH04] First evolutionary [KL95]

FEATS

Hierarchical evolutionary [MPSG09]

Advanced evolutionary [AII03]Guided [SKP05]

By hand Bell number

Number of circuits

Figure 1.1: Illustration of the trade-off between expert-knowledge and circuit count—due to

the nature of the underlying problem this is a subjective view and based on the best knowledge

of the author. The bell number is a theoretical synthesis approach described in Chapter 4.

The ideas for the construction of circuits span a very wide range and are further illuminated

in Section 3.1. In this work the presented methodology aims to deliver a maximum amount

of expandability and flexibility in terms of circuit sizes, circuit classes and potenial applica-
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1.1. (Traditional) Analog Circuit Design Flow

tions. This originates in a theoretical analysis of the analog design space (see Chapter 4), which

illustrates the non-applicability of a brute-force approach in synthesis by enumerating all pos-

sible circuits for a given number of components. This approach resembles the naive synthesis

without blending in any (expert-) knowledge and thus may be found on the rightmost side in

Figure 1.1. On the opposing side of Figure 1.1 the traditional manual design—in Section 1.1

further discussed—is to be found. FEATS introduces the necassary concepts to include and

selectivly apply expert-knowledge, thus determine the amount of generated circuits. By utilizing

an extendable circuit analysis (see Section 5.4.3) circuits are reliably discarded in an early stage

of the synthesis. This not only reduces the runtimes of the whole synthesis, but furthermore the

rate of good circuits (see Chapter 9).

1.1 (Traditional) Analog Circuit Design Flow

The current practice in analog circuit design, especially compared to the digital flow, is mainly

driven by highly experienced engineers and mostly lacks automated design steps. Figure 1.2

presents a simplification of a typical design flow for an analog circuit module. The extremely

time consuming task circuit design consists of several tasks as illustrated in Figure 1.3, which

both from an automation point of view contain nearly no automatic steps. The tedious modify

parameters, simulate circuit, evaluate results iteration—which easily eats up days to several

weeks—still dominates the landscape.

System

specification

Architecture

design

Circuit

design

Circuit

verification

Physical

design

Physical

verification

Manu-

facturing

Bumping

packaging

Testing

Integrated

circuit
New Generation

Figure 1.2: A (simplified) illustration of the design flow for integrated circuits. The arrows

do not imply a constant advancing towards this part—nowadays the step back may be of any

distance, thus the backwards pointing arrows were omitted.

The digital design flow is widely dominated by design tools delivering high levels of au-

tomation and abstraction, which support the designer towards a finished design. This leads

to a less repetitive design flow, where the designer may focus on the more important (higher-

2



1.1. (Traditional) Analog Circuit Design Flow

level) tasks and thus avoids the overly tedious circuit design tasks. In particular the digital

designer mostly focuses on Register-Transfer-Level design, which hides the used circuits into

more abstract building blocks.

The challenges of designing an analog circuit inherently exhibit a much higher level of (com-

putational) complexity due to the continuous nature of analog circuits. Designing an analog

circuit from scratch commonly starts with the circuit construction, which usually involves a

software for schematic entry, testing and evaluation, i.e., simulation. The schematic entry im-

poses the time consuming task of realizing an initial guess of the circuit by drawing and placing

symbols or wires. Once an initial guess was realized as a schematic, the designer starts with

the parameter synthesis in order to reach the specified performances for the circuit, while the

former step (circuit construction) resembles a more or less discrete process: include the device?

Interconnect net A with net B? The amount of combinations for a given set of devices is clearly

countable and computable (see Chapter 4), thus the amount of possible circuits is still very huge.

Contrary to this, the parameter synthesis (sizing) of an analog circuit totally lacks its counterpart

inside the digital design flow. Digital modules are designed once and during synthesis, cloned

thousands of times, leaving the parameter synthesis to the analog cell designer. Analog designers

need to develop a new set of device parameters for each new analog circuit. This is mostly done

with uncountable iterations of modify parameter and simulate circuit, which involves the inter-

pretation of the results (see Figure 1.3). The results are mostly delivered through waveforms,

which additionally means, it is not easily adaptable for others except the designer himself. For

the parameter synthesis—one of the big challenges of analog circuit synthesis—some commercial

tools lately started to successfully sustain inside the analog design software ecosystem. Multi-

objective-optimization with additional constraints and a very high dimensional parameter space

has widely been addressed with various numerical optimization techniques. Section 3.1 gives a

short overview regarding the current state of parameter synthesis.

Circuit

Specifications

Schematic

Entry

Simulation

(nominal)
Evaluate

results

Simulation

(Variations)
Evaluate

results

Modify

Parameters

finish

start

Figure 1.3: Simplified analog circuit design flow—zooming into the Circuit Design node

from Figure 1.2.
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1.2. Contributions and Publications

Eventually, the designer identifies a set of parameters, which exhibit the required specifica-

tions. But, increasingly often the designer has to forfeit and restart from scratch, as the chosen

circuit topology may not always be sufficiently parametrized towards the specified performances.

This problem is constantly growing bigger up to a point at which the analog designer is forced to

do statistical massaging, in other words: repeatedly (fine-) tune the parameters to get the best

possible yield, while still fulfilling the specifications, provided he has found a suitable (nominal)

circuit topology. Remarkably, the question whether another, better circuit topology - in terms

of yield and/or reached specifications - exists or even could outperform the taken circuit in all

aspects, is rarely asked.

In the final stage of development a (mostly dedicated) engineer receives the circuit in form of

a schematic to realize the circuit on the physical level. This layout generation process requires as

much additional information as possible, which could be extremely beneficial for the layout en-

gineer. But usually it is carried out ranging from a handwritten sheet of paper to an informative

phone call between the designer and the layouter. This traditionally grown handing over has

recently shown its flaws. The rising complexity, mean variation, shrinking supply voltages and

device sizes of recent technology nodes nowadays forces the layout engineer to create a layout,

which involves by far more experience and insight into the circuit, as ever before. Matching

devices, folding devices using various methods and different priorities of reliability for (groups

of) devices lead to reduced process variations, if they are applied correctly.

For sake of completeness the specification, deliberately including the evaluation and storing

of (simulation) results, recently gets increased awareness. Machine readable, standard-driven

specifications, results and the evaluation of those do nearly not exist in industrial environments.

Many analog design flows still rely on unstructured, design documents providing no insight and

documentation about an ongoing or passed design project. Unfortunately, the development in

this field is crucial for the applicability of analog circuit synthesis. Most of the analog circuit

design automation tools suffer from the fact that almost no machine readable specifications are

available, leaving the designer the responsibility to formalize and enter all necessary information

into an analog circuit design automation tool.

1.2 Contributions and Publications

The first ideas towards the current methodology were published in [WH06, MMH11c, MMH11d],

which are used as a blueprint for the core synthesis algorithm, although all rules were reformu-

lated, some of the basic concepts still exist inside the presented work.

The synthesis core engine was one of the first addressed issues due to the limited string-

based approach. The realized concepts where first published in [MMH11b, MMH11a] and are

now based on graphs as circuit representations, which lead to a necessary increase in flexibility.

The whole methodology was further improved and extended to a more generic approach,

while still maintaining a reasonable amount of generated circuits. Due to the application of

a highly sophisticated isomorphism algorithm the methodology was enhanced and published

in [MMLH12]. With the introduction of circuit templates, hierarchical synthesis gets feasible

and opens up a wide range of possibilities for the methodology, which was published in [MH15].
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1.3. Overview

Finally, various application studies also have been published. The impact of aging on different

operational amplifier topologies was studied in [SHM13] and the applicability of ASDEX, a

machine readable specification standard, on automated synthesis has been analyzed in [MMH12].

The (silicon proven) realization of a whole system has also been investigated in [vRMH15].

Furthermore, the methodology was presented in the form of invited talks at various conferences

[Mei14, HM13].

1.3 Overview

After providing a short introduction into the integrated circuit analog design process in this

chapter, the following Chapter 2 provides the necessary formal representation used for circuits

inside this thesis. Chapter 3 illustrates the analog circuit synthesis in general and the current

scientific landscape—followed by Chapter 4 a theoretical analysis of the (analog) design space,

which additionally introduces some important terms and distinctions for synthesis-driven analog

design.

A technical in depth presentation of FEATS is given in Chapter 5 to pinpoint the most

important concepts and features. Chapter 6 continues to describe the framework internals by

illuminating one of the most distinguishing features, the preselection concepts. The middle

part is closed with the inspection of the mechanisms for sizing (see Chapter 7) used inside the

framework.

A selection of basic blocks and testbenches used throughout the whole framework is shown in

Appendix B respectively Appendix A, together with the presentation of selected circuit classes

(see Chapter 8) the framework is enabled to synthesize circuits. The application of the latter

to actually generate circuits is demonstrated in Chapter 9. Finally, the thesis is finished with a

conclusion in Chapter 10.
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CHAPTER

TWO

ANALOG CIRCUIT REPRESENTATION AS A GRAPH

A circuit is represented through devices and nets—to encode them into an algorithmically pro-

cessable representation—first we denote the set N as the nets and the set M as the devices of

the circuit:

N := {net1,net2, . . . ,netn} (2.1)

M := {device1,device2, . . . ,devicem} (2.2)

The devices and nets are interconnected through k not directed edges.

E := {e1, e2, · · · , ek} (2.3)

e = (u, v)⇔ (v, u) : e ∈ E, u ∈M,v ∈ N (2.4)

The sets N and M are disjunct and summarized into V :

V = N ∪M : N ∩M = ∅ (2.5)

This allows the definition of the strict, bipartite graph G [Asr98] using Equation 2.1 to Equa-

tion 2.5:

G = (V,E) (2.6)

The property strict is enforced by the fact that all nodes are only connected to their respective

counterparts:

∄e = (u, v) : u ∈M, v ∈M ∧ (2.7)

∄e = (u, v) : u ∈ N, v ∈ N (2.8)
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net2
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(a) Example circuit c

net1

NP

R1

NP

net2

D

T1

S

in
G

(b) Graph G representing c

Figure 2.1: A circuit c represented as a bipartite-graph G

A set of basic blocks Dbb is also referred as a basic block library, similarly a set of abstract

basic blocks Dabb is denoted as a abstract basic block library (see Section 5.2.2).

Dbb := {bb1, bb2, · · · , bbn} (2.9)

Dabb := {abb1, abb2, · · · , abbm} (2.10)

Throughout this contribution a circuit c is a graph containing only basic blocks and their inter-

connections as defined in Equation 2.1 to Equation 2.6:

c = (V,E) : V = N ∪Dbb (2.11)

A topology t solely consists of abstract basic blocks and resembles a more generic representation

of (possibly) multiple circuits and is denoted as:

t = (V,E) : V = N ∪Dabb (2.12)

Finally, a set of circuits C or topologies T will be named as followed:

C := {c1, c2, · · · , cn} (2.13)

T := {t1, t2, · · · , tm} (2.14)
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CHAPTER

THREE

ANALOG CIRCUIT SYNTHESIS

Analog circuit synthesis is a widely used term and therefore often also misused. Formally

synthesis describes a step towards the middle inside the Y-diagram (see Figure 3.1), which leads

to a reduction of the abstraction level and therefore a less virtual, more physical representation

of the module is generated. While technically the understanding of synthesis in digital design

significantly differs from the analog design approach. The general idea still remains identical:

An (automated) design step, which converts the module one step further towards the physical

realization.

Behavioural Domain Structural Domain

Physical Domain

Systems

Algorithms

Register transfers

Logic

Transfer functions

Processors

ALUs, RAM, etc.

Gates, flip-flops, etc.

Transistors

Physical partitions

Floorplans

Module layout

Cell layout

Transistor layout

Figure 3.1: Gajski-Kuhn Y-chart (from [YCh], license [LPP], unchanged)
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3.1. State-of-the-Art in Analog Synthesis

The analog synthesis landscape differs massively compared to the digital. While the digital

market is near saturation and highly heterogeneous in terms of (automated) digital circuit design

software, the typical analog designer workstation nearly has not changed a little during the last

years. The established analog design flow has not changed significantly since the advent of

the SPICE simulator. According to various scientific contributions during the last years, one

might get the impression, the problem is already solved [Rut10]. But a closer look reveals that

parameter synthesis slowly achieves more acceptance and is used by a much bigger user base

as it was only some years ago. But opposed to this, persistent tools, which allow automated

circuit construction or layout generation could not sustain inside the semiconductor ecosystem

yet. One of the reasons for this development may be the lack of flexibility among the synthesis

tools seen on the market. Section 3.1 provides an extensive overview about the evolution of

analog circuit synthesis in science and industry during the last years. As previously stated, the

high specialization of the analog synthesis tools could be one of the reasons for the still very low

acceptance inside the analog design community. Noticeably, the existing commercial parameter

synthesis tools may technically be applied to any circuit in order to optimize the circuit for

performance and/or yield, without inherent limitations in circuit size and classes.

3.1 State-of-the-Art in Analog Synthesis

In analog circuit design one might split the process into the construction of circuits and the

sizing. This distinction has always existed (see [GR00]), but publications in analog circuit

synthesis did not always fulfill this—admittedly this was not possible for a long time due to the

lack of commercial sizing tools, which nowadays have successfully sustained inside the analog

design ecosystem (e.g., [Mun, Cad]). Analog (structure) synthesis tools did not reach this state

for various reasons, which are illuminated inside this section.

Early concepts for analog synthesis can be found in the late 80s, early 90s [HRC89, KSG90,

MCR95, AB95]. Mostly the term “analog circuit synthesis” was used to actually describe circuit

selection based ideas, which were closely coupled to their circuit libraries and carried out sizings

based on pre-assembled parameter to performance rules or equations. While this approach lead

to circuits which deliver a high degree of trust, these methods rise and fall with their accompanied

libraries and sizing templates. Each new process node will always force a refinement of the library

and its sizing templates. This refinement inherently leads to an enormous amount of work, which

must be done upfront. The development of such libraries, i.e., the circuits and their individual

sizing templates, may only be done by highly experienced analog design engineers—it is by far

more difficult to design a generic circuit and its sizing templates than a regular circuit design

towards a specific set of constant performances.

These methods retained a few process nodes, but as the effects of Moore’s law get stronger,

the aforementioned refinement gets increasingly complicated in terms of consumed time. Fur-

thermore, the operating conditions have massively changed, i.e., the supply voltage has dropped

significantly. This by itself is highly desirable—mainly due to the reduced power consumption—

paired with a reduced voltage range, which will inevitably lead to changed circuit structures.

Particularly this means various circuit constructions may not be used anymore, e.g., (multiple)

10



3.1. State-of-the-Art in Analog Synthesis

cascodes. This, together with 2nd-order effects due to the ongoing geometrical scaling (i.e., short

channel effects) has largely lead to the fact that most of the research in this field has stalled.

However, the selection, or library-based circuit synthesis approaches delivered very trustful cir-

cuits, inherently by the fact that solely circuit topologies are used which were previously designed

from scratch by experienced analog designers.

Consequently, the natural next step is the opposing extreme. This was primarily done

with brute-force like approaches by Klumperink et al. [KBN01, BKN00]. Remarkably, this

approach has an explorative nature, which is maybe the first of its kind. The circuit generation

is based on the idea of modeling a MOS-device as a voltage-controlled current-source, which

seems reasonable as long as one solely aims to generate circuits containing exclusively MOS-

devices in saturation and strong inversion. This approach already encounters the challenges of

exploration based circuit synthesis. By generating all possible interconnections between a very

limited number of MOS-devices this approach generates a vast amount of circuits already for

device counts of three. Notably, this methodology exposed the challenges of exploration-based

analog circuit synthesis to the scientific community:

• Vast amounts of circuits with very small component counts show the need for a preselection

methodology

• Even well performing circuits lack trust

• Sizing has to be considered during analog circuit synthesis

• Analog circuit synthesis without blending in any (expert) knowledge will never be feasible

(see Chapter 4)

While the explorative idea itself looks very promising, the computational effort to actually apply

a full design exploration—without introducing (knowledge-based) bounds for the design space—

is huge.

During the same time the evolutionary algorithms (see Figure 3.2) were first applied for

circuit synthesis. Evolutionary algorithms try to mimic the evolution—inspired by nature itself.

Therefore, a chromosome represents the circuit (or the building instructions for a circuit), which

is also called the genotype of the circuit, whilst the incarnation of the latter is noted as phenotype.

An initial population, i.e., a set of chromosomes, is generated randomly. For each of them the

fitness is calculated by a specific fitness function. Based on this, the best individuals are chosen

(parents) which are now being used for crossover and/or mutation in order to generate a new

generation. The fitness function is now applied to the new individuals. Finally, the least-fit

population is replaced with new random individuals and the process is repeated until a specified

end condition is reached. This could be a maximum generation count or a desired fitness function

target.

Kruiskamp et al. [KL95] presented DARWIN, which introduced a matrix representation of the

circuits as in Figure 3.3a to be synthesized. In particular the rows and columns of the matrix

represent a component and each cell is either true or false, which translates to a connection

between those two components. This method introduces an approach which allows easy insight

11
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Random

Population

Evaluate

Fitness

Select

Best

Crossover

(Recombination)
Mutation

Evaluate

Fitness

Replace

Worst

finish

start

Figure 3.2: The typical—biological inspired—evolutionary algorithm flow. Various modifica-

tions are known to this flow—dashed lines resemble alternate flows.

into the evolutionary process, as crossover and mutation operations may be visualized with ease.

This method introduces various very circuit class specific properties, which may not be easily

adapted for other circuit classes, thus it inherently restricts the application scope.

Koza et al. [KBL+97] proposed a tree structure chromosome as shown in Figure 3.3b to

represent circuits. Starting with a so-called embryonic circuit the circuit gets evolved using

component-creating functions, connection-modifying functions and arithmetic-performing sub-

trees which may solely be applied to components. Each group has several specific functions

realizing design steps, which are highly specialized on specific components, which significantly

reduces the flexibility and expandability of this approach. Furthermore, the memory footstep

and thus the computational overhead is significant (see [AII03]). Despite this, these properties

implicitly introduce restrictions for the size of the circuits to be synthesized.

Another approach tailors the genotype description of the circuit by means of opcodes (see

Figure 3.3c) similar to what happens during translation of assembler code. Lohn et al. [LC99]

thus represent a circuit as a set of chronologically executed operations, which finally construct

a circuit. This approach is quite similar to what has been done by Ando et al. [AII03], but

is here explicitly named as variable length chromosome. Strictly seen, except for the matrix

approach (see [KL95]), most evolutionary synthesis methodologies use some kind of variable

length chromosomes. Although it is worth to be mentioned, as the natural blueprint is obviously

based on a constant length chromosome. On the other side, a variable length chromosome for

circuit synthesis is clearly the correct representation due to the fact that circuits themselves

have a variable length, respectively size.

A major drawback for the previously discussed methods is the integrated sizing mechanism.

While on the first view the integration of sizing into circuit construction allows a higher circuit

throughput due to the tighter coupling between circuit construction and sizing, the comparability

and the reliability of the methodology strongly correlates with the quality of the sizing methods
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A1 A2 B1 B2 B3

Port A1 - X

Port A2 - - X

Port B1 - - - X

Port B2 - - - -

Port B3 - - - - -

(a) Matrix chromosome

root

A

conn

A1 B1 A2

B

conn

B3 B1

(b) Tree chromosome

1 init A

2 init B

3 connect A1 B1

5 connect A2 B1

6 connect B1 B3

(c) Opcode chromosome

Figure 3.3: Simplified illustrations of various used chromosomes for evolutionary synthesis for

two example devices A and B with two, respectively three ports.

and algorithms. Admittedly this was the only way to generate any presentable results, as

commercial sizing software emerged during the last ten years at least, making it impossible to

use a state-of-the-art sizing tool during the time of these contributions. Another issue arises

once a closer look is taken at the generated circuits, which are often very uncommon and thus

lack trust, leading to a reduced acceptance of these among the analog design community.

A widespread solution for the lack of trust is the concept of basic blocks. First introduced

by [DCR05] and Wang et al. [WH06] the concept has been widely used (see [MPSG09, DV08])

to overcome the trust drawbacks and to reduce the computational complexity of analog circuit

synthesis.

The latest incarnations of the evolutionary methods are resembled through the contributions

by Das et al. [DV08] and McConaghy et al. [MPSG09]. While the former employs hierarchies

indirectly, the latter explicitly uses an hierarchical approach to propagate properties of building

blocks from bottom to top. This leads to so-called flexible and compound blocks, which may

contain several atomic blocks. This approach exhibits similar properties, in terms of full design

space exploration, but limits itself as it is not truly exploring the design space, due to the

stochastic nature of the underlying evolutionary algorithm.

Furthermore the analog circuit synthesis landscape is full of (semi-)automated methodologies

aiming to be applicable for specific circuit classes only. Starting with passive filter synthesis

(see [DV07, CHS06]), switched capacitor filter synthesis [AEBD00], low noise amplifier synthesis

[TB08, BKN04, TB05], low drop out circuits [DM09] to ∆Σ-synthesis [TD06]. Assistant based

tools were also investigated, which support and guide the designer through the development of

an analog circuit [SKP05]. Inherently those methodologies suffer from their limited applicability,

which may be one of the primary reasons why, to the best knowledge of the author, none of

them emerged into an actual commercial tool.

In contrast to the analog circuit synthesis, the analog parameter synthesis, i.e., automated

sizing has successfully reached and sustained inside the industrial analog design ecosystem. The

most prominent and successful ones are based on worst-case distances (see [AGW94, AEG+00]).

Further ideas have been developed in this field based on support vector machines [DBNV05],

geostatistics performance modeling [YL07], downhill-driven stochastic parallel recombination

[KPH+01], discretized sizing [JCK12], spline center and range methods [BKV09] and hybrid

evolutionary-driven methods like presented in Lourenço et al. [LH12]. Especially, the concepts
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3.1. State-of-the-Art in Analog Synthesis

based on geometric programming have been applied in various forms to the parameter synthesis

problem. Even selection-based synthesis methods—by sizing a library of circuits and return-

ing the best one—have been brought to publications. Generally, a geometric program is an

optimization problem of the form:

fi(x) ≤ 1 i = 1, · · · ,m (3.1)

hi(x) = 1 i = 1, · · · , p (3.2)

f0, · · · , fm are posynomials and h0, · · · , hp are monomials. By formulating the specifications

to be reached as posynomial functions the geometric program may be converted into a convex

optimization problem. This is done by taking the logarithm of the input variables, objectives

and constraints. The very same posynomial formulations are the self induced limitations as the

handwritten posynomials mostly rely on first-order models as in [MV01, dMH04]. Geometric

programming promises a very fast calculation of a global optimum using interior point methods.

Still, the applicability is questionable due to the fact that most posynomials are handwritten

and not easily deducted in an automated process. An approach to overcome these drawbacks

is presented by Aggarwal et al. [AO07], they focus on the automated generation of posynomial

equations. Though the current ideas are applied only on transistor model parameters (implicitly

assuming saturation and inversion), they do not (yet) address full circuit level specifications.

Eventually, geometric programming has also been applied to model and include layout-dependent

effects into the sizing process [ZLY+12].

Generating a layout from a given circuit is the obvious final step to tackle in order to

accomplish a higher degree of automation in analog circuit design. Graupner et al. [GJW11]

presented a generator based approach, which is based on executable design flow descriptions.

This translates to a programming inspired analog circuit design approach by providing a set of

procedures and functionalities, which may be used to describe the steps to be taken in order to

generate a target circuit. Although this method allows automated circuit and layout generation,

the description of design steps using a programming language is not the most intuitive way for

an analog design engineer. Other methodologies to automatically layout an analog circuit have

been proposed (like [LVGH06, ESL+11]), which mostly have to pre-process the target circuit

by means of symmetry, matching and partitioning. This inherently is a hard challenge due to

the fact that the previously included design knowledge during circuit sizing and construction

gets lost and has to be extracted from the circuit schematic. Thus an automated layout would

benefit massively from the (formalized) information, which could be delivered by an automated

circuit generation methodology.

Finally, this work addresses the problem of isomorphic circuits during circuit construction.

This is, by the best knowledge of the author, the first approach handling this inevitable problem.

There have been contributions addressing the automated extraction of similarities and symme-

tries (see [LVGH06, ESL+11, Eic13, EG12]) but isomorphism by itself was never illuminated.

Generally a similar problem occurs during the layout vs. schematic design step and is fully

solved inside the commercial design automation environments. First contributions in this field

are found in the 90s and serve as a base for current realizations [Ebe88, OE93].
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CHAPTER

FOUR

INTROSPECTION OF THE ANALOG DESIGN SPACE

The increasingly often abused term design space is mostly used in conjunction with circuit

synthesis. Thus sometimes misused in the context of sizing, where obviously parameter space

should have been used. The aim of this chapter is to provide an exact enumeration of all possible

circuits for a given number of ports, and furthermore to put this into relation with the presented

analog synthesis framework. Finally the following excerpts should provide a precise distinction

between the terms structure space, parameter space, design space, and performance space.

4.1 Enumerating the Design Space Using the Bell Number

Before analyzing, or even enumerating, the structure space, it has to be defined. As a prepara-

tion, it is worth taking a look at nets and components. In fact the components, i.e., the type

of the component has, despite of its number of connections (i.e., ports), no influence on the

size of the structure space. Translating this formalism to reality means, a circuit containing

two nMOS components, opens up a structure space, which has exactly the same size as the

resulting structure space for three simple (bipole) resistors—in distinction to the design space,

which includes the parameter space and thus differs.

While this seems unintuitive, this is a direct consequence of the absence of an (easily) com-

putable mapping between functionality and circuit structure in analog circuits. The following

investigations of the analog design space is thus a very important step to further understand the

challenges of analog circuit synthesis. Furthermore the possibility to state the opposing: “It is

impossible to synthesize the specified circuit.”1.

The following Lemma will support these thoughts and first denote an important property of

the structure space:

Lemma 4.1 (Structure Space Size/Dimensions). The structure space has w.l.o.g. only one

dimension, this translates to an unordered set of items, all without any particular order or direct

1Impossible is to be understood as a simplification for “Mathematically not computable, using all computing

power on earth for the next 1,000,000 years.”
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relation to each other. The size of structure space STS will be noted as |STS| and is strictly

defined by the number of circuits inside the structure space.

Once the size |STS| is well defined, the circuits inside STS can be further illuminated. A

hypothetical circuit synthesizer, which fills the structure space with circuits, does w.l.o.g. not

take any circuits’ functionalities or electrical properties into account during circuit synthesis,

thus making no assumptions about the (potential) functions of a circuit.

In contrast, there are various structural characteristics, which will be defined in the following:

Definition 4.2 (Circuits Inside The Structure Space). For each circuit c associated with a

structure space STS the following applies:

a) For each circuit c there is no other circuit c′ inside the analog design space DSA, which is

structurally identical.

b) Outer pins for each circuit are omitted.

c) All circuits have the exact same amount of component ports.

Given these preconditions, the structure space starts to get manageable. But first a quick

explanation, why these definitions are very helpful without introducing unnecessary simplifi-

cations, i.e., they do not reduce the complexity of the analyzed problem. Item a) is pretty

self-explanatory, as identical circuits inside the structure space set would not be helpful for a

formal analysis. Furthermore Item b) is, at least, easily approximated in terms of how many

circuits are forked from one. Omitting the outer pins sounds more infringing as it actually is.

Given n outer ports and m nets inside a specific circuit ci (with m being the total number of

nets and n a portion of it), the number of forked circuits |Cci | is easily calculated, assuming no

outer port is shorted with another outer port.

|Cci | =
m!

(m− n)!
: m > n, m ∈ N+, n ∈ N+

≥0 (4.1)

During analog synthesis the outer pins are actually very important and ignoring them would

generate enormous amounts of useless circuits. Nevertheless in this context, the amount of

circuits generated through the Equation 4.1 is compared to the structure space, just a little

fraction. Especially, from the complexity point of view, i.e., the asymptotic behavior is very

good natured. Equation 4.1 would usually rise in a very steep fashion with respect to m and

n—fortunately only m is getting (significantly) bigger with larger circuits. In contrast to n,

which represents the number of outer ports of the circuit. For analog circuitry the outer pins

can be nearly seen as constant in the context of asymptotic behavior. Additionally, Equation 4.1

rises at the fastest rate if the denominator gets smaller, until it reaches 1, what resembles the

nonexistence of the denominator, thus the equation would rise equally fast as any other factorial.

Summarized, this means Item b) from Definition 4.2 may safely be applied. Finally, Item c)

has no actual impact on the methodology or the analysis, moreover it emphases the fact that

in the context of analog design space analysis the number of component ports inside a circuit

determines the complexity and dominates the growth.

Given the previous observations the following definition of a structure space may be given:
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4.1. Enumerating the Design Space Using the Bell Number

Definition 4.3 (Structure Space). Let K be a specific set of components and P (K) the set of

all ports provided by the components. The number of ports will be denoted as |P (K)| with f 7→ N

being the function to determine the actual size. This allows the definition of the structure space

for a given number of ports:

STS(K) := f (|P (K)|)

The following challenge is to actually determine f . Therefore a simple reinterpretation of

the circuit and its contents is needed. Let’s assume the circuit consists solely of a tripole device

(e.g., an nMOS-device) with three pins named D, G and S. As previously stated, the outer

connections of this circuit are omitted, thus the task is to determine how the three pins may be

interconnected. For this example all possible interconnections are easily enumerated:

{D,G, S} → {(D,G, S)} (4.2)

→ {(D), (G,S)} (4.3)

→ {(G), (S,D)} (4.4)

→ {(S), (D,G)} (4.5)

→ {(D), (G), (S)} (4.6)

A net—the set of shorted pins—is described by all pins inside one pair of parenthesis (right

hand side). Although this notation is very uncommon in electrical engineering, it perfectly

matches the common notation of partitions of a set. As the name suggests: on the left side of

Equation 4.2 is the set and the partitions on the right Equation 4.2 to Equation 4.6 resemble

all possible interconnections of the pins.

In math partitions of a set is a widely known and analyzed concept. Furthermore, the

number of partitions of a set can easily be calculated using the Bell number [Aig99]. Knowing

this, it is now possible to define f from Definition 4.3 and thus the exact size of the structure

space for a given set of components respectively pins.

Each circuit resembled as a dot in Figure 4.1a, furthermore spans a parameter space, which

dimensionality is equal to the number of freely adjustable design variables. The example in

Figure 4.1b therefore shows a C (capacity) and an R (resistance) with their boundaries. It is

worth mentioning that the parameter space, opposing to the design space it is nearly continuous.

Nearly because in real process technologies there is a manufacturing grid, which technically

allows only discrete steps for a particular design variable (component parameter).

Definition 4.4 (Parameter Space). Each circuit c spans its own parameter space PS(c). The

degrees of freedom for this parameter space is determined by the number of design variables for

this particular circuit c.

Definition 4.5 (Design Space). The cross product of the structure space STS with the parameter

space PS resembles all possible circuits including the sizing.

STS(K)× PS(c) = DS(K)
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Figure 4.1: An illustration of the degrees of freedom within a circuit development process.

Noticeably, the design space by itself is not bound and grows infinitely. To restrict it and to

provide understandable limits, the Definition 4.3 may and should by applied in order to get a

manageable enumeration of the design space. Eventually, the design space is mapped into the

performance space (PERF ) as shown in Figure 4.1c.

Definition 4.6 (Performance Space). Let DS(K) be the design space spawned by the structure

space STS(K) and the parameter space PS(c). Each (sized) circuit inside DS(K) maps to

a point inside the performance space PERF . The dimensionality of the performance space is

determined by the number of performances.

DS(K) 7→ PERF

Unfortunately, the mapping is not bijective, i.e., it is not possible to directly derive the

parameters and the design of a circuit from a given set of performances. So the only way to

fulfill a given set of performances is to go from left to right.

The following Table 4.1 should provide an orientation for the reader how complex this task

may be without including expert knowledge into the process. One may instantly see the very

steep increase of the number of possible circuits, which undeniably leads to the fact that circuit

synthesis without blending in expert knowledge is unfeasible (see Chapter 1). This should more-

over serve as a motivation to include this aforementioned expert knowledge into the framework.

Table 4.1

Bell Numbers from 1 to 16

Ports BN

1 1

2 2

3 5

4 15

5 52

6 203

7 877

8 4,140

Ports BN

9 21,147

10 115,975

11 678,570

12 4,213,597

13 27,644,437

14 190,899,322

15 1,382,958,545

16 10,480,142,147
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Figure 4.2: Graph showing Bell numbers

Table 4.1 and Figure 4.2 impressively show the steep rise of the bell number. The Bell

number may be calculated using a recursive expression, with B0 = 0 being defined previously.

Bn+1 =

n
∑

k=0

(

n

k

)

Bk (4.7)

There are various other possibilities to calculate the Bell number and even more approximations,

which are not further investigated, as they deliver nothing beneficial for the current analysis.

Nevertheless, these numbers impose a suitable—moreover, even a precise upper boundary

for the number of structures to be generated from a given set of components. Fortunately, this is

a theoretical analysis and is primarily presented to highlight the capabilities of an analog design

engineer. Based on experience, simple calculations and elementary electrical rules for voltage and

current, a designer develops circuits without even remotely exploring the full structure space. In

other words, the designer utilizes expert knowledge (see Chapter 1) to implicitly discard the vast

majority of the structure space. Some, but not all, are directly applicable to the here presented

net-based circuit representation, e.g., the amount of ports connected to a net is, except for the

supply and ground nets, rarely above four.

By imitating and formalizing the methods the analog circuit designer uses to develop circuits,

the presented framework is able to reduce the number of circuits to be evaluated down to a

reasonable amount—Chapter 9 aims to provide empirical proof for this statement.
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Figure 5.1: FEATS’ top-level flow
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5.1. Methodological Considerations and Design Targets

The framework consists of several steps, which are visualized in Figure 5.1. Inside the current

chapter the various steps and inputs of the synthesis are explained in detail to allow a clear view

into the internals of the presented methodology.

As discussed in Chapter 4, the design space for analog circuits grows rapidly for rising

numbers of used components. Although an analog design engineer is able to build circuits with

large component counts, one might get the impression an algorithmic approach may never get

even near to this point. The actual number of somehow useful circuits inside this huge design

space resembles only a tiny portion.

The primary design goal of the presented explorative topology synthesis engine is the pos-

sibility to precisely control how much knowledge is included into the synthesis process. As

described in Chapter 3, the process of circuit construction may range from pure brute force

approaches (see Chapter 4) to hand crafted, experience based circuit creation. The presented

framework aims to provide both extrema and additionally anything in between. Clearly the

framework itself may not—out of the box—provide this functionality, but moreover it provides

the, literally spoken, framework of tools and hooks to allow the user to tweak and configure the

software in order to get the desired results.

5.1 Methodological Considerations and Design Targets

The primary design targets for an analog synthesis framework are easily enumerated:

• Flexibility / genericity

• Process independence

• Circuit(-class) independence

• Arbitrary hierarchy

• (Hardware) platform independent

• Optimizer / simulator independent

• Good-natured scaling

• Semantically rich

While the claimed flexibility and genericity are more a product of the whole framework itself

and are not so easily explained and pinpointed. The other points may be directly matched with

features provided by the framework.

The previous enumeration does not imply any kind of ordering, but process independence is

most likely one of the most important points to fulfill. A synthesis framework without a strong

emphasis on process independence will most likely be obsolete at the moment the target process

will be replaced. The presented synthesis framework considers changing process parameters

and other process dependent changes throughout the whole implementation. Starting with the

components (see Section 5.2.1) the framework already abstracts the atomic building block. In

application this means there is an arbitrary count of different atomic components to be used

inside the synthesized circuits. Preparing the framework for current (and following) technology

nodes, which already exhibit various different components like resistances, capacitances, and a

wide variety of MOS-components, which mostly target specific use cases. By giving a component

a semantically rich description, like: driving MOS-component, high capacity capacitor, high

precision resistance etc. the component may easily be mapped to an equivalent component
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5.2. Inputs for a Circuit Synthesis

provided by a specific technology node. By additionally measuring different properties of the

target process node, various numerical properties are extracted, which are taken into account

during the semi-symbolic circuit evaluation (see Chapter 6) executed by the analyzing rules (see

Section 5.5).

A circuit class independence goes hand-in-hand with the need to have the possibility to

describe arbitrary hierarchies. The presented synthesis framework allows hierarchies of arbitrary

depths with circuit templates, these may contain any number of circuit templates themselves,

which allows the user to create circuits and hierarchies of any depth. By further allowing to

assign different libraries of basic blocks, as shown in Appendix B, to any circuit template type—

the user moreover gets the possibility to combine different types of circuits together to construct

circuits of arbitrary complexity and size.

By platform independence it is not specifically meant to be independent from ARM, x86 or

any other hardware architecture (although it is), moreover the aim is to not be dependent on big

computing capacitances. In simple terms, the framework should work with a reasonable speed

on a decent enterprise scale workstation. But additionally, it should scale well to an arbitrary

number of servers and/or workstations. Therefore various levels of abstraction were realized,

which are partly observable as clearly distinguished inputs (see Section 5.2), but additionally the

synthesis framework internally does an extensive preprocessing of the inputs in order to further

reduce the needed computational effort (see Section 5.3).

Optimizer independence is ultimately also essential for a synthesis framework, to state flexi-

bility and genericity. The framework provides a construct named application server (see Chap-

ter 7), which allows the execution and control of any tool, which may perform any desired circuit

evaluation. This includes the simulator independence, as this is a part of the aforementioned.

Furthermore this realizes the good-natured scaling, as there may be any number of application

servers, which are all handled by the task manager. This manager (see Chapter 7) is additionally

able to distribute evaluation tasks in an asynchronous manner, which enables the framework to

scale very efficiently across any number of servers and/or workstations.

5.2 Inputs for a Circuit Synthesis

Apart from a configuration file for the synthesis process, which handles the administrative details

of the synthesis and the configuration files for the various application servers, there are exactly

three types of inputs. Each of these serving a specific degree of abstraction. The framework

clearly divides those three types of inputs, in order to maintain a clean and consistent hierarchy.

Figure 5.2 illustrates the supported levels of abstraction, which will be described in the following

sections.

5.2.1 Components

To describe the atomic building elements of circuits, components are used inside the framework.

The here presented concept of component abstraction was not yet published and represents
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Figure 5.2: Examples for the various levels of the hierarchy used in FEATS. From left to right,

each one representing a level descent. Further descriptions of each level are to be found in this

chapter.

another recent consistency addition to the framework to further increase the genericity. The

following enumeration lists a selection of possible components and their variants:

• Current source (independent)

• Voltage-controlled current source

• Current-controlled current source

• Voltage source (independent)

• (High-precision) resistance

• (Low-precision) capacity

• Switching nMOS/pMOS device

• Driving nMOS/pMOS device

• nMOS/pMOS device (in saturation)

• (Zener) diode

• Two/three port short

Each component may provide a variety of different properties to actually describe the com-

ponent’s behavior. The following attributes may be used to describe a component:

• Unique name (type of the component)

• Number and naming of connections

• Constraints as inequalities

• Process dependent attributes (e.g.,

min/max/typical dimensions, area ap-

proximation factor, manufacturing grid)
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5.2. Inputs for a Circuit Synthesis

Components serve as the atomic building elements of each synthesized circuit, thus this leads

to some implications. A component may never be divided somehow and it always resembles

exactly one (physical) part, which may be mapped directly to a counterpart provided by the

technology node. In particular, components do not exhibit any kind of behavioral description

or functionality.

5.2.2 Basic Blocks

Functional building elements inside the framework are characterized through basic blocks, which

may also be called basic functional blocks. These serve as building blocks inside a circuit, which

exhibit functional properties. They exclusively contain components, which are interconnected

and annotated in order to describe a specific functionality. A brief selection of some predefined—

but easily expandable—basic blocks follows:

• nMOS/pMOS current mirror

• nMOS/pMOS differential stage

• Rail-to-rail differential stage

• (Cascoded) current source

• nMOS/pMOS common-source stage

• Inverter

• Push-pull output stage

• (Four level) bias circuit

• nMOS/pMOS gain-booster stage

In contrast to components, basic blocks may contain additional information of functional

nature. Primarily these are attributes related to the I/O characteristics and generic port at-

tributes. Additionally, relations between the components contained inside the basic block, but

also global relations which can later be used as hints for a successful sizing.

• Number of ports and their properties

– Input, output, local reference, or

global reference

– Nature of the port:

current or voltage

– If applicable, the bias current

direction: positive or negative

• Sizing hints

– Local sizing variable

– Global sizing variable

– Fixed numerical value

– Fixed maximum/minimum value

Especially, the distinction of the (global) reference and local reference port property needs

some explanation. Generally any port which does not carry a signal may be handled as a

reference, therefore FEATS transparently adds reference ports to the next higher hierarchy once

they are needed. This features comes very handy for smaller circuit templates, as long as there

is no other instance of a single circuit template inside the same level. Assuming both contain

e.g., an enable circuit, or a bias circuit, which differ in both instances of the circuit template.

Once inserted into the top-level circuit template, implicit interconnections between those two

instances occur, as obviously their reference ports’ names match. This challenge can easily
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be mastered by introducing local reference ports, which automatically rename themselves once

there are identically named local reference ports inside the same hierarchy-level.

5.2.3 Circuit Templates

The highest level of abstraction is expressed through the circuit templates, which allow the user

to construct hierarchical structures of arbitrary depth and complexity. Circuit templates may

not only contain basic blocks, but moreover they may contain other circuit templates themselves.

The user gets an extremely expressive construct, which may be precisely configured in order to

express a smaller circuit, but also whole analog modules. The following enumeration provides a

very small portion of what could possibly be described using circuit templates.

• Voltage controlled current source

• Schmitt-Trigger

• Integrator

• Differentiator

• Instrumentation amplifier

• 2-stage operational amplifier

• Differential amplifier

• Comparator

• Operational amplifier input stage

• Active filters

• Fully-differential amplifier

• Voltage-controlled oscillator

• Sigma-delta modulator

• Operational amplifier output stage

• Common-mode feedback circuit

The expressive strength of circuit templates originates inside the fine granulated configuration

options, which allow the user to precisely tweak the method the circuits are actually generated.

Circuit templates are the main reason why the presented synthesis framework may claim a

full coverage of the design space as described in Chapter 1 and illustrated in Figure 1.1. The

interface for the user is kept plain and easy to understand by providing the following attributes

to be set.

• I/O characteristics similar to

the basic blocks

• Synthesis rules to be applied

(see Section 5.5)

• Electrical performances to be reached

during sizing

• Structural hierarchy, i.e., other circuit

templates, if applicable

As circuit templates may be encapsulated into arbitrary hierarchies and levels, FEATS in-

terprets each circuit template as a (possibly embedded in a bigger) circuit on its own. This

allows to place any circuit template inside any other without the need to make adjustments.

Essentially this not only reduces the effort needed to set up a higher level synthesis—moreover

the typical design flows (bottom-top, top-bottom, meet-in-the-middle) are all perfectly suited

to fit into this methodology. The actual top-level circuit template is simply chosen by passing
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it, by name, to FEATS. Any circuit template below this one will be synthesized on demand as

demonstrated in Section 9.3.

In this context the construction types for circuit templates must be shortly illuminated. It is

possible to include multiple instances of one circuit template inside another (higher level) circuit

template. Consequently, the relation of these to each other must be clearly described. Therefore

the two properties name and scope for circuit templates are available and may be provided

inside the containing circuit template. These two properties implicitly set one of the following

three construction types:

Unique structure, private scope span their own scope in terms of design variables and fur-

thermore do not share the structure with any other circuit template. This is accomplished

through a unique name property. (This is the default, if neither name or scope are set.)

Shared structure, private scope share the structure with other circuit templates—

determined through identical name properties—but the design variables are still private,

thus the same structure may exist with different sizings. The latter is enforced by omitting

scope, or setting it to “private”.

Shared structure, shared scope share the structure with circuit templates exhibiting the

identical name and share the design variables with all other circuit templates with equal

scope names.

5.3 Preparing the Synthesis Process

To finally start the synthesis engine in order to generate all hierarchies of circuits, the framework

applies three very important preprocessing steps. First all available basic block libraries are

analyzed to create so-called complementary-symmetric basic blocks. Afterwards the basic block

libraries are once again processed to realize an important refactoring of the available basic blocks.

All basic blocks are categorized into groups of abstract basic blocks, which serve as topological

building blocks to reduce the computational effort of the synthesis process. This realizes the

widely used top-down design methodology, translated to a more computational approach.

5.3.1 Complementary-Symmetric Basic Blocks

Recent research [EG12], [ESL+11] has shown the inevitable need of symmetry information for

analog blocks in order to primarily accelerate sizing and how important a highly symmetric

circuit is for all steps of an analog module design. An automated sizing may benefit from

the deducted constraints, especially during the layout creation—the process variations may be

significantly reduced using this information. As the framework generates all circuits, the aim is

to primarily generate symmetric circuits, rather than analyzing them and discard the asymmetric

ones. Nevertheless, the definition of symmetry in analog circuits is not always a natural, or more

precisely, mathematical one.

In electrical engineering the concept of complementary components (i.e., nMOS vs. pMOS)

is justifiable widely understood as symmetry. E.g., a rail-to-rail input stage—there are four
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branches, two originating from an nMOS differential pair and two originating from a pMOS

differential pair. An analog designer would insert a symmetric load, by using a simple cur-

rent mirror for the nMOS and the pMOS branch as to be seen in Figure 5.3. While this

would clearly be classified as symmetric, a formal symmetry does not apply in this case. The

presented framework handles this often occurring construct by generating the aforementioned

complementary-symmetric basic blocks. Furthermore, by exploiting the developed isomorphism

algorithm (see Section 6.1) the framework may generate these, fully unattended, based on the

provided basic block libraries.

vddvdd vdd

IN–IN+

gndgnd gnd

Vb1

Vb4

Figure 5.3: A rail-to-rail input stage with marked complementary loads.

The algorithm to acquire all complementary-symmetric basic blocks is very straightforward.

Roughly outlined, the algorithm inspects each of the available basic blocks bbi. After replacing

all appropriate components and ports with their complementary counterparts (this leads to a

basic block bbcomp
i ), the remaining basic blocks are now searched for isomorphic basic blocks.

For each found isomorphic block bbj a new merged basic block is constructed, which contains the

original basic block bbi and the complementary-symmetric basic block bbj. An example for this

process is shown in Figure 5.4.

The result of this preprocessing are several new blocks inside the inspected basic block library,

which all exhibit the complementary-symmetric property. These added basic blocks enable the

symmetric elementary electric rule (see Constructive rule 3) to construct circuits containing

complementary symmetries.

5.3.2 Deduction of Additional Basic Block Properties

During this very straightforward step, all basic blocks undergo a simple processing step inside

which the following properties are extracted for each of the basic blocks in order to annotate

the basic blocks accordingly.
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Figure 5.4: Two complementary current mirrors forming a new complementary basic block.

Signal identity is generated for basic blocks, which exhibit more than one signal path (i.e.,

have more than one input or output port). This leads to the annotation of the input and

output ports according to their signal identity.

Symmetric property is set for a basic block, if it exhibits more than one signal path. This

may be deliberately assumed for all basic blocks with multiple signal paths due to the fact

that these blocks are by definition symmetric, if they were merged with the aforementioned

complementary-symmetric method. Further, all provided basic blocks, which match the

former property are also flagged as symmetric by default. This is an obvious assumption,

but it may be overruled by the user for specific basic blocks, which for some reason exhibit

multiple signal paths without being symmetric.

5.3.3 Abstract Basic Blocks

Another distinctive feature of the presented framework is the grouping of the provided basic

blocks to abstract basic blocks. This quite simple, thus very powerful concept allows the con-

struction of topologies. Topologies are in the context of this work clearly distinguished from

circuits, as they represent the interconnection of abstract basic blocks instead of plain basic

blocks. This semantically richer representation is a fundamental part of the framework (see

Section 5.4). In order to construct topologies, all basic blocks, which exhibit identical I/O char-

acteristics, are grouped together to abstract basic blocks. A typical example for an abstract

basic block and its included basic blocks is shown in Figure 5.5. While an abstract basic block

may be seen as a black box containing different (transistor level) implementations of a specific

I/O characteristic. The side effect of this approach are groups of mostly functionally equivalent

basic blocks represented by one abstract basic block. Furthermore, the reduction of the number

of basic blocks leads to a reduction of the needed computational effort during the topology,

respectively circuit generation process. A wide selection of the (abstract) basic blocks currently

used inside the framework is to be found in Appendix B.
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Figure 5.5: Three nMOS current mirror variants (Figure 5.5a, 5.5b and 5.5c) forming an

abstract basic block shown in Figure 5.5d.

5.4 Circuit Synthesis Engine

The synthesis engine, or in other words the circuit generation algorithm, aims to provide an

engine, which upfront does not make any assumptions about the circuit class or the circuit

structure it should synthesize. This is absolutely mandatory and desirable due to the design

targets presented in Section 5.1. Therefore a circuit manipulation API in the form of rules

(see Section 5.5) has been developed. These allow a consistent and by the principle of locality

driven, manipulation of circuits. This section explains this approach in depth by using the

aforementioned abstract basic blocks and the definitions made in Chapter 2.

Algorithm 1 presents the actual core synthesis algorithm at a glance. Three phases can

clearly be distinguished inside the algorithm. These are namely constructive synthesis, topology

expansion and circuit analysis as also seen in Figure 5.1. The synthesis engine is executed

for all found circuit templates (see Section 5.2.3) recursively. This operation is realized as a

rule, as all operations on topologies and circuits, and is further explained in Section 5.5. The

following sections describe the phases as distinct parts but the implementation—as shown in

Algorithm 1— further encapsulates the latter two phases in order to reduce the memory footstep

of the process, following the design targets stated in Section 5.1.

5.4.1 Constructive Synthesis

The constructive synthesis is the starting point for the synthesis engine—each hierarchical de-

scent realized through Constructive rule 5 (see Section 5.5.1) means the instantiation of an

independent synthesis engine, initialized with the circuit template and its associated basic block

library. The synthesis engine behaves identical for each provided circuit template—whether it

is a top-level template or any below—each one starts exactly here.
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Algorithm 1 Synthesis Engine

1: function SynthesisEngine(t0, D
abb)

2: Q← {t0} // next topologies

3: TG ← ∅ // good topologies

4: Rc ← GetActiveRules(constructive)

5: Rd ← GetActiveRules(destructive)

6: while not empty(Q) do

7: tB ← pop(Q)

8: for all rc ∈ Rc do // constructive step

9: Tnew ← apply(rc, tB ,D
abb)

10: for all ti ∈ Tnew do

11: Q← {ti}

12: if ∀rd ∈ Rd : apply(rd, ti) then // destructive step

13: TG ← {ti}

14: end if

15: end for

16: end for

17: end while

18:

19: re ← GetExpansionRule( )

20: Ra ← GetActiveRules(analyzing)

21: CG ← ∅ // accepted circuits

22: for all t ∈ TG do

23: CA ← apply(re, t) // expand circuits

24: for all c ∈ CA do // circuit analysis

25: if ∀ra ∈ Ra : apply(ra, c) then

26: CG ← c

27: end if

28: end for

29: end for

30: return CG

31: end function

The synthesis engine starts with a circuit template t0 and its library of abstract basic blocks

DDabb to incrementally generate all possible topologies based on the activated constructive (see

Section 5.5.1) and destructive (see Section 5.5.2) rules. Starting with the empty topology t0
inside the work queue Q, which only defines the I/O characteristics of the final topology. The

algorithm pops the first topology out of the work queue, which is treated as base topology tB
during this iteration. This base topology tB and the library DDabb are now passed to each

activated constructive rule, which leads to a set of generated topologies Tnew. The latter is thus

a result of the application of a single constructive rule on tB using the provided abstract basic

block library DDabb. While it is possible that Tnew is empty |Tnew| = 0 (the application of the
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constructive rule in conjunction with the abstract basic block library lead to no newly generated

topologies), usually Tnew contains new topologies. These are now passed, one by one, to all

activated destructive rules in order to either be classified as a good topology, if all destructive

rules accept the topology, or be classified as a bad topology, if at least one destructive rule

declines the topology. Good topologies TG are kept for the following steps, while bad topologies

are discarded. Furthermore all topologies ti ∈ Tnew are inserted into the work queue Q, following

the assumption that each generated topology may be a base topology for further possibly good

topologies. This explains the incremental nature of the algorithm, as each topology is build

step by step and may be the base topology for the next, bigger topology. This approach would,

without additional constraints, lead to an infinite number of topologies—Destructive rule 1 is

the responsible rule to restrict the growth here.

The principle of locality is clearly visible through the fact that a specific constructive rule

operates strictly on a single base topology tB using the provided abstract basic block library

DDabb to construct a new set of topologies Tnew, by applying the rule once. Looking at the

construction history of a specific good topology tj ∈ TG one will observe the application of

different constructive rules, each one adding at least one abstract basic block.

5.4.2 Topology Expansion

The previous step generated a set of good topologies TG, which all consist of abstract basic

blocks. As described in Section 5.3.3, each abstract basic block resembles possibly multiple

different basic blocks. Thus the topology itself is a semantically richer representation of a whole

set of different circuits. So, to further advance in the process of circuit generation, the generated

topologies have to be expanded to their circuit representations. This expansion may take place

based on different methods, which add an additional level of symmetry and are further explained

in Section 5.5.3. This phase leads to a set of (transistor-level) circuits CA, which usually consist

by far more items as the originating set of topologies TG:

|CA| >> |TG| (5.1)

In contrast to the constructive synthesis or circuit analysis, this synthesis phase is carried out

by exactly one expansion method, as the most naive expansion method leads to the maximum

count of circuits and the other methods thus resemble subsets of this naive expansion.

5.4.3 Circuit Analysis

At this point the synthesis engine generated a vast amount of circuits (see Chapter 9 for detailed

numbers). Evaluating, or better sizing, all these circuits would lead to enormous synthesis run

times. Thus it is quite obvious that most of the circuits inside CA should not be fully evaluated

for various reasons. The following enumeration explains the most obvious of these:

Duplicates Due to the incremental and explorative nature of the synthesis algorithm, paired

with the possibility to introduce own basic blocks, the process will inevitably lead to

duplicated circuits as demonstrated in Figure 6.1.
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Inverted phase In case of a signal manipulating circuit, the synthesis engine will nearly always

generate a circuit, which exhibits the correct (positive) phase at the output port(s) but

also the circuit, which inverts the phase at the output.

Electrical constraints The explorative approach will generate circuits, which do not fulfill

even the most basic electrical constraints. For instance this would be too many stacked

MOS-devices, which obviously is process dependent.

So, this phase should apply circuit analyzing methods, which are tailored to handle these vast

amounts of circuits, to finally reduce this initially big set of circuits CA down to a reasonable

set of circuits CG, which may afterwards be passed to the full evaluation respectively sizing

step. The therefore developed algorithms are operating on the circuits through analyzing rules

(see Section 5.5.4) and resemble one of the biggest challenges for a modern analog synthesis

framework as stated previously in Chapter 1.

5.5 Rules – Circuit Manipulation API

Rules inside the presented framework represent one of the key principles in software design:

a well-defined interface for operations on data. The data in this context is represented by the

topologies, respectively circuits to be manipulated and in particular for the latter, to be analyzed.

Furthermore, driven by the principle of locality the designated goal is to allow the development

of operations on topologies and circuits, which are widely independent from the other parts of

the framework. The previous section has shown how and in which order the rules are applied

during the synthesis. This section focuses on the rules themselves, which carry out the actual

operations.

5.5.1 Constructive Rules

The concept of constructive rules originates in the first publications of this methodology in

[WH06, MMH11c]. These were fundamentally reformulated towards genericity during the mi-

gration to the graph based approach first presented in [MMH11b, MMH11a] and are in its current

evolution fully independent from specific basic blocks, thus allow the constructive synthesis to

use any basic block provided by the user as published in [MH15].

Constructive Rule 1 (InitialBlockRule (IBR)). Works on empty topologies exclusively. Insert

a single block from the given abstract basic block library, which matches the input specifications

of the topology. Matching: Two ports match if their properties are identical.

abbi

Figure 5.6: Initial block rule (IBR)
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Constructive Rule 2 (Elementary Electrics Rule (EER)). Works on any topology with open

inner ports. Insert a single block from the abstract basic block library, which matches any number

of the open inner ports. Matching: Two ports match if they both are either current or voltage

ports. Additionally if they are current ports the bias current has to match, i.e., having the same

direction.

abbi abbi
abbi+1

Figure 5.7: Elementary electric rule (EER)

Constructive Rule 3 (Symmetric Elementary Electrics Rule (SYM EER)). Realizes topologies

being symmetric by construction. Instead of placing only a single block inside the topology, the

symmetric EER tries to place multiple identical blocks inside the topology if the topology is in

symmetric state and there are enough open inner ports. Matching: Same as EER

abbi abbi
abbi+1

abbi+1

Figure 5.8: Symmetric elementary electric rule (SYM ERR)

Constructive Rule 4 (Library Rule (LIB)). Works on empty topologies exclusively. Each

block inside the abstract block library is placed once inside the topology without any matching.

Matching: There is no matching

abbi

Figure 5.9: Library rule (LIB)

The following constructive rule realizes the structural hierarchy as stated in Section 5.2.3.

The previous constructive rules may all be combined inside one circuit template—in contrast to

the following circuit template rule, which may only be used exclusively.

Constructive Rule 5 (Circuit Template Rule (CTR)). Realizes the hierarchical descent into

the next (lower) level. This means the execution of the full synthesis engine for the current

block. Once the synthesis engine has finished, the resulting circuits are handled as basic blocks

(variants) for the current abstract basic block.
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5.5.2 Destructive Rules

Destructive rules are during the constructive synthesis (see Section 5.4.1) the counterpart for

the constructive rules shown in the last section. In particular without the destructive rules the

topology count would rise indefinitely, thus each destructive rule realizes a concept to restrict

this growth.

Destructive Rule 1 (Block Length Rule (BLR)). Restricts the maximum block count inside a

topology. Takes one argument: The block threshold tB. May be set to either allow only topologies

with an exact block count of tB or less or equal blocks than bT .

Destructive Rule 2 (Output Match Rule (OMR)). Discards any topology, whose inner open

ports do not match the output specifications of the topology. Matching: Two ports match if their

properties are identical

Destructive Rule 3 (No Block Twice Rule (NB2R)). Discards any topology, which contains

two identical blocks connected directly to each other.

Destructive Rule 4 (V2V Only At End Rule (VVOER)). Scans the topology to find a block

with the input and output ports having the voltage property (v2v block). If there is any v2v block,

which is not the last block inside the topology, the topology is discarded.

Destructive Rule 5 (Topology Isomorphism Rule (TIR)). Verifies that the topology is unique

in terms of structure compared to the already accepted topologies. If the topology is isomorphic

to one of the accepted topologies it is discarded.

5.5.3 Topology Expansion Rules

The expansion has a major influence on the amount of generated circuits. The previously

generated topologies are expanded to their circuits, by replacing all abstract basic blocks with

their basic blocks containing actual transistor-level circuitry. The following rules describe how

the topologies T , consisting of multiple abstract basic blocks abbi, delivered by the constructive

and destructive rules, are expanded to their respective circuits C containing exclusively basic

blocks bbi. In the following the number of basic blocks resembling an abstract basic block is

denoted as |abbi|.

Expansion Rule 1 (Asymmetric Expansion Rule). Resembles the straightforward approach

for expansion. Each abstract basic block inside the topology is expanded to all its basic block

representations.

|C| =
∏

abbi∈T

|abbi|

Expansion Rule 2 (Symmetric Expansion Rule). Expands the topology with the condition that

equal abstract basic blocks, get equal basic block representations exclusively.

|CSym| =
∏

abbi∈T

z
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z :=

{

|abbi| first occurrence in topology

1 else

5.5.4 Analyzing Rules

Finally, the last steps inside the synthesis engine to get circuits for sizing, is called the circuit

analysis step. Analyzing rules may apply any operation on the currently analyzed circuit to

determine whether the circuit should be passed to the next rule or simply discard it. If all rules

are passed successfully by one circuit, it is called accepted.

Analyzing Rule 1 (Extract Properties Rule (EXPROPS)). Discards no circuits, but calculates

various computational cheap properties of the circuit, which may be used for later analysis.

Analyzing Rule 2 (Isomorphism Rule (ISO)). This rule determines the uniqueness of the

circuit, by comparing it to all other already accepted circuits to calculate isomorphism. The

therefore used algorithm(s) are further explained in Section 6.1.

Analyzing Rule 3 (Pre Symbolic Rule (SYM PRE)). Similar to the extract properties rule

this rule prepares the circuit for the following semi-symbolic analyzing rules. In particular this

means setting up the testbench for the circuit and creating necessary data structures.

Analyzing Rule 4 (Symbolic Gain Rule (SYM GAIN)). This rule checks for an inversed gain

between the input(s) and the output(s) of a circuit and is further illuminated in Section 6.2.2.1.

Analyzing Rule 5 (Symbolic Feasibility Rule (SYM FEAS)). This rule checks for the feasi-

bility in terms of electrical constraints and despite this approximates the output voltage range,

if applicable. This process is described in detail in Section 6.2.1.
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CHAPTER

SIX

FAST ANALYZING TECHNIQUES FOR HUGE CIRCUIT AMOUNTS

As motivated in Chapter 1, the analyzing methods used to early distinguish the feasible from the

infeasible circuits is one of the most important parts of a modern circuit synthesis framework.

Generally spoken, the main goal must be to drastically reduce the number of generated

circuits down to an amount, which can reasonably be passed on to the most expensive (in

terms of wall clock time and monetary expenses) evaluation—the SPICE accurate sizing. The

following sections describe the developed methodologies to allow a blazing fast selection with

great scalability, but with a marginal amount of false positives i.e., circuits which are discarded

and would have reached the specifications during sizing.

The illustrated methods inside this chapter are applied inside the synthesis framework

through analyzing rules, which technically resemble the interface for circuit manipulation and

analysis inside the framework. Although the described methods are widely known and ap-

plied in smaller scale circuit analyzes—the here introduced methods focus on the demands of a

modern analog circuit synthesis environment, which fundamentally differs from the regular ap-

plications for circuit analysis. The most crucial of these: the vast amount of circuits, which must

be handled. Handling maybe thousands of circuits—even without the analyzing overhead—by

themselves sets very high requirements for the software and its resource management e.g., main

memory or CPU-time. Despite this, a circuit synthesis must not occupy a computing cluster,

moreover it should be usable on a decent desktop or workstation.

6.1 Circuit Isomorphism

A basic block based circuit synthesis inevitably leads to the generation of multiple identical

circuits. The basic blocks may contain as many components (and other basic blocks) as the user

wants to, thus there are constellations in which a single basic block may be constructed from

two or more other basic blocks. Hence two (structural) identical circuits may be constructed in

different ways. A simple example for this is illustrated in Figure 6.1. Additionally, to maintain

the promised flexibility it is self-evident to allow the user of the synthesis framework to introduce
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own, new basic blocks, which obviously further enforces the need of a circuit isomorphism to

reduce the number of generated circuits to the truly unique ones.

vdd

+

vdd

=

vdd vdd

Figure 6.1: An example how the building block concept inherently may lead to isomorphic

circuits—the construction of a (existing) basic block by using two smaller basic blocks.

In a real usage scenario, the reduction of the generated circuits, down to the unique ones

is easily translated into saving time and money. More generated circuits means more circuits

to be evaluated (sized), which leads to a higher consumption of simulator and sizing resources.

This obviously directly correlates to not only higher synthesis times, but also to higher costs.

This section provides a detailed overview over the first of the two presented fast analyzing

techniques for huge circuit amounts. Starting with a brief sketch of the graph isomorphism

in general, the circuit isomorphism is differentiated from the seemingly more generic problem.

After formalizing the properties of a circuit isomorphism and analyzing its applicability, the

developed circuit isomorphism algorithm and its various modifications towards handling vast

amounts of circuits are presented. A fully annotated example of the labeling based isomorphism

described in Section 6.1.4.2 can be found in [MH15].

6.1.1 Graph Isomorphism

The graph isomorphism problem is one of the few problems, which is known to be in NP , but

neither it was successfully classified to be an NP -hard problem nor it has been shown whether

it is in P [GJ79]. Although the generalized problem of subgraph isomorphism is classified as

NP -hard, very efficient graph isomorphism algorithms have been developed and analyzed in

the past years [Pre09]. Various variants of the graph isomorphism problem are polynomially

classified as equivalent inside the GI complexity class and are accordingly GI-hard [BSC77].

This seems a reasonable classification, as the existence of a polynomial time algorithm would

directly proof P = NP .

Besides this, the algorithm has a further challenge to overcome. As the synthesis engine

generates a vast amount of circuits, each newly generated circuit has to be checked against all

other, already as unique identified, circuits. This leads to O(|C|2) calls of the algorithm, with

|C| being the number of generated circuits. This multiplies the already challenging problem.

Definition 6.1 (Isomorphism Property). A graph G1 = (V1, E1) is called isomorphic to another

graph G2 = (V2, E2), if a bijection φ : V1 → V2 exists:

∀u, v ∈ V1 : {u, v} ∈ E1 ⇔ {φ(u), φ(v)} ∈ E2 (6.1)
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Definition 6.2 (Notation). Two graphs G1 = (V1, E1), G2 = (V2, E2) are called isomorphic or

structurally equivalent, if both fulfill Equation 6.1. This will be written as:

G1 ≃ G2 (6.2)

In the context of this work, if not stated otherwise, only undirected, bipartite graphs G =

(V,E) - as defined in Chapter 2 - are used, containing vertices v ∈ V and edges e ∈ E, which

have an arbitrary number of associated invariant properties.

Definition 6.3 (Invariant property). An invariant IV i ∈ IV contains a finite number of easily

computable (invariant) properties pij ∈ IV i, which may efficiently be compared to verify equiva-

lence, but there is no strict ordering relation. The following notations will be used:

IV i ∈ IV (an invariant) (6.3)

pij ∈ IV i (an invariant property) (6.4)

IV i =
{

pi1, p
i
2, · · · , p

i
n

}

(all properties of a single invariant) (6.5)

The following three definitions formally describe the relation between the graph, its vertices

and the invariant properties as defined in Definition 6.3. The reader is encouraged to use the

annotated example shown in Figure 6.2 and despite this the Table 6.1 to ease the understanding

of the introduced terms and their implications.

Definition 6.4 (Object Invariant). Any object x ∈ {V ∪ E} inside a graph G = (V,E), may

exhibit any number of object invariants IV i ∈ IV (x), while each pij = IV i(x) means this object

x exhibits exactly this property pij . Each object x may strictly only exhibit exactly one single

property pij for each invariant IV i. The following notations will be used:

IV (x) =
{

IV 1, IV 2, . . . , IV m
}

(all invariants associated with object x) (6.6)

IV i(x) = pij (property for IV i associated with object x) (6.7)

Definition 6.5 (Equivalence Class). Let eqclsi ∈ EQCLS be a equivalence class for a graph G =

(V,E). All vertices v ∈ V are classified into equivalence classes eqclsi ∈ EQCLS. Furthermore,

|eqclsi| will be denoted as the number of vertices inside the equivalence class with each vertex

being associated to exactly one equivalence class.

eqclsi = {v1, v2, · · · , vn} , with (6.8)

∪i eqclsi = V (6.9)

∀i 6= j : eqclsi ∩ eqclsj = ∅ (6.10)

Definition 6.6 (Equivalence Class Properties). A set of equivalence class properties

EQPROPS is associated with all combinations of the available invariant properties and is

unique for each eqcls. Therefore pj ∈ EQPROPS(eqcls) denotes the unique combination of
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invariant properties, which characterize this equivalence class. The following notations will be

used:

EQPROPS(eqcls) :=
{

p1i , p
2
j , · · · , p

m
k

}

(6.11)

with phk ∈ IV h (6.12)

Furthermore, each vertex inside an equivalence class carries the same properties:

∀u ∈ eqcls EQPROPS(u) := EQPROPS(eqcls) (6.13)

net1

NP

R1

NP

net2

D

T1

S

in
G

eqcls1 = {net1, net2}

EQPROPS(eqcls1) = {degree: 2}

eqcls3 = {T1}

EQPROPS(eqcls3) = {type: nMOS }

eqcls2 = {in}

EQPROPS(eqcls2) = {

degree: 1,

outer pin: in }

eqcls4 = {R1}

EQPROPS(eqcls4) = {

type: RES }

EQCLS(c)

Figure 6.2: A fully annotated example graph (taken from Chapter 2) using Definition 6.3 to

6.6 and 6.7 applied to a circuit. The invariant properties used here are listed in Table 6.1. Note

that the edge invariants are only implicitly handled—by being included into the type at this

point.

Already for small amounts of vertices, the mapping φ is even for humans not trivial to find.

Even small graphs may exhibit a non-trivial isomorphism relation to a structurally equivalent

graph. Fortunately, circuit isomorphism compared with graph isomorphism allows to reduce

the computational complexity due to various restrictions that apply for circuits represented as

graphs.

6.1.2 From Graph to Circuit Isomorphism

The graph definition is far to generic for a representation of a circuit. As defined in Chapter 2

the fact that the graphs used for circuit representation are strictly bipartite might lead to an
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reduction of the computational complexity through the reduced number of candidates for a single

vertex to be isomorphically mapped to. However, the theoretical computational complexity

still remains inside GI-hard for a wide variety of graph classes, including the bipartite and

labeled graphs [ZKT85]. This means that in application, there might be cases in which a circuit

isomorphism algorithm might perform only in exponential time complexity. Despite the fact

that the complexity itself may not be reduced, there are several inherent properties, which may

be exploited to increase the efficiency of the algorithm.

The most computing resources preserving property of a circuit is its small average vertex

degree, compared to the number of vertices. A circuit graph may, mostly be not classified as a

planar graph (i.e., no crossing edges), but it is far away from being complete (i.e., each vertex

has edges to all other vertices). In simple terms, the fact that many circuits may be easily drawn

on a sheet of paper with just a minimal number of drawn wire-crossings, illustrates the claimed.

Furthermore, several vertex invariants, introduced in Definition 6.3, provide very valuable

information for the isomorphism algorithm. This partly originates in the explorative analog

synthesis methodology itself, as the synthesis engine, in its effort to generate all possible circuits,

also may generate structurally identical circuits, which only differ by their pin labellings. The

most common case are the simply swapped input pins, which is illustrated in Figure 6.3.

gnd

vddvdd

IN–IN+

OUT

gnd

vddvdd

IN+IN–

OUT

Figure 6.3: Structurally equal circuits with swapped pins, which should not be classified as

isomorphic in the context of analog synthesis.

Another very useful circuit property in comparison to generic graphs, is the fact that all

edges are named—due to the association of the vertices with actual components. These elec-

trical components mostly exhibit different types of connections, i.e., edges. Some examples are

presented in Table 6.1.

Especially, this is not only helpful for the isomorphism, but moreover this is a necessary

property to be taken into account, even if two circuits are structurally equivalent, there may be

a pin swapped component (e.g., a MOS-device). This would obviously lead to different behaviors

of the both circuits, so both circuits should be classified as not isomorphic. Although, there may

be components (e.g., resistors) which behave equal, regardless of how they are connected. The

algorithm handles this by simply allowing components to have equally named pins, leading to
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equally named edges. The very same applies for the vertices. While the net vertices are labeled,

their label does not count as an invariant property as changing them would neither change the

circuit structure nor any other (electrical) property. The exception are the nets, which describe

(circuit) pins, their labels are actually invariant properties as to be seen in Table 6.1. On the

other hand the component vertices, as they resemble a physical component, exhibit their type

as an invariant property, which clearly can be used to distinguish one vertex from another.

The vertex invariants shown in Table 6.1 are used to accelerate and support the isomorphism

algorithm. Typically a vertex invariant can be calculated in a negligible amount of time and

therefore does have nearly no impact on the runtime of the algorithm.

Table 6.1

The Used Invariants IV i and a Selection of Their Properties p ∈ IV i for the

Available Object Types.

Object type Invariant (IV i) Typical properties (p)

Component vertex Type nmos,pmos,cap,res, . . .

Edge Connections D,G,S,P,N,NP, . . .

Net vertex Degree p ∈ [0 · · ·∞]

Representing a pin in+, in−,vdd,vbias1,out+,out−,gnd, . . .

One is very much inclined to agree with the efficiency of the algorithm comparing two circuits

against each other. Unfortunately, the challenging part is to actually compute a set of unique

circuits out of a set of unknown circuits. Granted, the isomorphism algorithm itself will most

likely perform better as expected, nevertheless the huge number of circuits would render it

useless, if used in the obvious pairwise comparison approach - leading to O(|C|2) comparisons.

Let c1 be a circuit, which has just been expanded and is now ready for the isomorphism

analysis. The synthesis engine maintains the set of unique CG circuits and grants access to

it—the isomorphism algorithm uses it to verify circuit c1 is either isomorphic to any ci ∈ CG or

not, thus being added to CG.

To overcome this drawback, the realization of the circuit isomorphism algorithm is divided

into two phases, whilst the first phase is designed to reduce the number of circuits to be compared

against. Therefore the first phase of the isomorphism searches a CC ⊆ CG with |CC | << |CG|.

Once this reduction of potential isomorphism candidates is done, (one of) the actual isomorphism

algorithms must be applied for all remaining pairs: (c1, ci) ∀ci ∈ CC .

6.1.3 Filtering Phase

The first phase of the algorithm has the important task to preprocess all circuits CG in order to

minimize and categorize the number of circuits. The algorithm solves this challenge by calculat-

ing several trivial properties of the circuit and additionally categorizing each of the vertices (i.e.,

components and devices) into their appropriate equivalence classes. The latter is done according
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to Definition 6.7 (see Figure 6.2 for an example), which from now on is an important distinction

property for this circuit and is also used by the labeling-based isomorphism.

Definition 6.7 (A circuit’s equivalence classes). Let EQCLS(c) be the equivalence class asso-

ciated with the circuit c represented as a graph G = (V,E). Applying the Definition 6.4 and 6.6

on the circuit, there is an finite, unique and deterministic computable set of equivalence classes,

EQCLS(c) := {eqcls1, eqcls2, · · · , eqclsn} (6.14)

each one containing all vertices, whose invariant properties are equivalent. The equivalence

classes are all pairwise disjunct

∀eqclsi, eqclsj ∈ EQCLS(c) : i 6= j → eqclsi ∩ eqclsj = ∅ (6.15)

and each one contains at least one vertex:

∀eqclsi ∈ EQCLS(c) : |eqclsi| ≥ 1 (6.16)

Until now the algorithm has just visited each vertex and edge once to gather the information.

Eventually, the algorithm has to compute a so-called circuit hash, which serves as the most

important figure to possibly distinguish one circuit from another.

Hashing is a well known concept in computer science to reduce any data to a remarkably

smaller representation in order to compare (i.e., show equivalence) or even verify the original

data. Recent work has also shown that the class of non-encrypting hashing functions not only

behave comparable good in terms of collisions compared to complex ones, but additionally deliver

a decent performance due to the mostly simple calculations [ESRI14]. Exactly those are the two

most important properties for a preprocessing step, as a slow preprocessing could easily eat up

the potentially saved CPU-time.

Thus, following this reasoning an appropriate hashing function h(c) has been chosen to tackle

the problem:

Definition 6.8 (Circuit Hashing).

h(c) =

eqclsi
∏

EQCLS(c)

L(eqclsi)
|eqclsi| mod (232 − 5) (6.17)

The hashing consists of a multiplication of all equivalence classes’ labels L(x) each one to

the power of the number of vertices inside the current equivalence class, modulo 232−5 enabling

the simple and fast storage of the hash. The therefore used labeling function L(x) is defined as

follows:

Definition 6.9 (Equivalence Class Label).

L : P

(

⋃

i

IV i

)

→
[

1, 2, 3, . . . , 232
]

(6.18)

∀p, q ∈ P

(

⋃

i

IV i

)

: p 6= q → L(p) 6= L(q) (6.19)
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Definition 6.10 (Vertices’ Equivalence Class Label).

u ∈ P(V ) : L(u) = L

(

⋃

v∈u

EQPROPS(v)

)

(6.20)

The defined labeling function, delivers a (bijective and unique) integer representation of a

specific combination of invariant properties, as defined in Definition 6.6. In order to reduce

collisions, relevant literature [ESRI14, Pre09] proposes that L may be tailored to uniformly

distribute the property labels into the codomain
[

1, 2, 3, . . . , 232
]

. Experiments have shown that

this approach delivers very good and reliable results, even if L is badly chosen.

The underlying math is easily explained: The hashing function h in combination with the

modulo 232 − 5 operation forms a so-called prime modulo multiplication group, which exhibits

the important property of being free of zero-divisors. Using 232 − 5, known to be the largest

unsigned 32bit prime number, for the modulo operation leads to a cyclic group, which ensures

these properties. In simple terms, this property allows the labeling function to return any

integer, the multiplication will always lead to a non-zero hash. A hash equal to zero is obviously

undesirable, as any further multiplication would not modify the hash anymore.

Due to the definitions for vertex invariants and their properties (see Definition 6.4 to 6.7),

including the hashing function from Definition 6.8, it is easy to see that the equivalence of two

hashes is for sure a necessary but not sufficient property for the isomorphism between the two

circuits represented through their hashes. In the scope of this work this will be referred as the

hashing property. Using this hash, a smart chosen data-structure (i.e., unordered, associative,

lookup complexity O(1)) for the underlying implementation [ISO12] allows an extremely fast

filtering of vast amounts of circuits.

Once the first phase of Algorithm 2 has finished its filtering phase (see line 3), a strongly

reduced number of circuits ci ∈ CC : |CC | << |CG|, which will be denoted as isomorphic

candidates, is passed on to the next and final phase (line 11), i.e., either the backtracking

based isomorphism presented in Section 6.1.4.1 or the labeling based isomorphism presented

in Section 6.1.4.2, to determine whether one of the isomorphic candidates has an isomorphism

mapping. In line 7 and 8 the starting sets, as defined in Definition 6.11, are generated. To

disprove isomorphism for two circuits it is necessary to execute the core isomorphism algorithm

(see Section 6.1.4) for each pair (v1, ui)∀ui ∈ snewinit . Both starting sets have—due to the previous

filtering—the same amount of members, leading to a maximum of |snewinit | iterations, i.e., calls to

the core isomorphism algorithm. Note, that at this point the vast majority of the circuits were

already excluded, thus verified as not being isomorphic due to the hashing property. Eventually,

all truly unique circuits are to be found inside CU .

6.1.4 Core Circuit Isomorphism Algorithm(s)

In this section the focus shifts towards the actual isomorphism algorithm processing two circuits

c1, c2. The algorithm should—in a reasonable time—determine whether the circuits are isomor-

phic. Formally, in the context of circuit isomorphism, the distinctions between homomorphisms

(a one-to-many mapping from one graph to another) and automorphisms (a stronger formula-
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Algorithm 2 Top-level Find Uniques Algorithm

1: function TopLevelIsomorphism(CG)

2: CU ← ∅

3: CC ← FilteringPhase(CG)

4: for all cnew ∈ CC do

5: iso← false

6: for all ci ∈ CU do

7: snewinit ← StartingSet(cnew)

8: siinit ← StartingSet(ci)

9: v1 ← pop(snewinit )

10: for all ui ∈ siinit do

11: iso← iso and IsomorphismLabeling(cnew, ci, v1, ui)

12: end for

13: end for

14: if iso == false then

15: CU ← cnew
16: end if

17: end for

18: end function

tion of isomorphism to an identical graph) deliver no additional help or implications, thus they

are deliberately omitted during this analysis.

A very important decision for most graph isomorphism algorithms is the set of vertices scinit
from which the algorithm starts to explore the circuit c represented as graph. The number

of vertices inside this starting set is significant for the worst-case runtime of the algorithm.

Let v1 ∈ sc2init be the first of these vertices from the starting set of circuit c2. To find the

corresponding, isomorphic vertex inside the other circuit c1, the algorithm has to be applied for

each of the vertices ui ∈ sc2init, as the isomorphic vertex is obviously not known upfront. Relevant

literature proposes the most unique vertex to be chosen, which usually leads to choosing the

vertex with the rarest degree in both graphs. The following algorithms start with the very same

strategy, expect that they extensively make use of EQCLS(c1) respectively EQCLS(c2), which

were generated during the filtering phase as defined in Definition 6.7.

Definition 6.11 (Starting Set). Let c be a circuit with its corresponding graph representation

G = (V,E). After Definition 6.7 was applied, there is a set EQCLS(c) containing all equivalence

classes. The starting set scinit is defined as:

scinit := eqclsi : |eqclsi| ≤ |eqclsj | ∀eqclsi, eqclsj ∈ EQCLS(c) (6.21)

If two or more eqclsi contain an equal number of members, the one with the smallest label

L(eqclsi) using Definition 6.9 is chosen.

Two different algorithms were developed and evaluated to be presented in this work. The

first one is a classic, easy to understand, backtracking based algorithm (see Section 6.1.4.1),
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this class of algorithms is widely used as a reference in graph analysis. It primarily delivers a

reference as it will always find an isomorphism, if there is one—including the drawback of not

being very fast. Especially high degrees of regularity (i.e., a large starting set) and symmetry

may draw the runtime complexity towards an exponential behavior. The other proposed algo-

rithm (see Section 6.1.4.2) is inspired by [Ebe88, OE93] and was first published in [MMLH12].

It is motivated by the second big group of isomorphism algorithms, which search for a canonical

representation of the graph. Motivated, is an important term here, as a true canonical repre-

sentation as described in e.g., [HZCH14, She14] would either exhibit an exponential behavior or

force a specific ordering (for starting sets |sinit| > 1) as the algorithm would have to decide at

which vertex to start.

The latter, labeling based algorithm, massively reduces the computational effort to verify

isomorphism on two graphs, as it may discard non isomorphic circuits earlier than a backtracking

based algorithm by being heuristic in its nature. Its approach is a hashing like idea based on the

refinement of the initial EQCLS(c1). In application this translates to the possibility to generate

false positives, i.e., classify two not isomorphic circuits as isomorphic. This is introduced by the

fact that there may be collisions during the refinement, as the target codomain—used to label

vertices into—is not infinitely large.

6.1.4.1 Backtracking-based Isomorphism Algorithm

It is assumed that two circuits c1 and c2 should be tested for isomorphism and both have passed

the filtering phase, which means both have an equal set of equivalence classes as to be seen in

Algorithm 2.

In simple terms, the backtracking algorithm tries to walk through both graphs in parallel.

As the set of equivalence classes is equal EQCLS(c1) = EQCLS(c2), the minimal starting set

sc1new contains the same number of vertices as sc2new. Therefore the algorithm starts at vc11 ∈

sc1new respectively at vc
2

2 ∈ sc2new (see Algorithm 2 line 7 – 12 and Figure 6.4). As usual for a

backtracking based algorithm the general idea is to walk a legal path through the graph until

either all vertices and edges are visited, which leads to the proof of isomorphism, or all legal paths

were inspected, but none of them leads to the case were all vertices and edges were successfully

visited, thus the circuits are not isomorphic.

First, the types of the vertices are compared, those have to be equal (see Equation 6.22) or

the routine will return a mismatch. Afterwards the routine starts to inspect the possible edges

to be used in order to reach the next vertex. This happens for both circuits by setting up a set

of possible paths by simply collecting all connected edges E(vc1) and E(vc2). For these sets and

the current vertices vc1 , vc2 the following characteristics must be assured, with N(e) being the

edge’s e name (e.g., one from Table 6.1), and T (v) being the vertex’s type invariant (as seen in

Table 6.1).
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T (vc1) = T (vc2) (6.22)

|E(vc1)| = |E(vc2)| (6.23)

∀e1 ∈ E(vc1) ∃e2 ∈ E(vc2) : N(e1) = N(e2) (6.24)

∀e1 ∈ E(vc2) ∃e2 ∈ E(vc1) : N(e1) = N(e2) (6.25)

If any of Equation 6.23, 6.24, 6.25 or 6.22 are violated, the routine returns. Otherwise the

routine may proceed and chooses an edge to walk inside circuit c1 and an equally named edge

in c2.

6.1.4.2 Labeling-based Isomorphism Algorithm

net1

NP

R1

NP

net2

D

T1

S

in
G

s1 = eqcls1

s3 = eqcls3

s2 = scinit = eqcls2

s4 = eqcls4

P c
0

Figure 6.4: The graph for circuit c from Figure 6.2 correctly annotated to serve as a starting

point for the labeling based isomorphism. The starting set (see Definition 6.11) is explicitly

marked, assuming its label has the smallest label.

The general idea of the labeling algorithm is to partition a graph according to its vertices’

invariants. The first labeling is done according to Definition 6.7 and Definition 6.9, additionally

the starting set sinit is determined using Definition 6.11 as shown in Figure 6.4. This initial

partitioning for a circuit c is denoted as P c
0—exhibiting the following properties:

P c
k :=

{

sk1, s
k
2 , · · · , s

k
i , · · · , s

k
n

}

(6.26)

with sinit ∈ P c
k (6.27)
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P c
k solely contains n disjunctive subsets:

∀s, s′ ∈ P c
k → s ∩ s′ = ∅ (6.28)

The index k denotes the k-th refinement of the partition starting with k = 0. Each P c
k resembles

a mapping f for all vertices V :

f : V → P c
k (6.29)

The refinement is repeated until the partition solely contains singletons, with a singleton being

a subset containing only one vertex:

|si| = 1 (6.30)

If this refinement is done simultaneously for two circuits c1 and c2, one may state:

∃ bijection g : P c1
i → P c2

i , s 7→ s′ ⇔ Li(s) = Li(s
′) (6.31)

∀s ∈ P c1
i , ∀s′ ∈ P c2

i : |s| = |s′| = 1 (6.32)

⇒ c1 is isomorphic to c2

During the refinement, all resulting singleton subsets are constantly checked for equality,

once the singleton subsets for two circuits during a refinement differ, it may be stated that the

circuits are not isomorphic.

Algorithm 3 present the methodology in depth. The function IsomorphismLabeling re-

turns either true or false for two circuits c1 and c2 to state isomorphism, respectively disprove

isomorphism. v1init and v2init are the vertices inside the starting sets from the initial partitioning

as defined in Definition 6.11. In particular the outer while statement represents a full iteration

through the circuit, whilst the inner implements the breadth-first search through both circuits

in parallel. getNeighbors(u), as the name suggest, acquires all neighbors from a given vertex

u, which are afterwards relabeled within the function relabelVertices(u). This relabeling

is done depending on the type of the vertex u. If the vertex u resembles a net the following

labeling is applied:

Ln+1(u) = Ln(u) +
∑

v∈B(u)

L(v) (6.33)

With B(u) being the neighbor vertices. Accordingly, if the vertex resembles a component, the

following equation is used to relabel the neighbors.

Ln+1(u) = Ln(u) +
∑

v∈B(u)

∑

e∈E(u)

L(v) · L(e) (6.34)

The labels for all vertices are kept inside an associative data structure, which is not explicitly

mentioned inside Algorithm 3 as it is only used inside relabelVertices, matchSingletons

and onlySingletons. Using an associative data structure eases the realization of the operations

done within matchSingletons and onlySingletons. The former, as the name suggests,

matches all singletons for circuit c1 against all singletons for circuit c2 and returns true, if

they match or false otherwise. The latter checks all subsets and returns true, if all subsets are

singletons. Using both, one can state isomorphism, (only) if both return true as to be seen in

line 22, according to Equation 6.31.

48



6.2. Fast Semi-Symbolic Preselection

Algorithm 3 Labeling Isomorphism Algorithm

1: function IsomorphismLabeling(c1, c2, v
1
init, v

2
init)

2: while true do

3: curQ← {v1init}

4: compQ← {v2init}

5: curV isit← ∅

6: compV isit← ∅

7: while |curQ| > 0 do

8: cur ← pop(curQ)

9: comp← pop(compQ)

10: curV isit← cur

11: compV isit← comp

12: curN ← getNeighbors(cur, c1)

13: compN ← getNeighbors(comp, c2)

14: relabelVertices(cur, curN)

15: relabelVertices(comp, compN)

16: curQ← curN

17: compQ← compN

18: if not matchSingletons( ) then

19: return false // isomorphism disproved

20: end if

21: end while

22: if matchSingletons( ) and onlySingletons( ) then

23: return true // isomorphism verified

24: end if

25: end while

26: end function

6.2 Fast Semi-Symbolic Preselection

As mentioned earlier, to facilitate an analog circuit synthesis, a method for a fast pre-selection

of viable circuits is crucial. After the isomorphism, this is the second important step to reduce

the number of circuits.

Generally, during this step precision is traded for speed. Therefore the currently used tech-

nology node has to be analyzed upfront to deduct some parameters, which may be used during

the following analyzes. This includes supply voltages, threshold voltages, parasitic capacities

and various other technology dependent constants. All these are tailored to deliver optimistic

approximations in order to avoid false negatives during this analysis (e.g., minimal threshold

voltages). The following sections describe the developed methods to preselect candidates for the

sizing step from possibly huge circuit counts.
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6.2.1 Electrical Constraints

Nowadays, constraint-driven circuit design starts to become established among analog design

engineers. The benefits during a regular design sometimes seem hard to explain to the designer,

as it forces him to annotate each functional block (e.g., MOS-devices) by hand, which may not

always outweigh the benefits.

Contrary to this, during an automated synthesis these constraints are extremely beneficial

and lead only to a marginal overhead. The latter originates in the basic block concept. Each basic

block (as seen in Section 5.2.2) already contains all necessary electrical constraints. Additionally

each component introduces its own constraints, which will be propagated from bottom to top

during circuit synthesis.

The used electrical and structural constraints are widely known as sizing constraints—based

on various publications (e.g., see [SEGA99, GZEA01, MGS08]), the general idea is to bring

all devices into their targeted state (e.g., switching, inversion, or saturation). Once all devices

inside a circuit reach their target state (i.e., fulfill their constraints), the circuit is called feasible.

The major difference between the aforementioned publications and the application inside the

framework is the fact that usually one needs to extract the structural information from a given

circuit. Inside the framework the structures are all known, as they are provided as basic blocks

upfront. This allows a precise control of the constraints to be included by either providing them

directly in the form of inequalities as described in Section 5.2.1 or implicitly inside the provided

basic blocks (see Section 5.2.2) by controlling the design variables and their relations.

The constraints used in this analysis are the same as the ones used for the sizing process.

The important difference is the evaluation of the constraints, instead of simulating the circuit

with a SPICE accurate simulator, the framework verifies that all constraints together are feasi-

ble. Without using a circuit simulator this method delivers a best-case approximation for the

feasibility of the circuit.

This approach is fully technology independent, as the components, thus their constraints,

are described in a generic way. The following enumeration gives some examples for the used

constraints across basic blocks and components.

• Basic nMOS / pMOS component

– Saturation

– (Strong) inversion

• Switching nMOS component

– VDS ≥ 0

– VGS ≥ 0

• Simple current mirror

– Equal lengths for all MOS-devices

• Rail-to-Rail input stage

– Equal lengths/widths for all

nMOS-devices

– Equal lengths/widths for all

pMOS-devices

The framework maintains a maximum amount of flexibility by providing an easy and intuitive

way to introduce any type of constraint. One may simply add the equation resembling the

constraint(s) to any basic block and/or component.
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Once a constraint is propagated to the top level circuit, it delivers very useful information

for the whole synthesis process. They get passed to the sizing step to force bounds during the

circuit sizing. But additionally, the are exploited for the fast pre-selection. This is done by

setting up a linear system of inequalities—an minimal example is show in Figure 6.5 containing

the saturation and inversion constraints propagated from bottom (e.g., MOS-device) to the top-

level. Despite the inequalities shown in Figure 6.5 further ones are considered, e.g., input voltage

range constraints, or bias voltage constraints.

T1T2

T3T4

T5

gnd

vddvdd

n2

n1

IN–IN+

Vb1

OUT

(a) nMOS differential stage

T1: VDD − V (out) ≥ (VDD − V (n2))− VTHp

VDD − V (n2) ≥ VTHp

T2: VDD − V (n2) ≥ (V (n2)− VDD)− VTHp

VDD − V (n2) ≥ VTHp

T3: V (n2)− V (n1) ≥ (V (in+)− V (n1))− VTHn

V (in+)− V (n1) ≥ VTHn

T4: V (out)− V (n1) ≥ (V (in-)− V (n1))− VTHn

V (in-)− V (n1) ≥ VTHn

T5: V (n1)− VGND ≥ (Vb1− VGND)− VTHn

Vb1− VGND ≥ VTHn

(b) Automatically deducted constraints

Figure 6.5: Generation of a circuit’s inequality system—the inversion and saturation con-

straints.

6.2.1.1 Feasibility Analysis

The generated system of inequalities is now evaluated using an—from scratch developed—

optimized simplex algorithm. This simplex applied to the system of inequalities provides a

very fast feasibility analysis of the circuit and its constraints. To be more precise: if the system

of inequalities resulting from a specific circuit has no feasible solution, then the circuit may be

directly discarded. This decision strongly depends on the technology node which is used, as a lot

of the constraints are formed with technology dependent constants like the respective threshold

voltage or supply voltage.

6.2.1.2 Output Voltage Range

The previously set up system of inequalities can furthermore be used to provide a very optimistic

over approximation for a performance widely used in (operational) amplifier design: the output

voltage range.

The simplex algorithm allows to define the direction in which any free variable should be op-

timized after a feasible solution has been found. Namely this means maximizing or minimizing a

variable to its optimal value. Translating the output voltage range performance, to the difference
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between the maximum and the minimum output voltage, leads to the application of the simplex

algorithm to obtain these performances. The difference between these resembles a strong upper

bound for the output voltage range. By using the previously extracted technology dependent

constants paired with the actual circuit structure, this approximation allows the framework to

discard any circuit, which does not reach the specified performance. This method has been used

for various technology nodes and has shown a very robust behavior with a minimal (< 2%)

amount of false positives.

6.2.2 System Analysis

To obtain a reasonable approximation of the (DC-)gain between two net nodes, the full system

matrix is generated using the modified nodal analysis. This system description can be easily

obtained from inside the framework and is again highly optimized and developed from scratch to

maintain a maximum amount of flexibility paired with an outstanding performance due to non

existing communication barriers—like a third-party tool connected through a character based

(pipe-)interface would impose.

Even though there is a rudimentary Newton-Raphson solver for implicit defined equation

systems, this is neither the main priority nor does the world need another new SPICE-accurate

simulator. But having the possibility to natively analyze the system opens up a very important

door for further fast analyzing methods. Flexibility, is one of the main design goals, which

leads to an highly versatile analysis toolbox. The customization possibilities include: the test-

benche(s), the used components, technology nodes, basic blocks and component models to be

used. Additionally, the target topology or circuit may be analyzed in multiple hierarchies,

this even opens up the possibility to apply behavioral models to specific modules in order to

accelerate the preselection.

6.2.2.1 Gain Approximation

The main focus of this work is the extremely fast gain approximation, which allows the framework

to at least discard 50% of all generated circuits, as the synthesis engine generates each circuit

with an inverted gain.

Unfortunately, to calculate the gain between two arbitrary nets inside an electrical network

one needs to employ an AC-analysis, which implies the calculation of the DC operating point

for the system. Even with a state-of-the-art analog simulator, the calculation of thousands of

DC operating points would eat up an considerable amount of resources and wall clock time.

The tool startup, netlist read-in, results evaluation and writing and finally the simulation can

easily eat up several seconds, which sums up to hours, without considering the waste of these

expensive, mostly licensed resources.

Thus, a simplification of the calculation model for the MOS-devices was introduced in order

to tremendously reduce the computational effort while still delivering a robust approximation of

the (DC-)gain. As the component models of all devices inside the synthesis are easily exchange-

able a very simple so-called static model for the MOS-devices was realized. This static model

assumes the MOS-device to be in saturation and (strong) inversion and deliberately sets an
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average transconductance gm for each MOS-device without actually calculating it. This reduces

the computational complexity of the system from an implicit system of equations down to a

quasi linear system of equations, which can directly be solved with e.g., an LU-decomposition.

The assumption that all MOS-devices are in saturation respectively inversion is absolutely

feasible, as most MOS-devices operate in saturation. Additionally, the fact that the framework

provides the possibility to define and modify all components, their electrical constraints and

function inside the circuit is extremely helpful here. E.g., switching MOS-devices are marked

and are simply not considered during this analysis. Eventually, the inserted transconductances

for the MOS-devices are actual real values as the technology nodes was extensively analyzed in an

automated process, which simulates thousands of different configurations to obtain a reasonable

average transconductance.

Using the static model and an appropriate open-loop testbench the AC-solution is easily

computed by multiplying the frequency as a scalar with the AC-admittance matrix and adding

the result to the DC-admittance matrix. Once inverted, a reasonable gain (sign) approximation

can be taken from the resulting matrix. Some examples of this approach are presented in

Chapter 9, which shows evidence that this approach delivers an extremely robust approximation

for the gain inversion, while being fast enough to easily handle thousands of circuits.
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CHAPTER

SEVEN

UNATTENDED CIRCUIT SIZING

In accordance with the promoted flexibility and scalability (see Section 5.1), the circuit evalua-

tion is carried out by the task manager and an arbitrary number of application servers. The task

manager realizes the handling and distribution of the evaluation tasks using any scriptable tool,

which has to be encapsulated into an application server. Section 7.1 introduces the concepts

realized to communicate between task manager and the application servers, followed by Section

7.2, which describes the actual sizing process in detail.

7.1 Task Allocation

To fully utilize the available computing resources an asynchronous task distribution system

was developed and integrated into FEATS. The evaluation of (synthesized) circuits is perfectly

suited for parallelization due to the inherent independence of the circuits. In other words, a

parallelization may easily scale close to linear as each instance of an evaluation tool raises the

overall synthesis speed without affecting any of the other instances. In a real usage scenario

this linear scaling will surely be affected by hardware limitations, but from the software point

of view the overhead for communication, result handling and task allocation in less than 2%.

As to be seen in Figure 7.1, the task manager connects to each application server through

TCP/IP using a protocol developed from scratch in order to keep the overhead of the commu-

nication as low as possible. The application servers may either be started by FEATS during the

framework’s startup or may be started directly by the user to maintain a maximum of flexibility.

The developed communication protocol implements the following capabilities:

Specification transport of the current circuit class (circuit template).

Circuit transport to deliver the target circuit to the application server.

Results transport back to the task manager including any further information generated by

the underlying 3rd party application.

Control commands manage, initialize and control the application server.
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Figure 7.1: Illustration of the asynchronous task distribution

FEATS uses application servers to encapsulate any desired 3rd-party software into the frame-

work. Any software may be easily wrapped with a set to tools provided by FEATS. Once the

3rd-party software is encapsulated into an application server, an arbitrary number may be started

and used during the synthesis process. Different application servers for various 3rd-party tools

have been realized and successfully applied, e.g., WiCkeD [Mun] or Maple [Map].

7.2 Sizing

The sizing step is facilitated by a commercial sizing tool named WiCkeD from MunEDA [Mun].

This is one of the persistent, automated, analog sizing tools as described in Section 3.1. It

provides a very important and distinctive feature compared to other similar tools, it is fully

scriptable, means it may be run in a batch mode and (nearly) all operations may be done from

a provided script. This allows to fully automate the sizing process, enabling the framework to

apply the sizing on an arbitrary number of circuits unattended, without any interaction of a

human.

WiCkeD provides a tool, which may be used to properly set up the sizing environment for

a given circuit. Although the tool may also be scripted and used in batch mode, the generated

environment is far to generic and filled with comfort and help functionalities, which are of no use

inside an analog synthesis framework like FEATS. But the environment and especially the file

specifications, which are used by WiCkeD are very well documented. Allowing the generation

of the environment directly by FEATS, which leads to a massive improvement in terms of

overhead, performance and complexity. Despite the latter the framework gets full control of the

sizing process and the underlying mechanics, e.g., the used SPICE simulator. This even lead to

the prototypical realization of the sizing process with spectreMDL [Cad], which is not supported
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by WiCkeD natively. Ultimately, this is crucial for the framework in order to state simulator

independence as promoted in Section 5.1.

The following enumeration names the essential parts of the sizing environment, which are

generated by the framework.

Testbenches especially tailored for each circuit class, thus template-driven. Some of the actu-

ally used testbenches are shown in Chapter 8.

Measurements for each specification, in order to calculate the performance for the circuit.

Especially all propagated (electrical) constraints are automatically generated as measure-

ments by the framework.

Sizing process control file realizes the actual sizing steps to be taken.

Technology node files for the used SPICE simulator in its native format.

Technology parameters extracted once upfront, like the parameter grid, minimal/maximal

component dimensions and rough active area approximations with respect to the compo-

nent dimensions.

Simulator control files including simulator start-up files, extraction scripts in order to extract

the performances from generated simulator output and finally some error handling routines

to enable the user to debug problems.

(Flattened) netlist of the currently sized circuit including anything needed by the simulator.

Design variables to be used for the parameter synthesis during the sizing.

One of the major challenges inside FEATS is the construction of the testbenches, measure-

ments and the sizing process control file. The former are further discussed in Chapter 8 including

the measurements. The sizing process control file defines which steps are taken in order to realize

a sizing on a circuit which comes without any initial sizing. Generally, the sizing as a whole

consists of two distinct steps:

Deterministic Feasibility Optimization, which is applied to center the design in terms of

electrical constraints. For most circuits this translates to bringing all (appropriate) MOS

components in saturation and (strong) inversion. In particular this mostly leads to a sizing,

which already exhibits fundamental functionality. Furthermore, this step is relatively fast

and if not successful a strong argument to discard the circuit directly.

Deterministic Nominal Optimization facilitates the actual sizing towards the previously

defined specifications. All specifications during this first optimization step are handled as

simple bounds, in other words the optimizer tries to generate a set of parameters, which

lead to specifications that simply fulfill the defined specifications and does explicitly no

maximization respectively minimization.
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A successfully finished deterministic nominal optimization automatically leads to a good

circuit, i.e., all defined specifications are fulfilled. While this circuit is now functional in terms

of performances, there is still potential to further optimize the circuit. Usually the specification

implicitly contains performances, which should be further optimized towards a direction or even

an explicit target. E.g., the area should usually be minimized and an offset should the optimized

towards a systematic offset of exactly zero. FEATS therefore provides the possibility to further

optimize the circuit by enabling the user to set various other optimization goals for each of the

specifications. The following enumeration shows the realized capabilities:

Priorities provide a mechanism to prioritize specific specifications. A performance which ex-

hibits a higher priority is handled and optimized first and all other performances with a

lower priority are only evaluated and optimized, if the ones with a higher priority already

fulfill the specifications.

Scaling allows the user to specify the impact of a specific performance inside the optimizer’s

cost function. Usually the optimizer calculates the scaling automatically, but there may

be cases for which the user wants to overrule this mechanism, e.g., to increase the impact

of the area.

Optimization direction realizes a maximization respectively minimization or target optimiza-

tion. This is particularly useful if one aims to size the circuit towards a pareto optimal

point.

Despite the realized capabilities, all other optimization methods provided by WiCkeD are

applicable. Worth mentioning here is the yield optimization, which is currently not fully sup-

ported, but could easily be included into FEATS using already available mechanisms and tools.
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CHAPTER

EIGHT

PRESENTATION OF SELECTED CIRCUIT CLASSES

In this chapter the primary goal is to demonstrate the capabilities of the presented methodologies

on actual circuit design cases. A set of representative examples was chosen in order to present

the flexibility and the scalability of the framework. While the first, smaller analog modules

presented, focus on the presentation of the concept as a whole, the final example shifts the focus

towards the increase of size and complexity of the synthesized circuits.

Furthermore, the developed circuit classes, respectively circuit templates, are illuminated,

especially the used testbenches and performances to evaluate the circuits are presented in detail.

The synthesized circuits are additionally analyzed in terms of industrial applicability and scien-

tific competitiveness by providing comparisons to recent publications to provide all information

to allow the reader to classify the synthesized circuits in a greater context. This chapter aims

to provide precise information about the synthesized circuits, but not every circuit template

used, is illuminated, as e.g., RC-networks can easily be calculated using freely available tools or

CAS-systems.

To maintain a high degree of applicability and comparability the presented circuits are all

synthesized inside a real 350nm bulk CMOS process node from austriamicrosystems using a

supply voltage of 3.3V. The wall clock time taken for the synthesis engine including preselection

is usually below three minutes—thus the sizing is the determining factor for the synthesis’

runtime. The framework implements an asynchronous task distribution to allow a parallelized

sizing using an arbitrary number of sizer instances (see Section 7.2).

The here encouraged approach to design analog circuits is highly influenced by the proposed

framework and therefore differs—not fundamentally—but primarily in terms of chosen abstrac-

tions. Most analog literature and mainstream analog design methodologies widely match in their

approach to design analog circuits by often introducing implicit hierarchies, i.e., even (medium

sized) analog modules mostly end up with less hierarchy levels than a purely computational

approach would suggest. Humans tend to understand and handle redundancy far better than

strict hierarchies, especially if these aim to be clean and computational consistent, they start to

be overwhelming. Remarkably, in relational database design a similar constellation called nor-

malization occurs, which is often little liked (e.g., see [For06]). This design principle—possibly

due to the fact that database structures are designed by humans—recently suffers.
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FEATS aims to provide full automation capabilities, including all advantages of a highly

consistent, unattended, and computational methodology. Coupled with an interface, which still

fits into the current design practice by speaking the same language as an electrical engineer does,

giving him tools to apply his knowledge and experience using familiar concepts. This chapter

provides the necessary information to underpin this statement.

8.1 Utility Circuit Templates

Although it is possible to synthesize each circuit template by using small basic blocks, it is not

truly feasible for all applications. The framework—as promoted earlier—allows to transparently

blend between the basic blocks approach and a library approach for synthesis. For instance the

following circuit templates are provided as they are without further modifications in terms of

structure.

The utility circuit templates presented in the following are (currently) not tailored to be

synthesized by themselves. Thus there are no testbenches for them and in particular they are

only used in conjunction with other circuit templates and are evaluated together with them as

a whole.

8.1.1 Bias Circuit

Bias Circuit

VB1
VB2

VB3
VB4

Bias Circuit

TESTBENCH SPECIFICATION

<None> <None>

PORTS

VB1
Local reference Voltage

VB2
Local reference Voltage

VB3
Local reference Voltage

VB4
Local reference Voltage

RULES

LIB BLR(= 1)

TEMPLATES

<None>

OPERATING CONDITIONS

<None>

Figure 8.1: Bias Circuit

Before focusing on the actual function of this circuit class, there are various fundamental prop-

erties for this particular circuit class presented in Figure 8.1:

• No (signal) inputs and processing is done
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• Provides n voltages, each named like:

VBi : i ∈ {1 · · ·n} (8.1)

• All bias-voltages must not be identical with the ground or supply voltage, i.e., somewhere

in between those two potentials:

VGND < VBi < VDD : i ∈ {1 . . . n} (8.2)

An ideal bias circuit should furthermore maintain the adjusted bias voltages or voltage current

ratios under all circumstances, this includes drifts in temperature, supply voltage or any other

operating condition. But notably the provided bias-voltages should be connected exclusively to

high impedance nodes, i.e., MOS gate pins, in particular this means to never connect a resistive

load, as this would have a negative impact on the provided voltage.

Bias Circuit Implementation

The bias circuit is an important part of nearly all linear analog circuits and even for many

analog circuits in general. The primary task of a bias circuit is to generate bias voltages for the

functional part of the analog circuit. The analog literature provides a large number of possible

bias circuits, but most—if not all—are based on the voltage divider concept. Furthermore, one

should not confuse a bias circuit with a bandgap reference or constant current reference as they

form the base of most bias circuits. The bias circuits used for the presented set of examples is

shown in Figure 8.2, it contains an ideal current source, which may be set to a fixed directed

current value to resemble a constant current source as provided by most process technologies.

Alternatively an user may realize a bandgap or similar constant current generator directly inside

the bias circuit, but this usually does not outweigh the unnecessary increase of simulation times.

Thus this behavioral representation was chosen.

The directed current provided through the ideal current source is fixed for all the following

circuit synthesis examples as it will be simply replaced by the constant current source generator

from the technology node. Besides this, the bias circuit provides three degrees of freedom to be

used as design parameters inside the sizing:

WBias The width of all pMOS and nMOS transistors.

LBias The length of all pMOS and nMOS transistors.

WCascMult A multiplier used for the widths of the inner two bias voltages

(V B2 and V B3).

It is important to mention that although the pMOS and the nMOS devices’ widths are based on

the same design variable (WBias), the actual width of the pMOS devices differ, as their widths

get multiplied by a variable named pfac, which compensates the difference of the charge-carrier

mobility between nMOS and pMOS devices, this value usually is between two and four. This

originates in the fact that the holes have to move by detaching electrons from one atomic
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vdd vdd

gnd gnd

Vb1

Vb2

Vb3

Vb4

(a) Flexible bias circuit

vdd

gnd

Vb4

(b) Simple (specialized) bias circuit

Figure 8.2: Various bias circuit realizations

nucleus and reattach to the next atomic nucleus, this process takes significantly more time than

an electron being passed through, as inside an nMOS channel.

Another, not to be underestimated, design decision for this block is its robust behavior

against process variations. All devices inside this block are realized with an equal length, en-

abling to build a very robust layout. This is furthermore encouraged through the fact that

all biased nMOS and pMOS devices inside the biased circuit also get the same design variable

assigned for their lengths. This leads not only to a reduced amount of design variables, an

easily adjustable bias current (simply using the width as a multiplier for the bias device) but

moreover resembles a widely used design methodology used by analog designers. Nevertheless,

due to the template based approach (see Section 5.2.3) this block may easily be replaced by

a more sophisticated biasing block, i.e., to compensate for manufacturing deviations between

nMOS and pMOS devices. Furthermore, the automatic topology generation process allows to

select the best alternatives automatically.

8.1.2 Voltage-Averaging Circuit

A voltage-average-generation circuit calculates—as the name suggests—the average voltage Vavg

from two voltages V1 and V2, formally this means:

Vavg =
V1 + V2

2
(8.3)

The theory is trivial, but an actual implementation has to address various challenges. Analog

circuit design literature mostly does not explicitly deal with this inconspicuous circuit, moreover

it is presented as a part of common-mode-feedback circuits (see Section 8.1.3), for the measure-

ment of supply voltage drift or simple power dissipation measurements. This circuit template
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serves as a typical example for a hierarchy which usually would be a (redundant) part inside a

CMFB implementation.

• The sensed voltages V1 and V2 should not be affected by the measurement itself, in par-

ticular this means:

– Resistive load, as high as possible

– Capacitive load, as low as possible

• Sensing should work for any voltage between ground and supply voltage as linear as possible

• React to changes of V1 and/or V2 as fast as possible

• A though area vs. performance trade-off

Voltage-Averaging Circuit

Vavg

V2

V1

Voltage

Averaging

Circuit

TESTBENCH SPECIFICATION

<None> <None>

PORTS

V1 Input Voltage

V2 Input Voltage

Vavg Output Voltage

RULES

LIB BLR(= 1)

TEMPLATES

<None>

OPERATING CONDITIONS

<None>

Figure 8.3: Voltage-Averaging Circuit

As with most ideal behavior descriptions a real implementation has to compromise, mostly

not because the possibly best solution can not be realized, but more because the solution may be

not known upfront. Facing complex process technologies and the inherent mutual interference

of analog circuits, most designs today rely on experience and what was used before. Exactly at

this point FEATS can support the design process significantly. By enabling the user to provide

several implementations for a given circuit template and let the synthesis framework do the trial

and error work.

Passive Common-Mode-Sensing Circuit

A passive realization resembles the most primitive thus still useful circuit for common-mode-

sensing and is shown in Figure 8.6. If both resistors and capacities have equal dimensions
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R1 == R2 and C1 == C2, then the voltage dividing property of this circuit generates an

average voltage Vavg between both input voltages leading to the desired behavior. Although

this implantation provides the necessary functionality, it has to suffer from some drawbacks. In

fact, one might nevertheless keep this circuit inside the library, as it has the distinctive property

that its behavior is very good natured, allowing to focus on more complex parts of the analog

module. This neglects most layout related issues as the resistances have to be sized with very

big resistances.

8.1.3 Common-Mode-Feedback-Amplifier Circuit

A common-mode-feedback-amplifier takes a very important role once an amplifier design is

developed to provide a fully differential operating mode. To avoid common mode drift, even-

order harmonics or even clock feed-through, the differential output nodes DC voltages have to

be regulated towards a predefined VCM , which is usually set to the middle voltage:

VCM =
VDD − VSS

2
(8.4)
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(a) Correctly amplified sinus

Time
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e

(b) Drifted away output signal

Figure 8.4: Fully differential output behavior without common mode feedback

Figure 8.4 shows the typical behavior of differential output nodes without an appropriate

common-mode-feedback. The uncontrolled output nodes tend to either drift towards the high or

the low end, fully disabling the next input stage. Despite the necessity of regulating the output

nodes, a well designed common-mode-feedback may also contribute positively to the circuits

electrical properties, e.g., by providing additional gain, stability, or speed.

The block-level diagram of the common-mode-feedback reveals this property, as the realiza-

tion practically consist of a single-ended operational amplifier comparing the averaged voltage

with the target voltage VCM and driving two current sources to inject current into each of the

floating output nodes, thus forming a closed control loop. In other words, the mean voltage

between the differential nodes is constantly forced towards the defined target voltage VCM .
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Common-Mode-Feedback Circuit

−

+
OUT–

OUT+

IN+

IN–

VCM

Voltage

Averaging

Circuit

Current

Sources

PORTS

IN+ Input Voltage

IN – Input Voltage

VCM Input Voltage

OUT+ Output Current

OUT – Output Current

RULES

CTR BLR(= 3)

TEMPLATES

Voltage-averaging circuit

Single-ended operational amplifier

Current source

OPERATING CONDITIONS

<None>

TESTBENCH SPECIFICATION

<None> <None>

Figure 8.5: Common-Mode-Feedback Circuit

Simple Common-Mode-Feedback Amplifier Realization

Although it would be possible to synthesize the single-ended operational amplifier using the basic

block approach, the necessity is not given (yet). In real application scenarios, an exploration

of more sophisticated amplifiers—compared to the used simple differential stage—would be

feasible by replacing the amplifier block as seen in Figure 8.5 with a single-ended operational

amplifier circuit template as described in Section 8.2.1. To be more precise, this could be done

by changing a single line inside the circuit template provided for the common-mode-feedback

circuit (class). Figure 8.6 shows the current transistor-level implementation used for the here

presented examples. Although the circuit is simple, it is widely used in industrial applications.

Furthermore, with the template based approach, itself could be the target of a full hierarchical

structure synthesis run, to improve the circuit in the context of surrounding circuitry. Obviously,

this circuit is neither optimized for area nor for providing additional gain, but the flexibility

provided by the synthesis framework allows to apply rapid prototyping development methods,

known from computer science, in analog circuit design, i.e., aim for an early working prototype

and decide afterwards where and how the design has to be further optimized. The explorative

nature of FEATS encourages the user to investigate the design space, without being afraid of

the effort to even do multiple redesigns.
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vddvdd

VCM

Vb1

IN–

IN+

OUT–

OUT+

gndgnd gnd

Figure 8.6: Simple Common-mode-feedback amplifier realization

8.2 Circuit Templates for Complex Circuit Classes

In the previous section simple utility circuit templates were presented to give the reader an

impression how the library-based synthesis (see Section 3.1) approach integrates transparently

into FEATS. Amplifiers, in particular, operational amplifiers are inherently complex. Multiple

stages, cascoding devices, folding, compensation, symmetry, biasing are just the basic design

decisions to take towards an operational amplifier fulfilling the required specifications. Thus

creativity is of great importance during the design of operational amplifiers. But even the

inevitable progress in computing capacities and speed will most likely not solve the complexity

problem, as discussed in Chapter 4. On the other side, it is even less likely that the analog

designer will ever be replaced by a piece of software.

The following examples and their analysis will demonstrate the latter. Using the framework

as presented, the designer has to think in a higher level of abstraction, leaving the responsibility

and important (design) decisions in his hands. Ultimately it is crucial for a successful synthesis

to know the concepts, to choose the right set of basic blocks and to activate the right rules for

the current project. In general FEATS realizes the concepts and provides the necessary tools to

also create circuit structures, which may have not been seen before. Nevertheless, the main area

of application should be a significant increase in productivity accompanied with the implicit

gain in reliability leading to robust system designs. This enables the analog designer to focus on

the creative part of the process instead of repetitive trial and error iterations and reduces the

overall (economic) risks inherent to analog design.

8.2.1 Single-Ended Operational Amplifier (OP)

In analog circuit development, one of the most used circuits, especially in signal processing

and amplifying. There is a wide variety in electrical specifications for this circuit class, several

important ones are listed in Figure 8.7. In analog literature (e.g., [Raz00, Ndj11, San06]) a

vast amount of different topologies may be found, one may even find recent literature featuring

OPs exclusively as [Deh13, Hui11]—originating in exploiting advantages in process technologies

(e.g., reduced supply voltage) and constantly changing requirements in specifications. The avail-
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able analog literature clearly shows how well-suited amplifier circuits are for creative synthesis

methodologies in general due to its inherent creative component.

An ideal OP amplifies the voltage difference between IN+ and IN−, using the gain A and

making it available at the OUT pin. A wide variety of outer circuitry is known (see [Raz00]),

especially feedback configurations provide useful functionalities for many analog applications.

Different analog applications have varying requirements, leading to diverging specifications. Usu-

ally an ideal OP exhibits the following properties:

• Infinite

– Open-loop gain A

– Input impedance Rin

– Output voltage range

– Common-mode rejection ratio

(CMRR)

– Power supply rejection ratio

(PSRR)

– Slew rate

• Zero

– Input current

– Input offset voltage

– Output impedance

– Noise

– Phase shift

These specifications may naturally not be reached by a real OP, despite this, a real OP is

massively influenced by its outer circuitry. In particular the loads, which have to be driven, play

an important role while developing a real implementation. All these (as shown in Figure 8.7)

may be provided in order to set up a synthesis run. Although it is possible to omit most of the

specifications and operating conditions from Figure 8.7, the user is encouraged to provide as

much specifications as possible. The more specific the user is in its description of the synthesis

target, the more reliable and robust the final synthesized circuit(s) will be. This implicitly forces

the user to think about the specifications left out during his first ideas. Simply providing realistic

estimates for as many specifications as possible, already prevents the circuit from behaving

unpredictable in common application scenarios.

FEATS aims to describe analog circuits based on their signal flows. Therefore the OP consists

of several inner circuit templates, realizing the behavioral-first top-down design methodology in a

very strict and consistent fashion. The here presented OP in Figure 8.7 demonstrates a reduced

approach. More complex examples will be presented in the following sections, additionally

various utility circuit classes, as shown in Section 8.1, may be added at any point providing

further functionalities or enhancing its electrical specifications.

While designing an analog circuit, one has to set up several different testbenches, each one

aiming to measure a specific set of performances. Although most simulators, and in general

analog design environments, provide components that enable switching between different outer

circuitries, loads, or similar—usually best practice is to develop a separate testbench for each

test scenario.
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Single-Ended Operational Amplifier

Bias Circuit

Core

Operational

Amplifier

IN+

IN–

OUT

TESTBENCH SPECIFICATION

Operating Point Offset

Power

Area

Open Loop Gain

Gain bandwidth product

Phase margin

Transit frequency

Cutoff frequency

CMRR CMRR

PSRR PSRR

Unity Output voltage swing

Slew rate (fall/rise)

Overshoot (fall/rise)

Settling time (fall/rise)

PORTS

IN+ Input Voltage

IN– Input Voltage

OUT Output Voltage

RULES

CTR BLR(= 2)

TEMPLATES

Bias circuit

Core operational amplifier

OPERATING CONDITIONS

VDD Supply voltage

VREF 1/2 Supply voltage

IVR Input voltage range

CLOAD Capacitive load

RLOAD Resistive load

Figure 8.7: Single-Ended Operational Amplifier

Figure 8.7 already reveals that FEATS may consider multiple testbenches for each circuit

with ease. Despite the inherent consistency of the best practice approach, the testbenches are

easier to maintain and to port to other simulators, if they are clearly separated. The framework

may not enforce this, but encourages the analog (testbench) designer to do so, by providing

mechanics to allow an easy addition of new testbenches.

The testbenches shown in Figure A.1 are well known in analog literature and target the OP’s

resilience to common mode operation on the input pins respectively the ability of the circuit to

reject power supply noise. Notably the loads are omitted and the PSRR is only determined for

the positive power supply noise. Further testbenches are tailored to determine the operating

point (see Figure A.1c), the transient behavior (see Figure A.1d) and the open-loop behavior

(see Figure A.1e) of the device under test (DUT). All of the latter contain a resistive and a

capacitive load. Neither of them has a fixed (i.e., resistance or capacity) value inside their

testbenches set explicitly—conveniently both loads may be adjusted inside the circuit template
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specification instead. This exposes an important property of the testbenches used inside FEATS:

all testbenches may be parametrized and dynamically generated, based on their circuit template

specification. This does not only include the loads, but moreover the supply voltage, a reference

voltage (e.g., the used virtual ground and/or a specific middle voltage) and any value the user

provides through the specification, i.e., the circuit template. This is a very important feature,

as this realizes one of the promoted flexibilities, as discussed in Section 5.1, to accomplish a true

process technology independence.

The generic testbenches ensure not only the process technology independence—each en-

hancement of a testbench will, without further user interaction, directly migrate to any other

process technology, which was made available inside FEATS. This enables the user to work and

design inside a testbench, which has proved its strength in previous designs without the need

to reinvent the wheel over and over again. This automated reuse of analog intellectual property

is one of the key strengths of FEATS and has been a hot topic in various research projects

(e.g., [SyE]), publications as [MMH12], and inside the ITRS [ITR]: knowing that, the currently

used testbench(es) are not only valid and usable for this single circuit, further this encourages

the improvement of the testbenches for a circuit template. Despite the significant productivity

gain of such an approach, the robustness and reliability of the developed circuits is undeniably

increasing.

Nevertheless, not all standard textbook testbenches may be directly used inside an analog

synthesis framework. Usually the DUT for a testbench exhibits at least some fundamental

functionality of the targeted circuit class, which may not be assumed for each circuit explored

during synthesis. For an OP this could be e.g., a reasonable step response. A typical design

flow might first parametrize the OP towards a systematic offset of zero and afterwards the open-

loop testbench is set up to measure the theoretical gain using an AC analysis. These implicit

assumptions are regularly found during the automation of processes, which were previously

carried out by humans. Specifically for the OP this may be observed inside the open-loop

testbench as shown in Figure A.1e. Usually one would assume a literal open-loop configuration,

but this might introduce a not negligible error during the gain calculation due to the voltage

at the negative input pin being optimal (i.e., middle voltage) instead of shifted by the OP’s

systematic offset.

Samples and some cherry picks of synthesized single-ended operational amplifier circuits,

schematics and measurements are presented in Chapter 9.

8.2.2 Core Operational Amplifier (COREOP)

This circuit template stands for the most creative approach in circuit synthesis. While the

previously discussed circuit templates either realize hierarchies and/or library based synthesis,

this circuit template utilizes a wide range of synthesis rules (use Section 5.5 as a reference) to

realize an extensive design space exploration up to a given restriction of the design space (see

rules in Figure 8.8). The therefore used basic blocks (see Appendix B), may be freely chosen by

the user.
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Including, excluding and creating basic blocks is similar to the (creative) decision process the

user performs while designing a circuit from scratch. The decisions made during a classic analog

design, can directly be transfered into the synthesis-driven analog design. E.g., is a rail-to-rail

input stage needed? Is a compensated stage useful or even mandatory? Is there enough voltage

headroom to use cascoding structures? Does the targeted load enforce high output currents?

All these questions lead to a decision. This decision leads to a functional idea or concept, which

can be realized using several differing implementations. Due to the fact that classic analog

design means designing a single circuit, a single realization for the functional idea is chosen and

included into the circuit.

Excluding the final step, the identical reasoning may be applied to a synthesis driven analog

design. Instead of including a single chosen realization directly into the schematic, one might

take all realizations of the functional concept and simply include them as basic blocks in order

to let the synthesis engine explore all combinations of those—resulting in a much greater chance

to find the circuit exhibiting the required properties. Moreover the opposing fact: the synthesis

lead to not a single circuit fulfilling the specifications, allows to conclude that the specifications

may be too tough and possibly the requirements have to be readjusted. Although the latter may

also happen in classic analog design, the important difference is: either argue with a few circuit

structures, which failed to achieve the specifications or with hundreds of circuit structures, which

have been explored systematically.

Core Operational Amplifier

IN+

IN–

OUTCore

Operational

Amplifier

TESTBENCH SPECIFICATION

<None> <None>

PORTS

IN+ Input Voltage

IN– Input Voltage

OUT Output Voltage

VB1
Local reference Voltage

VB2
Local reference Voltage

VB3
Local reference Voltage

VB4
Local reference Voltage

RULES

IBR BLR(≤ 4) EXPROPS

SYM EER OMR ISO

NB2R SYM PRE

VVOER SYM GAIN

TIR SYM FEAS

TEMPLATES

<None>

OPERATING CONDITIONS

<None>

Figure 8.8: Core Operational Amplifier
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The user may freely add arbitrary basic blocks and leave out any unwanted basic blocks to

steer the exploration towards the direction(s) he is targeting. In particular it is an ease to pre-

cisely target a specific circuit. This somehow exploits the synthesis, but once this specific circuit

is build from more than just one basic block, FEATS will most likely generate: structural similar

circuits, subsets, and supersets of the targeted circuit— e.g., by creating complementary merged

blocks (see Section 5.3.1), introducing new symmetries (see Constructive rule 3)—according to

the enabled rules inside the current circuit template. There is no need to care about supporting

circuitry like bias, enable or start-up circuits. These are clearly separated from the functional

(signal processing) part of the circuit and later appended in higher hierarchies. A wide variety

of synthesized circuits is presented inside Chapter 9.

8.2.3 Single-Ended Operational Transconductance Amplifier (OTA)

Single-Ended Operational Transconductance Amplifier

Bias Circuit

Core

Operational

Amplifier

IN+

IN–

OUT

TESTBENCH SPECIFICATION

Operating Point Offset

Power
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Open Loop Gain

Transconductance

Output resistance

Transit frequency

Cutoff frequency

Open Loop Phase Phase margin

Linearity Input voltage range

Unity Output voltage swing

Slew rate (fall/rise)

Overshoot (fall/rise)

Settling time (fall/rise)

PORTS

IN+ Input Voltage

IN– Input Voltage

OUT Output Current

RULES

CTR BLR(= 2)

TEMPLATES

Bias circuit

Core operational amplifier

OPERATING CONDITIONS

VDD Supply voltage

IVR Input voltage range

CLOAD Capacitive load

RLOAD Resistive load

Figure 8.9: Single-Ended Operational Transconductance Amplifier
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In contrast to the OP, the OTA converts a given voltage difference Vdiff to a current Iout, using

its transconductance gm:

Iout = Vdiff ∗ gm (8.5)

This section will not provide an extensive technical overview over OTAs as given (for the OPs)

inside Section 8.2.1. Instead, the reuse and expansion of existing pieces inside the framework is

demonstrated in order to synthesize a circuit which differs in its functionality.

This circuit template was mainly chosen for presentation because of the fact that the core

operational amplifier is the same as the one inside the OP as shown in Section 8.2.1. The reason

the core may be reused here originates in the realized strict hierarchical concept—the COREOP

circuit template is totally decoupled and independent from the OP circuit template, thus it

may be used inside any other circuit template. An application of this template inside an actual

system design is presented in Section 9.2.

8.2.4 Fully Differential Operational Amplifier (FDA)

The design of an FDA turns out to be very complex and time consuming. This will most likely

be induced by the inherent challenges—namely the common-mode feedback (as discussed in

Section 8.1.3), the stability to gain trade-off, and the mandatory, highly symmetric structures.

Pole zero analysis also suddenly becomes crucial during the design process in order to assure

stability for a wide range of applications. Additionally, the testbenches which have to be used,

resemble tough design tasks by themselves. Nevertheless, these challenges are worth the hassle

as an FDA provides some unique intrinsic properties. The excellent common-mode and power

supply noise rejection characteristics are perfectly suited for mixed-signal applications, as they

tend to have a noisy supply voltage due to the constant switching of the digital parts inside the

circuit. The most prominent examples are for sure (high-precision) ADCs, which increasingly

often force the designer to input the analog signal in a differential manner to reduce the influence

of the negative and/or positive supply voltage noise, and other noise sources like crosstalk.

This virtually perfect decoupling of the power supply from the transported signal is inherently

important for low-voltage applications, especially in modern highly integrated applications i.e.,

SoCs. Especially high requirements for the signal processing in e.g., mobile radio frequency

applications can nowadays only be achieved with FDAs.

Interestingly the presented analog synthesis framework is perfectly suited for the design of

highly symmetric analog circuits. In a recent evolution, prior to the inclusion of the FDA circuit

template, the symmetric elementary electrics rule (see Constructive rule 3) was developed to

increase the amount of symmetric circuits inside the generated circuit structures. In fact the

actual synthesis happens in a hierarchy one level deeper, similar to the OP. This circuit template

is not listed here, as it is despite the second output exactly the same as the COREOP (see

Section 8.2.2). Although the generated topologies differ fundamentally, the only thing the user

has to change is to add the second output node.
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CTR BLR(= 3)

TEMPLATES

Bias circuit

Core fully differential operational amplifier

Common-mode feedback circuit

OPERATING CONDITIONS

VDD Supply voltage

VREF 1/2 Supply voltage

IVR Input voltage range

CLOAD Capacitive load

RLOAD Resistive load

Figure 8.10: Fully Differential Operational Amplifier

The actual challenge to synthesize FDAs is the development of the testbenches and the for-

mulation of the accompanied measurements. While the common-mode rejection ratio testbench

shown in Figure A.2b is very similar to the one used for the OP as shown in Figure A.1, the

open-loop (Figure A.2a) and unity gain (Figure 8.11) testbenches are not so easily deducted

from the ones used for the single-ended variant. Namely any feedback resembles a challenge, as

the inputs have to be decoupled from the ideal voltage sources used for the input stimuli.

To compensate the offset of the DUT the open-loop testbench is also a faked open-loop,

featuring the same method as the open-loop testbench for the OP. Furthermore the unity gain

testbench shown in Figure 8.11 provides a specialized part, which is used to test the common-

mode feedback circuit, which has to be included during the sizing of the circuit and is also

optimized by the sizer.
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Figure 8.11: Unity testbench

8.2.5 Sallen-Key 2nd-Order Low-Pass Filter (SKLP)

−

+
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gnd

R1 R2

C1

C2

Figure 8.12: Classic implementation of the RC-network for a Sallen-Key filter architecture.

This circuit template increases the hierarchy depth by one and thus demonstrates how the

framework may be used to synthesize filters in general.

The circuit shown in Figure 8.12 is well know among analog experts as the Sallen-Key real-

ization of a 2nd-order low-pass filter. It is surely one of the less complex filter implementations

known, but still used fairly often in analog design. The inherently low passband ripple and the

small area requirements, due to the fact that only one OP has to be used, are its important

strengths. Audio applications, anti-aliasing filters for ADC inputs and AC-DC converters are

possibly the most prominent ones.

Inside the synthesis framework the synthesis of this circuit template is done in multiple

steps. First a set of sized OPs is synthesized using the embedded OP circuit template, which is

described in Figure 8.7. Therefore a set of specifications for the OP also have to be provided,
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but they should not be seen as the final specifications. Moreover, they should be quite relaxed

and in particular the user should use these to control the amount of different OPs, which will

later be considered inside the top-level circuit template sizing step.

Sallen-Key 2nd-Order Low-Pass Filter

−

+

RC-Network

IN OUT

TESTBENCH SPECIFICATION

Operating Point Offset

Power

Area

Open Loop Gain

Passbandripple

Stopbandripple

Cutoff frequency

Signal-to-Noise ratio

PSRR PSRR

Unity Output voltage swing

Overshoot (fall/rise)

Gain (lower/uppper)

Distort Total harmonic distortion

PORTS

IN Input Voltage

OUT Output Voltage

RULES

CTR BLR(= 3)

TEMPLATES

Single-ended operational amplifier

Sallen-Key 2nd-order RC-Network

OPERATING CONDITIONS

VDD Supply voltage

VREF 1/2 Supply voltage

IVR Input voltage range

CLOAD Capacitive load

RLOAD Resistive load

Figure 8.13: Sallen-Key 2nd-Order Low-Pass Filter

Once the framework delivers a set of OPs, it returns back one hierarchy to the top-level

circuit template of the SKLP. At this point each of the sized OPs are inserted into the top-level

circuit and passed again to the sizer to finally synthesize the SKLP. The previously synthesized

OPs are used with their sizing as initial values for all design variables, but still allowing the sizer

to further improve the underlying OPs sizing. This is a rather uncommon approach as usually

the OPs used inside SKLPs are not further optimized inside the used RC-network. In particular

this leads to an improvement of the top-level specifications. Furthermore it is important to

mention that the RC-network itself is not touched by the sizer as the appropriate values for

the resistors and capacities may easily be calculated using standard filter design methods or

any of the widely available tools for filter design. Although it would be possible to allow the

sizer to change the RC-network, this is undesirable—changing the outer circuitry would lead to
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an undefined filter, which could expose an undefined behavior and thus reduce the necessary

trustworthiness inherent to analog circuits.

8.2.6 Elliptical 3rd-Order Low-Pass Filter (ELIPLP)

This circuit template serves as the most complex example investigated for the presentation of

the technical capabilities of FEATS. It brings together all of the previously illustrated concepts,

utilities, and nearly all realized features.
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(d) Elliptical

Figure 8.14: Typical linear filter transfer functions (source [Act], license [CCB], changed).

Elliptical filters, sometimes also called Cauer filters, intrinsically exhibit various distinctive

properties, which render them as very useful for applications like channel select filters. Cheby-

shev filters allow ripples in the pass band, thus they are able to obtain a better selectivity

compared to Butterworth filters. The elliptical filter further improves this by allowing ripples in

the stop band. This enables the elliptical filter to be the sharpest compared to all other common

filter architectures as shown in Figure 8.14.

The here presented circuit template is intentionally inspired by recent scientific work pub-

lished by Krishnapur et al. [KAS11]—where a 3rd-order elliptical filter was designed and mea-

sured for WiFi applications inside the 2.4GHz band. The aim of this work is not to compete

with the published design, but moreover to generate a certain level of comparability, in order to

allow the reader to estimate the practical impact of the synthesis framework on his own.

Despite the structural and scaling related challenges, designing an ELIPLP introduces major

electrical engineering difficulties, which may not be underestimated. The first and most obvious

one is the inherent need for FDAs as the underlying amplifiers. Secondly, a robust FDA design

does not automatically lead to an overall functional ELIPLP. In particular the stability paired

with the desired fundamental electrical properties force the user to design the target testbenches

and measurements with great care and experience—but apparently this work has only to be done

once.

The block-level diagram as shown in Figure 8.15 may be taken from the textbook and can,

similar to the SKLP, afterwards be used to calculate the RC-network used in the actual tran-

sistor level implementation of the circuit. Thus, as before, the RC-network is not subject to the

optimization. The summation factors are calculated according to the desired cutoff frequency

and are from thereon given and constant. While this has been done upfront using a computer

algebra system, it would be imaginable to realize such a calculation as an analyzing rule (see

Section 5.5.4) in order to fully automate the RC-network creation. This simple addition would
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Figure 8.15: The block-level diagram of the synthesized elliptical 3rd-order filter visualizing

the conceptional architecture and the involved filter coefficients.

enable the framework to synthesize an ELIPLP for any given cutoff frequency—furthermore

a design variable representing a scaling factor for the RC-network could be introduced to op-

timize the RC-network towards e.g., minimal area, power dissipation, or any other available

performance as shown in Figure 8.18.

Based on the block-level diagram shown, the actual filter configuration may be deducted. It

consists of three FDAs as integrators and a single FDA as summing amplifier. The schematic

shown in Figure 8.16 shows the result and is—in terms of hierarchy—identical with the circuit

template shown in Figure 8.18.
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Figure 8.16: The ELIPLP configuration deducted from Figure 8.15, including the summation

factors.
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Figure 8.16 showcases the complexity and large scale of the here targeted circuit (class). The

support for arbitrary levels of hierarchies is one of the key features of the presented framework—

without a consistent hierarchical concept, a circuit of this scale could not be synthesized au-

tomatically. Despite the latter, hierarchies are very useful in delivering trustful circuits (see

Section 3.1). Trust and thus a conceptual understanding of the delivered circuit is nowadays

one of the most important requirements—not only for an analog synthesis tool, but moreover

for almost every EDA software.
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Figure 8.17: Visualization of the various hierarchy levels during the synthesis of an ELIPLP.

To increase readability the levels below the FDAs are only showed once.

FEATS realizes a very consistent hierarchy, which allows the user to easily introduce new

circuit classes. But more importantly, the user may chose to include arbitrary circuit templates

into other circuit templates without any further modifications of the included. This encourages

the user to consequently divide the developed circuit into smaller parts and thus reuse already

developed circuit templates. Looking closer at the Figure 8.17 reveals an hierarchical depth

of five, if the common-mode feedback module is configured to also be hierarchical, instead of

the quick and easy method—simply provide a basic block containing a whole common-mode

feedback circuit as e.g., the one shown in Figure 8.6. Once again, the synthesis engineer has the

possibility to precisely tweak the trade-off between expert knowledge and number of generated

circuits as illustrated in Figure 1.1. E.g., a working CMFB stage may be available and thus be

provided, but the framework may easily synthesize the CMFB with its full hierarchy.
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TESTBENCH SPECIFICATION

Operating Point Offset

Power

Area

Open Loop Gain

Gain bandwidth product

Phase margin

Transit frequency

Cutoff frequency

Signal-to-Noise ratio

Position 1st Pole

CMRR CMRR

PSRR PSRR

Unity Output voltage swing

Slew rate (fall/rise)

Overshoot (fall/rise)

Settling time (fall/rise) (+)

Settling time (fall/rise) (−)

Position 1st Pole

IP3 IIP3

Distort Total harmonic distortion

1dB compression point

PORTS

IN+ Input Voltage

IN– Input Voltage

OUT+ Output Voltage

OUT– Output Voltage

RULES

CTR BLR(= 3)

TEMPLATES

Full differential operational amplifier

Elliptical 3rd-order RC-network

OPERATING CONDITIONS

VDD Supply voltage

VREF 1/2 Supply voltage

IVR Input voltage range

CLOAD Capacitive load

RLOAD Resistive load

Figure 8.18: Elliptical 3rd-Order Low-Pass Filter

The hierarchy for the ELIPLP as presented in Figure 8.17 illustrates the various levels—

starting at the top-level circuit template (ELIPLP) the synthesis engine descents one level every

time a circuit template is found, which contains other circuit templates as described in Sec-

tion 5.2.3. The framework comes without any intrinsic limitations how many levels of hierarchy

may be used inside a synthesis run. Furthermore, the local references (see Section 5.2.2) and

construction types (see Section 5.2.3) become crucial for a successful synthesis. E.g., if the cho-

sen construction type is shared structure, shared scope the synthesis engine descents only once

into the FDAs circuit template—the now on demand synthesized circuits are inserted inside this

hierarchy into all its occurrences.
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CHAPTER

NINE

FIELDS OF APPLICATION FOR ANALOG SYNTHESIS

Inside this final chapter the focus is clearly set on the actual transistor level circuits generated

by FEATS. Starting with a wide selection of OP circuit structures in Section 9.1 the following

Section 9.3 shifts the focus towards a more complex circuit. A recent publication (see [KAS11])

was used as a reference to synthesize an ELIPLP comparable to the published one. In Section 9.2

a system design is presented, which is strongly supported by the framework to demonstrate the

applicability and how beneficial a synthesis driven analog development flow may be in real usage

scenarios. Eventually, this chapter closes with the inspection of the creative capabilities of the

presented framework. Therefore an uncommon circuit structure—generated by the framework—

is discussed in Section 9.4.

Despite the here chosen examples, the framework was used in various application scenarios—

either to demonstrate the benefits of a synthesis driven analog design flow, or to exploit its

distinctive explorative nature in order to e.g., analyze the impact of aging on differing OP

structures as shown in [SHM13]. Other publications as [MH15, MMH12, vRMH15] can be

studied to find further examples of synthesized circuits.

The presented results are based on a 350 nm CMOS bulk technology node from austri-

amicrosystems with a supply voltage of 3.3V—the synthesis is carried out by an E5520 Xeon

workhorse, providing 16 CPU cores and 36GB RAM to easily handle larger amounts of parallel

processes. Granted, the CPU generation is from the late 2009’s—it is still very well suited for

circuit synthesis. Nonetheless, this infrastructure is rather tiny, compared to an industrial scale

server (infrastructure).

9.1 Single-ended Operational Amplifiers

As already mentioned in Section 8.2.1 the OP in general features a wide variety of structures

dependent on the target process technology and/or the field of application. The presented

framework is able to synthesize the average textbook circuit out of the box. Textbooks tend to

describe concepts rather than all transistor level realizations of the concept—following this idea
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9.1. Single-ended Operational Amplifiers

slightly here, the presented circuits resemble just a small portion of what is actually synthesized

by the engine.

gnd

IN–IN+

vddvdd

Vb4

OUT

(a) Cascoded load

gnd
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Vb2

vddvdd

Vb4
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(b) Low-voltage load

gnd

IN–IN+

vddvdd

Vb4

OUT

(c) Simple load

Figure 9.1: nMOS differential stages variants.

Already the basic differential stage exhibits several differing transistor level implementations.

Figure 9.1 shows three variants using an nMOS differential pair. Obviously, the complemen-

tary pMOS variants are also generated, leading to at least six variants. Further variants are

imaginable e.g., a cascoded current source or other loads. Trying all of these variants in manual

design could already be very daunting—but in fact this is a tiny portion of the actual design

space as described in Chapter 4. To be precise, the structure space (see Chapter 4) containing

the circuit from Figure 9.1c, for the five components and thus 15 ports, has 1,382,958,545 other

members (see Table 4.1). An analog designer, and especially the framework manage to implicitly

discard the majority of these in order to generate the targeted using the mechanisms discussed

in Chapter 5 and Chapter 6.
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(c) Miller-like variant III

Figure 9.2: Various nMOS miller variants.

Another widely known concept is the miller amplifier, which formally simply adds a nMOS

or pMOS transistor in common source configuration and a current source or sink, in order to

boost the maximum gain of the amplifier. Figure 9.2 shows different realizations of this concept

with identical differential stages. At this point it is worth mentioning that each miller variant
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shown in Figure 9.2 may be generated with every differential stage shown in Figure 9.1 and

discussed thereafter.
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(b) Double common source configuration II

Figure 9.3: Various nMOS double common source variants.

The circuits shown in Figure 9.3 could easily be confused with the ones shown in Figure 9.4.

The latter are mostly known as folded (cascode) circuits and especially useful e.g., to increase

the output voltage range. Even though the circuits shown in Figure 9.3 share obvious structural

similarities with the ones from Figure 9.4, the double common source configuration is usually not

found in analog literature—maybe due to the inherently limited power supply noise rejection.
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(a) Folded variant I

gnd

IN–IN+

vddvdd
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(b) Folded variant II

Figure 9.4: Various nMOS folded variants.

Another popular circuit structure regularly used in OP and OTA applications is to be found

in Figure 9.5—mostly also named OTA. The structure allows a lot variations by choosing dif-

ferent current mirror realizations.
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Figure 9.5: Various OTA realizations.

FEATS generates all of the above circuits by using the basic blocks shown in Appendix B

and the OP circuit template (see Section 8.2.1). Despite these, the synthesis engine generates

all possible variants and furthermore mixes, supersets, and subsets of the previously presented

circuits.
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vddvddvdd

gnd

vdd

gndgnd

Vb4

gnd

vdd

Vb1

OUT

Figure 9.6: OTA mixed with a common source stage as driver.

An example of such a mix of concepts can be seen in Figure 9.6, where an OTA circuit

(see Figure 9.5) is connected to a common source stage as to be found in a miller configuration

as shown in Figure 9.2. This leads to sometimes uncommon combinations, which surprisingly

perform not as bad as one might expect. Finally, Table 9.1 provides some topology and circuit

counts—aforementioned circuits are all within the enumerated circuits. The two rightmost

columns in Table 9.1 describe how many circuits survived, i.e., were not discarded during the

circuit analysis in Section 5.4.3.
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Table 9.1

Generated OP Circuits for Different Maximum Block Threshold Values (Not

Cumulative).

No. Accepted Accepted Accepted

Blocks Topologies Circuits Isomorphism Gain Feasibility

2 0 0 0 0 0

3 4 24 18 6 6

4 12 144 108 64 60

5 36 600 449 182 168

6 112 2,424 1,829 802 754

7 324 9,072 6,879 3,802 2,938

9.2 Application Inside a System Design

During the development and realization of a so-called analog artificial hormone system (AAHS),

as presented in [vRSH+15], the opportunity was taken to realize the system in two different

versions. One driven by voltage and thus using OPs as the critical system components and

another, current-driven version, which builds its functionality with the foundation of OTAs.

Although the circuit structures for OTAs do not differ fundamentally compared to OPs, the

electrical properties do significantly. Described through the specification and measured with

the appropriate testbenches. The expandability of FEATS, allowed the synthesis of the OTA

circuits within a few hours.

Table 9.2

Synthesized OPs for the AAHS.

Specifications Targets Outer adder Inner adder

RLoad = 12.5 kΩ 100 kΩ

CLoad = 10 fF 2.5 pF

Gain ≥ 26.2 dB 35.2 dB 27.3 dB

Output voltage range ≥ 1.95V 2.48 V 2.6V

Overshoot ≤ 0.03% 0.017% 0.015%

Undershoot ≤ 0.03% 0.009% 0.027%

Slew Rate (fall) ≤ 27.5Vµs−1 14.1V µs−1

≥ 27.5Vµs−1 74.78 Vµs−1

Slew Rate (rise) ≤ 27.5Vµs−1 13.6V µs−1

≥ 27.5Vµs−1 64.45 Vµs−1

Offset ≤ ±40.3mV 36.6 µV −2.06 µV

Phase margin ≥ 35◦ 70.8◦ 66.1◦
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Notably, this was the first approach to synthesize circuits for a system, including the gen-

eration, importing them into a state-of-the-art analog design environment, and finally produce

them on silicon. One of the major advantages was the ability to synthesize the OPs respectively

OTAs in an early stage of system development. The system designer gets an early impression, if

the realization of the system with the chosen specifications for the underlying OPs and OTAs is

feasible—within one day all needed configurations of e.g., the OPs were delivered. This allows

to go through several iterations of the whole system design (using different specifications) within

one week. Eventually, two different types of OPs (see Table 9.2) were synthesized for the final

voltage driven design. Furthermore, three different OTA structures (see Table 9.3) are part of

the current driven design—eight OPs, respectively 14 OTAs were finally produced on silicon.

The produced silicon performed in predicted boundaries on all (30) measured samples.

Table 9.3

Two Out of Three Synthesized OTAs for the AAHS.

Specifications targets Measure OTA targets Res. OTA

RLoad = 102.2 kΩ = 55.2 kΩ

CLoad = 500 fF = 500 fF

Transconductance ≥ 8.9 µS ≥ 16.4 µS

≤ 10.1 µS
10.0 µS

≤ 20.0 µS
18.1 µS

Slew Rate (fall) ≤ 27.5V µs−1 0.41V µs−1
≥ 27.5 Vµs−1 80.9Vµs−1

Slew Rate (rise) ≤ 27.5V µs−1 0.42V µs−1
≥ 27.5 Vµs−1 80.8Vµs−1

Input voltage range ≥ 1.1V 1.18V ≥ 1.1V 1.4V

Output resistance ≥ 7.7MΩ 40.0MΩ ≥ 4.2MΩ 15.2MΩ

Offset ≤ ±450 µV 90µV ≤ ±240 µV −9.5µV

Phase margin ≥ 35◦ 81.4◦ ≥ 35◦ 68.9◦

9.3 Elliptical 3rd-Order Low-Pass Filters

As stated in Figure 8.17, the elliptical 3rd-order low-pass filter serves as the most complex

example investigated for this thesis. Once the development of the testbenches, the formulation

of the measurements, and the overall setup for the framework is finished, the synthesis may

be started in order to generate the target circuit fulfilling the required specifications. For this

particular circuit this process involves the synthesis of FDAs, which is carried out by the synthesis

engine, fully unattended, after descending one level down in the hierarchy, as illustrated in

Figure 8.17.

The FDAs are synthesized on-the-fly and are afterwards inserted into the current hierarchy

level after ascending back up—once the synthesis engine finished the FDA synthesis. Based

on the available time, resources and layout capacities the user may choose one of the possible

circuit template construction types as described in Section 5.2.3. As their naming already
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implies, the impact on the overall runtime of the synthesis run may be severe. But once again,

the user gets the full control and has to decide (how much circuits should be generated), either be

conservative: get a good, sized circuit very fast (shared structure, shared scope) and save layout

time by having only a single FDA—or aim for a highly optimized, application specific circuit

and therefore handle each FDA as a distinct, unrelated circuit—each one with its own design

variables and thus the possibility to be further optimized in the context of the surrounding

circuitry (unique structure, private scope).

The here presented examples aim to provide a certain level of comparability—given the

realization of an identically specified elliptical 3rd-order low-pass filter from [KAS11], the reader

essentially gets all needed information to determine the applicability of the approach by himself.

To maintain comparability, the last of the three construction types (see Section 5.2.3) is used

exclusively during this analysis. Therefore exactly one FDA is instantiated in each available

FDA slot inside the ELIPLP circuit template. Once this has been done for each available FDA,

an equal number of ELIPLP transistor level circuits has to be further evaluated—i.e., using this

construction type will generate as much ELIPLP candidates as there are good FDA circuits.

The sizing tool now simulates and optimizes the whole circuit, which in numbers means the

optimization of an analog system containing at least 200 devices, in particular the synthesis

framework evaluates multiple of them in parallel with ease, due to the asynchronous TCP/IP

driven task allocation system, as described in Chapter 7,

The parameter space is fortunately by far smaller as for an unknown 200 device circuit. The

constraints propagated from bottom, i.e., from the components as described in Section 5.2.1,

together with the ones introduced through the used basic blocks (see Section 5.2.2), which get

interconnected using the symmetric elementary electrics rule (see Constructive rule 3), allow the

synthesis engine to further deduct constraints and assign identical design variables for symmet-

rically placed basic blocks. Eventually, this leads to less than 20 design variables for a circuit as

shown in Figure 9.7, including the not shown parts inside the schematic, namely the bias circuit

and the common-mode feedback circuit.

Table 9.4

Generated FDA Circuits for Different Maximum Block Sizes.

No. Accepted Accepted Accepted

Blocks Topologies Circuits Isomorphism Gain Feasibility

2 2 4 4 2 2

3 8 32 30 15 15

4 20 148 132 67 63

5 50 612 557 288 280

6 126 2,240 2,056 1,005 986

Given the assumption the ELIPLP consists of four structurally equal FDAs, the following

sizing would only include the parameter space of the FDA integrated into the ELIPLP, thus

each parameter change is directly applied to all four instances of the used FDA.
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Table 9.5

Overview of the Circuit Counts After the Ascension Back to the Top-level.

No. FDAs Successful ELIPLPs Successful

Blocks Sized FDAs sized ELIPLPs

4 63 8 8 2

As shown in Figure 8.17 the synthesis engine starts the synthesis with the ELIPLP circuit

class itself. From thereon it descents in hierarchy in order to synthesize the parts necessary to

assemble the ELIPLP. Table 9.4 shows the circuit counts generated during the synthesis run.

The table should be read from left to right, with the rightmost column being the one resembling

the number of circuits passed to the evaluation respectively sizing step.

Table 9.6

Specifications and Reached Performances for a Successfully Sized Elliptical

Filter and a Failed Variant.

Specifications Targets Good variant Failed variant

Filter type 3rd. order Elliptic

Technology 0.35µm CMOS/3.3V

RLoad = 150 kΩ

CLoad = 1pF

Gain ≈ 0 dB −0.05 dB −0.16 dB

Cutoff Frequency ≈ 8.5MHz 8.60MHz 8.59MHz

Pass band ripple ≤ 2.14 dB 2.13 dB 2.36 dB

Stop band ripple ≤ −32.0 dB −32.7 dB −31.47 dB

SNDR ≥ 40 dB 41.6 dB 43.4 dB

IIP3 ≥ 30 dBm 31.5 dBm 41.7 dBm

(Active) area 0.123mm 0.085mm

Power 22.4mW 282mW

For the presented example a maximum block count of four was chosen and lead to the

generation of eight successfully sized FDAs (see Table 9.5), which were then inserted into the

top-level circuit template to pass it into the final sizing step.

In Figure 9.7 one of the two FDAs, which are used inside the two successful sized ELIPLPs is

shown. This clearly shows that not every successful FDA may also lead to a successful ELIPLP.

An example of such a case is shown in the right column inside Table 9.6, which slightly breaks

the needed specifications.

Nevertheless, the final ELIP exhibits the typical behavior of an elliptical filter as to be seen

in Figure 9.8. Compared to the filter as presented in [KAS11] the here synthesized ELIPLP

exhibits mostly comparable performances. The power consumption is the only performance,

which differs massively. But this is obviously to be explained with the used process node. The
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Figure 9.7: The fully differential operational amplifier synthesized inside the elliptical filter
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Figure 9.8: Simulated nominal transfer function of the synthesized elliptical filter.

process nodes are several generations away from each other, thus an inherent higher power

dissipation will be observable. Despite this, [KAS11] does not include any information about

the used area of the RC-network—as a larger area translates to less power dissipation in this

context, a comparison of the power dissipation may not be applied without further information.

9.4 Computed Creativity—Current Stealer Design Pattern

The here presented circuit family is very unfamiliar, even for most people with a decent degree of

knowledge in analog design. This design pattern violates one of the most basic design principles

found in analog, or more precise, amplifier design. Instead of connecting a high impedance (gate)

node to an existing amplifier stage, a low impedance node is appended, which furthermore does

not even have a complementary device leading to the naming current stealer respectively current

injector. This asymmetric structure has already caused lively discussions among analog experts,

trying to explain the electrical behavior in detail.
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Despite the interesting analysis of the underlying electrical concepts, this circuit demon-

strates the creative capabilities of FEATS in an accessible and believable fashion. Although this

circuit will very likely not be the big leap in analog amplifier design, it allows a peak into the

undiscovered areas of the analog design space—its huge size, as shown in Chapter 4, surely hides

some undiscovered, useful circuit structures.
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Figure 9.9: An uncommon operational amplifier circuit structure realizing the current stealing

design pattern.

Remarkably, the circuit shown in Figure 9.10 does neither eat up enormous computing re-

sources nor it consists of exotic, or highly sophisticated basic blocks. In fact, by simply replacing

the default current merge block (see Appendix B) with the current merge block exhibiting a

current port as output instead of a voltage port, the synthesis engine generates circuits based

on the current stealer/injector design pattern exclusively. Showcasing the promoted creative

freedom, without loosing the ability to precisely control the generated quality and quantity of

the generated circuits.
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Figure 9.10: A current stealer circuit annotated with the used basic blocks, for an easy

matching with the topology shown in Figure 9.9.

One might be inclined to argue, this circuit could be used in actual designs, e.g., a technology

node could be utilized, which provides a much better pMOS or nMOS device compared to its

complementing device. An outlook for which applications this could be applied is discussed in

Section 10.1.
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CHAPTER

TEN

CONCLUSION

The synthesis framework presented in this thesis aims to push analog synthesis to the next level

by addressing the following important challenges in analog circuit synthesis.

• Predictability due to deterministic synthesis algorithms

• Clear, user-defined, arbitrary depth hierarchies in the form of circuit templates

• User-defined basic blocks, enriched with electrical and structural constraints propagated

from bottom to top

• Loose binding for the used sizing tool to realize its expandability and changeability.

• Fast circuit preselection trading precision for speed in order the only pass the most promis-

ing circuits to the time and cost intensive sizing step.

The presented framework is therefore described in great detail in order to allow the reader

to fully understand the internals. First illuminating the necessary inputs, these are especially

important to understand the realized hierarchies and their interconnections. Once this is known,

the synthesis engine itself may be investigated further, in particular the algorithm is described

in detail and the so-called rules, which represent the various operations on the topologies re-

spectively circuits are illuminated.

The aforementioned fast preselection algorithms are afterwards analyzed in depth. The

framework utilizes a fast circuit isomorphism, necessary due to the basic blocks, which inherently

may lead to isomorphic circuits. Furthermore, the framework provides tools to approximate the

circuit’s feasibility and a potential gain inversion.

The circuits designated for further evaluation are then passed on to the sizing step. This

part of the framework aims to provide the methods to utilize any 3rd party software for the

evaluation of the circuits. Therefore a task manager was developed to asynchronously distribute

the tasks among the available application servers, which encapsulate the 3rd party software and

provide the possibility to be controlled by the task manager across the network using TCP/IP,

which enables the easy scaling of the framework.
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The presentation of the results starts with the used circuit templates. These circuit templates

realize the hierarchies inside the framework and have to be developed upfront. Starting with

simple utility circuit templates the complexity is increased step by step. The most complex one

is a 3rd-order elliptical low-pass filter.

A selection of use cases and example circuit synthesis runs is finally presented. Starting from

a classic single-ended operational amplifier, followed by a 3rd-order elliptical filter, which is in

fact the biggest (in terms of devices) that has been synthesized so far using the framework. The

latter demonstrates the framework’s capabilities in the context of another recent scientific publi-

cation. The overall runtime to synthesize such a complex circuit is below 24 h from specification

to a ready for layout transistor level circuit.

In general this thesis aims to showcase that analog transistor-level circuit synthesis can be

used during the analog design process for various beneficial reasons.

• Obtaining a design space exploration to collect information about the hardness of the

chosen specifications.

• Prototyping a whole system can be done within a fraction of the time needed to design

the circuits by hand.

• Everyday circuits (e.g., single-ended operational amplifiers) may be synthesized within

several hours.

• System feasibility studies may be carried out within days including different specifications.

Once set up the synthesis runs fully unattended, without any user interaction, easily dis-

tributed on even heterogeneous server architectures. The analog designer may precisely tweak

the quality and quantity of the generated circuits to exactly explore the aimed design-space,

whilst still having the opportunity to go for a brute-force approach and inspect hundreds of

circuits.

Essentially, the analog designer gets a tool to deliver higher quality circuits, which reduce

the uncertainty during an analog design, while consuming less time than a single hand made

design. The results demonstrate how beneficial such an approach can be and how the presented

methodology can deliver the previously promised flexibility.

10.1 Outlook

In the future the main challenges in analog design will inevitably be the ongoing divergence

in technology nodes. In particular, there will be technology nodes, which exhibit strongly

heterogeneous elementary devices. In fact such technology nodes already exist—organic thin

film transistors (OTFTs) are subject to various researchers, good overviews may be found in

[Fac07, RRmLB04, Dod06]. Even organic field-effect transistors (OFETs) as shown in [MLWI08]

exactly exhibit this property. The nMOS devices in organic-based technologies usually have a

very small charge carrier mobility of around 0.1cm2/Vs, while pMOS devices easily reach values

100+ times bigger than the nMOS’ charge carrier mobility. This leads to extremely uncommon

92



10.1. Outlook

design approaches and ideas, as in e.g.: [Dod06]—Uncommon and painful to adapt—a design

from scratch is very time consuming. This situation perfectly suits to FEATS’s capabilities. As

the basic block, respectively the abstract basic block concept may be populated with any circuit

and/or device type. Regardless of technology node properties, multiple differing devices or even

the absence of device types (see Section 5.2.1 and Section 5.2.2) the framework will explore the

design space as spanned by the available components.

Similar methodologies could also be mandatory for future carbon nanotube (CNT) semi-

conductor technologies, originating in significant process variations (as described in e.g.:

[APRG11]), which further increase the already daunting process variations of recent sub-100nm

technology nodes. Silicon technologies have already reached their climax and the question is

not if silicon will have a competitor, but moreover when and who it will be—nevertheless one is

assured, the complexity to design and manufacture an (analog) electric circuit will, most likely,

not decrease in future technologies.

Despite the aforementioned industrial applications that will increase the need for analog

synthesis there is a very wide field for future research based on the proposed synthesis framework:

Utilizing yield optimization by introducing the local and/or global mismatch parameters

into the component concept and extending the templates used for the netlist generation

each circuit could not only be nominal optimized, but moreover a yield optimization, as

provided by WiCkeD could be carried out.

Classifying synthesized circuits could be accomplished by extending the circuit isomor-

phism to subcircuit isomorphism. This could provide information as: circuits containing

a specific implementation of a current mirror exhibit a high gain or bandwidth.

Construction types as described in Section 5.2.3 could also be further investigated to create

highly complex designs which are consequently tailored to have a minimal area.

New rules may easily be developed to realize common design steps, e.g.: dynamic insertion

of compensation capacities, bias circuit generation according to the number of actually

needed bias voltages, or the calculation of RC-networks to allow the synthesis of arbitrary

filters out-of-the-box.

Even more complex circuits than the presented 3rd-order elliptical can now be realized

making extensive use of the presented circuit template concept.

Nevertheless, one important issue towards a possible product based on FEATS is the integra-

tion of the same into a commercial analog development flow. Being a not to be underestimated

issue, it is more an engineering task, which was already done before.
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APPENDIX

ONE

CIRCUIT CLASS TESTBENCHES

This appendix lists some of the testbenches that were developed for the analog synthesis frame-

work. In particular they provide proof for not differing fundamentally from regular testbenches—

despite being parametrized.
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Figure A.1: OP testbenches
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(b) Common-mode rejection ratio testbench

Figure A.2: FDA testbenches
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Figure A.3: ELIPLP testbenches I
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Figure A.4: ELIPLP testbenches II
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APPENDIX

TWO

BASIC BLOCK LIBRARIES

As discussed in Section 5.2.2 basic blocks serve as the elementary building block for circuits.

Thus the choice of the right basic blocks is crucial for a successful synthesis. Basic blocks do not

only provide actual transistor-level (sub-)circuits, but additionally add (electrical) constraints,

which are propagated from bottom up to the top-level circuit to provide important hints for the

preselection and for sizing.
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