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Abstract—Camouflaged object detection (COD) aims to de-
tect/segment camouflaged objects embedded in the environment,
which has attracted increasing attention over the past decades.
Although several COD methods have been developed, they still
suffer from unsatisfactory performance due to the intrinsic
similarities between the foreground objects and background sur-
roundings. In this paper, we propose a novel Feature Aggregation
and Propagation Network (FAP-Net) for camouflaged object
detection. Specifically, we propose a Boundary Guidance Module
(BGM) to explicitly model the boundary characteristic, which
can provide boundary-enhanced features to boost the COD
performance. To capture the scale variations of the camouflaged
objects, we propose a Multi-scale Feature Aggregation Mod-
ule (MFAM) to characterize the multi-scale information from
each layer and obtain the aggregated feature representations.
Furthermore, we propose a Cross-level Fusion and Propagation
Module (CFPM). In the CFPM, the feature fusion part can
effectively integrate the features from adjacent layers to exploit
the cross-level correlations, and the feature propagation part can
transmit valuable context information from the encoder to the
decoder network via a gate unit. Finally, we formulate a unified
and end-to-end trainable framework where cross-level features
can be effectively fused and propagated for capturing rich
context information. Extensive experiments on three benchmark
camouflaged datasets demonstrate that our FAP-Net outperforms
other state-of-the-art COD models. Moreover, our model can be
extended to the polyp segmentation task, and the comparison
results further validate the effectiveness of the proposed model in
segmenting polyps. The source code and results will be released
at https://github.com/taozh2017/FAPNet.

Index Terms—Camouflaged object detection, boundary guid-
ance module, multi-scale feature aggregation, cross-level fusion,
feature propagation.

I. INTRODUCTION

CAMOUFLAGED Object Detection (COD) aims to iden-
tify objects with a similar texture to their surroundings.

Camouflaged objects can be roughly classified into two types,
i.e., natural and artificial camouflaged objects. Natural cam-
ouflaged objects hide in the background environment with
their own advantages (e.g., color, shape, etc.) to adapt to
the environment [1]–[4], while artificial camouflaged objects
often occur in a real-world scenario. It has a variety of
applications, such as security and surveillance (e.g., search-
and-rescue work [5]), agriculture (e.g., detecting agricultural
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pests), and medical imaging analysis (e.g., lung infection
segmentation [6], and polyp segmentation [7]). Therefore, due
to its application and scientific value, COD has attracted more
and more attention.

Compared to generic object detection [8], COD is a more
challenging task due to the high intrinsic similarities between
the camouflaged objects and their background. Camouflaged
objects often have a diversity of size, color, shape, and texture,
which aggravates difficulties in accurately detecting camou-
flaged objects. To overcome this challenge, various COD mod-
els have been developed to improve detection performance.
In the early years, several traditional COD methods [9], [10]
have been proposed to segment camouflaged objects by using
manually designed features. Recently, due to the development
of deep learning-based representation methods, many deep
learning-based COD methods have been proposed to obtain
state-of-the-art performance [11]–[15]. For example, ANet
[11] utilizes a classification network to determine whether
the image contains camouflaged objects or not, and then
uses a fully convolutional network for COD. SINet [12] is
proposed to utilize a search module to coarsely select the
candidate regions of camouflaged objects and then proposes
an identification module to precisely detect camouflaged ob-
jects. More importantly, a large-scale dataset for COD also
is proposed in [12], which advances this field and promotes
more explorations.

Although progress has been made in the COD field, existing
methods could still misunderstand camouflaged objects as the
background due to their similar texture, and there is still
considerable room for improving COD. First, scale variation
is one of the major challenges in the COD, how to effectively
characterize the multi-scale information from a convolutional
layer deserves further exploration. Second, several COD meth-
ods often integrate multi-level features and then feed them
into the decoder network, while they ignore the contributions
of the feature representation from different encoder blocks.
Third, due to the boundary between a camouflaged object and
its background is not sharp, thus it is helpful to locate the
boundaries of camouflaged objects or incorporate boundary-
attention features for improving the COD performance.

To this end, we propose a novel COD framework, i.e.,
Feature Aggregation and Propagation Network (FAP-Net), to
accurately detect camouflaged objects. Specifically, we first
propose a Boundary Guidance Module (BGM) to learn the
boundary-enhanced representations, which are then incorpo-
rated into the decoder network via a layer-wise manner to
help the model detect the boundaries of camouflaged objects.
Moreover, we propose a Multi-scale Feature Aggregation
Module (MFAM) to exploit multi-scale information from a
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single convolutional block. To effectively integrate the multi-
level features, we propose a Cross-level Fusion and Propa-
gation Module (CFPM) to first fuse cross-level features. In
addition, the feature propagation part can adaptively weigh
the contributions of features from the encoder and decoder,
which makes the decoder obtain more effective features
from the encoder to boost the COD performance. Extensive
experiments on three benchmark datasets demonstrate that
our FAP-Net performs favorably against other state-of-the-art
COD methods under different evaluation metrics. Moreover,
the proposed model has also been extended to the polyp seg-
mentation task, and the effectiveness can be further validated.

The main contributions of this paper are four-fold:
• We propose a novel FAP-Net for the COD task, which

can effectively integrate cross-level features and propa-
gate the valuable context information from the encoder to
the decoder for accurately detecting camouflaged objects.

• A Boundary Guidance Module is proposed to learn the
boundary-enhanced representations, which preserve the
local characteristics and boundary information of the
original images to boost the COD performance.

• We propose a Multi-scale Feature Aggregation Module
to learn the multi-scale aggregated features, which can
adaptively extract multi-scale information from each
level to deal with scale variations.

• We propose a Cross-level Fusion and Propagation Mod-
ule to effectively fuse cross-level features and propagate
useful information from the encoder to the decoder
network, which makes that our model can adaptively
balance the contribution of the feature of each encoder
block to the decoder network.

The rest of this paper is organized as follows. We discuss
several related works in Section II. We then provide the details
of the proposed FAP-Net in Section III. In Section IV, we
provide the experimental results and related analysis. Finally,
we conclude the paper in Section V.

II. RELATED WORK

In this section, we present a brief overview of the three
types of works that are most related to our method, including
camouflaged object detection, multi-scale/level feature learn-
ing, and gated mechanism.

A. Camouflaged Object Detection

Early COD methods focused on detecting the foreground
areas, and proposed several methods based on handcrafted
features, including color, intensity, shape, direction, and edge
[9], [16]. For instance, Mondal et al. [17] proposed a tracking-
by-detection strategy to discover and track camouflaged ob-
jects, in which multiple types of features (including his-
togram of orientation gradients, CIELab, and locally adaptive
ternary pattern) are integrated to represent a camouflaged
object. However, due to the limited-expression ability of
handcrafted features, these early models often are unable
to obtain promising performance. To address this, several
deep learning based methods have been developed and ob-
tain promising camouflaged object detection performance.
For example, Li et al. [18] proposed a new camouflaged
color target detection model based on image enhancement,

in which the image enhancement algorithm is adapted to
capture the difference between the target and background
features. Yan et al. [19] proposed to leverage both instance
segmentation and adversarial attack to achieve camouflaged
object segmentation, which can effectively capture different
layouts of the scene to boost the segmentation performance.
Lamdouar et al. [20] proposed a new camouflaged object
segmentation model, which consists of two components, i.e.,
a differentiable registration module is used to highlight object
boundaries, and a motion segmentation module is used to
discover moving regions. Fan et al. [12] proposed a novel
and effective COD approach, termed Search Identification
Network (SINet). Li et al. [21] proposed an enhanced cascade
decoder network to identify camouflaged marine animals.
Mei et al. [14] proposed a positioning and focus network to
improve the COD performance.

B. Multi-scale/level Feature Learning

Multi-scale Feature Extraction. Multi-scale feature rep-
resentations have been used for detection and segmentation
tasks [22]–[27]. A representative work is Feature Pyramid
Network (FPN) [22], which constructs multi-scale feature
maps to detect objects at different scales. Guo et al. [23]
proposed a novel feature pyramid network to fully exploit the
potential of multi-scale features. Besides, Wang et al. [24]
proposed a pyramid attention module, which obtains multi-
scale attention maps to enhance feature representations using
multiple downsampling and softmax operations on different
positions. In [25], a hyper-dense fusion module is proposed
to diversify the contributions of multi-scale features from
local and global perspectives. Pang et al. [26] proposed an
Aggregate Interaction Module (AIM) to integrate features
of adjacent levels in the encoder network. Besides, Ding et
al. [27], [28] proposed a gated sum strategy to selectively
aggregate different scale features for semantic segmentation.
Different from these methods [27], [28], we focus on fusing
cross-level features and propagating the useful information
from the encoder to the decoder network, resulting in balanc-
ing the contribution of the feature of each encoder block to
the decoder network.

Multi-level Feature Integration. Several works have been
developed to study the integration of multi-level features. For
example, in semantic segmentation [29]–[31], feature maps
from selected levels are utilized with a shortcut connection to
provide multiple granularities for boosting the segmentation
performance. In visual recognition [32]–[34], deep features
from some selected layers can be merged together to improve
the final layer representation. Besides, Zhang et al. [35] pro-
posed a generic aggregating multi-level convolutional feature
framework for salient object detection, which integrates multi-
level feature maps into multiple resolutions by incorporating
coarse semantics and fine details. Hu et al. [36] proposed to
fully exploit the complementary information from multiple
layers by recurrently concatenating multi-layer features to
locate salient objects. In addition, several multi-level feature
fusion strategies and multi-modal interactions have been de-
veloped and applied in several detection and segmentation
tasks [37]–[40].
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Fig. 1. The overall architecture of the proposed FAP-Net, consisting of three key components, i.e., boundary guidance module (see details in Sec. III-B),
multi-scale feature aggregation module (see details in Sec. III-C), and cross-level fusion and propagation module (see details in Sec. III-D).

C. Gated Mechanism

The gated mechanism is proposed to adaptively control the
flow of information and is widely applied in several computer
vision tasks. For example, Cheng et al. [41] designed a gated
fusion module to adaptively integrate the two modalities (i.e.,
RGB and depth) for object recognition. Zhang et al. [42]
proposed a gated bi-directional message passing module to
adaptively incorporate multi-level features. Liu et al. [43]
regarded an adaptive gated fusion module as a part of the
discriminator network to adaptively integrate the RGB and
depth features, which is beneficial to obtaining an effective
gated fusion of saliency maps during adversarial learning.
Zhao et al. [44] utilized multilevel gate units to balance
the contribution of each encoder path and also suppress the
activation of the features from non-salient regions. Zhou et
al. [45] proposed a gate fusion module to regularize the
process of feature fusion, leading to obtaining better results
via filtering noise and interference. Most above methods
often consider the information fusion or interaction between
different levels either in the encoder or decoder. We integrate
the features from the encoder network and the decoder one
via a gate propagation strategy, which automatically learns
the contributions of different features from the encoder and
decoder to boost the segmentation performance.

III. METHODOLOGY

In this section, we first provide an overview of the proposed
FAP-Net for the COD task. Then we present the three key
components of our model. Finally, we present the overall loss
function of the proposed COD model.

A. Overview

Fig. 1 shows the overall architecture of the proposed FAP-
Net, consisting of three key components: the multi-scale
feature aggregation module, cross-level fusion and propaga-
tion module, and boundary guidance module. Specifically, an
image is first fed into the encoder network (Res2Net-50 [46]
as the backbone), to extract multi-level features, which are
denoted as fi (i = 1, 2, . . . , 5). Therefore, we have a feature

resolution of W4 ×
H
4 for the first level, and a general resolution

of W
2i ×

H
2i (when i > 1). Due to the low-level features

(i.e., f1 and f2) containing rich boundary information, we
propose a BGM to capture the boundaries and obtain the
boundary-enhanced feature representation. Then, to reduce the
channel size (with large computation complexity) and extract
multi-scale features, the multi-level features fi are fed into
the proposed MFAM to capture camouflaged objects’ scale
variations. After that, the aggregated features are fed into the
proposed CFPM to effectively integrate cross-level features
and propagate the fused features to the decoder network. More
importantly, the boundary-enhanced feature representations
can be also combined into the decoder network. Finally,
multiple side-out supervised strategies are implemented to
boost the COD performance. We will provide the details of
each key component below.

B. Boundary Guidance Module

Several previous works [47], [48] have demonstrated that
boundary information is helpful to improve the performance
of computer vision tasks. For example, Ding et al. [47]
propose to learn the boundary as an additional semantic class
to enable the network to be aware of the boundary layout
for scene segmentation. In the COD task, since camouflaged
objects are visually embedded in their background, which
makes that the boundary between a camouflaged object and
its surrounding background is not sharp. Therefore, it is
critical to locate the boundaries of camouflaged objects, in
which boundary information provides useful constraints to
guide feature extraction during camouflaged object detection.
Existing works [6], [47], [48] have shown only low-level
features preserve sufficient boundary information, thus we
carry out BGM on the first low-level layers, i.e., f1 and f2,
as shown in Fig. 1. Specifically, f1 and f2 are fed a 3 × 3
convolutional layer, respectively, and then integrated via an
addition operation to obtain the fused feature representation.
Then, the fused feature is further fed into a 3×3 convolutional
layer to obtain fe, which acts as the edge guidance feature in
the decoder path. Moreover, fe is fed into a 3×3 convolutional



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX,NO. XX, XXX. XXXX 4

×

V2

Conv
3 X 3

Conv
3 X 3

Conv
3 X 3

Conv
5 X 5

Conv
5 X 5

+

+

+ +

1 X 1

Input
Output

Fig. 2. The detailed architecture of the proposed multi-scale feature aggre-
gation module (MFAM).

layer to produce the final boundary map, which is upsampled
to the same resolution as the original image. Therefore, the
produced boundary map and its detection edge map can be
measured using the binary cross-entropy loss function, which
is given as

Ledge = −
∑

i
[Edi log(E

p
i ) + (1− Edi )log(1− E

p
i )], (1)

where Epi denotes the produced boundary map of the i-th
image, and Edi denotes the boundary ground-truth map. In
our model, the Canny edge detection method is used to extract
Edi . It is worth noting that the early convolutional layers are
supervised by the boundary detection loss. Besides, our BGM
can provide boundary enhanced representation (i.e., fe) to
guide the process of detection in the decoder path. Further, fe
is cascaded to multiple supervisions to enhance the ability of
feature representations. We also note that the proposed BGM
is different from the Boundary-aware Feature Propagation
module in [47], we focus on learning the boundary-enhanced
representation for preserving the local characteristics and
boundary information, which can be incorporated into the
decoder network within a layer-wise strategy to improve the
COD performance.

C. Multi-scale Feature Aggregation Module

Scale variation is one of the major challenges in the
COD task. Because each convolutional layer only is able to
handle a special scale, it is demanded to capture multi-scale
information from a single layer to characterize variations of
the object’s scale. Therefore, we propose a Multi-scale Feature
Aggregation Module (MFAM) to aggregate the image features
at different scales.

Specifically, we denote the m-th level feature as fm ∈
RWm∗Hm∗Cm , where Wm, Hm, and Cm are the width, height,
and channel number, respectively. We then obtain three feature
representations (i.e., f1m ∈ RWm∗Hm∗Cl , f2m ∈ RWm∗Hm∗Cl ,
and f3m ∈ RWm∗Hm∗Cl ) by conducting three independent 1×1
convolutional layers on fm, in which the channel number
is reduced to Cl for acceleration. Then we construct a two-
stream network using different convolutional kernels. In this
case, the information between the two-stream network can
be shared with each other for capturing features at different
scales. As shown in Fig. 2, f1m and f2m are fed into a 3×3 con-
volutional layer and a 5× 5 convolutional layer, respectively,
we can obtain ζ(Conv3(f1m)) and ζ(Conv5(f2m)), where ζ(·)
denotes the ReLU activation function. Further, the two features
are fused and then fed into two convolutional layers with

different kernels. The above process can be described as
follows:{

f3×3m = ζ(Conv3(ζ(Conv3(f
1
m))⊕ ζ(Conv5(f2m)))),

f5×5m = ζ(Conv5(ζ(Conv3(f
1
m))⊕ ζ(Conv5(f2m)))),

(2)
where ⊕ denotes element-wise addition. After that, we can
obtain the aggregated feature, i.e., f3×3m ⊗ f5×5m , where ⊗
denotes element-wise multiplication. In order to fully exploit
feature complementary, the fused multi-scale feature can be
formulated by ffusedm = f3×3m ⊗ f5×5m + ζ(Conv3(f

1
m) +

ζ(Conv5(f
2
m). Moreover, to preserve the original feature

information, we also pile the original feature (i.e., f3m) on
the fused feature ffusedm . Therefore, we can obtain the final
multi-scale aggregated feature as

faggm = ζ(Conv3(f
fused
m ))⊕ f3m. (3)

It is worth noting that our MFAM introduces different sizes
of convolution kernels to adaptively extract features in differ-
ent scales, and multi-scale features interact with each other to
produce more effective and discriminate image information.
Then, the aggregated features can be obtained by fusing multi-
scale features with a residual connection, which makes that
our model can effectively deal with scale variations.

D. Cross-level Fusion and Propagation Module

Effective fusion of cross-level features by exploiting their
correlations often boosts the learning performance. In ad-
dition, accurate camouflaged object detection usually relies
on the effective features provided by the encoder. However,
existing methods directly pass all features to the decoder
network, while ignoring the contributions of features from
different levels. In this case, the valuable context information
can be adequately propagated into the decoder, resulting
in unsatisfactory detection results. To lighten these effects,
we propose a Cross-level Fusion and Propagation Module
(CFPM), which includes two key parts, i.e., cross-feature
fusion and feature propagation.

Specifically, in the cross-level feature fusion part, we take
the two cross-level aggregated features faggm+1 and faggm (here
faggm+1 is imposed using an upsampling operation to have the
same resolution with faggm ) as an example, the two features are
first fused by an addition operation. Then, the fused feature is
fed into a 3×3 convolutional layer with a Sigmoid activation
function, and then we can obtain the normalized feature maps,
i.e., σ(Conv3(f

agg
m+1 ⊕ faggm )) ∈ [0, 1], where σ(·) indicates

the Sigmoid function. Therefore, the normalized feature maps
can be considered as feature-level attention maps to adaptively
enhance the feature representation. In this case, the fused
feature map is used to enhance the cross-level features to
capture their correlation. Besides, to preserve the original
information of each feature, a residual connection is adapted
to combine the enhanced features with their original features.
Therefore, we obtain the enhanced features as follows:{

fenm+1 = faggm+1 + σ(Conv3(f
agg
m+1))⊗ f

agg
m+1,

fenm = faggm + σ(Conv3(f
agg
m+1))⊗ faggm ,

(4)

Then, we obtain the fused cross-level feature as follows:

ffusem = Conv3(Conv3(f
en
m+1) + Conv3(f

en
m )). (5)
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Fig. 3. Illustration of the proposed cross-level fusion and propagation module, consisting of two key components: cross-level feature fusion and decoder
feature propagation.

In the feature propagation part, it is important to propagate
the fused features from the encoder to the decoder by combing
the output of the previous CFPM. For convenience, we denote
the output of the previous CFPM as fpm+1 ∈ RC×W×H .
Firstly, the two features (ffusem and fpm+1) are processed
through a convolutional layer with 3×3 kernel size to produce
the smooth features (for convenience, we denote them as p1
and p2, respectively). We then concatenate the two feature
maps to combine their features at a certain position in space,
i.e., fcat = [p1, p2] ∈ R2C×W×H . Further, we carry out a 1×1
convolution to map the high-dimensional feature (i.e., fcat) to
two different spatial-wise gates, which are g1 ∈ R1×W×H and
g2 ∈ R1×W×H . A softmax function is applied to these two
gates, thus we can obtain

w
(i,j)
1 =

eg
(i,j)
1

eg
(i,j)
1 + eg

(i,j)
2

; w
(i,j)
2 =

eg
(i,j)
2

eg
(i,j)
1 + eg

(i,j)
2

, (6)

where g
(i,j)
1 and g

(i,j)
2 denote the weights assigned for the

(i, j)-th position in the two feature maps, respectively. Be-
sides, we have w

(i,j)
1 + w

(i,j)
2 = 1. Therefore, the final

propagated feature is given by

fp(i,j)m = w
(i,j)
1 · p(i,j)1 + w

(i,j)
2 · p(i,j)2 . (7)

So far, we have obtained the fused feature representation
fpm by adaptively combing the features from the encoder
layer and decoder path. More importantly, our module can
assign weights according to the contributions of the encoder
and decoder streams to boost the COD performance. Note
that, we only conduct the feature fusion without the feature
propagation part in the CFPM when fusing f5 and f4.

E. Overall Loss Function

The binary cross-entropy (LBCE) is one of the most widely
adopted losses in segmentation tasks, however, it ignores
the global structure of an image when computing the loss
for each pixel independently. Inspired by the success and
effectiveness of the standard Intersection-over-Union (IoU)
loss and weighted IoU loss in salient object detection [49], our
detection loss function is defined as Ldet = LwIoU+LwBCE, where
LwIoU and LwBCE denote the weighted IoU loss and BCE loss
for the global and local restrictions, respectively. It is worth
noting that LwIoU can increase the weights of hard pixels to
highlight their importance, and LwBCE pays more attention to
hard pixels rather than treating all pixels equally. Besides, as
shown in Fig. 1, we utilize multiple supervisions for the four

side-output maps and the ground-truth map. Here, each map
(i.e., Supi ) is up-sampled to have the same size as the ground-
truth map (i.e., G). Therefore, the overall loss function can
be formulated as follows:

Ltotal = Ledge +

4∑
i=1

Ldet(G,S
up
i ). (8)

IV. EXPERIMENTS

In this section, we first present the experimental settings,
including the datasets, evaluation metrics, and implementation
details. Then we present the comparison results between our
model and other state-of-the-art methods, and we conduct
ablation studies to validate the effectiveness of each key
component. Finally, we extend the application of the proposed
model to polyp segmentation.

A. Experimental Setup

Datasets. We conduct experiments on three public datasets
for camouflaged object detection. • CHAMELEON [12] is
collected via the Google search engine with the keyword
“camouflage animals”, containing 76 camouflaged images,
which are all used for testing. • CAMO [11] has 1, 250 images
with 8 categories, of which 1, 000 images are for training and
the remaining 250 ones are for testing. • COD10K [12] is
currently the largest camouflaged object dataset with high-
quality pixel-level annotations. There is a total of 5, 066
camouflaged images in this dataset, where 3, 040 images are
for training and 2, 026 ones are for testing. It is also divided
into 5 super-classes and 69 sub-classes.

Evaluation Metrics. To comprehensively compare our
proposed model with other state-of-the-art methods, we adopt
five popular metrics to evaluate the COD performance. The
details of each metric are provided as follows.

1) PR Curve. Given a saliency map S, we can convert it to
a binary mask M , and then compute the precision and recall
by comparing M with ground-truth G:

Precision =
|M ∩G|
|M |

, Recall =
|M ∩G|
|G|

. (9)

Then, we adopt a popular strategy to partition the saliency
map S using a set of thresholds (i.e., from 0 to 255).
For each threshold, we first calculate a pair of recall and
precision scores, and then combine them to obtain a PR curve
that describes the performance of the model at the different
thresholds.
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TABLE I
QUANTITATIVE COMPARISON OUR MODEL WITH 20 STATE-OF-THE-ART MODELS USING FOUR EVALUATION METRICS (i.e., Sα [50], MEAN Fβ [51],

MEAN Eφ [52], AND M [53]). “↑“ & “↓” INDICATE THAT LARGER OR SMALLER IS BETTER. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD FONTS.

Methods #Param (M) CHAMELEON CAMO-Test COD10K-Test
Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓

FPN [22] - 0.794 0.648 0.783 0.075 0.684 0.545 0.677 0.131 0.697 0.481 0.691 0.075
MaskRCNN [54] - 0.643 0.610 0.778 0.099 0.574 0.520 0.715 0.151 0.613 0.469 0.748 0.081

PSPNet [55] 71.64 0.773 0.630 0.758 0.085 0.663 0.520 0.659 0.139 0.678 0.458 0.680 0.080
UNet++ [56] 36.63 0.695 0.557 0.762 0.094 0.599 0.461 0.653 0.149 0.623 0.409 0.673 0.086

PiCANet [57] 32.85 0.769 0.615 0.749 0.085 0.609 0.419 0.584 0.156 0.649 0.411 0.643 0.090
MSRCNN [58] - 0.637 0.505 0.686 0.091 0.617 0.527 0.669 0.133 0.641 0.478 0.706 0.073

BASNet [59] 87.06 0.687 0.528 0.721 0.118 0.618 0.475 0.661 0.159 0.634 0.417 0.678 0.105
PFANet [60] 16.38 0.679 0.648 0.378 0.144 0.659 0.622 0.391 0.172 0.636 0.618 0.286 0.128

CPD [61] 29.23 0.857 0.771 0.874 0.048 0.716 0.618 0.723 0.113 0.750 0.595 0.776 0.053
HTC [62] - 0.517 0.236 0.489 0.129 0.476 0.206 0.442 0.172 0.548 0.253 0.520 0.088

PoolNet [63] 53.63 0.776 0.632 0.779 0.081 0.703 0.563 0.699 0.129 0.705 0.500 0.713 0.074
EGNet [64] 108.07 0.750 0.645 0.764 0.075 0.662 0.567 0.683 0.125 0.733 0.583 0.761 0.055

GateNet [44] 128.63 0.870 0.775 0.873 0.045 0.773 0.684 0.771 0.093 0.791 0.643 0.797 0.047
MINet [26] 162.38 0.868 0.767 0.869 0.048 0.773 0.678 0.771 0.100 0.786 0.639 0.803 0.052
PraNet [65] 32.55 0.860 0.789 0.907 0.050 0.769 0.710 0.825 0.094 0.789 0.671 0.861 0.045
SINet [12] 48.95 0.869 0.790 0.891 0.044 0.751 0.675 0.771 0.100 0.771 0.634 0.807 0.051

POCINet [66] - 0.866 0.807 0.905 0.042 0.702 0.629 0.731 0.110 0.751 0.628 0.810 0.051
DNTDF [67] 28.85 0.864 0.773 0.881 0.046 0.772 0.682 0.784 0.097 0.781 0.629 0.800 0.049

LSR [68] - 0.890 0.841 0.935 0.031 0.787 0.744 0.838 0.080 0.804 0.715 0.880 0.037
PFNet [14] 46.50 0.882 0.828 0.931 0.033 0.782 0.746 0.842 0.085 0.800 0.701 0.877 0.040

Ours 29.52 0.893 0.842 0.940 0.028 0.815 0.776 0.865 0.076 0.822 0.731 0.888 0.036

2) Structure Measure (Sα) [50]: It is proposed to assess the
structural similarity between the regional perception (Sr) and
object perception (So), which is defined by

Sα = α× So + (1− α)× Sr, (10)

where α ∈ [0, 1] is a trade-off parameter and it is set to 0.5
as default [50].

3) Enhanced-alignment Measure (Eφ) [52]: It is used to
capture image-level statistics and their local pixel matching
information, which is defined by

Eφ =
1

W ×H

W∑
i=1

H∑
j=1

φ (S(x, y), G(x, y)) , (11)

where W and H denote the width and height of ground-truth
G, and (x, y) is the coordinate of each pixel in G. Symbol
φ is the enhanced alignment matrix. We obtain a set of Eφ
by converting the prediction S into a binary mask with a
threshold in the range of [0, 255]. In our experiments, we
report the mean of Eφ values over all the thresholds.

4) F-measure (Fβ) [51]: It is used to comprehensively
consider both precision and recall, and we can obtain the
weighted harmonic mean by

Fβ =
(
1 + β2

) Precision× Recall
β2Precision + Recall

, (12)

where Precision = |M∩G|
|M | and Recall = |M∩G|

|G| . Besides,
β2 is set to 0.3 to emphasize the precision [51]. We use
different fixed [0, 255] thresholds to compute the F -measure.
This yields a set of F -measure values for which we report
the maximal Fβ in our experiments.

5) Mean Absolute Error (M) [53]: It is adopted to compute
the average pixel-level relative error between the ground truth
and normalized prediction, which is defined by

M =
1

W ×H

W∑
i=1

H∑
j=1

|S (i, j)−G (i, j)| , (13)

where G and S denote the ground truth and normalized
prediction (it is normalized to [0, 1]).

Implementation Details. Our model is implemented in
PyTorch and trained on one NVIDIA Tesla P40 GPU with
24 GB memory. The backbone network (Res2Net-50 [46]) is
used, which has been pre-trained on ImageNet [69]. We adopt
the Adam algorithm to optimize the proposed model. The
initial learning rate is set to 1e−4 and is divided by 10 every
30 epochs. We adopt additional data augmentation strategies
including random flipping, crop, and rotation using different
scaling ratios, i.e., {0.75, 1, 1.25}. The input images are
resized to 352×352. The batch size is set to 20 and the model
is trained over 200 epochs. Following the training setting
in [12], we utilize the default training sets including CAMO
and COD10K datasets. Then, we evaluate the proposed model
and all compared methods on the whole CHAMELEON
dataset and the test sets of CAMO and COD10K datasets.
Besides, during the testing stage, the test images are resized
to 352×352 and then fed into the model to obtain prediction
maps. Finally, the prediction maps can be rescaled to the
original size to achieve the final evaluation.

B. Comparison with State-of-the-art Methods

1) Comparison Methods: To validate the effectiveness of
the proposed COD method, we compare it with 20 state-
of-the-art methods, including FPN [22], MaskRCNN [54],
PSPNet [55], UNet++ [56], PiCANet [57], MSRCNN [58],
BASNet [59], PFANet [60], CPD [61], HTC [62], Pool-
Net [63], EGNet [64], GateNet [44], MINet [26], PraNet [65],
SINet [12], POCINet [66], DNTD [67], LSR [68], and
PFNet [14]. For GateNet, MINet, and DNTDF, we retrained
the three models with released codes. For other all compared
methods, we collected the prediction maps from [12]. Besides,
we evaluate all the prediction maps using the same code.

2) Quantitative Comparison: Table I shows the quanti-
tative comparison between our model and 20 state-of-the-
art methods by four widely used evaluation metrics. On the
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Fig. 4. Precision-recall (top) and F-measure (bottom) curves on the three camouflaged object datasets.

TABLE II
QUANTITATIVE RESULTS ON FOUR SUPER-CLASSES (i.e., FLYING, TERRESTRIAL, AQUATIC, AND AMPHIBIAN) OF THE COD10K DATASET USING FOUR
EVALUATION METRICS (i.e., Sα [50], MEAN Fβ [51], MEAN Eφ [52], AND M [53]). “↑“ & “↓” INDICATE THAT LARGER OR SMALLER IS BETTER. THE

BEST RESULTS ARE HIGHLIGHTED IN BOLD FONTS.

Methods Flying (714 images) Terrestrial (699 images) Aquatic (474 images) Amphibian (124 images)
Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓ Sα ↑ Fβ ↑ Eφ ↑ M ↓

FPN [22] 0.726 0.510 0.714 0.061 0.669 0.418 0.661 0.071 0.684 0.509 0.687 0.103 0.744 0.569 0.743 0.065
MaskRCNN [54] 0.645 0.518 0.765 0.063 0.608 0.440 0.747 0.070 0.560 0.417 0.719 0.123 0.665 0.552 0.782 0.081

PSPNet [55] 0.700 0.477 0.692 0.067 0.658 0.407 0.666 0.074 0.659 0.478 0.670 0.111 0.736 0.556 0.733 0.072
UNet++ [56] 0.659 0.455 0.708 0.068 0.593 0.340 0.637 0.081 0.599 0.418 0.660 0.121 0.677 0.496 0.725 0.079

PiCANet [57] 0.677 0.440 0.663 0.076 0.625 0.359 0.628 0.084 0.629 0.423 0.623 0.120 0.704 0.494 0.689 0.086
MSRCNN [58] 0.675 0.522 0.742 0.058 0.611 0.417 0.671 0.070 0.614 0.464 0.685 0.107 0.722 0.613 0.784 0.055

BASNet [59] 0.664 0.454 0.710 0.086 0.601 0.350 0.645 0.109 0.620 0.431 0.666 0.134 0.708 0.535 0.741 0.087
PFANet [60] 0.657 0.393 0.632 0.113 0.609 0.323 0.600 0.123 0.629 0.404 0.614 0.162 0.690 0.460 0.661 0.119

CPD [61] 0.777 0.624 0.792 0.041 0.714 0.526 0.747 0.053 0.746 0.628 0.779 0.075 0.816 0.700 0.847 0.041
HTC [62] 0.582 0.308 0.558 0.070 0.530 0.196 0.484 0.078 0.507 0.223 0.494 0.129 0.606 0.365 0.596 0.088

PoolNet [63] 0.733 0.534 0.734 0.062 0.677 0.442 0.688 0.071 0.689 0.507 0.705 0.102 0.767 0.598 0.769 0.064
EGNet [64] 0.771 0.630 0.795 0.040 0.711 0.531 0.738 0.049 0.693 0.568 0.730 0.088 0.787 0.669 0.823 0.048

GateNet [44] 0.819 0.675 0.823 0.036 0.760 0.579 0.758 0.048 0.784 0.672 0.804 0.064 0.838 0.714 0.841 0.040
MINet [26] 0.807 0.718 0.886 0.030 0.742 0.617 0.830 0.042 0.767 0.703 0.843 0.060 0.827 0.756 0.897 0.034
PraNet [65] 0.819 0.707 0.888 0.033 0.756 0.607 0.835 0.046 0.781 0.692 0.848 0.065 0.842 0.750 0.905 0.035
SINet [12] 0.798 0.663 0.828 0.040 0.743 0.578 0.778 0.050 0.758 0.650 0.803 0.073 0.827 0.724 0.866 0.042
LSR [68] 0.830 0.745 0.906 0.027 0.772 0.656 0.855 0.038 0.803 0.740 0.875 0.053 0.846 0.783 0.906 0.030

PFNet [14] 0.824 0.729 0.903 0.030 0.773 0.648 0.855 0.041 0.793 0.722 0.868 0.055 0.848 0.773 0.911 0.031
Ours 0.845 0.760 0.906 0.025 0.795 0.678 0.868 0.037 0.821 0.757 0.887 0.049 0.854 0.783 0.914 0.032

CHAMELEON dataset, from the results, it can be seen that
our method outperforms all the state-of-the-art methods in all
evaluation metrics. LSR and PFNet achieve relatively better
COD performance than other comparison methods. Besides,
some methods (e.g., EGNet [64] and PFANet [60]) also utilize
auxiliary edge or boundary information and still fail to locate
camouflaged objects, while our model can effectively locate
them and achieve the best performance. This is because our
model can fully capture the multi-scale information to deal
with the objects’ scale variations, and the fused features
cross-level features from the encoder can be propagated to
the decoder for providing much useful context information
to improve the COD performance. On the CAMO dataset,
our model consistently obtains the best performance, further
demonstrating its robustness in locating camouflaged objects
under challenging factors. Compared with PFNet [14], our

model significantly improves Sα by 4.2%, Fβ by 4.0%, and
Eφ by 2.7%. Besides, our model significantly improves Sα
by 6.0%, Fβ by 9.3%, and Eφ by 4.9% when compared with
PraNet [55]. On the largest COD10K dataset, it can be again
observed that our model is consistently better than other com-
pared COD methods. This is because our model can provide
boundary-enhanced features to help locate the boundaries of
camouflaged objects, resulting in accurate detection of the
camouflaged object.

In addition to the overall quantitative comparisons using the
above four evaluation metrics, we show PR and F-measure
curves in Fig. 4. From the results, we can see that our model
achieves the best results compared to other COD methods.

Moreover, to investigate the complexity of the proposed
model, we list the number of parameters (#Param) of different
COD methods in Table I. From the results, it can be observed
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RGB GT Ours EGNet CPD PraNet SINet PFNet

Fig. 5. Qualitative visual comparison of our model versus five state-of-the-art methods (i.e., EGNet [64], CPD [61], PraNet [65], SINet [12], and PFNet [14]).

that our model is with minimal parameters in comparison
with two representative COD methods (i.e., SINet [12] and
PFNet [14]).

3) Qualitative Comparison: Fig. 5 shows the detection
results of our model and five comparison COD methods.
From the visual results in Fig. 5, our model achieves better
visual results by detecting and segmenting more accurate
and complete camouflaged objects. Specifically, in the 1st

and 2nd rows, it can be seen that our model can effectively
handle size variations, while EGNet, CPD, PraNet, and SINet
suffer from inaccurate segmentation results. In the 3rd and
4th rows, camouflaged objects have a similar texture to the
background, which brings a serious challenge to identify them
from a similar background. In this case, our model performs
better and accurately locates camouflaged objects. In the 5th

row, the boundary between the object and background is not
sharp, while our method still accurately detects the camou-
flaged object with rich details. Among the five comparison
methods, PraNet obtains relatively better performance than
other compared methods (see the 5th row). In the 6th and
7th rows, it is challenging to detect multiple camouflaged
objects. It can be observed that our model can effectively

detect multiple camouflaged objects while some methods fail
to locate them. In the 8th and 9th rows, we can that the objects
are visually embedded in their background, thus it is very
challenging for COD methods to identify them. In this case,
our model detects camouflage objects more accurately than
other compared methods. Overall, the results prove that our
model can achieve good performance in detecting camouflage
objects under different challenging factors.

4) Super-class Performance Comparison: To further verify
the effectiveness of the proposed COD model, we report
the quantitative super-class results in Table II. On the three
super-classes, i.e., “Flyingm” “Terrestrial”, and “Aquatic”, our
model obtains the best performance in the terms of four
evaluation metrics. Specifically, compared with PraNet, the
improvements are 3.2%, 12.6%, 10.1% in terms of Sα, Fβ ,
and Eφ on the “Flying” class. Compared with SINet, the
improvements are 2.6% and 4.3% in terms of Sα and Fβ ,
respectively. Our model achieves 4.6%, 4.7%, and 1.9% im-
provements in the term of Sα over PraNet on the “Terrestrial”,
“Aquatic”, and “Amphibian” classes, respectively. Besides,
our model achieves 17.1%, 12.7%, and 9.7% improvements in
the term of Fβ over PraNet on the “Terrestrial”, ‘Aquatic”, and
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TABLE III
ABLATION STUDIES FOR DIFFERENT BASELINE METHODS AND KEY

COMPONENTS OF OUR MODEL

.
Datasets Metrics A1 A2 A3 B1 B2 C1 C2 D E

CHAMELEON

Sα ↑ .668 .794 .868 .882 .874 .887 .888 .872 .893
Eφ ↑ .611 .783 .922 .928 .928 .945 .933 .924 .940
M ↓ .152 .075 .038 .035 .034 .030 .032 .035 .028

CAMO

Sα ↑ .629 .684 .798 .802 .799 .800 .811 .808 .815
Eφ ↑ .577 .677 .845 .852 .846 .855 .864 .852 .865
M ↓ .191 .131 .084 .083 .083 .078 .078 .079 .076

COD10K

Sα ↑ .626 .697 .804 .815 .810 .809 .817 .811 .822
Eφ ↑ .601 .691 .870 .880 .875 .876 .881 .882 .888
M ↓ .132 .075 .042 .038 .040 .038 .037 .037 .036

“Amphibian” classes, respectively. Overall, the proposed FAP-
Net achieves satisfactory performance under different super-
class conditions.

C. Ablation Study

To investigate the effectiveness of different key components
in the proposed model, we carry out ablation studies by
removing or replacing them from our full model. We first
remove all key components. Specifically, we first provide the
COD results using two baseline methods, i.e., FPN [22] and
Attention U-Net [70] (denoted as “A1” and “A2”). We then
adopt a 3 × 3 convolution to replace the convolution for
reducing the channel size, and utilize a simple concatenation
followed by a 3 × 3 convolution instead of CPFM (this
experiment is denoted as “A3”). In the “B1” experiment, we
add the MFAM, while other key components are removed
and the related experimental settings are similar to “A3”.
In addition, we adopt the Inception module [71] instead of
MFAM, and this experiment is denoted as “B2”. In the “C1”
experiment, we further add the cross-level feature fusion part
of the CFPM, while other key components are removed. In
the “C2” experiment, we utilize the full CFPM, while only
BGM is removed. Moreover, in the “D” experiment, we adopt
the Attention Gate in [70] instead of the proposed CFPM.
Finally, we show the experiment of our full model in the
“E” experiment. Experimental results of ablation studies for
different key components in our model are shown in Table III.

Effectiveness of Baseline Model. As shown in Table III,
comparing our basic framework (“A3”) with other baselines
(“A1” and “A2”), it can be observed that our basic framework
performs better than FPN and Attention U-Net, which indi-
cates the effectiveness of our basic framework in detecting
camouflaged objects.

Effectiveness of MFAM. As shown in Table III, comparing
“B1” with “A3”, it can be observed that the model using
MFAM can improve the COD performance. In the proposed
MFAM, we adopt multi-scale convolutional kernels to extract
the aggregated features from the original layers, which can
capture multi-scale information to deal with the scale varia-
tions of camouflaged objects. Besides, comparing “B2” with
“B1”, it can be seen that our model using MFAM performs
better than that using the Inception module in terms of most
evaluation metrics.

Effectiveness of CFPM. Comparing “C1” with “B1”, it can
be seen that the feature fusion part in the CFPM can improve
the COD performance, which indicates that the part effectively
integrates the features from adjacent levels to exploit the
correlations from cross-level features. Comparing “C1” with

TABLE IV
RESULTS COMPARISON FOR CROSS-DATASET GENERALIZATION. OUR

MODEL IS TRAINED ON ONE (ROWS) DATASET AND TESTED ON ALL
DATASETS (COLUMNS).

Train Set Methods CHAMELEON CAMO-Test COD10K-Test
Sα ↑ M ↓ Sα ↑ M ↓ Sα ↑ M ↓

C
A

M
O

MINet 0.803 0.080 0.777 0.113 0.713 0.089
PraNet 0.816 0.053 0.788 0.084 0.753 0.057
SINet 0.803 0.066 0.756 0.103 0.728 0.068
PFNet 0.809 0.061 0.784 0.087 0.736 0.064
Ours 0.833 0.044 0.808 0.074 0.753 0.054

C
O

D
10

K

MINet 0.839 0.055 0.694 0.125 0.779 0.053
PraNet 0.867 0.035 0.688 0.117 0.802 0.038
SINet 0.852 0.045 0.672 0.124 0.772 0.048
PFNet 0.855 0.042 0.696 0.117 0.782 0.047
Ours 0.874 0.034 0.708 0.111 0.820 0.036

“C2”, we can see that the feature propagation part further
boosts the COD performance in CFPM. Therefore, combined
with the two ablation experiments, the effectiveness of CFPM
can be well validated. The proposed CFPM first carries out
cross-level fusion and then conducts feature propagation,
which can effectively propagate the useful information from
the encoder to the decoder network for boosting the COD
performance. Besides, comparing “C2” with “D”, it can be
observed that the proposed COD framework using CFPM
performs better than that using the simple Attention Gate
unit [70]. Therefore, the effectiveness of the proposed CFPM
can be further validated.

Effectiveness of BGM. Comparing “C2” with “E”, it
can be seen that the BGM can further improve the COD
performance. This is mainly because the boundary-enhanced
features are integrated into the decoder, which can provide
much low-level structure information to locate the boundaries
of camouflaged objects.

D. Cross-dataset Generalization

The cross-dataset generalization study plays a crucial role
in assessing different algorithms. Here, we utilize the cross-
dataset analysis strategy [78] to evaluate the generalizability
of our model, i.e., training a model on one dataset and
then testing it on others. To investigate the generalization
ability of our model and other SOTA methods, we train the
proposed methods and four SOTA methods (i.e., MINet [26],
PraNet [65], SINet [12], and PFNet [14]) on the CAMO
and COD1K datasets, and then report the results on the test
sets. Table IV shows the comparison of results for cross-
dataset generalization. As shown in Table IV, it can be seen
that our method still performs better than other comparison
methods under two different training sets. Besides, comparing
the results between Table I and Table IV, it can be observed
that all methods drop the performance when training one
dataset and testing on the other datasets.

E. Extension Application

Automatic polyp segmentation is an important step in mod-
ern polyp screening systems, which can help clinicians accu-
rately locate polyp regions for further diagnosis or treatments.
Similar to camouflaged object detection, polyp segmentation
also faces several challenges, including 1) variations in the
shape and size of polyps and 2) non-sharp boundary between
a polyp and its surrounding mucosa [65]. Therefore, to further
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Fig. 6. Qualitative visual comparison of different polyp segmentation methods.

TABLE V
QUANTITATIVE POLYP SEGMENTATION RESULTS ON FOUR WIDELY DATASETS USING FIVE METRICS (i.e., MDICE, MIOU, Sα [50], WEIGHTED Fβ [51],

AND M [53]). “↑“ & “↓” INDICATE THAT LARGER OR SMALLER IS BETTER. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Methods CVC-ClinicDB [72] ETIS [73] CVC-ColonDB [74] Kvasir [75]
mDice ↑ mIou ↑ Sα ↑ Fwβ ↑ M ↓ mDice ↑ mIou ↑ Sα ↑ Fwβ ↑ M ↓ mDice ↑ mIou ↑ Sα ↑ Fwβ ↑ M ↓ mDice ↑ mIou ↑ Sα ↑ Fwβ ↑ M ↓

U-Net [76] 0.823 0.755 0.889 0.811 0.019 0.398 0.335 0.684 0.366 0.036 0.512 0.444 0.712 0.498 0.061 0.818 0.746 0.858 0.794 0.056
U-Net++ [56] 0.794 0.729 0.873 0.785 0.022 0.401 0.344 0.683 0.390 0.035 0.483 0.410 0.691 0.467 0.064 0.821 0.743 0.862 0.808 0.048

SFA [77] 0.723 0.611 0.782 0.670 0.075 0.297 0.217 0.557 0.231 0.109 0.469 0.347 0.634 0.379 0.094 0.723 0.611 0.782 0.670 0.075
PraNet [65] 0.899 0.849 0.936 0.896 0.009 0.628 0.567 0.794 0.600 0.031 0.709 0.640 0.819 0.696 0.045 0.898 0.840 0.915 0.885 0.030

Ours 0.925 0.877 0.947 0.910 0.008 0.717 0.643 0.841 0.657 0.019 0.731 0.658 0.831 0.735 0.038 0.902 0.849 0.919 0.894 0.027

validate the effectiveness of our FAP-Net, we extend it to the
polyp segmentation task.

Experimental Settings. The comparison experiments are
conducted on four polyp segmentation datasets, which are
CVC-ClinicDB [72], ETIS [73], CVC-ColonDB [74], and
Kvasir [75]. To validate the effectiveness of our model
on the polyp segmentation task, we compare the proposed
model with four state-of-the-art methods, i.e., UNet [76],
UNet++ [56], SFA [77], and PraNet [65]. Besides, following
the same setting in [65], we train the proposed model on
the CVC-ClinicDB and Kvasir datasets. Moreover, we utilize
five widely used metrics, i.e., mean Dice coefficient (mDice),
mean Intersection over Union (mIoU), Sα [50], Fwβ [51], and
M [53], for quantitative evaluation.

Results Comparison. Table V shows the quantitative and
qualitative results on four polyp datasets. From the results in
Table V, it can be seen that our model performs best than the
four compared methods and improve the polyp segmentation
performance by a large margin. Specifically, on the CVC-
ColonDB dataset, our model achieves 2.9%, 3.3%, 1.2%, and
1.6% improvements over PraNet in the terms of mDice, mIou,
Sα, and Fwβ , respectively. On the ETIS dataset, our model
achieves 14.2%, 13.4%, 5.9%, and 9.5% improvements over
PraNet in the terms of mDice, mIou, Sα, and Fwβ , respec-
tively. Therefore, the results validate the effectiveness of the
proposed model can effectively segment polyps in a complex
background. Besides, Fig. 6 shows a visual comparison of
the four polyp segmentation methods. From the results, it can
be observed that the proposed method can accurately locate

and segment the polyps in several challenging factors, such
as varied size, non-sharp boundary, etc.

V. CONCLUSION

In this paper, we have proposed a novel camouflaged object
detection framework, i.e., Feature Aggregation and Propaga-
tion Network (FAP-Net). We first utilize the proposed BGM to
explicitly model the boundary characteristic, and the obtained
boundary-enhanced feature representations are integrated into
the decoder to boost the COD performance. Then, we propose
the MFAM to extract the multi-scale information from a single
layer for dealing with scale variations. Moreover, we design
the CFPM to effectively fuse cross-level features and then
propagate them to the decoder network with the valuable
context information from the encoder. Extensive experimental
results demonstrate that our FAP-Net outperforms other state-
of-the-art COD methods. Furthermore, we apply FAP-Net to
the polyp segmentation task, and the results show that our
model outperforms other polyp segmentation methods.
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[53] F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung, “Saliency filters:
Contrast based filtering for salient region detection,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2012, pp. 733–740.

[54] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2961–2969.

[55] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 2881–2890.

[56] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++:
Redesigning skip connections to exploit multiscale features in image
segmentation,” IEEE Trans. Med. Imaging, vol. 39, no. 6, pp. 1856–
1867, 2019.



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX,NO. XX, XXX. XXXX 12

[57] N. Liu, J. Han, and M. Yang, “Picanet: Learning pixel-wise contextual
attention for saliency detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 3089–3098.

[58] Z. Huang, L. Huang, Y. Gong, C. Huang, and X. Wang, “Mask scoring
R-CNN ,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 6409–6418.

[59] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand.,
“Basnet: Boundary-aware salient object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2019, pp. 7479–7489.

[60] T. Zhao and X. Wu, “Pyramid feature attention network for saliency
detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 3085–3094.

[61] Z. Wu, L. Su, and Q. Huang, “Cascaded partial decoder for fast and
accurate salient object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 3907–3916.

[62] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, et al., “Hybrid task
cascade for instance segmentation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 4974–4983.

[63] J.-J. Liu, Q. Hou, M.-M. Cheng, J. Feng, and J. Jiang, “A simple
pooling-based design for real-time salient object detection,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3917–3926.

[64] J. Zhao, J. Liu, D. Fan, Y. Cao, J. Yang, and M. Cheng, “EGNet: Edge
guidance network for salient object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2019, pp. 8779–8788.

[65] D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao,
“Pranet: Parallel reverse attention network for polyp segmentation,” in
Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent., 2020,
pp. 263–273.

[66] Y. Liu, D. Zhang, Q. Zhang, and J. Han, “Integrating part-object
relationship and contrast for camouflaged object detection,” IEEE Trans.
Inf. Forensics Security, vol. 16, pp. 5154–5166, 2021.

[67] C. Fang, H. Tian, D. Zhang, Q. Zhang, J. Han, and J. Han, “Densely
nested top-down flows for salient object detection,” Science China
Information Sciences, vol. 65, no. 8, pp. 1–14, 2022.

[68] Y. Lv, J. Zhang, Y. Dai, A. Li, B. Liu, N. Barnes, and D.-P. Fan,
“Simultaneously localize, segment and rank the camouflaged objects,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2021, pp. 11 591–
11 601.

[69] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla et al., “Imagenet large scale visual
recognition challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–
252, 2015.

[70] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa,
K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz et al., “Attention
U-Net: Learning where to look for the pancreas,” arXiv preprint
arXiv:1804.03999, 2018.

[71] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[72] J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodrı́guez,
and F. Vilariño, “WM-DOVA maps for accurate polyp highlighting in
colonoscopy: Validation vs. saliency maps from physicians,” Comput-
erized Med. Imaging and Graph., vol. 43, pp. 99–111, 2015.

[73] J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward
embedded detection of polyps in wce images for early diagnosis of
colorectal cancer,” Int. J. of Computer Assist. Radiology and Surgery,
vol. 9, no. 2, pp. 283–293, 2014.

[74] N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated polyp detection
in colonoscopy videos using shape and context information,” IEEE
Trans. Med. Imaging, vol. 35, no. 2, pp. 630–644, 2015.

[75] D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange,
D. Johansen, and H. D. Johansen, “Kvasir-seg: A segmented polyp
dataset,” in Int. Conf. on Multimedia Modeling, 2020, pp. 451–462.

[76] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput. Assist. Intervent., 2015, pp. 234–241.

[77] Y. Fang, C. Chen, Y. Yuan, and K.-y. Tong, “Selective feature aggrega-
tion network with area-boundary constraints for polyp segmentation,” in
Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent., 2019,
pp. 302–310.

[78] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 1521–1528.


	I Introduction
	II Related Work
	II-A Camouflaged Object Detection
	II-B Multi-scale/level Feature Learning
	II-C Gated Mechanism

	III Methodology
	III-A Overview
	III-B Boundary Guidance Module
	III-C Multi-scale Feature Aggregation Module
	III-D Cross-level Fusion and Propagation Module
	III-E Overall Loss Function

	IV Experiments
	IV-A Experimental Setup
	IV-B Comparison with State-of-the-art Methods
	IV-B1 Comparison Methods
	IV-B2 Quantitative Comparison
	IV-B3 Qualitative Comparison
	IV-B4 Super-class Performance Comparison

	IV-C Ablation Study
	IV-D Cross-dataset Generalization
	IV-E Extension Application

	V Conclusion
	References

