
Feature allocations, 
probability functions, 

and paintboxes

Tamara Broderick	

UC Berkeley	


(MIT starting 2015)



Clustering/Partition

1

π7 = {{1, 2, 7}, {3, 5}, {4}, {6}}



Clustering/Partition

Document 1

Document 2

Document 3

Document 4

Document 5

Document 6

Document 7

1

π7 = {{1, 2, 7}, {3, 5}, {4}, {6}}



Clustering/Partition

Document 1

Document 2

Document 3

Document 4

Document 5

Document 6

Document 7

1

π7 = {{1, 2, 7}, {3, 5}, {4}, {6}}



π7 = {{1, 2, 7}, {3, 5}, {4}, {6}}

Clustering/Partition

Document 1

Document 2

Document 3

Document 4

Document 5

Document 6

Document 7

1

“clusters”,	

“blocks (of a 
partition)”



Clustering/Partition

Document 1

Document 2

Document 3

Document 4

Document 5

Document 6

Document 7

A
rt
s

Ec
on

Sp
or

ts
Sc

ie
nc

e
Te

ch

1

“clusters”,	

“blocks (of a 
partition)”

π7 = {{1, 2, 7}, {3, 5}, {4}, {6}}



Latent feature allocation

2

Document 1

Document 2

Document 3

Document 4

Document 5

Document 6

Document 7

A
rt
s

Ec
on

Sp
or

ts
Sc

ie
nc

e
Te

ch



Latent feature allocation

“features”,	

“topics”

2

Document 1

Document 2

Document 3

Document 4

Document 5

Document 6

Document 7

A
rt
s

Ec
on

Sp
or

ts
Sc

ie
nc

e
Te

ch



Latent feature allocation

“features”,	

“topics”

2

Document 1

Document 2

Document 3

Document 4

Document 5

Document 6

Document 7

A
rt
s

Ec
on

Sp
or

ts
Sc

ie
nc

e
Te

ch

f7 = {{1, 2, 3}, {3, 5}, {4}, {2, 3, 4, 6}, {1, 2, 3, 4, 5, 6}}



Latent feature allocation

Question:	
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