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Abstract—Lithium-ion battery manufacturing is a highly com-
plicated process with strongly coupled feature interdependencies,
a feasible solution that can analyse feature variables within
manufacturing chain and achieve reliable classification is thus
urgently needed. This article proposes a random forest (RF)-
based classification framework, through using the out of bag
(OOB) predictions, Gini changes as well as predictive measure
of association (PMOA), for effectively quantifying the importance
and correlations of battery manufacturing features and their
effects on the classification of electrode properties. Battery man-
ufacturing data containing three intermediate product features
from the mixing stage and one product parameter from the
coating stage are analysed by the designed RF framework to
investigate their effects on both the battery electrode active
material mass load and porosity. Illustrative results demonstrate
that the proposed RF framework not only achieves the reliable
classification of electrode properties but also leads to the effective
quantification of both manufacturing feature importance and
correlations. This is the first time to design a systematic RF
framework for simultaneously quantifying battery production
feature importance and correlations by three various quantitative
indicators including the unbiased feature importance (FI), gain
improvement FI and PMOA, paving a promising solution to
reduce model dimension and conduct efficient sensitivity analysis
of battery manufacturing.

Index Terms—Lithium-ion battery, data-driven model, battery
manufacturing and management, feature analysis, battery prod-
uct classification.

I. INTRODUCTION

As a consequence of the manufacturing complexity that

involves numerous individual process stages, a large num-

ber of variables and parameters are generated and coupled

during battery manufacturing [1]. These process parameters

will highly affect the properties of manufacturing intermediate

products, which, in turn, further determine the final battery

performance. Unfortunately, due to the complexity, the multi-

ple inter-relations among key processes and control variables
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are still difficult to be understood. Currently the analysis of

manufacturing variables to improve battery performance is still

mainly dependent on the trial and error methods [2]. Therefore,

it is vital to develop powerful data analysis solutions for

better understanding and evaluating the variable importance,

the process interactions within battery manufacturing chain.

With the rapid development of cloud computing and ma-

chine learning technologies, artificial intelligence and data-

driven based strategies are becoming powerful tools in many

industrial fields. For instance, a genetic algorithm and neu-

ral network based data-driven method was proposed in [3]

for smart semiconductor manufacturing. In [4], through con-

sidering the machine-interactions and operational context, a

hybrid data-driven and physics-based framework was derived

for modelling manufacturing equipment to improve anomaly

detection and diagnosis. For battery applications, numerous

data-driven models have been derived to estimate operational

states [5]–[8], predict service life [9]–[12], diagnose faults

[13], achieve effective charging [14]–[16] and energy man-

agements [17], [18]. However, all these researches mainly

focus on the in-situ operation of battery performance without

considering the microscopic properties of its production. As

battery manufacturing also generates a large amount of data,

it should also be a promising way by designing reliable data-

driven solutions to analyse and improve processes within it.

In comparison with battery management research, fewer

works have been done so far by applying machine-learning

techniques in battery manufacturing domain. Among lots of

corresponding themes (process monitoring [19], adjustments

[20] and analyses [21]) of battery manufacturing, deriving

suitable data-driven models to predict and analyse the inter-

mediate products belongs to a significant research challenge.

For instances, through analysing the initial failure mode and

effect, Schnell et al. [22] proposed a data-driven method

for the internal decisions of battery manufacturing quality

control without considering the link of each quality parameter.

Then in [23], a data-mining concept named the cross-industry

standard process (CRISP) together with linear model, neural

network, and regression approach are utilised to identify the

process dependency and predict the product qualities of battery

manufacturing. According to the CRISP concept, Turetskyy

et al. [24] proposed a decision trees-based framework to

conduct manufacturing feature selection and regression models

for predicting battery maximal capacity. In [25], a multi-
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variate regression approach based on CRISP concept was also

proposed to predict the final battery manufacturing properties

and suggest the suitable quality gates. Based upon the defined

capability indices, a hierarchical model was proposed in [26]

to determine performance indicators of production chain such

as battery weight and capacity. Through using a statistical

investigation of battery product fluctuations, Hoffmann et al.

[27] investigated their effects on the manufactured cell ca-

pacities. In [28], three common data-driven models including

support vector machine, decision tree and neural network are

utilised to classify the electrode properties. Then the parameter

dependencies are analysed through the 2D graphs from model

and experiment data. For the aforementioned applications,

reasonable data-driven analyses of battery manufacturing have

been obtained, and several limitations still exist as: 1) re-

searches mainly focus on simply using the existed common

methodologies to predict battery product properties, lacking

of in-depth investigations on the characteristics of adopted

machine learning techniques to further enhance their perfor-

mance and generalization in battery manufacturing domain.

2) many works mainly emphasize the accuracy of developed

model, ignoring systematically analysing its interpretability for

battery manufacturing data. For the battery production chain

that presents various feature variables, apart from obtaining

the predicted output of utilised model, manufacturers are also

very interested in the underlying correlations among different

variables and which features are more crucial for determining

the predicted results. Such information can effectively help

battery manufacturers optimise their battery products.

Based upon the above discussions, it becomes significantly

meaningful to design the interpretable model for effectively

predicting battery manufacturing outputs with reliable inter-

mediate feature analyses being taken into account. To achieve

this, a novel data-driven framework based on the improved

random forest (RF) classification technique is designed in this

study to simultaneously classify battery electrode properties

and determine the levels of both feature importance as well

as correlations. Specifically, some key contributions are made

as follows: 1) according to a well labeled battery electrode

manufacturing dataset with 5 classes, effective RF model

structure with the bagging and OOB prediction solutions is de-

signed, bringing the benefits to achieve unbiased classification

of battery electrode properties and highly restrain the over-

fitting phenomenon. 2) through randomly permuting feature

observations within OOB and calculating the Gini changes,

two different types of feature importance (FI) including both

unbiased FI as well as gain improvement FI can be derived to

directly quantify the importance levels of selected mixing and

coating features. 3) a powerful noise immunity solution named

PMOA is designed from the surrogate decision split, which is

able to effectively quantify the strength of correlations between

all pairs of manufacturing feature variables. 4) the developed

RF-based approach is analysed in-depth to evaluate the effects

of four key variables from the mixing and coating stages on

the classifications of two battery product properties - electrode

mass load and porosity. Obviously, through using the proposed

RF-based framework, the importance and correlations of all

manufacturing feature variables can be well quantified and

analysed. This is the first known application of designing

a systematic RF-based framework to not only classify the

electrode properties but also quantify the importance and

correlations of involved mixing and coating features with three

different evaluation criteria. Due to the data-driven nature, this

framework can be conveniently extended to other processes of

battery manufacturing chain after collecting the available data,

paving a promising way for the reliable sensitivity analysis of

intermediate features and the improvement of model dimen-

sion as well as battery manufacturing process.

The remainder of this article is organised as follows. Sec-

tion II specifies the battery manufacturing chain and sev-

eral key process steps. Then the fundamentals behind the

RF classification technology, feature importance/correlation

determination, classification model structure and framework,

as well as performance metrics are described in Section III.

Section IV details our classification results with the in-depth

discussions of feature correlations and importance. Finally,

Section V summaries the conclusion of present work.

II. BATTERY MANUFACTURING FUNDAMENTALS

Li-ion battery manufacturing is a long and highly-

complicated process chain, which mainly consists of electrodes

manufacturing, cell assembly, formation and ageing. Fig. 1

systematically illustrates several key intermediate processes

within the battery production chain especially for electrode

manufacturing. In general, after preparing active materials, the

slurry could be made within a soft blender through a mixing

stage. Then the slurry is coated on the surface of copper or

aluminium foils by a comma-gap coater with several built-in

ovens to dry the coating products. Afterwards, the anode and

cathode electrodes are obtained through calendering and cut-

ting the dried coating products. Then all components such as

electrodes and electrolyte are assembled to produce the basic

battery cell. Due to the highly complicated operations within

battery production chain, engineers can control the electrode

mass load and porosity more conveniently and easily with the

discrete data and class form in real battery manufacturing [29].

An effective classification approach could thus benefit battery

manufacturer in such a case.

In this context, to design a reliable RF-based classification

framework for analysing the feature importance and correla-

tions of battery electrode manufacturing, some key IPFs and

PPs from mixing and coating stages are studied in this article.

Besides, their effects on the classification performance of

battery electrode characteristics are also investigated. Without

the loss of generality, the whole raw dataset [28] from Franco

Laboratoire de Reactivite et Chimie des Solides (LRCS) is

explored in this study, which leads the total number of feature

variables here is four. Specifically, these interested battery

manufacturing features including three slurry IPFs (active

material mass content (AMMC), solid to liquid ratio (StoLR)

and viscosity) as well as one coating PP (comma-gap (CG)).

The StoLR reflects the mass ratio among slurry solids and

slurry mass. Viscosity affects the shear rate of coating step. CG

represents the gap between comma and coating rolls. For the

battery electrode characteristics, two key variables including

Authorized licensed use limited to: University of Warwick. Downloaded on January 27,2021 at 10:06:34 UTC from IEEE Xplore.  Restrictions apply. 



1083-4435 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2020.3049046, IEEE/ASME

Transactions on Mechatronics

IEEE/ASME TRANSACTIONS ON MECHATRONICS 3

Mixing CoatingMaterials

Drying and CalenderingCutting

Slurry

Assembly ElectrodeBattery

KPIs

KPIs

Fig. 1. Key processes within battery production chain especially for electrode manufacturing.

the electrode mass load with unit mg/cm2 and porosity after

drying with unit % are utilised to reflect the electrode product

properties. Detailed information regarding the experiments and

data explanations can be found in [28], which is not repeated

here due to space limitations. For this raw dataset with 656

samples, eight same samples of slurry IPFs and coating CG are

used to generate one related electrode mass load and porosity.

Therefore, 82 observations are generated by averaging the

related eight samples. To fully investigate the effectiveness of

RF classification, both electrode mass load and porosity are

classified into multi-classes with five labels (very low, low,

medium, high and very high), respectively. The detailed class

label setting rules are illustrated in Table I.

TABLE I
CLASS LABEL SETTING RULES OF BATTERY ELECTRODE MASS LOAD AND

POROSITY

Class labels Mass load [mg/cm2] Porosity [%]

very low ≤ 15 ≤ 47.5

low 15 < ML ≤ 25 47.5 < Po ≤ 50

medium 25 < ML ≤ 35 50 < Po ≤ 52.5

high 35 < ML ≤ 45 52.5 < Po ≤ 55

very high > 45 > 55

Fig. 2. The number of levels among all interested features.

Fig. 2 details the number of levels of each features. Ob-

viously, viscosity belongs to a continuous variable with 76

number levels, which is significantly more than other three

features (here the number levels of AMMC, StoLR and CG

are 4, 23 and 6, respectively). Based upon these feature data

with large different number levels and preset class labels, the

RF-based classification framework is then designed to analyse

the importance and correlations of these features in this study.

III. METHODOLOGY

This section first describes the fundamental of RF. Then the

process to conduct feature analyses is elaborated, followed by

the description of RF-based framework to classify battery elec-

trode mass load and porosity. Additionally, the performance

metrics to evaluate classification results are also given.

A. Random Forest

Observations

Bootstrap 
Sample 1:

1BS

Bootstrap 
Sample 1:

2BS

Bootstrap 
Sample 1:

JBS…

      1 1 2 2, , , ,..., ,N NX Y X Y X Y

…

Prediction

1( )h X
Prediction

2 ( )h X … Prediction
( )Jh X

Output
1

argmax ( ( ) )J
Y jj

I h X Y


 

DT1 DT2 DTJ

Fig. 3. Structure of RF classification model.

Derived from ensemble learning theory, RF combines mul-

tiple individual decision trees (DTs) [30]. Due to the sim-

plification and nonparametric behaviours, classification and

regression tree (CART) is generally utilised as a DT within

RF [31]. Each DT relies on a random bootstrap dataset. The

structure of RF classification model is shown in Fig. 3 [32].

For the classification issue, supposing training data TD =
{(X1, Y1), (X2, Y2), ..., (XN , YN )} contain N observations,

Xi stands for the input vector owing M features as Xi =
(xi1, xi2, ..., xiM ), Yi is the output scalar, the process of es-

tablishing a RF classification model is detailed in Workflow 1.

The main purpose of the RF training stage is to construct

numerous de-correlated DTs. To decrease the variance associ-

ated with classification, an overlap sampling solution named

’bagging’ is adopted in the RF [32]. Specifically, it extracts

observations with replacement to generate the independent
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Workflow 1 Detailed process to establish RF-based classifi-

cation model
1: procedure RF TRAINING

2: For j = 1 to J : (J is the number of DTs)

3: Formulate a bootstrap sample BSj with N observa-

tions from TD;

4: Fit a tree DTj based on its BSj :

a. Start splitting a node with all observations of BSj .

b. Recursively repeat the following processes on each

unsplit node:

i. Randomly choose m features (m < M) from

M candidates: m←M
ii. Discover the split solution with the best impurity

among all possible splits of m features from Process i.

iii. Split this node into two sub-nodes based on the

obtained split solution from Process ii.

5: Obtain the well-trained RF through ensembling all

base DT learners hj(.).
6: end procedure

7: procedure RF CLASSIFICATION

8: For a new observation Xnew, the output RF (Xnew)
of RF is predicted by:

RF (Xnew) = argmaxY
∑J

j=1
I(h̃j(Xnew) = Y )

where h̃j(Xnew) is the jth DT’s prediction result

with Xnew as inputs. I(.) is a zero-one judgement with

I(h̃j(Xnew) = Y ) = 1. argmaxY outputs the class with

the maximum counting number from all DTs.

9: end procedure

bootstrap sample from training dataset. Then each decision

tree can be trained from different bootstrap samples, leading

to an increased tree diversity. Besides, to further restrain the

correlations among various DTs, the best split of each node is

obtained through randomly selecting m subset features instead

of all M features. As a result, DTs within RF can be grown

without pruning, leading to a relatively small computational

burden. Moreover, through using different bootstrap samples

and node features, the noise immunity of RF can be improved

with the help of averaging various de-correlated DTs.

Additionally, for each DT within a RF, due to the bagging

solution, some training data would be repeatedly utilised as

the bootstrap sample, resulting in some other observations not

being selected to fit this DT. These observations are named

as out of bag (OOB) samples. In general, nearly one-third

TD constitutes OOB samples and would not be utilised in

RF training process. Therefore, at each time when a DT has

been trained, the OOB samples can be used to evaluate the

classification performance of this DT. In this way, RF is able

to achieve unbiased estimations without using external data

subset. For the classification of battery product properties,

OOB predictions with the related generalization error EOOB

of RF can be obtained by the workflow 2 below.

It should be noticed that the final EOOB is calculated

through the error rate of OOB predictions rather than averaging

each DT’s OOB error. In light of this, a class-wise error

is obtained for each class, while a confusion matrix for the

Workflow 2 OOB predictions and the generalization error

1: procedure OOB PREDICTIONS

2: For i = 1 to N :

i. Suppose Ai = {j : (Xi, Yi) /∈ BSj}, and Ji is the

cardinality of Ai.

ii. Obtain the OOB prediction at Xi by:

f̃OOB(Xi) = argmaxY
∑

j∈Ai
I
(

h̃j(Xi) = Y
)

where h̃j(Xi) is the prediction result by using Xi as

inputs to the jth DT.

3: Calculate the generalization error EOOB by:

EOOB = 1

N

∑N

i=1
I(Yi 6= f̃OOB(Xi))

4: end procedure

classification of battery manufacturing could be also generated.

B. Feature Importance and correlation

To effectively quantify the importance of both mixing fea-

tures and coating parameter of battery production, the unbiased

FI that obtained by OOB prediction is first utilised. Detailed

process to obtain the unbiased FI is shown in Workflow 3.

Workflow 3 Unbiased FI based on OOB predictions

1: procedure TO ESTIMATE THE UNBIASED IMPORTANCE

OF FEATURES xk(k = 1 to M )

2: (Obtain Ỹi,j) For i = 1 to N :

i. Suppose BSj is the jth bootstrap sample, Ai =
{j : (Xi, Yi) /∈ BSj}, and Ji is the cardinality of Ai.

ii. Obtain Ỹi,j = h̃j(Xi) for all j ∈ Ai.

3: (Obtain Ỹ ′
i,j) For j = 1 to J :

i. Suppose Bj = {i : (Xi, Yi) /∈ BSj}
ii. Randomly permute xk from data samples

{Xi : i ∈ Bj} to generate Cj = {X
′
i : i ∈ Bj}.

iii. Obtain Ỹ ′
i,j = h̃j(X

′
i) for all i ∈ Bj .

4: For i = 1 to N :

Calculate the local FI LFMi(xk) of xk as:

LFMi(xk) =
1

Ji

∑

j∈Ai
I
(

Yi 6= Ỹ ′
i,j

)

− 1

Ji

∑

j∈Ai
I
(

Yi 6= Ỹi,j

)

5: Obtain the overall unbiased importance (OFMxk) of

feature xk as:

OFMxk = 1

N

∑i=N

i=1
LFMi(xk)

6: end procedure

In this workflow, LFMi(xk) is calculated by averaging over

observations with size Ji from the same class, while OFMxk

is obtained through averaging over all observations with size

N . Therefore the unbiased importance of feature xi could

reflect how much the classification error varies when the values

of xi are randomly permuted in the OOB prediction tests.

Apart from the unbiased FI, another effective solution to

evaluate the importance of features is through summing the

gain improvements of Gini impurity changes caused by the

splits on each feature. For the classification, Gini impurity

is utilised to measure how well a potential split is in a

specific node of DT [33]. Detailed process to obtain the

gain improvement FI is illustrated in Workflow 4. Obviously,
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IG(xk) could reflect the gain improvement from the splits of

feature xk. Larger value of IG(xk) indicates that this xk brings

higher impurity improvement for the target classification.

Workflow 4 Gain improvement FI based on Gini changes

1: procedure TO ESTIMATE THE GAIN IMPROVEMENT FI

OF FEATURES xk(k = 1 to M )

2: (Obtain ∆Gini(τ, xk)) For j = 1 to J :

i. For a node τ of DTj , calculate its Gini impurity

Gini(τ) by:

Gini(τ) = 1−
∑D

d=1
p2k

where D is the number of classes, pk = nk/n is the

fraction of nk samples out of total n samples.

ii. Calculate all Gini impurities Gini(τ, xi) under the

case of selected feature xi by:

Gini(τ,X) = |τl|
|τ | Gini(τl) +

|τr|
|τ | Gini(τr).

where τl and τr are the left child and right child of

the current node τ , respectively; |τ |, |τl| and |τr| represent

the number of records in τ , τl and τr, respectively.

iii. Calculate the Gini decrease ∆Gini(τ,X) of all

selected X by:

∆Gini(τ,X) = Gini(τ)−Gini(τ,X)
iiii. Compare ∆Gini(τ,X) to obtain the optimal split

feature xk at this specific node τ . Record its Gini decrease

∆Gini(τ,Xk).
3: (Obtain IG(xk)) For j = 1 to J :

i. Accumulate the recorded ∆Gini(τ, xk) for all used

nodes (ANs) in all trees (ATs) by:

S∆Gini(xk) =
∑

ATs

∑

ANs

∆Gini(τ, xk)

where S∆Gini(xk) is the summed gain improve-

ment based on xk’s Gini changes.

ii. Calculate the overall gain improvement IG(xk) of

feature xk as:

IG(xk) =
1

Nxk

S∆Gini(xk)
where Nxk is the cardinality of S∆Gini(xk).

4: end procedure

On the other hand, evaluating the correlations among vari-

ous electrode features is also crucial for better understanding

battery manufacturing. To achieve this, an effective solution

named the predictive measure of association (PMOA) is de-

signed in this study. In theory, the value of PMOA could

reflect the similarities between different decision rules to split

observations. The basic idea of obtaining PMOA is to compare

all potential splits with the optimal one that is founded by

training DT. Then the best surrogate decision split would

generate the maximum PMOA value, which could reflect the

correlations between pairs of these two features. Supposing xe

and xg are two interested feature variables (e 6= g), the detailed

equation to calculate PMOA between the optimal split xe < u
and surrogate split xg < v is expressed as follows:

PMOAe,g =
min(Pl, Pr)− 1 + Plelg + Prerg

min(Pl, Pr)
(1)

where the subscripts l and r represent the left and right

children of node, respectively; Pl stands for the observation

proportion of xe < u; Pr is the observation proportion of

xe ≥ u; Plelg means the observation proportion of xe < u
and xg < v, while Prerg represents the observation proportion

of xe ≥ u and xg ≥ v. For the PMOA, the observations

with several missing values of xe and xg would not affect the

proportion results. xg < v could be selected as a worthwhile

surrogate split for xe < u when PMOAe,g > 0. Besides,

the range of PMOA should be within (−∞, 1], larger PMOA

indicates more highly correlated pairs of feature variables.

C. Classification model structure and framework

For battery manufacturing process, mixing and coating

are two key processes to affect electrode properties, further

determining the performance of final manufactured battery

[29]. To effectively quantify the FI and correlations among

all interested variables, a RF classification model with the

structure in Fig. 4 is utilised. Specifically, the IPFs of mixing

including AMMC, StoLR and viscosity of slurry, as well as

one PP of coating named CG are utilised as the inputs, while

the output of RF is the labelled classes of electrode mass load

or porosity. Fig. 5 illustrates the total framework to design

a RF model for classifying and analysing the FI as well as

feature correlations under the specific inputs-output pairs of

battery manufacturing. This framework consists of four main

parts and is detailed as follows:

Mixing CoatingMaterials

Drying and CalenderingCutting

Slurry

Assembly ElectrodeBattery

KPIs

KPIs

AMMC

StoLR

viscosity

CG

RF classification model
Feature importance (FI)
 Unbiased FI through OOB
 Gain improvement FI (Gini)

Feature correlations 
(PMOA)

Porosity

Mass load Mixing

Coating

Fig. 4. RF-based classification model structure.

Part 1) Data preprocess and RF-based model structure

construction: after collecting interested battery manufacturing

data, the obvious outliers of original data are firstly removed

and the suitable class labels of outputs are set. In our study,

both the battery electrode mass load and porosity are classified

with five class labels. Then the preprocessed inputs-output

observations are utilised to train all DTs within RF through the

steps in Workflow 1. As RF model is a powerful but easy-to-

use machine learning method with only two hyper-parameters

(the number of DTs (J) and the amount of features in each

split (m)) to tune, some key points should be considered in this

stage. First, for J , in theory, higher the number of DTs a larger

accuracy and generalization ability is obtained. However, too

many DTs would highly increase the computational effort of

RF. Second, m would affect the performance of each DT and

the correlations among any DTs within RF. Large m benefits

the strength of each DT but also makes all DTs become more

correlated. In our study, these hyper-parameters are tuned by

an effective method named randomized search [34].

Part 2) Analysing feature importance: in this part, to

quantify all interested FI and analyse their effects on the

classification performance of electrode mass load and porosity,

two effective quantitative indicators including the unbiased FI
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Fig. 5. Total framework to design RF-based model for classifying and analysing features importance as well as correlations.

and the gain improvement FI are utilised. Specifically, the

unbiased FI is calculated by permuting OOB observations

with the detailed process in Workflow 3, while the gain

improvement FI is obtained by summing Gini changes caused

by splits on each feature (Workflow 4).

Part 3) Analysing feature correlations: after quantifying

the importance of mixing and coating features, the PMOA

values of each feature pair are calculated by equation (1) and

plotted as a M ×M heat map. Then the correlations between

each two features can be analysed by these PMOAs. In theory,

larger PMOAs indicate there exists more highly correlations

between feature pairs. In the heat map, the PMOAs of two

features would be different, depending on which feature firstly

generates the optimal spit within DTs.

Part 4) Reconstructing RF for classification: after com-

paring the FI and analysing feature correlations, the most

important features that affect classification results are selected.

Then the RF can be reconstructed with reduced feature set for

new classifications.

Following this framework, an effective RF model-based

framework can be formulated to not only analyse the impor-

tance and correlations of mixing and coating features, but also

well classify the manufactured battery electrode mass load and

porosity into suitable categories. Besides, after collecting more

PPs, IPFs and product properties of a battery manufacturing

chain, this framework can be further extended to analyse data

correlations, discover most important features and simplify

model structure with reduced variable set.

D. Performance metrics

In this subsection, to compare and quantify the classification

performance of the designed RFs, several performance metrics

including the confusion matrix, macro-precision, macro-recall

as well as macro F1-score are applied in this study.

In classification applications, let positive corresponds to the

interested class while negative corresponds to other classes,

four basic measures including true positives (TP), false pos-

itives (FP), true negatives (TN) and false negatives (FN) can

be formulated for each class. For an interested class ch (here

h = 1 : 5), the precision rate (Prate) can be used to quantify

the correct classification results of this class as:

Prate(ch) = TP/(TP + FP ). (2)

Recall rate (Rrate) could quantify the rate of all fraud

conditions of this class as:

Rrate(ch) = TP/(TP + FN). (3)

F-measure (Fmeasure) reflects the harmonic mean of

precision and recall of this class as:

Fmeasure(ch) =
2× Prate(ch)×Rrate(ch)

Prate(ch) +Rrate(ch)
. (4)

The overall correct classification rate (OCCrate) to reflect

the proportion of correctly classified observations out of all

the observations is calculated by:

OCCrate =
TPall + TNall

N
, (5)

where TPall + TNall represents all outputs that have been

correctly classified, N is the total number of observations.

Based upon the above mentioned metrics, a (M + 1) ×
(M +1) confusion matrix (CM) of multi-class issue could be

formulated. Each row within CM reflects the predicted output

class while each column stands for the actual target class.

The elements on the primary diagonal are the correct results

while other elements reflect the incorrect classification cases.

The (M + 1)th column and row represent the Prate(ch) and

Rrate(ch) of each class, respectively. The last element in the

bottom right corner represents the OCCrate.
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Supposing each class has a Prate(ch), Rrate(ch) and

Fmeasure(ch), then the macro-precision (macroP ), macro-

recall (macroR) and macro F1-score (macroF1) can be

calculated to evaluate the overall classification performance

of our battery manufacturing multi-class issue as:


















macroP =
∑

5

h=1
Prate(ch)

/

5

macroR =
∑

5

h=1
Rrate(ch)

/

5

macroF1 =
∑

5

h=1
Fmeasure(ch)

/

5.

(6)

IV. RESULTS AND DISCUSSIONS

To well quantify feature importance, feature correlations

and their effects on the classification of electrode properties,

the designed RF-based framework is utilised to classify both

battery electrode mass load and porosity in this section.

A. RF classification model for battery mass load

In this test, based upon the structure as illustrated in Fig 4,

four features including AMMC, StoLR, viscosity and CG are

utilised as the inputs of RF model, while the labelled electrode

mass load is used as model’s output. Then the detailed

results of FI, correlations, RF-based model classification and

performance comparison would be given and analysed.

Fig. 6. FI for battery mass load. (a) unbiased FI based on OOB (b) FI based
on gain improvement.

1) Feature analyses: For the mass load classification, fol-

lowing the steps in Workflows 3 and 4, the quantified unbiased

FI as well as gain improvement FI of all four feature variables

can be obtained and illustrated in Fig. 6. It can be noted

that although the value levels between unbiased FI and gain

improvement FI are significantly different, they still present

the similar trend for all features. Obviously, CG achieves

much higher importance values for both unbiased FI (here

is 4.78) and gain improvement FI (here is 0.037), indicating

that this variable is the most important feature for mass load

classification. StoLR and AMMC provide the second and

third larger values of both unbiased FI (here are 1.18 and

0.91 respectively) as well as gain improvement FI (here are

0.029 and 0.028 respectively). The viscosity variable presents

the smallest values with 0.67 unbiased FI and 0.022 gain

improvement FI, indicating that this feature contributes the

least to the classification of electrode mass load.

The PMOAs of all feature pairs are calculated next to

evaluate the correlations among four features for mass load

case. From the heat map in Fig. 7, the largest correlation

1

1

1

1

0.72 0.06 0.51

0.52

0.36

0.140.38

0.06 0.18

0.070.250.16

0.841

1

1

1

0.28 0.53

0.460.200.26

0.08 0.16 0.55

0.310.260.16

Fig. 7. Heat map to reflect feature correlations for battery mass load case.

occurs between AMMC and StoLR with a PMOA of 0.72.

This correlation output is very useful as the obtained result is

consistent with the conclusion from experimental works [35],

but we demonstrate how a RF machine-learning framework

can aid the interpretation of correlations among feature vari-

ables of interest, which could give engineers a guidance to

efficiently understand their battery manufacturing chain.

2) RF-based model: To evaluate the mass load classifica-

tion results of our proposed RF framework, prediction test

through using all features is first carried out. According to the

corresponding CM in Fig. 8, a satisfactory OCCrate with

90.2% is achieved. Quantitatively, the classes ’very high’ and

’very low’ achieve 100% Prate. The worst classification result

is the ’low’ class with 72.7% Prate. This is mainly caused

by 2 observations are incorrectly classified as ’very low’ and

1 observation is classified as ’medium’.
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Fig. 8. Confusion matrix for mass load results by using all features.

3) Performance comparison: Next, to further investigate

the effects of each feature on the mass load classification

results, four different cases with various combinations of

three features are tested and compared. Specifically, Case 1

consists of CG, AMMC and StoLR features. Case 2 contains

CG, AMMC and viscosity features. Case 3 includes CG,

StoLR and viscosity features. Case 4 is composed of AMMC,

StoLR and viscosity features. Fig. 9 and Table II illustrate the

corresponding CMs and performance metrics of all cases. It
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Fig. 9. Confusion matrices for mass load classification results for different
cases: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.

TABLE II
QUANTITATIVE PERFORMANCE METRICS FOR BATTERY ELECTRODE MASS

LOAD CLASSIFICATION

Cases. macroP macroR macroF1

All features 89.6% 91.5% 90.1%
Case 1 86.6% 89.8% 90.0%
Case 2 84.6% 84.8% 84.6%
Case 3 83.9% 85.2% 84.3%
Case 4 35.3% 36.2% 35.4%

can be seen that Case 1 provides the best classification results

with 86.6% macroP , 89.8% macroR and 90.0% macroF1,

which are only 3.3%, 1.9% and 0.1% less than those from the

case of all features. This implies that using CG, AMMC and

StoLR is sufficient for mass load classification. Cases 2 and 3

provide the similar performance metrics, which indicates that

similar effects exist between AMMC and StoLR. Interestingly,

without involving CG, the performance metrics of Case 4

largely decrease, indicating that CG plays a significantly

important role in the mass load classification.

B. RF classification model for battery porosity

Next, the battery electrode porosity classification test is also

conducted. The inputs of this test are the same as those from

mass load test, while the output here becomes porosity.

1) Feature analyses: Fig. 10 illustrates the corresponding

unbiased FI and gain improvement FI. The metrics indicate

that StoLR and viscosity are the two most contributing features

while AMMC is the worst one. Next, from the association

estimates of corresponding feature pairs in Fig. 11, one PMOA

of the AMMC-StoLR pair presents the highest value with 0.84,

indicating that these two features may have strong potential

correlations for battery electrode porosity classification case.

Fig. 10. Feature importance for battery porosity. (a) unbiased FI based on
OOB (b) FI based on gain improvement.
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Fig. 11. Heat map to reflect feature correlations for battery porosity case.

2) RF-based model: Fig. 12 illustrates the CM for the

porosity classification results when using all features. This test

achieves a classification result with 70.7% OCCrate, which

is mainly caused by several misclassified results such as those

with class label ’high’. In comparison with battery mass load

case, it can be concluded that these features cannot fully and

well determine the qualities of electrode porosity.
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Fig. 12. Confusion matrix for porosity results by using all features.

3) Performance comparison: To further investigate the in-

fluence of these features on the electrode porosity classifica-

tions, four tests with the same feature combination cases as

those from mass load are compared here. Their corresponding
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CMs and performance metrics are shown in Fig. 13 and

Table III, respectively. Specifically, by using the three most

important features (StoLR, CG and viscosity), Case 3 achieves

the best classification results with 59.4% macroP , 60.8%

macroR, 59.7% macroF1 and 68.3% OCCrate. In contrast,

using AMMC to replace any other three features, the related

classification performance is reduced accordingly. However,

the overall porosity classification results are all worse than

those from mass load cases. These facts signify that for

battery electrode porosity, more other related IPFs and PPs

are recommended to be considered for further improving its

classification performance.
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Fig. 13. Confusion matrices for porosity classification results for different
cases: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.

TABLE III
QUANTITATIVE PERFORMANCE METRICS FOR BATTERY ELECTRODE

POROSITY CLASSIFICATION

Cases. macroP macroR macroF1

All features 61.5% 65.6% 66.4%
Case 1 54.9% 54.7% 54.9%
Case 2 53.8% 48.3% 50.6%
Case 3 59.4% 60.8% 59.7%
Case 4 67.2% 56.8% 54.6%

C. Discussions

In this subsection, two tests are designed to investigate

the hyper-parameters tuning and compare the performance

of proposed RF with other typical classification methods,

followed by the further discussions of results in subsections

IV-A and IV-B.

1) Hyper-parameters tuning: As mentioned in subsec-

tion III-C, for the RF classification model, J and m are two

key hyper-parameters required to be carefully tuned. Through

setting up random combinations to train model and score

the mean cross-validated accuracy (MCVA), the randomized

search solution [34] is utilised here to determine suitable

values of J and m for both electrode mass load and porosity

classification cases. Based upon the Python module Scikit-

learn with a 2.40 GHz Intel Pentium 4 CPU, the randomized

search can be conveniently carried out by using the function

module RandomizedSearchCV . In our study, the search

range of J is set as: range(40, 120, 20), while the candidates

of m is [2, 3], respectively. Table IV illustrates the classifica-

tion performance with various hyper-parameter combinations.

It can be seen that J = 100,m = 3 presents the best MCVA

with 90.2% for the mass load case, while J = 80,m = 3
provides the best MCVA with 70.6% for the porosity case.

Therefore, the related RF classification models are set with

these optimised hyper-parameters in our study.

TABLE IV
RESULTS OF HYPER-PARAMETERS TUNING

Hyper-parameter combinations MCVA
(mass load)

MCVA
(porosity)

J = 40,m = 2 88.0% 62.2%
J = 60,m = 2 88.5% 64.8%
J = 80,m = 2 88.8% 66.1%
J = 100,m = 2 89.8% 68.1%
J = 120,m = 2 90.0% 69.3%
J = 40,m = 3 88.6% 62.5%
J = 60,m = 3 69.1% 65.3%
J = 80,m = 3 90.0% 70.6%
J = 100,m = 3 90.2% 70.5%
J = 120,m = 3 90.2% 70.6%

2) Comparisons with other approaches: To further reflect

the effectiveness of our designed RF model, another three

popular classification approaches including the DT, k-nearest

neighbors (KNN) and support vector machine (SVM) are

utilised as the benchmarks for comparison purpose. Specifi-

cally, DT is a solo CART. KNN belongs to an instance-based

learning method and relies on the distance for classification.

SVM is a kernel-based method to map inputs into high

dimensional spaces for classification [36]. Without the loss

of generality, randomized search solution is also utilised here

to tune their hyper-parameters. After optimisation, DT has

the maximum splits number of 20; The neighbors number

of KNN is 1; SVM uses the Gaussian kernel with a kernel

scale of 0.5. To quantify their classification performance, two

significant metrics including the macroF1 and the area under

curve (AUC) of receiver operating characteristic are utilised.

Here the AUC could give the degree or measure of separability

of the classes [37]. Table V illustrates the classification results

of all these approaches after 5-folds cross-validation. It can

be seen that DT shows the worst results, while SVM and

RF provide good classification results for both mass load and

porosity cases (here RF provides a slightly better macroF1
and AUC). Therefore, due to the ensemble learning nature,

our proposed RF framework presents competent performance

in the classification applications of battery manufacturing.
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TABLE V
CLASSIFICATION RESULTS USING VARIOUS APPROACHES

Mass load Porosity

Approaches macroF1 AUC macroF1 AUC

DT 74.6% 0.82 53.2% 0.77
KNN 83.9% 0.92 56.4% 0.81
SVM 89.8% 0.98 66.0% 0.93

proposed RF 90.1% 0.98 66.4% 0.94

3) Further discussions: Due to the lack of exploiting

interpretable data-driven solutions for feature analyses and

modelling within the battery manufacturing chain, this pa-

per develops a RF-based framework to quantify variable

correlations and importance in the classification of battery

electrode properties. According to the obtained results from

subsections IV-A and IV-B, the electrode mass load can be

well determined by the investigated four features (here the

macroF1 is 90.1%) while CG plays the most important role

in its classification results (nearly 60.7% decrease). This result

is expected as CG would significantly affect the coating weight

and thickness, and these coating properties highly determine

the electrode mass load. For the results of electrode porosity,

the macroF1 here is just 66.4%, indicating that more other

feature variables should be considered to better classify the

electrode porosity. This result is expected as electrode porosity

would be also highly affected by the drying parameters (rate,

temperature, pressure, etc) in theory. Not surprisingly, AMMC

and StoLR present high correlation for both mass load and

porosity cases. This is mainly due to the mass ratio between

slurry solid components and slurry mass has strong and direct

relations with the active material properties. In contrast, there

are not so direct relations for other feature pairs, which leads

their correlations become less. Besides, the mass content of

active material cannot highly affect the electrode physical

property such as porosity, which makes the AMMC here

become the less important feature. In light of this, to further

improve our proposed RF-based framework for better predic-

tion of electrode porosity, more feature variables from drying

and calendering processes such as drying rate, temperature,

pressure and calendering speed should be considered. Besides,

more available data from other key production processes could

be also collected to improve the interpretability of RF model

for better understanding battery manufacturing.

V. CONCLUSION

As battery manufacturing is crucial for determining battery

performance, the effective feature analyses and electrode prop-

erties classification within manufacturing chain are strongly

required. In this article, through using the improved RF

technique, a powerful data-driven framework is designed to not

only quantify the importance levels of four key battery man-

ufacturing features but also provide their feature association

estimates. The effects of AMMC, StoLR, CG and viscosity

on the classifications of both electrode mass load and porosity

are all evaluated and analysed. Due to the superiority in terms

of interpretability and data-driven nature, the proposed RF

classification framework could be conveniently extended to

consider more input features from other key manufacturing

stages such as mixing, drying, and calendering. As collecting

battery manufacturing data requires specific equipment and is

time-consuming, our future work would focus on designing

extra experiments to generate more related data such as the

mixing kneading intensity and speed, the drying rate, temper-

ature and pressure, and the calendering speed, then to further

improve the usability of such ML method and accelerate the

development of high-performance Li-ion batteries.
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