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Abstract 

We developed a ground observation system for solid precipitation using two-dimensional video 
disdrometer (2DVD). Among 16,010 particles observed by the system, around 10% of them were 
randomly sampled and manually classified into five classes which are snowflake, snowflake-like, 
intermediate, graupel-like, and graupel. At first, each particle was represented as a vector of 72 
features containing fractal dimension and box-count to represent the complexity of particle shape. 
Feature analysis on the dataset clarified the importance of fractal dimension and box-count fea-
tures for characterizing particles varying from snowflakes to graupels. On the other hand, per-
formance evaluation of two-class classification by Support Vector Machine (SVM) was conducted. 
The experimental results revealed that, by selecting only 10 features out of 72, the average accu-
racy of classifying particles into snowflakes and graupels could reach around 95.4%, which had 
not been achieved by previous studies.  
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1. Introduction 

Due to the diversity of terrain, rainfall and snowfall phenomena take on different forms depending on location. 
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For instance, in the coastal area facing the Sea of Japan, snow clouds develop over the sea by the winter mon-

soon wind blowing from the north-west. Kanazawa is a coastal city that experiences rather heavy snowfalls de-

spite being located at a low latitude (approx. 36˚N) [1] [2]. Also in this place, amount and type of precipitation 

change quite rapidly. Therefore, it is important to monitor them continuously for decreasing the damage of 

heavy snowfall as well as meteorological understanding of orographic snowfall. Especially, it is important to 

understand the snowfall formation mechanism with different types of solid precipitation such as snowflake and 

graupel. 

A polarimetric radar [3]-[6] is a popular facility for measuring precipitation intensity in wide area. Addition-

ally, a disdrometer is used for the ground-based observation of precipitation at a spot. It is a relatively-small in-

strument which can measure the size and falling velocity of a particle. Based on the fact that rain and graupel 

have different distribution of size and falling velocity, it is possible to discriminate them using a disdrometer. 

However, if two particles have similar size and falling velocity, it is impossible to discriminate them by a dis-

drometer. In this sense, the observation of precipitation using a polarimetric radar and/or a disdrometer is not 

sufficient for accurately estimating the amount of precipitation consisting of various types.  

In addition to size and falling velocity, the shape of each particle is significantly useful for the classification 

of particle types. In our previous study, we proposed a system for automatically taking particle images by a 

CCD video camera and classifying them into snowflakes and graupels [7]. Using rich information contained in a 

large number of grayscale particle images, the system achieved high accuracy of classification (94.14%). How-

ever, it is not an easy-to-purchase product and requires large space comparable with a room. One more disad-

vantage of this system is that it utilizes only the combination of basic classifiers with only one best pair of fea-

tures from more than ten available features.  

As a more popular instrument, a two-dimensional video disdrometer (2DVD) has been used for characterizing 

solid precipitation at the ground [8]. The instrument is manufactured by Joanneum Research of Austria. 2DVD 

measures volume, diameter, shape, and velocity of every individual particle. From these data, one can estimate 

particle size distribution, precipitation rate, and other related variables. As to the classification, recently a hy-

drometeor classification system with 2DVD has been proposed [9]. However, since it can only give a dominant 

type of precipitation observed in a time interval (60 sec.), it is not available for the purpose of particle-by-par- 

ticle classification indispensable in accurately estimating the amount of mixed-type precipitation.  

In this study, we developed a new system with 2DVD for observing and estimating various particles. Al-

though the 2DVD takes binary image with lower resolution than CCD video camera, combination of up-to-date 

classifier and features including fractal-related ones enables the system to outperform the accuracy achieved in 

our previous study. 

Rest of this paper is organized as follows. Section 2 gives descriptions about the 2DVD system, weather con-

dition of observation, representation of observed particles as feature vectors, and various machine learning algo-

rithms used in this study. In Section 3, the results of feature analysis are shown and followed by the results of 

performance evaluation on the proposed system for classifying snowflakes and graupels. Finally, Section 4 con-

cludes this paper. 

2. Materials and Methods 

2.1. System and Condition of Observation 

2DVD is an optical device developed for measuring precipitation drop size, shape, and velocity field. Figure 1 

shows the 2DVD sensor unit. The sensor unit consists of two orthogonal and synchronized line-scan cameras 

and a bright light source in front of each of them. While precipitation particles fall between the cameras and 

light sources (an area of 10 cm × 10 cm) their shapes are recorded as shadows are being projected. We have ob-

served snowfall event from 1250 JST to 1300 JST in January 26, 2011 at Kanazawa University. The data of 

16,010 snow particles were recorded by the 2DVD. Figure 2 shows MTSAT-2 satellite image at 1200 JST 26 

January 2011 and the location of observation point. The air temperature was about 0˚C through the event dura-

tion. 

2.2. Preparation of Data for Analysis and Classification 

2.2.1. Particle Images and Basic Features 

Figure 3 illustrates examples of particle image data recognized and generated by 2DVD. Since 2DVD scans two  
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(a)                                          (b) 

Figure 1. 2DVD sensor unit. (a) Photograph of the sensor unit covered with snow; (b) Illustra-

tion of sensor unit construction.                                                      
 

 

Figure 2. MTSAT-2 satellite image at 1200 JST 26 January 2011 (from      

http://weather.is.kochi-u.ac.jp/). The 2DVD is installed at Kanazawa Univer-

sity and the location of observation point is indicated by a red circle. 

(36.544˚N, 136.705˚E).                                              

 

line images at once from two orthogonally oriented cameras (A and B), two different images are obtained for 

each particle.  

In Figure 3, it can be seen that a graupel is round-shaped as an approximate ellipse, and in contrast, a snow-

flake has a complex shape. As to the size of a particle, graupels are relatively smaller than snowflakes. These 

features meet intuitive criteria in human’s discrimination of snowflake and graupel. The latter feature was fre-

quently used in previous studies since it is easier to observe.  

In addition to shape and size, it is possible to obtain various features of a particle by using 2DVD. The list of 

features used in this study is shown in Table 1.  

The 2DVD software computes the volume and equivolumetric diameter based on three-dimensional shape 

reconstructed from two orthogonal projections. The particle shadows in the upper light sheet are matched with 

particle shadows in the lower sheet, and the software obtains the vertical fall velocity and height quantization 

(height_of_one_line) from the falling time through the planes separated 6.2 mm vertically at the line-scan rate of 

34.1 kHz. The number of lines scanned by each camera is the height of the particle. The light sheet of 10 cm is  

http://weather.is.kochi-u.ac.jp/
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 image by camera A image by camera B 

snowflake 

  

snowflake-like 

  

intermediate 

  

graupel-like 

  

graupel 

  

Figure 3. Particle images taken by 2DVD.                                                            
 

Table 1. Features for analysis and classification.                                                               

Feature type Feature name 

Camera-independent 

features 
Equivolumetric_diameter[mm], volume[mm3], vertical_fall_velocity[m/s], height_of_one_line[mm] 

Camera-specific  

features 

Height [mm]_A, height [mm]_B, number_of_lines_A, number_of_lines_B, pixelwidth[mm]_A, pixelwidth 

[mm]_B, width [pixel]_A, width [pixel]_B, height [pixel]_A, height[pixel]_B, total_pixels_A, total_pixels_B, 

area [mm2]_A, area [mm2]_B, perimeter [mm]_A, perimeter[mm]_B, box_count_1_A, box_count_1_B, 

box_count_2_A, box_count_2_B, box_count_4_A, box_count_4_B, box_count_8_A, box_count_8_B, 

fractal_1_2_A, fractal_1_2_B, fractal_2_4_A, fractal_2_4_B, fractal_1_4_A,  

fractal_1_4_B, fractal_4_8_A, fractal_4_8_B, fractal_2_8_A, fractal_2_8_B 

Camera-independent  

features (max and min) 

converted from 

camera-specific  

features (A and B) 

Height [mm]_max, height [mm]_min, number_of_lines_max, number_of_lines_min, pixelwidth [mm]_max, 

pixelwidth [mm]_min, width [pixel]_max, width [pixel]_min, height [pixel]_max, height [pixel]_min, 

total_pixels_max, total_pixels_min, area [mm2]_max, area [mm2]_min, perimeter [mm]_max, perimeter 

[mm]_min, box_count_1_max, box_count_1_min, box_count_2_max, box_count_2_min, box_count_4_max, 

box_count_4_min, box_count_8_max, box_count_8_min, fractal_1_2_max, fractal_1_2_min, fractal_2_4_max, 

fractal_2_4_min, fractal_1_4_max, fractal_1_4_min,  

fractal_4_8_max, fractal_4_8_min, fractal_2_8_max, fractal_2_8_min 

Other features 

(not used in analysis  

and classification) 

Time 

 

mapped onto 512 pixels in the line-scan camera, and the horizontal resolution of pixel (pixel width) is about 0.2 

mm. The longest scan line is the particle width. The area of each particle was computed by multiplying total 

number of pixels (total_pixels), height_of_one_line and pixel width. We got the boundary of particle shape and 

computed the particle perimeter. 

Camera-specific features are important since they contain various information obtained by 2DVD. However, 

it is not sufficient to use them directly in the analysis and classification. When we use machine learning algo-

rithms listed in subsection 2.3, the same type of features obtained by cameras A and B (e.g. perimeter [mm]_A 

and perimeter[mm]_B) are also treated as simply different and independent ones. To overcome this problem, we 
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added extra features that are the result of integrating camera-specific features by calculating maximum and 

minimum values (Figure 4). For example, if perimeter [mm]_A > perimeter [mm]_B, then perimeter[mm]_max = 

perimeter [mm]_A and perimeter[mm]_min = perimeter[mm]_B. In a sense, it is a sorting operation of values 

from two cameras and if a feature is mainly characterized by large (small) values of it, the integrated feature of 

its maximum (minimum) will have strong power in the analysis and classification of particles.  

2.2.2. Fractal-related Features 

Perimeter is a feature that reflects two different characteristics of particle, that is, size and complexity of shape. 

In this study, we introduced fractal-related features also related to complexity of shape.  

Fractal geometry provides a mathematical model for many complex objects with property of self-similarity 

found in nature. Fractal dimension is a useful feature for shape classification. The snowflake formation modeled 

by fractal dimension, was proposed for improvement estimates of snowfall retrieval by radar remote sensing [10] 

[11]. This study uses the box-counting method, which is one of the frequently used techniques to estimate the 

fractal dimension also known as Minkowski dimension [12] [13]. First, the smallest number of box shaped ele-

ments covering the particle boundary is counted (Figure 5). Next, the obtained amount of covering elements is 

log-log plotted versus the reciprocal of the element size (Figure 6). Finally, the box dimension estimate is taken 

from the monotonically rising linear slope. 

 
width [pixel]_A width [pixel]_B width [pixel]_min width [pixel]_max 

    

Figure 4. Integration of camera-specific features into max and min values.                  

 

     
(a)                                  (b) 

Figure 5. Example of covering results from the box-counting method. (a) Snowflake by camera A; raw im-

age by 2DVD (leftmost), boundary covered by boxes of size 1, 2, 4, and 8; (b) Snowflake by camera B.      
 

 

Figure 6. The log-log plot of the box-counting method.   
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2.2.3. Human Annotation 

Total number of particles in our dataset is 16,010, that is, it consists of 16,010 feature vectors with the features 

listed in Table 1. To conduct meaningful analysis and evaluation of classification performance, we randomly 

sampled 1600 feature vectors and annotated them manually. Before annotation, five categories were prepared: 

snowflake, snowflake-like, intermediate, graupel-like, and graupel. Additionally, if one of two images for a par-

ticle matched one of the following rules, it was automatically annotated as warning and filtered out before ran-

dom sampling since it can be regarded as outlier or erroneous data.  

 equivolumetric_diameter [mm] is less than 0.2. 

 vertical_fall_velocity [m/s] is greater than 4. 

 Width [pixel]/height [pixel] is less than 1/3 or greater than 3. 

 The horizontal position of the particle in the raw image is left-end and over 50% of left edge of the particle 

image is occupied by black pixel (i.e. it is strongly suspected that the particle passed by the left end of a 

camera and whole image of it was not taken by 2DVD).  

The numbers of annotated samples are shown in Table 2. According to these annotations, the datasets shown 

in Table 3 are used for analysis and classification in Section 3.  

2.3. Algorithms 

In this subsection, the algorithms we used for analysis and classification are being described.  

2.3.1. Normalization 

A feature vector consists of two or more feature values for features. However, it is problematic to use the origi-

nal values for machine learning because in general, value distribution can differ from feature to feature. There-

fore, it is popular to normalize the original values of feature vectors so that all the features have the same aver-

age and variance. In this study, we normalized our dataset with average = 0 and variance = 1 for each feature 

before the analysis and classification.  

2.3.2. Pearson’s Correlation Coefficient 

To see the direct and pairwise relationship between every pair of features, we calculated Pearson’s correlation  

 
Table 2. The number of samples after annotation.                                                              

Annotation The number of particles 

Snowflake 559 

Snowflake-like 111 

Intermediate 39 

Graupel-like 144 

Graupel 747 

Warning 2,118 

Not annotated 12,292 

 
Table 3. Datasets according to annotation.                                                                     

Dataset Annotation The number of particles 

Whole Snowflake, snowflake-like, intermediate, graupel-like, graupel, warning, not annotated 16,010 

No-warning Snowflake, snowflake-like, intermediate, graupel-like, graupel, not annotated 13,892 

Warning-only Warning 2118 

5-Classes Snowflake, snowflake-like, intermediate, graupel-like, graupel 1600 

2-Classes Snowflake, graupel 1306 
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coefficient. If its value is near to 1, two features are quite similar. It is one of the most basic feature analysis 

methods. In addition, it is known that, removing one of two similar and redundant features may lead to better 

performance of classification, regression, clustering, and other machine learning tasks. 

2.3.3. Principal Component Analysis (PCA) 

Among various unsupervised learning algorithms, PCA might be the most popular one. Based on the calculation 

of features’ linear combination that maximizes the variance, PCA converts the original feature space into the 

space of principal components (PCs). After PCA, all the PCs are ordered as PC1, PC2, … and it is believed that 

PC1 is the strongest feature for characterizing the feature vectors, PC2 is secondly strong, and so on. Due to this 

effect of PCA, it is broadly used for different purposes. As the basic analysis of original features, coefficient of 

each feature in the linear combination formula for some important PCs like PC1 is evaluated. In this study, it 

may reflect the importance of the feature to characterize and classify snowflakes and graupels.  

2.3.4. Support Vector Machine (SVM) 

SVM was first developed by Vladimir Vapnik [14]. Due to its applicability and high-performance, it is one of 

the most popular machine learning algorithms today. Among various variants and implementations of SVM, we 

used ksvm function implemented in kernlab package for R. Regarding the choice of kernel, the default one 

(Radial Basis Function kernel, also known as Gaussian kernel) was adopted. A hyper-parameter “sigma” for this 

kernel is being automatically optimized by ksvm.  

2.3.5. Cross-Validation 

To evaluate the performance of predicting the class label (i.e. snowflake or graupel) of unseen samples (i.e. un-

seen particles), it is popular to conduct cross-validation. In this study, we adopted 10-fold cross-validation that 

randomly divides given dataset into 10 and perform learning and prediction 10 times by changing 10% of data-

set for test (rest of 90% is used for training). One problem about this kind of cross-validation is that the eva-

luated performance is affected by the result of random division and different performances are achieved in every 

evaluation. To solve this problem, we repeated 10-fold cross-validation 100 times and averaged the accuracy.  

3. Experimental Results and Discussion 

3.1. Feature Analysis by Pearson’s Correlation Coefficient 

Figure 7 illustrates the result of correlation analysis on all feature pairs. It can be summarized as follows: 

 Box-count features (i.e. features about the number of boxes) are highly similar to each other. In contrast, 

fractal features are dissimilar to each other.  

 Some of other features are similar to each other (i.e. height and perimeter features). It indicates that redun-

dant features like box-count may exist also in these other features.  

 

 

Figure 7. Correlation analysis of features. Green (red) color corresponds to high (low) value. (a) Camera- 

independent features; (b) Camera-specific features; (c) box-count features; (d) fractal features; (e) (f) (g) 

Max and min of (b) (c) (d).                                                                  
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 About the difference between camera-specific features ((b), (c), and (d)) and camera-independent fea-

tures ((e), (f), and (g)) calculated from them, fractal features (d) and (g) showed clear difference. In other 

words, calculation of max and min was meaningful at least for fractals.  

3.2. Feature Analysis by PCA 

Figures 8-10 illustrate the similarity among the principal components 1-3 in four datasets (except “warning- 

only”). In each figure, features are sorted in descending order of principal component of whole dataset. Top 10 

important features in each dataset and PC are shown in Tables 4-6. From these figures and tables, it can be 

clearly seen that:  

 

 

Figure 8. PC1 of the datasets except “warning-only”.                      

 

 

Figure 9. PC2 of the datasets except “warning-only”.                       
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Figure 10. PC3 of the datasets except “warning-only”.                     
 

Table 4. Top 10 features in descending order of PC1 values.                                                      

rank whole no-warning 5-classes 2-classes warning-only 

1 box_count_4_min box_count_4_min total_pixels_B total_pixels_B height[mm]_min 

2 box_count_8_max box_count_8_min total_pixels_max total_pixels_max height[mm]_B 

3 box_count_4_max box_count_8_max total_pixels_min total_pixels_min height[mm]_max 

4 box_count_4_B box_count_8_B total_pixels_A total_pixels_A height[mm]_A 

5 box_count_4_A box_count_4_B width[pixel]_B width[pixel]_B perimeter[mm]_min 

6 box_count_2_min box_count_4_max box_count_8_B box_count_8_B perimeter[mm]_B 

7 box_count_8_min box_count_8_A box_count_8_min box_count_8_min perimeter[mm]_A 

8 box_count_8_A box_count_2_min box_count_4_B width[pixel]_max perimeter[mm]_max 

9 box_count_8_B box_count_4_A width[pixel]_max box_count_8_max area[mm2]_max 

10 box_count_2_max box_count_2_B box_count_8_max box_count_4_B area[mm2]_min 

 
Table 5. Top 10 features in descending order of PC2 values.                                                      

rank whole no-warning 5-classes 2-classes warning-only 

1 height[mm]_B fractal_4_8_min fractal_4_8_min fractal_4_8_min pixelwidth[mm]_min 

2 height[mm]_min fractal_4_8_B fractal_4_8_B fractal_4_8_B pixelwidth[mm]_B 

3 height[mm]_max fractal_4_8_A fractal_4_8_A fractal_4_8_max pixelwidth[mm]_max 

4 height[mm]_A fractal_4_8_max fractal_4_8_max fractal_4_8_A pixelwidth[mm]_A 

5 perimeter[mm]_min fractal_2_8_min width[pixel]_min width[pixel]_min fractal_1_2_max 

6 perimeter[mm]_B fractal_2_8_B width[pixel]_A width[pixel]_A fractal_1_2_min 

7 perimeter[mm]_A fractal_2_8_max equivolumetric_diameter[mm] equivolumetric_diameter[mm] fractal_1_2_B 

8 perimeter[mm]_max fractal_2_8_A vertical_fall_velocity[m/s] vertical_fall_velocity[m/s] fractal_1_2_A 

9 area[mm2]_max width[pixel]_min height_of_one_line[mm] width[pixel]_B height_of_one_line[mm] 

10 area[mm2]_B width[pixel]_A width[pixel]_B height_of_one_line[mm] fractal_1_4_max 
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Table 6. Top 10 features in descending order of PC3 values.                                                      

rank whole no-warning 5-classes 2-classes warning-only 

1 fractal_4_8_min fractal_2_8_min width[pixel]_A fractal_4_8_min pixelwidth[mm]_min 

2 fractal_4_8_max fractal_2_8_A width[pixel]_min fractal_4_8_max pixelwidth[mm]_B 

3 fractal_4_8_B fractal_2_8_B width[pixel]_max fractal_4_8_A pixelwidth[mm]_A 

4 fractal_4_8_A fractal_2_8_max equivolumetric_diameter[mm] fractal_4_8_B volume[mm3] 

5 fractal_2_8_min fractal_4_8_max width[pixel]_B fractal_2_8_min width[pixel]_max 

6 fractal_2_8_B fractal_4_8_min box_count_8_A fractal_2_8_max width[pixel]_A 

7 fractal_2_8_max fractal_4_8_A height_of_one_line[mm] fractal_2_8_B box_count_8_max 

8 fractal_2_8_A fractal_4_8_B vertical_fall_velocity[m/s] fractal_2_8_A box_count_8_A 

9 height[mm]_max fractal_2_4_min box_count_8_max volume[mm3] total_pixels_max 

10 height[mm]_A fractal_2_4_B fractal_2_4_A total_pixels_B box_count_8_B 

 

 PC1s of these datasets are similar to each other (Figure 8). Most of the important features in PC1 are occu-

pied by box-count features (Table 4).  

 PC2 of the dataset “whole” is quite dissimilar to others (Figure 9) and the difference is caused by the inclu-

sion of “warning-only”. In other words, after filtering errors, PC2 is more or less the same in each dataset. 

About top 10 features of PC1 of “warning-only” (Table 4), it is convincing that most of them are occupied 

by size-related features (height, perimeter, area, etc.) because many of the particles in this dataset were re-

moved from “whole” dataset due to their strange size. About PC2s of the datasets “no-warning”, “5-classes”, 

and “2-classes”, some of the fractal features occupy top 4 important features (Table 5).  

 In Figure 10, PC3s of the datasets “5-classes” and “2-classes” are quite dissimilar (correlation between them 

is −0.97). Since in “2-classes”, ambiguous particles annotated as “snowflake-like”, “intermediate”, or 

“graupel-like” are removed from “5-classes”, it can be interpreted that PC3 of “5-classes” is highly affected 

by the characteristics of such ambiguous particles.  

For visually understanding the sample distribution, we show 3D plots of the datasets. In Figure 11, it can be 

seen that the distributions of samples in three datasets “no-warning”, “5-classes”, and “2-classes” are almost the 

same. The 3D plots from three angles for “5-classes” show that, snowflake samples have their own distribution 

distinguishable from others. In contrast, samples of other annotations (snowflake-like, intermediate, graupel-like, 

and graupel) are distributed in the plane near to the PC2-PC3. About the L-like distribution of these samples, it 

is caused by the combined use of camera-specific fractal features (fractal_1_2_A, …, fractal_2_8_B) and cam-

era-independent fractal features (fractal_1_2_max, …, fractal_2_8_min). For example, removal of box-count 

features does not affect to the L-like shape of the distribution, however, removal of camera-specific or camera- 

independent fractal features makes it ambiguous (Figure 12). Although the meaning of the distribution is still 

unclear, this result suggests that the fractal features could provide more detailed classification of non-snowflake 

particles.  

3.3. Particle Classification by SVM 

As shown in Table 1, 72 features are available for training a statistical model to classify given samples (particles) 

into snowflakes and graupels. Using the algorithms described in subsections 2.3.4 and 2.3.5, first we evaluated 

the accuracy of prediction with “2-classes” dataset and all 72 features. The average error of prediction (i.e. 1 - 

average accuracy) was 0.08263. After converting the 72 features into 72 PCs by PCA, the average error de-

creased to 0.07191.  

Since so many redundant features exist in the 72 features, reduction of feature set by feature selection might 

decrease the average error of prediction. Although various algorithms have been proposed for fully-automatic 

feature selection, in this study we initially tried to select a representative feature in each feature group, assuming 

a feature group consisting of all features with common name prefix. For example, perimeter [mm]_A, perime-

ter[mm]_B, perimeter[mm]_max, and perimeter[mm]_min belong to the same group. In case of box-count and  
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 View from PC1-PC2 plane View from PC1-PC3 plane View from PC2-PC3 plane 

All 

   

No-warning 

   

5-Classes 

   

2-Classes 

   

Warning 

   

Figure 11. 3D plots of PC1, PC2, and PC3 in five datasets from three different angles of view. The colors of points (gray, black, blue, 

green, white, yellow, red) indicate the annotations (not annotated, warning, snowflake, snowflake-like, intermediate, graupel-like, 

graupel), respectively.                                                                                            
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Figure 12. 3D plots of the dataset “5-classes” without some features. In top-left and top-right panels, cam-

era-specific and camera-independent box-count features are removed, respectively. Also in bottom-left and bot-

tom-right panels, camera-specific and camera-independent fractal features are removed, respectively.            

 

fractal features, numbers in the names were ignored since they are homogenous except the parameters for calcu-

lating them. To choose the representative feature in each group, 72 evaluations were performed using only one 

specific feature in each evaluation. As a result, 14 representative features with the lowest average errors in their 

groups were selected (Table 7). Among them, box_count_2_max achieved the best performance (0.1055) as a 

single feature. It is also notable that the suffixes “_max” and “_min” frequently appear instead of “_A” and “_B”. 

It indicates that the conversion of camera specific features to camera-independent ones contributed to achieve 

better classification performance. 

Starting from the feature set with all of these 14 features, feature selection by backward elimination was per-

formed. It is an iterative feature selection method which removes a feature in an iteration. If the size of feature 

set in the iteration i is ni, all subsets with size ni − 1 are evaluated, and if the elimination of a feature achieved 

the best improvement of average error, it is removed in the next iteration. As a baseline performance before the 

1
st
 iteration, the average error 0.0543 achieved by the feature set with all of these 14 features was used.  

In this study, four features were removed through 1
st
 to 4

th
 iterations, and the process of backward elimination 

stopped since 5
th

 iteration could not achieve any improvement. Using the remaining 10 features, the average er-

ror 0.0461 was achieved and it was the best performance of classification in this study
1
. Unlike the analysis in 

subsection 3.2, this result revealed that fractal features could not contribute to the best performance. In other  

 

1We conducted t-test on two groups of errors before calculating 0.0465 and 0.0461 in Table 7, but it did not show statistically significant 

difference (p-value = 0.05153). However, at least it was confirmed that 0.0484 and 0.0465 were significantly different (p-value = 

3.815e−14). 
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Table 7. Average errors (i.e. 1-average accuracy) in the predictions by single feature and multiple features with backward 

elimination. Before backward elimination, average error of prediction by using all 14 features listed in the first column was 

0.0543. In each iteration of backward elimination, if the elimination of a feature decreased (increased) the average error of 

prediction, it is shown in red (blue) color. The least average error in each column is shown in bold face and the correspond-

ing feature is being not used in the succeeding iterations of backward elimination.                                    

feature prediction by single feature 1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration 

box_count_2_max 0.1055 0.0599 0.0543 0.0481 0.0493 0.0463 

total_pixels_max 0.1198 0.0577 0.0538 0.0485 0.0461 removed 

number_of_lines_min 0.1222 0.0549 0.0511 0.0485 0.0480 0.0466 

height[pixel]_min 0.1224 0.0548 0.0513 0.0481 0.0480 0.0467 

perimeter[mm]_max 0.1274 0.0683 0.0665 0.0626 0.0654 0.0653 

width[pixel]_max 0.1405 0.0564 0.0509 0.0471 0.0479 0.0476 

area[mm2]_max 0.1886 0.0602 0.0574 0.0495 0.0526 0.0522 

height[mm]_min 0.1913 0.0546 0.0531 0.0465 removed removed 

equivolumetric_diameter [mm] 0.2026 0.0652 0.0622 0.0556 0.0561 0.0573 

volume[mm3] 0.2045 0.0567 0.0506 0.0481 0.0486 0.0469 

fractal_2_8_min 0.2069 0.0520 0.0484 removed removed removed 

pixelwidth[mm]_max 0.2434 0.0517 removed removed removed removed 

height_of_one_line [mm] 0.3449 0.0557 0.0529 0.0509 0.0504 0.0513 

vertical_fall_velocity [m/s] 0.4261 0.0556 0.0522 0.0503 0.0499 0.0503 

 

words, they might be useful for more detailed characterization of various particles, not for just classifying snow-

flakes and graupels. In contrast, a box-count feature (box_count_2_max) was so important as to the classifica-

tion by only one feature achieved average error 0.1055 that is nearly 90% accuracy. It is an interesting finding 

that, although a box-count feature is a by-product of fractal calculation, it is significantly important in the classi-

fication of snowflakes and graupels. 

4. Conclusions 

In this study, we conducted feature analysis and classification of particle data from 2DVD through the combined 

use of various statistical methods including supervised and unsupervised machine learning. Experimental results 

revealed that fractal and box-count features were useful for the characterization and classification of snowflakes 

and graupels. The average accuracy of particle-by-particle classification was around 95.4%, which had not been 

achieved by previous studies. From this result, it could be said that we could develop a system for automatic 

solid precipitation monitoring with practically sufficient accuracy of discriminating snowflakes and graupels.  

In Table 1, we mentioned that each particle datum was attached to its timestamp of observation. Combining 

time information with the results of classification on large amount of particles, it was possible to conduct time- 

series analysis of amount and type of particles, which contributed to elucidate the mechanism of orographic 

snowfall (phenomena). Furthermore, conducting human annotation with not only two types (i.e. snowflake and 

graupel) but also other detailed types of particles (e.g. dendrite-like, aggregate-like, melting-snow-like, etc.), it 

was becoming possible to quantitatively analyze wide-variety of snowfall in places with weather conditions sim-

ilar to Kanazawa. The ground-based measurements of snow particles and identification of snow type would be 

useful for deriving radar reflectivity-snow rate relationships. 
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