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Abstract. We propose a novel approach using airborne image sequences for detecting dense

crowds and individuals. Although airborne images of this resolution range are not enough to

see each person in detail, we can still notice a change of color and intensity components of

the acquired image in the location where a person exists. Therefore, we propose a local feature

detection-based probabilistic framework to detect people automatically. Extracted local features

behave as observations of the probability density function (PDF) of the people locations to be

estimated. Using an adaptive kernel density estimation method, we estimate the corresponding

PDF. First, we use estimated PDF to detect boundaries of dense crowds. After that, using back-

ground information of dense crowds and previously extracted local features, we detect other

people in noncrowd regions automatically for each image in the sequence. To test our crowd

and people detection algorithm, we use airborne images taken over Munich during the

Oktoberfest event, two different open-air concerts, and an outdoor festival. In addition, we apply

tests on GeoEye-1 satellite images. Our experimental results indicate possible use of the algo-

rithm in real-life mass events. © The Authors. Published by SPIE under a Creative Commons

Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires

full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.7.073594]
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1 Introduction

Recently, automatic detection of people and understanding their behavior from images became a

very important research field, since it can provide crucial information, especially for police

departments and crisis management teams. Detecting the amount of people and understanding

their moving directions and speeds can be used for detecting or predicting abnormal situations.

In addition, it can also help to estimate locations where a crowd will congregate, which gives an

idea about future status of underground passages, entrances of mass events, or the density of

people in streets, which can also affect traffic.

Because of the importance of the topic, many researchers tried to monitor people using street

or indoor cameras, which are also known as close-range cameras. However, most of the previous

studies aimed to detect boundaries of large groups and extract information about them. The early

studies in this field were developed from closed-circuit television images.1–3 These cameras can

monitor only a few square meters in indoor regions, and it is not possible to adapt the developed

algorithms to street or airborne cameras, since the human face and body contours will not appear

as clearly owing to resolution and scale differences. To be able to monitor bigger events,

researchers tried to develop algorithms that can work on outdoor camera images or video

streams. Arandjelovic4 developed a local interest point extraction–based crowd detection method

to classify single terrestrial images as crowd and noncrowd regions. They observed that dense

crowds produce a high number of interest points. Therefore, they used density of scale-invariant

feature transform features for classification. After generating crowd and noncrowd training sets,

they used support vector machine (SVM)-based classification to detect crowds. They obtained
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scale-invariant and good results in terrestrial images. Unfortunately, these images do not enable

monitoring of large events, and different crowd samples should be detected beforehand to train

the classifier. Ge and Collins5 proposed a Bayesian marked point process to detect and count

people in single images. They used football match images and street camera images for testing

their algorithm. The method requires clear detection of body boundaries, which is not possible in

airborne images. In another study, Ge and Collins6 used multiple close-range images taken at the

same time from different viewing angles. They used three-dimensional heights of the objects to

detect people on streets. Unfortunately, it is not always possible to obtain these multiview close-

range images for the street where an event occurs. Lin et al.7 wanted to obtain quantitative mea-

sures about crowds using single images. They used Haar wavelet transform to detect head-like

contours, and then using SVM they classified detected contours as head or nonhead regions.

They provided quantitative measures about number of people in crowds and sizes of crowds.

Although results are promising, this method requires clear detection of human head contours and

training of the classifier. In any case, street cameras have only a limited coverage area to monitor

large outdoor events. In addition to that, in most cases, no cameras are installed to obtain close-

range street images or video streams in the place where an event occurs. Therefore, to get image

data of large groups of people in very big outdoor events, the best way is to use airborne images,

which began to give more information to researchers with the development of sensor technology

and better data transmission possibilities. Because most of the previous approaches in this field

needed clear detection of face or body features, curves, or boundaries to detect people and crowd

boundaries, which is not possible in airborne images, new approaches are needed to extract

information from these images. In a previous study, Hinz et al.8 registered airborne image

sequences to estimate density and motion of people in crowded regions. For this purpose, a

training background segment is first selected manually to classify image as foreground and back-

ground pixels. They used the ratio of background pixels and foreground pixels in a neighborhood

to plot density. Observing change of the density map in the sequence, they estimated motion of

people. This approach did not provide quantitative measures about crowds. In a following study,9

the previous approach was used to detect individuals. Positions of detected people were linked

with graphs. They also used these graphs for understanding the behavior of people. To bring

automated solutions to the problem in this field, Sirmacek and Reinartz10 proposed a dense

crowd detection method based on extraction of local features from airborne images. Local fea-

tures are used in a probabilistic process to identify locations of dense crowds. In a following

study, Sirmacek and Reinartz11 improved the dense crowd detection study by adding a feature

selection step. By using a background comparison method, they detected individuals. In

Sirmacek and Reinartz,12 by applying Kalman13 filtering on individual detection results

(which are obtained over registered airborne image sequences), they obtained automatic tracking

results. Using several measures they have extracted over automatically generated probability

density functions, they also estimated the main direction of motion and abnormality level of

large crowds.12 Burkert et al.9 and Butenuth et al.14 used their estimations to simulate the

human activity in large areas. Although the proposed approaches brought new insights to

the related field, owing to the diverse appearance of the input images, obtaining robust and espe-

cially automatic solutions is still a big challenge.

Herein, we present our latest techniques for detecting dense crowds and also for detecting

individuals. We test robustness of the algorithm by comparing it with different parameter selec-

tion and different feature extraction methods. For testing our algorithms, we use color airborne

image sequences and Geo-Eye-1 satellite images. Quantitative results and estimations of

computation times are shown, since these are crucial for future real-time application of the

algorithms.

2 Detecting People from Airborne Images

Airborne image data were acquired by the Deutsches Zentrum fuer Luft und Raumfahrt (DLR,

German Aerospace Center) 3K-Camera-System with a Cessna aircraft from 1000 m flight alti-

tude and ground sampling distance (GSD) of 15 cm. The camera system, including on-board

processing and downlink capabilities, is described in detail in Kurz et al.15 and consists of three
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off-the-shelf Canon Mark II cameras. Image sequences are acquired with a frequency between 2

and 1 Hz during the flight. The images are georeferenced on-board, so that the absolute coor-

dinates are correct and objects such as cars and people can be detected at their absolute position.

For each airborne image in the input sequence, we apply a dense crowd detection and people

detection approach. Next, we introduce steps of the approach in detail.

2.1 Local Feature Extraction

To illustrate the algorithm steps, we pick Stadium1 image from our Stadium1−43 test image

sequence. In Fig. 1(a), we represent Stadium1 test image, and in Fig. 1(b), we represent a subpart

of the original image to give information about real resolution of the image. As can be seen,

airborne image resolutions do not make it possible to see each single person with sharp details.

However, we can still notice a change of color and intensity components in the place where a

person exists. Therefore, our dense crowd and people detection method depends on local features

extracted from the intensity band of the input test image.

For local feature extraction, we use features from accelerated segment test (FAST). FAST

feature extraction method was specially developed for corner detection purposes by Rosten

et al.16 The algorithm can be briefly explained as follows:

1. Select a pixel p in the image. Assume that the intensity of this pixel is Ip.

2. Set a threshold value T (suggested to be selected as 20% of Ip intensity value).

3. Consider a circle of 16 pixels surrounding the pixel p. This is called Bresenham circle of

radius 3, which is described in Ref. 17 written by Hearn and Baker.

4. N contiguous pixels of the 16 need to be either above or below Ip by the value T, if the

pixel needs to be detected as an interest point. (N value is suggested to be set as 12.)

5. To make the algorithm fast, first compare the intensity of pixels 1, 5, 9, and 13 of the

circle with Ip. At least three of these four pixels should satisfy the threshold criterion to

detect an interest point in p location.

6. If at least three of the four pixel values are not above or below the threshold value, then

p is not selected as an interest point. If at least three of the pixels are above or below the

threshold value, then check for all 16 pixels and check if 12 contiguous pixels fall in the

criterion.

7. Repeat the procedure for all pixels in the image.

Although the algorithm has been developed for corner detection, it also gives high responses

on small regions that are significantly different from surrounding pixels. Therefore it is espe-

cially suitable if a person’s top view is represented by just a few pixels, which is true for the

airborne images we are working with. We assume ðxi; yiÞ for i ϵ ½1; 2; : : : ; Ki� as FAST local

features which are extracted from intensity band of the input image, respectively. Here, Ki indi-

cates the maximum number of features. We represent locations of detected local features for

Fig. 1 (a) Stadium1 test image from our airborne image sequence including both crowded and

sparse people groups. (b) Closer view of the crowded region in Stadium1 labeled with red square.
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Stadium1 test image in Fig. 2(c). Extracted FAST features will behave as observations of the

probability density function (PDF) of the people to be estimated after a feature selection process,

which we introduce in the next step.

2.2 Local Feature Selection

As can be seen in Fig. 2(c), we detected FAST features at almost each individual person’s posi-

tion. Unfortunately, corners of other objects also led to FAST feature detection. In this step, we

apply segmentation to the input image to estimate the interest region, which helps us to eliminate

redundant local features.

For segmenting the input image, we benefit from the mean shift segmentation approach,

proposed by Comanicu and Meer.18 For the mean shift segmentation process, we choose spatial

bandwidth (hs) and spectral bandwidth (hr) parameters as 7 and 6.5 pixels, respectively, after

extensive tests, and we use the same parameters for all input images. The segmentation result is a

new image such as Sðx; yÞ, which holds each segment labeled by a single color. We present mean

shift segmentation result for our Stadium1 test image in Fig. 2(b). Here, each segment is labeled

with the mean of red, green, and blue band values of the original image pixels inside the segment.

Although we have no idea about which segment represents which object, the segmentation result

can be useful to decrease the complexity of the problem. We believe that on the interest region

(generally roads), there should be many local features indicating people. Therefore, we eliminate

regions having <50 local features inside. Remaining regions are assumed as interest regions,

which is represented with value 1 in Mðx; yÞ binary mask. In the next steps of the algorithm,

we use ðxi; yiÞ, i ϵ ½1; 2; : : : ; Ki� local features only if they satisfy Mðxi; yiÞ ¼ 1 equation. In the

next step, we introduce an adaptive kernel density estimation method to estimate corresponding

PDF, which will help us to detect dense people groups and people in sparse groups.

Fig. 2 (a) Original Stadium1 test image. (b) Mean-shift segmentation result for Stadium1 test

image. (c) Detected FAST feature locations on Stadium1 test image represented with red crosses.

(d) Estimated PDF (color coded) for Stadium1 image generated using FAST feature locations as

observations. (e) Automatically detected dense crowd boundaries and detected people in sparse

groups for Stadium1 test image.
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2.3 Detecting Dense Crowds Based on Probability Theory

Since we have no preinformation about the street, building, green area boundaries, and crowd

locations in the image, we formulate the crowd detection method using a probabilistic frame-

work. Assume that ðxi; yiÞ is the i’th FAST feature where iϵ½1; 2; : : : ; Ki�. Each FAST feature

indicates a local color change which might be a human to be detected. Therefore, we assume

each FAST feature as an observation of a crowd PDF. For crowded regions, we assume that more

local features should come together. Therefore, knowing the PDF will lead to detection of

crowds. For PDF estimation, we benefit from a kernel-based density estimation method as

Sirmacek and Unsalan19 represented for local feature-based building detection. Silverman20

defined the kernel density estimator for a discrete and bivariate PDF as follows. The bivariate

kernel function [Nðx; yÞ] should satisfy the conditions given below:

X

x

X

y

Nðx; yÞ ¼ 1 (1)

and

Nðx; yÞ ≥ 0; ∀ ðx; yÞ (2)

The PDF estimator with kernel Nðx; yÞ is defined by

pðx; yÞ ¼ 1

nh

X

n

i¼1

N

�

x − xi

h
;
y − yi

h

�

; (3)

where h is the width of the window, which is also called smoothing parameter. In this equation,

ðxi; yiÞ for i ¼ 1; 2; : : : ; n are observations from PDF that we want to estimate. We take Nðx; yÞ
as a Gaussian symmetric PDF, which is used in most density estimation applications. The

Gaussian kernel function is easy to generate by setting only one bandwidth parameter, and

the PDF, which is the sum of Gaussian kernels, gives a smooth function of probability densities

with smooth transitions. Therefore, in our application the estimated PDF is formed as below:

pðx; yÞ ¼ 1

R

X

Ki

i¼1

1
ffiffiffiffiffiffiffiffi

2πσ
p exp

�

−
ðx − xiÞ2 þ ðy − yiÞ2

2σ

�

; (4)

where σ is the bandwidth of Gaussian kernel (also called smoothing parameter), and R is the

normalizing constant to normalize pnðx; yÞ values between [0, 1]. In kernel-based density esti-

mation, the main problem is how to choose the bandwidth of Gaussian kernel for a given test

image, since the estimated PDF directly depends on this value. Because we know the resolution

of the image through the direct sensor orientation, we are able to adapt the bandwidth of the

Gaussian kernel for any given input image. But we have to estimate this bandwidth once to

achieve best results for further processing. In probability theory, there are several methods

to estimate the bandwidth of kernel functions for given observations. One well-known approach

is using statistical classification. This method is based on computing the PDF using different

bandwidth parameters and then comparing them. Unfortunately, in our field, such a framework

can be very time-consuming for large input images. The other well-known approach is called

balloon estimators. This method checks k nearest neighborhoods of each observation point to

understand the density in that area. If the density is high, bandwidth is reduced proportional to

the detected density measure. This method is generally used for variable-kernel density estima-

tion, where a different kernel bandwidth is used for each observation point. However, in our

study, we need to compute one fixed kernel bandwidth to use at all observation points. To

this end, we follow an approach slightly different from balloon estimators.

First, we pick Ki∕2 number of random observations (FAST feature locations) to reduce the

computation time. For each observation location, we compute the distance to the nearest neigh-

bor observation point. Then, the mean of all distances gives us a number l (calculated as 105.6

for Stadium1). We assume that variance of Gaussian kernel (σ2) should be equal to or greater than

l. To guarantee the intersection of kernels of two close observations, we assume variance of

Gaussian kernel as 5l in our study. Consequently, bandwidth of Gaussian kernel is estimated
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as σ2 ¼ 5l. For a given sequence, that value is computed only one time over one image. Then, the

same σ value is used for all observations extracted from images of the same sequence. The intro-

duced automatic kernel bandwidth estimation method makes the algorithm robust to scale and

resolution changes. In Fig. 2(d), we represent the PDF obtained for Stadium1 test image.

The represented PDF function is color coded, which means yellow-red regions show high prob-

ability values and dark blue regions show low probability values. As can be seen in this figure,

crowded areas have very high probability values, and they are highlighted in estimated PDF.

We use the automatic thresholding method of Otsu21 on this PDF to detect regions having

high probability values. After thresholding our PDF function, in the binary image obtained

we eliminate regions with an area <1000 pixels, since they cannot indicate large human crowds.

The resulting binary image Bcðx; yÞ holds dense crowd regions. For Stadium1 image, boundaries

of detected crowd regions are represented on original input image with blue borders in Fig. 2(e).

After detecting very dense groups, in the next step we focus on detecting other people in sparse

groups. After detecting dense crowds automatically, we also extract quantitative measures from

detected crowds for more detailed analysis. Because they indicate local color changes, we

assume that detected features can give information about number of people in crowded

areas. Unfortunately, the number of features in a crowd region does not give the number of

people directly. In most cases, shadows of people or small gaps between people also generate

a feature; in addition, two neighbor features might come from two different chroma bands for the

same person. To decrease counting errors from these features, we follow a different strategy to

estimate the number of people in detected crowds. We use a binary mask Bfðx; yÞ where the

image has zero values but the ðxi; yiÞ feature locations have value 1. Then, we dilate Bfðx; yÞ
using a disk-shape structuring element with a radius of 2 to connect close feature locations in

binary mask.22 Finally, we apply connected component analysis to the mask, and we assume the

total number of connected components in a crowd area as the number of people (N).22 In this

process, a slight change of radius of a structuring element does not make a significant change in

estimated people number N. However, an appreciable increase in radius can connect features

coming from different people and that decreases N, which leads to poor estimates of number

of people. Because the resolution of the input image is known, using an estimated number of

people in the crowd, the density of people (d) can also be calculated. Let us assume B
j
cðx; yÞ is

the j’th connected component in Bcðx; yÞ crowd mask. We calculate crowd density for

j’th crowd as dj ¼ N∕½
P

X

P

Y B
j
cðx; yÞ × a�, where X and Y are the numbers of pixels in

the image in horizontal and vertical directions, respectively, and a is the area of one pixel in

square meters.

2.4 Detecting People in Sparse Groups

Besides detecting dense crowd regions and extracting quantitative measures on them, detecting

other people in noncrowd regions is also crucial, because detecting people in noncrowd regions

can help to develop people-tracking or behavior-understanding systems.

To detect people in noncrowd regions, we apply connected component analysis22 to Bfðx; yÞ
matrix and pick mass centers of the connected components (xp, yp) pϵ½1; 2; : : : ; Kp� which sat-

isfy Bcðxp; ypÞ ¼ 0 as locations of individual people in sparse groups. Unfortunately, each

ðxp; ypÞ pϵ½1; 2; : : : ; Kp� location satisfying this rule does not directly indicate a person, because
the location might be coming from irrelevant local features of another object such as a tree or

chimney. To decide whether a ðxp; ypÞ position is indicating a person or not, we apply a back-

ground comparison test. At this step, to represent a person, the background color of a connected

component centered in ðxp; ypÞ position should be very similar to the background color of

detected dense crowds. To do a background similarity test, first we pick all border pixels of

the binary objects (crowd regions) in Bcðx; yÞ binary crowd mask. We assume Lc, ac, and

bc as mean of L, a, and b color band values of these pixels. For each ðxp; ypÞ
pϵ½1; 2; : : : ; Kp� location which satisfies Bcðxp; ypÞ ¼ 0 equation, we apply the same procedure

and obtain Lp, ap, and bp values, which indicate mean of L, a, and b color band values around

connected components located at ðxp; ypÞ center point. To test background similarity, we check

if extracted values satisfy inequality given below:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðLc − LpÞ2 þ ðac − apÞ2 þ ðbc − bpÞ2
q

< ξ: (5)

In our study, we selected ξ ¼ 10 after extensive tests. Although slight changes of ξ value do

not affect the detection result, a large increase of this threshold might lead to false detections; on

the other hand, a large decrease might lead to inadequate detections. We should add that it is not

possible to detect individuals standing on different colored surfaces with this method.

3 Experiments

To test our method, we use airborne images obtained using the low-cost airborne frame camera

system (named 3K camera system) developed at DLR. The spatial resolution (GSD) and swath

width of the camera system range between 15 and 50 cm, and 2.5 to 8 km, respectively, depending

on the flight altitude. Within 2 min, an area of approximately 10 by 8 km can be monitored. That

high observation coverage gives great advantage to monitor large events. Image data are processed

onboard by five computers using data from a real-time global positioning system/inertial meas-

urement unit system including direct georeferencing.15 In this study, we use data with 15-cm GSD

acquired from 1000-m flight altitude. The 3K airborne camera image data set consists of a stadium

entrance data set (Stadium1−43), which includes 43 multitemporal images acquired with a time

distance of 0.5 s or 2 Hz. We also use one-shot airborne images taken over open-air concerts,

Oktoberfest, and a festival for our crowd- and people-detection tests. All images are georeferenced

to get absolute coordinates of the detected objects and allow us to detect exact geographical coor-

dinates of the objects even if the images are taken from different positions of the aircraft. That

property of the developed software gives us also the opportunity to easily display our results on

Google Earth. Because of focusing difficulties of the older version of the camera system, some of

the images in our data set are blurred. Although this issue decreases the detection capabilities of our

software system, the results can still provide important information about status of the crowds and

approximate quantitative measures of crowd and noncrowd regions. Furthermore, we also re-

present some test results obtained by using satellite images.

3.1 Crowd-Detection Experiments

To obtain a measure about the performance of the crowd-analysis step of the algorithm, we have

generated reference data for four dense crowds in Stadium1, represented in Fig. 3. Because even

for a human observer it is hard to count the exact number of people in crowds, we have assumed

mean counts of three human observers as reference. In Table 1, we compare the automatically

detected number of people (N) and density (d) with the reference data (Ngth and dgth, respec-

tively) for each crowd. Similarity of our measures with the reference shows the high performance

of the proposed approach.

In Fig. 4, we represent a crowd-detection result for a test image that covers a large part of the

Oktoberfest event region. It can be seen that mainly the densely crowded areas in the roads near

the tents are detected correctly.

Fig. 3 A small part of Stadium1 test image. Labels of detected crowds used for performance analy-

sis are written on the image.
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In our automatic kernel-density estimation method, we assumed variance of Gaussian kernel

as equal to 5l. To prove our assumption and visualize effects of using different kernel-variance

values, in this step we provide example results for different Gaussian kernel function variances.

In Fig. 5, we provide crowd detection results for Stadium1 test image for 1l, 2l, 3l, 10l, and 20l

Gaussian kernel variance values. As can be seen in these results, assuming variance value equal

to 1l leads to underestimations, because the width of the kernel function cannot be sufficient to

merge probabilities of people. Assuming kernel variance as 2l and 3l, we obtain results very

similar to those of our previous assumption (assuming variance as 5l). That proves robustness of

the kernel density variance parameter to the chosen tolerance values. In last two images, although

we use very high kernel-variance values, we could detect dense crowd regions. However,

detected crowd boundaries appear larger owing to the very high width of the Gaussian

probabilities.

In Fig. 6, we represent another dense crowd detection from an open-air concert in another

region. The correct dense crowd boundary detection, despite the dense and diverse texture char-

acteristics in the image, indicates the reliability of the proposed system.

In a previous study, Sirmacek et al.23 tested FAST feature extraction-based crowd detection

software on the first 16 airborne images of the Stadium image sequence. They have compared the

software with other software solutions built in the same process structure but using different

feature extraction methods (SPARK, ETM, and LOG features). The experiments showed

that using the FAST feature extraction method, it is possible to obtain superior crowd detection

performance. Using the 16 images of the test data set, the FAST feature extraction-based crowd

Table 1 Comparison of reference and automatically detected people number and density esti-

mation results for test regions in Stadium1 image.

Region1 Region2 Region3 Region4

N 139 211 115 102

Ngth 132 180 114 98

d 0.81 0.74 0.68 0.76

dgth 0.76 0.63 0.67 0.73

N, number of people; d , number of people per square meter.

Fig. 4 Crowd detection result on Munich2 test image.
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detection software achieved performance computations of 87.21% for the l area true detection

rate and 13.46% false detection rate. For comparison, manually generated dense crowd masks

(binary images where dense crowd pixels are labeled with 1 and the other pixels are labeled with

0) have been used as reference.

The main advantage of the proposed system is its capability to adapt itself to spatial reso-

lutions of the input images by detecting the l value automatically, which is important if the

algorithms will be used in a real-time environment. To prove the robustness of the system

to the spatial resolutions of the input images, we present crowd detection examples on a

GeoEye-1 satellite image in Fig. 7. Results on satellite images of approximately 0.5 m

(GSD) indicates the robustness of the automatically adapted system parameter.

Fig. 5 Crowd detection results for Stadium1 test image for 1l , 2l , 3l , 10l , and 20l Gaussian kernel-

variance values.

Fig. 6 Crowd detection and individual detection example over a complex scene.

Fig. 7 Crowd detection examples on GeoEye-1 images are represented to prove robustness of

the system parameters.
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3.2 People-Detection Experiments

In this section, we discuss the single people detection performance of the proposed method. We

provide a detection performance illustration in Fig. 8, which is a zoomed subregion of Munich1
test image. In this zoomed image part, we represent detected person locations with boxes. We

have manually changed the marker box color to green for true detected persons and red for false

alarms. A high number of green markers indicates high detection performance of the system. We

could not prevent detection of local disturbances, which are represented with red box markers.

Unfortunately, due to the limited resolution and focusing difficulties of the airborne camera,

it is difficult to generate good reference data for accurate performance calculation. To be able to

discuss quantitative results, we asked three volunteers to label the individuals that they can see in

the dense crowd (red-labeled) region in Fig. 6. In Fig. 9, we represent the labels generated by the

volunteers. To generate reference data, we stored blue label locations in binary masks with value

1 where a person exists and value 0 in other places.

In Table 2, we tabulate the quantitative performance calculation results by using three differ-

ent references given in Fig. 9. As can be seen in this table, the three volunteers labeled almost the

same number of individuals. The slight difference might be because of the low sharpness of the

image for displaying very small objects. We have accepted the software result as a correct detec-

tion if it is one pixel around a reference label. Our FAST feature–based software did not detect

any false alarm in the dense crowd region. Unfortunately, the software could not detect each

individual, especially in those regions where the object sharpness was very low. In future

steps of our research, we would like to adapt feature extraction parameters depending on the

input image sharpness estimation to obtain higher detection performances.

3.3 Computation Time

Finally, in this section we analyze computation time needed for our method. For Stadium1 test

image from our dataset, total dense crowd detection and individual detection modules take

Fig. 8 Closer view of Munich1 test image is presented to give information about people detection

in sparse regions. True detections are labeled with green, and false detections are labeled with

red.

Fig. 9 Closer view of the dense crowd region in Fig. 6. Three different images show the labels

generated manually by three different volunteers.
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107.20 s. We obtained timings using an Intel Core2Quad 2.66 GHz PC and MatLab coding

environment. Total computation time for detecting dense crowds with the estimated people

and people density numbers, and also for detecting individuals, show the practical usefulness

of the method for on-board real-time applications. We plan to achieve higher computation time

performances in a C programming environment.

4 Conclusions

To bring a novel solution for dense crowd and individual detection problem, herein we propose a

fully automatic approach using remotely sensed images. Although the resolutions of airborne

images are not enough to see each person with very sharp details, we can still notice a change of

color components in the place where people or groups of people exist. Therefore local feature

extraction-based software gave us the opportunity to develop a software system that can give

high detection performances. We tested our crowd and people detection algorithm on airborne

images taken from different events having diverse characteristics in their scenes. To test the

robustness of the self-adaptive system parameter, we also applied dense crowd detection algo-

rithm on GeoEye-1 satellite images. The experimental results and parameter robustness tests

indicate possible use of the algorithm in real-life events, also for on-board applications.
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