
1

High sensitivity acquisition of GNSS signals with

secondary code on FPGAs

Jérôme Leclère1, Cyril Botteron2, Senior Member, IEEE, and Pierre-André Farine2, Member, IEEE

Abstract—The presence of a secondary code in modern global
navigation satellite system signals complicates the acquisition of
these signals, because there is a potential sign transition between
each period of the primary code. Some previous works proposed
to use the parallel code search by performing the correlation over
the primary code several times and then combining the results
according to the secondary code chips. In this article, we will
focus on this method and compare different hardware implemen-
tations, to determine if it is better to do the combinations before
or after the correlations, and to compare serial and parallel
architectures. In a second part, we will show a simple method that
manipulates the local secondary code to rearrange the equations,
which approximately halves the theoretical number of operations
related to the secondary code correlation and the processing
time for hardware implementations, without any impact on the
sensitivity.

Index Terms—Acquisition, FFT, FPGA, GNSS, Secondary
code.

I. INTRODUCTION

THE modern global navigation satellite systems (GNSS)

signals, such as the GPS L5 and L1C, and Galileo E5 and

E1, have brought several innovations : the introduction of a

pilot channel that does not contain any data to allow very long

coherent integrations; the introduction of a secondary code to

offer better cross-correlations, to facilitate the synchronization

with the data, and to help interference mitigation; the intro-

duction of new modulations to reduce the impact of multipath;

and the use of higher chipping rates to have better accuracy

and interference mitigation.

Although having a secondary code brings some advantages,

it also presents some drawbacks. Indeed, with the modern

GNSS signals, there is now a potential sign transition (i.e. a

carrier phase shift of 180◦) between each period of the primary

code, unlike the GPS L1 C/A signal that has a potential sign

transition each 20 code periods only. These sign transitions

are one of the limitations of the coherent integration time, and

thus of the receiver sensitivity [1], [2], [3], [4]. Therefore, to

use a long coherent integration time and get high sensitivity,

the delay of the secondary code must be estimated.

There have been several proposals to address this problem.

In [5], [6], it has been proposed to synchronize with the

primary code first, and then synchronize with the secondary

code. However, this implies to be able to detect the signals

using only one period of the primary code, which is not the

1 The author is with the Laboratory of Space technologies, Embedded
systems, Navigation and Avionic (LASSENA) of the École de Technologie
Supérieure (ÉTS), Canada. 2 The authors are with the Electronics and Signal
Processing Laboratory (ESPLAB) of the École Polytechnique Fédérale de
Lausanne (EPFL), Switzerland.

case in the high sensitivity context. In [7], [8], it has been

proposed to extend the coherent integration time by estimating

the possible combinations of several secondary code chips,

and using this to determine the secondary code delay [9],

but these methods are still not adapted to the high sensitivity

context. To get high sensitivity, the coherent integration time

should be at least one period of the secondary code, or a

multiple of it. In [10], it has been proposed to determine the

primary code delay with a serial search and the secondary code

delay with a fast Fourier transform (FFT) based correlation,

however the serial search is too time-consuming for a realistic

implementation. In [11], the authors proposed to perform an

FFT-based correlation over one period of the secondary code

with the L5 signal, nevertheless this requires very large FFTs

(length greater than 218), which are not compatible with a

hardware implementation. Finally, [12] proposed to perform

FFT-based correlations over one period of the primary code

(doubling the length to manage the sign transition), and to

combine the results according to the secondary code chips.

In this article, we will focus on this last method. More

specifically, we will compare different hardware implemen-

tations of this method. Indeed, the combinations can be per-

formed before or after the correlations with the local primary

code; they can be computed sequentially or in parallel; and

the output can be computed in different orders (checking all

the primary code delays for one secondary code delay, or

checking all the secondary code delays for one primary code

delay). The objective is therefore to identify the most efficient

implementations. Note that these different implementations

are not approximations, they all provide the same output and

thus the same performance in terms of sensitivity. We will

also present a method that approximately halves the number

of operations related to the secondary code correlation, still

without impacting the sensitivity, and see how it can reduce

the processing time with the hardware implementations.

The article is organized as follows: Section II briefly intro-

duces the GNSS signals, the parallel code search acquisition

method, and the difficulties to perform the correlation over one

period of the secondary code. Then, Section III recalls how

to compute the correlation over the primary code and perform

the combinations, and compares the different hardware imple-

mentations. Finally, Section IV presents the method to reduce

the number of operations, and Section V concludes this paper.

II. ACQUISITION OF GNSS SIGNALS

A. Signal definition

The signal received by a GNSS receiver is the combination

of several GNSS signals coming from U different satellites,

jleclere
Machine à écrire
Article submitted to IEEE Aerospace and Electronic Systems Magazine, August 2017

jleclere
Machine à écrire
The original publication is available at IEEE Xplore

jleclere
Machine à écrire
© 2017 IEEE.Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

http://ieeexplore.ieee.org/document/8068038

2

repeat for different carrier frequencies
incoming

signal
local
code

FFT

FFT*

local
carrier

IFFT Detection| |Σ Σ Memory
sb(nTS)

sampling
frequency

FPGA
frequency

xn

cn

yn

·

circular correlation extra coherent
integration

non-coherent
integration

Fig. 1. Basic diagram of the parallel code search implemented on an FPGA, using a buffer for faster processing.

plus a noise term. Thus, after the front-end, the discrete

baseband signal can be written as

sb(nTS) =

U
∑

u=1

sub (nTS) + ηb(nTS), (1)

where sub (nTS) is the discrete baseband signal from satellite

u, n is the discrete time index, TS is the sampling period equal

to 1
fS

with fS being the sampling frequency, and ηb(nTS) is

the noise component [13, Chap. 1].

Considering a real sampling front-end, the discrete baseband

signal from satellite u having a data and a pilot channel can

be expressed as

sub (nTS) =
√

2Pu
b,dd

u
(

nTS − τu
)

cud
(

nTS − τu
)

cos
(

2πfu
b nTS + ϕu

b,d

)

(2)

+
√

2Pu
b,pc

u
p

(

nTS − τu
)

sin
(

2πfu
b nTS + ϕu

b,p

)

,

where Pu
b,d and Pu

b,p are the powers of the data and pilot

channels, cud and cup are the pseudo random codes of the

data and pilot channels, du is the data sequence, τu is an

unknown delay, fu
b is the baseband frequency that includes

the intermediate frequency, a global offset caused by the local

oscillator and the offset caused by the Doppler effect, and ϕu
b,d

and ϕu
b,p are the carrier phases of the data and pilot channel

[13], [14]. Note that this model is simplified, since it does not

take into account the Doppler effect on the code, or the local

oscillator effect on the sampling frequency for example (see

[13, Chap. 1]), but it is enough for our problem.

The pseudo random codes cud and cup are composed of a

primary code and of a secondary code (and potentially of a

sub-carrier, not considered here but without impact on our

discussion), and are also called tiered codes. In these tiered

codes, the primary code is repeated several times and each

period is multiplied by a chip of the secondary code. Since

the primary and secondary codes are binary codes taking +1
or −1 as value, the tiered code is also binary code taking +1
or −1 as value. Using vector notation, denoting p the primary

code of length NP , and s the secondary code of length NS ,

they can be defined as

p =

p0
p1
...

pNP−1

, s =

s0
s1
...

sNS−1

, (3)

where the subscript represents the sample for p and the chip

for s. The tiered code, denoted c, has thus a length N =
NSNP and is defined as

c = s⊗ p =

s0p
s1p

...

sNS−1p

, (4)

where ⊗ denotes the Kronecker product. The length NP of

the primary code depends on the signal and on the sampling

frequency. For example, the L5, E5a and E5b pilot signals

are binary phase shift keying (BPSK) signals with a chipping

rate of 10.23 MHz, therefore the usual minimum sampling

frequency considered for these signals is 20.46 MHz (twice the

chipping rate, but this exact frequency is never used because

of position accuracy problems [15]). Since the length of the

primary code is 1 ms, the minimum value of NP is 20 460. The

length NS of the secondary code is not related to the receiver

and depends only on the signal. For example, the length of the

secondary codes on the data and pilot channels is respectively

10 and 20 chips for the L5 signal, 20 and 100 chips for the

E5a signal, and 4 and 100 chips for the E5b signal. Therefore,

the minimum value of N is 409 200 for the L5 pilot signal,

and 2 046 000 for the E5a and E5b pilot signals.

B. Parallel code search acquisition

The aim of the acquisition is to detect the visible GNSS

satellites, and to estimate their baseband frequency fu
b and

code delay τu, by synchronizing local replicas with the incom-

ing signal. The acquisition is thus a two-dimensional problem,

for each satellite. There are different methods to perform the

acquisition, such as the serial search, which tests the different

3

combinations for the carrier frequency and code delay one by

one [16]; the parallel frequency search, which tests one code

delay and several or all the carrier frequencies in parallel using

an FFT [17], [18], [19]; the parallel code search, which tests

one carrier frequency and all the code delays in parallel using

an FFT-based correlation [20], [16], [13]; or there are also

methods that parallelize the search in the two dimensions [21],

[22], [23]. For a high sensitivity hardware receiver, the parallel

code search seems the most suitable method because of its high

level of parallelization, its moderate memory requirements,

and because it can compensate the code Doppler whereas the

parallel frequency search and its derivates cannot [13], [24].

The basic diagram of the parallel code search implemented

on an FPGA is shown in Fig. 1. In this figure, the incoming

signal is stored in a memory at the sampling frequency for a

faster processing during the acquisition. For different frequen-

cies of the local carrier replica, the circular correlation between

the incoming code and the local code is computed using FFTs.

Then additional coherent or non-coherent integration can be

performed. This process is performed at the FPGA frequency,

which is usually much higher than the sampling frequency,

allowing a speeding up of the acquisition [24].

For the following, we will concentrate only on the pro-

cessing between the carrier removal and the extra coherent

integration, i.e. the circular correlation computed using FFTs.

C. Direct correlation over the secondary code period

The circular correlation can be performed over the entire

tiered code to synchronize with both primary and secondary

codes simultaneously, as proposed in [11]. Using matrix

notation, the circular correlation can be written as

y = Cx = Xc, (5)

where C is an N ×N right circulant matrix with cT as first

row, x is the signal after the carrier removal, and X is an

N ×N left circulant matrix with x as first column [25]. Since

a circulant matrix can be diagonalized by the discrete Fourier

transform matrix F, we can write

y = F−1
(

(Fc)∗ ◦ (Fx)
)

, (6)

where ∗ denotes the conjugate operator and ◦ denotes the

Hadamard product (element by element product) [25]. There-

fore, this circular correlation can be implemented using FFTs

as shown in Fig. 2, where the length of the FFTs is N . The

corresponding timing diagram is shown in Fig. 14 (all the

timing diagrams are provided in appendix to not overload

the core of the article), assuming that several FFTs can be

computed consecutively without pause (this corresponds to

the streaming implementation of some FFTs [26]), and that

the FFT has a latency of LN clock cycles (i.e. there are LN

clock cycles between the last sample of the input sequence

and the first sample of the first output sequence).

For an FPGA implementation, the FFT cores available

require an FFT length that is a power of two [26], [27],

[28], [29]. As mentioned previously, the minimum value of

N is 409 200 for the L5 signal, thus the smallest power of

two possible is 219 = 524 288. To have this FFT length, the

xn Xk yn

cn

Yk

FFT IFFT
N N

FFT* Ck
*

N

Fig. 2. Implementation of the direct correlation over the secondary code
period (Eqs. (5) and (6)). See details in Section II-C, and the timing diagram
in Fig. 14.

sampling frequency must be 26.2144 MHz (524 288 / 20 ms).

Otherwise, if another sampling frequency is considered, zero-

padding must be used, and the equivalent of two code periods

are needed (to keep the periodicity of the code and avoid losses

[30], [31]), and in this case the FFT length would be 1 048 576.

In any cases, it is not possible to implement such FFT

directly since the required length is too large. Indeed, the

maximum length currently available with the Altera FFT

core is 262 144 with the variable streaming data flow (which

consumes a tremendous amount of resources) and 65 536 with

the streaming and burst data flows [26]; the maximum length

is 65 536 with the Xilinx FFT core [27]; 16 384 with the

Lattice FFT core [28]; and 8192 with the Microsemi FFT

core [29]. Nevertheless, the processing time of the theoretical

implementation of the direct correlation is given in Table I,

without and with zero-padding. In the next section, we will

consider the computation of the circular correlation by com-

bining the results of smaller circular correlations, which is

more practical for hardware implementations. The processing

time and memory usage of all the implementations are given

in Table I.

III. CORRELATION OVER THE PRIMARY CODE PERIOD AND

COMBINATIONS

Instead of computing the circular correlation over one entire

period of the secondary code, it is possible to perform a

circular correlation over one period of the primary code,

repeat this for multiple consecutive periods, and then combine

the results according to the chips of the secondary code, as

proposed in [12]. Therefore the output y can be computed

by portions equivalent to the period of the primary code. For

example, considering that the secondary code has four chips

(example that we will use along this paper for the illustrations),

the four portions of the output can be obtained as

y =

y0

y1

y2

y3

=

s0PTx0 + s1PTx1 + s2PTx2 + s3PTx3

s3PTx0 + s0PTx1 + s1PTx2 + s2PTx3

s2PTx0 + s3PTx1 + s0PTx2 + s1PTx3

s1PTx0 + s2PTx1 + s3PTx2 + s0PTx3

,

(7)

where the yi are the different portions of the output containing

NP samples, PT is a Toeplitz matrix of size NP ×2NP where

the first row is the primary code pT padded with NP zeros, and

the xi are built from two consecutive periods of the incoming

code, i.e. xi =
[

xi×NP
xi×NP+1 · · · xi×NP+2NP−1

]T
,

they contain thus 2NP samples (see [13, Chap. 6] for more

details about how to obtain this equation). Note that (7) is not

4

an approximation of (5), the output y is exactly the same in

both cases. Only the way to compute y is different.

The Toeplitz matrix PT can be embedded into a circulant

matrix of size 2NP ×2NP by adding NP rows [25], therefore

the product between PT and a vector of 2NP points can

be computed as a circular correlation using three FFTs of

length 2NP , where the second half of the output is discarded.

If the length of the FFTs has a constraint (such as to be a

power of two), zeros can be added to the local and incoming

sequences to achieve the desired length. Since we focus on

FPGA implementations, we consider this constraint, and thus

for the acquisition of the L5, E5a and E5b signals, the length

of the FFT will be NFFT = 2NP +NZ = 65 536 (since the

minimum for 2NP is 40 920). This value for the FFT length

can be used for sampling frequencies up to 32.768 MHz.

Note that there are methods to optimize this double length

circular correlation for FPGA implementations [31], [32], but

we do not consider them in the following discussions since

this circular correlation is present in all the implementations

discussed.

Coming back to (7), the multiplication by the secondary

code chips can be done at different stages. If the different

combinations according to the secondary code delay are per-

formed before the FFT-based correlation, (7) becomes

y0

y1

y2

y3

=

PT 0 0 0

0 PT 0 0

0 0 PT 0

0 0 0 PT

s0 s1 s2 s3
s3 s0 s1 s2
s2 s3 s0 s1
s1 s2 s3 s0

x0

x1

x2

x3

=

PT 0 0 0

0 PT 0 0

0 0 PT 0

0 0 0 PT

a0
a1
a2
a3

(8)

=

PTa0
PTa1
PTa2
PTa3

,

where aj =
∑NS−1

i=0 s((i−j))xi, the double parenthesis mean-

ing a modulo-NS operation. Since the secondary code is re-

moved before the FFTs, we will talk about pre-FFT secondary

code removal. If the different combinations are performed after

the FFT-based correlation, (7) becomes

y0

y1

y2

y3

=

s0 s1 s2 s3
s3 s0 s1 s2
s2 s3 s0 s1
s1 s2 s3 s0

PTx0

PTx1

PTx2

PTx3

=

s0 s1 s2 s3
s3 s0 s1 s2
s2 s3 s0 s1
s1 s2 s3 s0

r0
r1
r2
r3

,

(9)

where ri = PTxi. Since the secondary code is removed

after the FFTs, we will talk about post-FFT secondary code

removal. The notation ai and ri are used to facilitate the link

between the equations and the figures. Note that ri has a

clear meaning, since we can write (assuming the Doppler is

xi,n Ai,k

pZ,n

Yi,k

FFT

FFT* PZ,k
*

NFFT

NFFT

sn

ai,n

Σ
2NP

NS yi,n

IFFT
NFFT

Fig. 3. Implementation of the pre-FFT secondary code removal (Eq. (8)) com-
puting each combination of the input sequentially. See details in Section III-A,
and the timing diagram in Fig. 15.

correctly removed)

ri = si−∆ rp + ηi, (10)

where ∆ is the unknown delay of the incoming secondary

code, rp is the autocorrelation of the primary code, and ηi is

the noise.

In both equations (8) and (9), there are NS FFT-based

correlations over at least 2NP points. For the combinations,

(8) uses vectors of 2NP points, whereas (9) uses vectors of NP

points. Thus, (9) requires slightly less operations than (8). One

can check that these two equations require more operations

than the direct correlation of (5).

In the next subsections, we will study the FPGA implemen-

tation of both equations, testing the secondary code delays

sequentially or in parallel, and using or not memory to save

temporary results. For the evaluation of the processing time,

we will consider a streaming data flow, i.e. an FFT that can

process the data in a continuous way.

A. Implementation of the pre-FFT secondary code removal in

a sequential way

In (8), there are NS correlations between the local primary

code p and the combinations of the different periods of the in-

coming signal (a0, a1, ...). The corresponding implementation

computing each combination sequentially is shown in Fig. 3.

The accumulator used before the FFT is implemented with an

adder and a memory having 2NP addresses, to accumulate

over NS samples (one sample of each period), as shown

in Figs. 12 and 13. The processing starts by accessing all

the portions of the input (x0, x1, ...), and when the last

one is accessed, the first combination a0 is available and its

correlation with the local code p is computed to obtain y0.

Then, x0, x1, ... can be accessed again immediately to compute

the second combination, and so on and so forth, until the

NS combinations have been tested. The processing time is

approximately 2NS times higher than the one of the direct

correlation implementation.

With this implementation, the memory needed is twice

2NP (B0 + ⌈log2 NS⌉) bits for the accumulation because the

signal is complex, where B0 denotes the number of bits used

to quantize xi.

B. Implementation of the pre-FFT secondary code removal in

a parallel way

It is also possible to compute the different combinations (a0,

a1, ...) in parallel using NS accumulators, as shown in Fig. 4.

5

xi,n Ai,k

pZ,n

Yi,k

FFT IFFT

FFT* PZ,k
*

NFFT

NFFT NFFT

yi,n

sn

a0,n

Σ
2NP

NS

Σ
2NP

NS a1,n

Σ
2NP

NS

sn–1 ···

sn–(N –1) S

···

aN –1,n S

ai,n

Fig. 4. Implementation of the pre-FFT secondary code removal (Eq. (8)) com-
puting each combination of the input in parallel. See details in Section III-B,
and the timing diagram in Fig. 16.

In this case, the processing also starts by accessing x0, x1, ...,

and when the last one is accessed, a0, a1, ... are available in the

accumulators memory. Then, each ai is read successively and

the correlation with the local code p is computed to obtain yi.

Then, for the next data stream, the portions of the input can be

accessed again only when the last combination is read, which

implies that the processing time is divided by a factor lower

than NS compared to the previous sequential implementation.

With this implementation, the memory requirements are

higher since 2NPNS (B0 + ⌈log2 NS⌉) bits need to be stored

for the accumulation.

These two pre-FFT implementations are the extreme cases,

where either only one combination is computed at a time, or

all the combinations are computed simultaneously. However,

it is also possible to test only several combinations, using one

accumulator per combination. For example, the timing diagram

considering two accumulators is given in Fig. 17.

C. Implementation of the post-FFT secondary code removal

with a memory

Looking at (9), it can be seen that the correlation between

the local primary code p and each portion of the incoming

code (x0, x1, ...) needs to be performed only once. Only

the combinations of the different portions according to the

secondary code delays differs. However, this requires to store

the correlation portions (r0, r1, ...). The corresponding imple-

mentation using a memory to store r0, r1, ..., and computing

y0, y1, ... sequentially is shown in Fig. 5.

The processing starts by accessing x0, x1, ..., computing

their correlation with the local code p, and storing the results

into the memory. Then, the memory is read and a combi-

nation is tested, then the memory is read again and another

combination is tested, and so on and so forth. The process

is then repeated for the next data stream, as soon as it is

possible to write again into the memory without overwriting

data not yet read. With this implementation, the combinations

are performed over vectors of NP instead of 2NP for the pre-

FFT implementations, which implies that the processing time

is approximately halved compared to the pre-FFT sequential

implementation.

xi,n Xi,k ri,n

pZ,n

Ri,k

FFT IFFT

FFT* PZ,k
*

NFFT

mn

sn

yi,n

Σ
NP

NS

NFFT NFFT

Memory

NS × NP

Fig. 5. Implementation of the post-FFT secondary code removal (Eq. (9))
using a memory to store correlation portions and computing each combination
of the output sequentially. See details in Section III-C, and the timing diagram
in Fig. 18.

xi,n Xi,k ri,n

pZ,n

Ri,k

FFT IFFT

FFT* PZ,k
*

NFFT

sn

yi,n

Σ
NP

NS

NFFT NFFT

Fig. 6. Implementation of the post-FFT secondary code removal (Eq. (9))
computing each combination of the output sequentially. See details in Sec-
tion III-D, and the timing diagram in Fig. 19.

With this implementation, the memory needed is twice

NPNS × B1 bits to store the FFT outputs and twice

NP (B1 + ⌈log2 NS⌉) bits for the accumulation, where B1

denotes the number of bits used to quantize the outputs of

the IFFT (ri).

D. Implementation of the post-FFT secondary code removal

in a sequential way

It is also possible to implement (9) without storing r0,

r1, ..., but in this case they must be recomputed several

times. The corresponding implementation computing y0, y1,

... sequentially is shown in Fig. 6.

The processing starts by accessing x0, x1, ..., computing

their correlation with the local code p, and combining the

results according to the secondary code chips. The process is

then repeated to test the next combinations. Then, the process

is repeated for the next data streams. With this implementation,

since the zero-padding is present at the input of the FFTs and

for the combinations, the processing time is higher than with

the pre-FFT sequential implementation and with the post-FFT

implementation with a memory.

E. Implementation of the post-FFT secondary code removal

in a parallel way

As previously, it is also possible to compute each portion

of the output in parallel using NS accumulators, as shown

in Fig. 7. The processing is similar to the previous post-FFT

implementation, except that the FFTs are computed only once,

since each accumulator accumulates when a new correlation

portion is available, and that there are NS output available

simultaneously (which will require a slightly different de-

tection process after that). Contrary to the pre-FFT parallel

implementation, there is no need to stop the stream between

different data streams, therefore the processing time is lower.

Note also that the processing time is divided by approximately

NS compared to the post-FFT sequential implementation.

6

xi,n Xi,k ri,n

pZ,n

Ri,k

FFT IFFT

FFT* PZ,k
*

NFFT

sn

y0,n

Σ
NP

NS

NFFT NFFT

Σ
NP

NS y1,n

Σ
NP

NS

sn–1 ···

sn–(N –1) S

···

yN –1,n S

Fig. 7. Implementation of the post-FFT secondary code removal (Eq. (9))
computing each combination of the output in parallel. See details in Sec-
tion III-E, and the timing diagram in Fig. 20.

F. Implementation of the post-FFT secondary code removal

using circular correlation

In the previous implementations, the output is computed

by consecutive portions corresponding to one primary code

period. However it is also possible to compute the output in a

different order. Indeed, the lth samples of the outputs y0, y1,

..., can be obtained from the circular correlation between the

secondary code and the lth samples of the correlation portions

(r0, r1, ...). Starting from (9), we can write

y0,l
y1,l
y2,l
y3,l

=

s0 s1 s2 s3
s3 s0 s1 s2
s2 s3 s0 s1
s1 s2 s3 s0

r0,l
r1,l
r2,l
r3,l

. (11)

This circular correlation can be computed traditionally in the

time domain, or using FFTs. However, this means that we

need to have access to the different correlations portions at

the same time, therefore, they should be stored as in Section

III-C.

1) Implementation of the secondary code circular corre-

lation in a sequential way: If the different combinations in

(11) are computed in a sequential way, the accumulation can

be done with a simple adder, without using a memory. The

corresponding implementation is shown in Fig. 8.

The processing until the storage of the correlation portions

is similar to the post-FFT implementation with a memory.

After, what is different is the reading order of the memory,

because now we read the first sample of each correlation

portion (r0,0, r1,0, ...), multiply them with the secondary code

and accumulate the result. These samples are then accessed

again to test another delay of the secondary code, and so on

and so forth. Thus they will be accessed NS times. Then, we

read the second sample of each portion (r0,1, r1,1, ...) and the

same process is performed, and this is repeated NP times for

the NP delays of the primary code.

Because of the different writing and reading order of the

memory, there is an additional latency introduced compared

to the post-FFT implementation with a memory (this can be

xi,n Xi,k ri,n

pZ,n

Ri,k

FFT IFFT

FFT* PZ,k
*

NFFT

mn

sn

yi,n

Σ
NS

NFFT NFFT

Memory

NS × NP

Fig. 8. Implementation of the post-FFT secondary code removal using circular
correlation (Eq. (11)) computing each sample of the output sequentially
(the writing and reading orders of the memory are different). See details
in Section III-F1, and the timing diagram in Fig. 21.

xi,n Xi,k ri,n

pZ,n

Ri,k

FFT IFFT

FFT* PZ,k
*

NFFT

mn

NFFT NFFT

sn

y0,n

Σ
NS

Σ
NS y1,n

Σ
NS

sn–1 ···

sn–(N –1) S

···

yN –1,n S

Memory

NS × NP

Fig. 9. Implementation of the post-FFT secondary code removal using circular
correlation (Eq. (11)) computing each sample of the output in parallel (the
writing and reading orders of the memory are different). See details in
Section III-F2, and the timing diagram in Fig. 22.

clearly seen comparing Figs. 18 and 21), and therefore the

processing time is slightly longer.

With this implementation, the memory needed is twice

NPNS ×B1 bits to store the FFT outputs.

2) Implementation of the secondary code circular corre-

lation in a parallel way: It is also possible to compute

the NS samples of the output in (11) in parallel using NS

accumulators, as shown in Fig. 9.

The processing until the storage of the correlation portions

is similar to the previous implementation. The only difference

is that we need to read only once the NS samples r0,l, r1,l, ...,
to test the NS combinations. Therefore, compared to the

previous implementation, the processing time is reduced a lot

(up to NS/3) in exchange of only NS logic accumulators.

However, compared to the post-FFT parallel implementation,

the processing time is slightly higher because of the different

order of writing and reading in the memory that introduces a

latency (this can be seen comparing Figs. 20 and 22).

3) Implementation of the secondary code circular cor-

relation using FFTs: As indicated previously, since (11)

corresponds to a circular correlation, the operation can be

performed using FFTs. The corresponding implementation

is shown in Fig. 10, where NFFT,S denotes the length of

these small FFTs. Following our constraints, these FFTs need

sequences that have a length that is a power of two. None

of the secondary code currently available has such a length

(except on the data channel of the E5b signal). Therefore,

zero-padding must be used, and the length of the sequences

must at least double (to keep the periodicity and avoid losses).

For example, with the GPS L5 pilot secondary code that has

7

xi,n Xi,k ri,n

pZ,n

Ri,k

FFT IFFT

FFT* PZ,k
*

NFFT

mn

sn

yi,n

NFFT NFFT

Memory

NS × NP

FFT

FFT

FFT

NFFT,S

NFFT,S NFFT,S

Sk

Fig. 10. Implementation of the post-FFT secondary code removal using
circular correlation (Eq. (11)) computing each sample of the output using
an FFT (the writing and reading orders of the memory are different). See
details in Section III-F3, and the timing diagram in Fig. 23.

20 bits, the FFTs length will be 64 bits.

The process is similar to the previous implementation, ex-

cept that more samples are needed to compute the circular cor-

relation, and therefore the processing time is longer. Moreover,

the resources required by an FFT of 64 points in terms of logic,

memory and multipliers are not negligible, therefore such FFT

will likely require more resources than the implementation

of NS accumulators (except maybe if NS = 100, as with

the E5a and E5b signals). Consequently, the use of the FFT

for the circular correlation over the secondary code is not

recommended.

G. Summary

Table I provides a summary of the memory needed and of

the processing time for each considered implementation. Let’s

first have a look on the sequential implementations. Comparing

the pre-FFT and post-FFT sequential implementations (Figs. 3

and 6), the second one requires a higher processing time

due to the zero-padding (this extra time can be significant

if NZ is large), and its required memory is multiplied by
B1+⌈log

2
NS⌉

2(B0+⌈log
2
NS⌉) . Usually, B0 is rather small (since the incom-

ing signal is typically quantized with 2 bits and the local

carrier replica as well [33]), and B1 is not small because

the FFT requires a certain number of bits to provide accurate

results (typically 16 bits, from experience). Thus, the memory

requirements for both implementations can be relatively close.

Therefore, the pre-FFT sequential implementation seems more

interesting than the post-FFT sequential implementation.

For the post-FFT sequential implementation using a mem-

ory (Fig. 5), its processing time is roughly half the one of

the post-FFT sequential implementation (Fig. 6), whereas the

memory is multiplied by a factor close to NS . Note however

that the FFTs require a significant amount of memory, and

that the incoming signal is also stored (see Fig. 1), therefore

the total amount of memory needed for the acquisition is

multiplied by a factor less than NS . For the post-FFT im-

plementation using a memory with a sequential secondary

code circular correlation (Fig. 8), there is a slight increase

in the processing time and a slight decrease in the memory

requirements. Thus, the most suitable of these three post-FFT

sequential implementations will depend on the context and

design constraints.

Let’s now compare the parallel implementations. Comparing

the pre-FFT and post-FFT parallel implementations (Figs. 4

and 7), the second one has a lower processing time (by a

factor at most two), whereas the memory is multiplied again

by a factor
B1+⌈log

2
NS⌉

2(B0+⌈log
2
NS⌉) . Therefore, there is probably an

advantage for the post-FFT implementation, but the context

and the design should be taken into account to make a precise

evaluation.

For the post-FFT implementation using a memory with

a parallel secondary code circular correlation (Fig. 9), its

processing time is higher than the one of the post-FFT parallel

implementation (Fig. 7) by a factor less than 3
2 , whereas

its memory is multiplied by a factor B1

B1+⌈log
2
NS⌉ , which is

smaller than one. Therefore, it is again difficult to decide

between these two implementations without more information

about the context and the design.

For the post-FFT implementation using a memory with

an FFT-based secondary code circular correlation (Fig. 10),

the processing time is longer than the one of the post-FFT

implementation using a memory with a parallel secondary

code circular correlation (Fig. 9) by a factor of at least 4
3 , and

the memory requirement is slightly higher due to the small

FFTs. Therefore, this implementation is less efficient and not

interesting.

To have a more concrete evaluation, let’s consider two

examples, one corresponding to a ”low-cost” receiver where

the incoming signal is quantized with few bits and sampled

with a low frequency, and one corresponding to a ”high-end”

receiver using more bits for the quantization and a higher

sampling frequency. The parameters selected considering the

GPS L5 pilot signal are shown in Table II, and the results are

shown in Tables III and IV.

For the evaluation of the memory required by the FFTs,

we have considered the FFT core provided by Altera, and

such FFT of 65 536 points using a streaming data flow and

16 bits of resolution implemented on an Altera Stratix V

FPGA requires about 12.5 Mbit of memory [32]. The memory

required by an Altera FFT roughly doubles when the length is

doubled [34]; therefore we can assume that if it would exist,

an FFT of 1 048 576 points would require approximately 200

Mbit. Note that nonetheless these amount of memory could be

significatively reduced (by about 75 %) by using an alternative

implementation of the circular correlation [32], although not

reported in Tables III and IV.

Note also that to store the incoming signal (see Fig. 1), an

additional memory is needed, for example of 2NPNS ×B =
1636 800 bits if B = 2 bits are used for the quantization.

In Tables III and IV, we clearly see that the pre-FFT

and post-FFT sequential implementations require much less

memory than the other implementations, but they have a

much longer processing time. It can also be seen that when

there is no zero-padding (high-end receiver case), the post-

FFT implementation has the same processing time as the pre-

FFT one but uses less memory. Still considering a sequential

implementation, the use of a memory to store the correlation

results increases a lot the memory for a small decrease of

the processing time. Finally, the parallel implementations use

a lot of memory but decrease a lot the processing time, and

the post-FFT parallel implementations are better than the pre-

FFT parallel implementation since the processing time and the

memory can both be lower. The parallel FFT implementations

have a processing time close to the one of the theoretical direct

correlation, or even better for the high-end receiver (because

8

TABLE I
SUMMARY OF THE MEMORY REQUIREMENT AND PROCESSING TIME FOR THE DIFFERENT IMPLEMENTATIONS. *SCCC STANDS FOR SECONDARY CODE

CIRCULAR CORRELATION.

Secondary code

removal
Implementation

Memory for storage

and combinations (bit)
Processing time (clock cycle)

Theoretical direct correlation (Figs. 2 & 14) - N (K + 2) + 2LN or N (2K + 4) +NZ,D (K + 2) + 2LN

Pre-FFT
Sequential (Figs. 3 & 15) 4NP (B0 + ⌈log2 NS⌉) NP

(

2KN2

S
+ 3

)

+ 2NZ + 2L

Parallel (Figs. 4 & 16) 4NPNS (B0 + ⌈log2 NS⌉) NP [4K (NS − 1) + 5] +NZ [K (NS − 1) + 2] + 2L

Post-FFT

Sequential (Figs. 6 & 19) 2NP (B1 + ⌈log2 NS⌉) NP

(

2KN2

S
+ 3

)

+NZ

(

KN2

S
+ 1

)

+ 2L

Parallel (Figs. 7 & 20) 2NPNS (B1 + ⌈log2 NS⌉) NP (2KNS + 3) +NZ (KNS + 1) + 2L

Memory + Sequential (Figs. 5 & 18) 2NP [(NS + 1)B1 + ⌈log2 NS⌉] NP

[

K
(

N2

S
− 1

)

+NS + 4
]

+NZ [K (NS − 1) + 2] + 2L

Memory + Sequential SCCC* (Figs. 8 & 21) 2NPNSB1 NP

[

K
(

N2

S
+ 2NS − 2

)

+ 4
]

+NZ [K (NS − 1) + 2] + 2L

Memory + Parallel SCCC (Figs. 9 & 22) 2NPNSB1 NP [K(3NS − 2) + 4] +NZ [K (NS − 1) + 2] + 2L

Memory + FFT SCCC (Figs. 10 & 23) 2NPNSB1

NP

[

K
(

4NS +NZ,S − 2
)

+ 4
]

+NZ [K (NS − 1) + 2]

+ 2L+ 2LS +NS

TABLE II
PARAMETERS SELECTED FOR A ”LOW-COST” AND A ”HIGH-END”

RECEIVER.

Parameters Low-cost High-end

B0 4 12

fS 20.48 MHz 32.768 MHz

NP 20 480 32 768

NFFT 65 536 65 536

NZ = NFFT − 2NP 24 576 0

L 0 0

NS 20 20

NFFT,S 64 64

NZ,S = NFFT,S − 2NS 24 24

B1 16 16

K 100 100

LS 0 0

N 409 600 655 360

NZ,D 229 376 786 432

LN 0 0

the FFT for the direct correlation uses 221 points due to the

chosen sampling frequency), whereas the direct correlation

requires a much higher amount of memory for the very large

FFTs (and a higher amount of logic, not mentioned in the

tables). In conclusion, we can say that with both receivers,

the most suitable implementations are post-FFT parallel im-

plementations. And comparing both receivers, the high-end

one uses more memory and the processing time is longer due

to the higher quantization and sampling frequency. Of course,

the sequential and parallel implementations considered here

are the two extremes; it is also possible to test only few delays

for the secondary code in parallel, which would balance the

memory requirements and the processing time.

H. Use of dual read access memory

In the previous discussions, it was assumed that only one

sample could be read from a memory at each clock cycle.

However, the memories inside FPGAs usually propose a dual

read access, and thus it is possible to read simultaneously

two samples stored at different addresses. This can be used to

improve the processing time of the implementations discussed

previously, but not all of them can benefit from it, as discussed

next.

For Fig. 3, if we can access two samples of xi,n at the same

time, the processing time can be halved since the bottleneck

is in the access of the input signal. However, since xi,n is

after the mixer with the local carrier, it would require two

local carrier generators, therefore it is not so straightforward

to implement. For Fig. 4, the processing time can be reduced

only a little bit, at most by a factor 4/3 because the bottleneck

is on the correlation computation, with the same complexity

as before. For Figs. 5 and 8, the processing time can be almost

halved since the bottleneck is mainly related to the memory

reading, and it is simple to implement since it is related

to the memory storing the correlation results and does not

complicate the access to xi,n. Fig. 9, the processing time can

be reduced only a little bit, at most by a factor 6/5 because the

bottleneck is mostly on the correlation computation, with the

same simplicity as previously. For the other implementations

(Figs. 6, 7 and 10), having a double read access cannot be

exploited and thus the processing time will stay the same.

IV. NEW METHOD TO REDUCE THE PROCESSING TIME

In this section, we describe a method that reduces the

theoretical number of operations related to the secondary code

correlation by about 50 %, and discuss its application for a

hardware implementation. Note that this method is not an

approximation, i.e. the output will be exactly the same as

previously, and thus the performance in terms of sensitivity

is exactly the same.

The main idea is to rewrite the local secondary code as

s = (s− 1) + 1

= s′ + 1,
(12)

where 1 is a vector composed of ones only. In this case,

the elements of s′ can have as value 0 or −2. Note that the

local secondary code is not modified, it is simply expressed as

9

TABLE III
NUMERICAL APPLICATION WITH THE L5 PILOT SIGNAL FOR A ”LOW-COST” RECEIVER. * THESE VALUES ARE FOR UNOPTIMIZED FFT

IMPLEMENTATIONS AND COULD BE REDUCED BY ABOUT 75 % [32], SEE SECTION III-G FOR MORE DETAILS.

Secondary code

removal
Implementation

Memory for

FFTs* (Mbit)

Memory for storage

and combinations (bit)
Processing time (clock cycle)

Theoretical direct correlation (Figs. 2 & 14) 200 - 4080NP + 102NZ,D =106 954 752

Pre-FFT
Sequential (Figs. 3 & 15) 37.5 36NP = 737 280 80 003NP + 2NZ = 1638 510 592

Parallel (Figs. 4 & 16) 37.5 720NP = 14 745 600 7605NP + 1902NZ = 202 493 952

Post-FFT

Sequential (Figs. 6 & 19) 37.5 42NP = 860 160 80 003NP + 40 001NZ = 2621 526 016

Parallel (Figs. 7 & 20) 37.5 840NP = 17 203 200 4003NP + 2001NZ = 131 158 016

Memory + Sequential (Figs. 5 & 18) 37.5 682NP = 13 967 360 39 924NP + 1902NZ = 864 387 072

Memory + Sequential SCCC* (Figs. 8 & 21) 37.5 640NP = 13 107 200 43 804NP + 1902NZ = 943 849 472

Memory + Parallel SCCC (Figs. 9 & 22) 37.5 640NP = 13 107 200 5804NP + 1902NZ = 165 609 472

Memory + FFT SCCC (Figs. 10 & 23) 37.5 640NP = 13 107 200 10 204NP + 1902NZ = 255 721 492

TABLE IV
NUMERICAL APPLICATION WITH THE L5 PILOT SIGNAL FOR ”HIGH-END” RECEIVER. * THESE VALUES ARE FOR UNOPTIMIZED FFT IMPLEMENTATIONS

AND COULD BE REDUCED BY ABOUT 75 % [32], SEE SECTION III-G FOR MORE DETAILS.

Secondary code

removal
Implementation

Memory for

FFTs* (Mbit)

Memory for storage

and combinations (bit)
Processing time (clock cycle)

Theoretical direct correlation (Figs. 2 & 14) 400 - 4080NP + 102NZ,D =213 909 504

Pre-FFT
Sequential (Figs. 3 & 15) 37.5 68NP = 2228 224 80 003NP + 2NZ = 2621 538 304

Parallel (Figs. 4 & 16) 37.5 1360NP = 44 564 480 7605NP + 1902NZ = 249 200 640

Post-FFT

Sequential (Figs. 6 & 19) 37.5 42NP = 1376 256 80 003NP + 40 001NZ = 2621 538 304

Parallel (Figs. 7 & 20) 37.5 840NP = 27 525 120 4003NP + 2001NZ = 131 170 304

Memory + Sequential (Figs. 5 & 18) 37.5 682NP = 22 347 776 39 924NP + 1902NZ = 1308 229 632

Memory + Sequential SCCC* (Figs. 8 & 21) 37.5 640NP = 20 971 520 43 804NP + 1902NZ = 1435 369 472

Memory + Parallel SCCC (Figs. 9 & 22) 37.5 640NP = 20 971 520 5804NP + 1902NZ = 190 185 472

Memory + FFT SCCC (Figs. 10 & 23) 37.5 640NP = 20 971 520 10 204NP + 1902NZ = 334 364 692

the sum of two codes, and this concerns only the local code,

not the incoming one. Thus, (8) and (9) can respectively be

rewritten as

y0

y1

y2

y3

=

PT 0 0 0

0 PT 0 0

0 0 PT 0

0 0 0 PT

s′0 + 1 s′1 + 1 s′2 + 1 s′3 + 1
s′3 + 1 s′0 + 1 s′1 + 1 s′2 + 1
s′2 + 1 s′3 + 1 s′0 + 1 s′1 + 1
s′1 + 1 s′2 + 1 s′3 + 1 s′0 + 1

x0

x1

x2

x3

=

PT 0 0 0

0 PT 0 0

0 0 PT 0

0 0 0 PT

a′0
a′1
a′2
a′3

+

xΣ

xΣ

xΣ

xΣ

,

(13)

and

y0

y1

y2

y3

=

s′0 + 1 s′1 + 1 s′2 + 1 s′3 + 1
s′3 + 1 s′0 + 1 s′1 + 1 s′2 + 1
s′2 + 1 s′3 + 1 s′0 + 1 s′1 + 1
s′1 + 1 s′2 + 1 s′3 + 1 s′0 + 1

r0
r1
r2
r3

=

s′0 s′1 s′2 s′3
s′3 s′0 s′1 s′2
s′2 s′3 s′0 s′1
s′1 s′2 s′3 s′0

r0
r1
r2
r3

+

rΣ

rΣ

rΣ

rΣ

,

(14)

with a′j =
∑NS−1

i=0 s′((i−j))xi, xΣ =
∑NS−1

i=0 xi and rΣ =

∑NS−1
i=0 ri. Note that (13) and (14) are not approximations of

(8) and (9), the output y is exactly the same in all the cases.

Only the way to compute y is different. Since xΣ and rΣ

are the sum of signals still containing a secondary code, one

may think that they contain mostly noise and thus that they

are not useful and could be removed from the computation,

but this would be a wrong idea. Even if they indeed contain

mostly noise, these are simply intermediate results, and the

noises present will be subtracted to the same noises when

adding xΣ and a′i or rΣ and the combinations of ri, and at

the end the output y will have the same noise component as

with the traditional method. Removing xΣ or rΣ from (13)

and (14) would change the operation done, add more noise,

and therefore impact the sensitivity. Therefore, (13) and (14)

should be applied as it is.

In (8), the computation of one combination requires

(NS − 1) 2NP additions, thus the computation of the NS com-

binations requires NS (NS − 1) 2NP =
(

N2
S −NS

)

2NP ad-

ditions. In (13), the computation of xΣ requires (NS − 1) 2NP

additions, and then for each output yk, the computation

of one combination a′i requires (NS/2− 1) 2NP additions

in average (i.e. if half of the samples of s′ are ze-

ros), and the addition of a′i and xΣ requires 1 × 2NP

additions. Thus, the total number of operations for the

NS outputs yk is (NS − 1 +NS (NS/2− 1 + 1)) 2NP =
(

N2
S/2 +NS − 1

)

2NP . Table V shows the number of addi-

tions of both equations considering 50 % of zeros in s′ and for

10

TABLE V
NUMBER OF ADDITIONS OF VECTOR OF 2NP POINTS FOR (8) AND (13), IN

THE WORST CASE (50 % OF ZEROS IN s
′), AND IN THE GNSS CASE (60 %

OF ZEROS IN s
′ FOR L5 AND E1 CODES, 53.44 % OF ZEROS IN s

′ IN

AVERAGE FOR E5 CODES).

NS for (8)
worst case GNSS case

for (13) reduction for (13) reduction

4 12 11 8.3 % - -

20 380 219 42.4 % 179 52.9 %

25 600 336.5 43.9 % 274 54.3 %

100 9900 5099 48.5 % 4755 52.0 %

Ai,k

xΣ,n

xi,n

pZ,n

Yi,k

FFT

FFT* PZ,k
*

NFFT

NFFT

sn

ai,n

Σ
2NP

NS yi,n

IFFT
NFFT

Σ
2NP

NS

' ai,n

Fig. 11. Implementation of the pre-FFT secondary code removal using the
proposed technique (Eq. (13)) computing each combination of the input
sequentially. See details in Section IV, and the timing diagram in Fig. 24.

the actual number of zeros with the GNSS secondary codes.

It can be seen that when NS increases, the reduction of the

number of operations approaches 50 % in the worst case, and

it is slightly above 50 % for the GNSS signals. The same

reduction is obtained for the post-FFT equation. Therefore,

since this method reduces the number of operations, it can be

useful for digital signal processor based receivers for example.

Now let’s see the applicability for FPGA based receivers.

For this, we will focus on the pre-FFT sequential implemen-

tation and (13). Previously, with (8), for each portion of the

output (y0, y1, ...), it was necessary to combine NS portions

of the incoming code (x0, x1, ...) before performing one FFT-

based correlation, as already shown in Fig. 15. Now, with (13),

for each portion of the output (y0, y1, ...), it is necessary to

combine only about half of the portions of the incoming code

(x0, x1, ...) since in average half of the samples of s′n are zero.

Therefore, if a portion of the incoming code is multiplied by

0, we simply do not read it from the memory, and therefore

the reading of the memory is about twice faster. However,

we also need to add a special combination of the incoming

code (xΣ, the sum of all the portions). But since this special

combination is identical for all the portions of the output, we

can compute it only once and store it into another memory.

This memory will then be read when we will want to add

xΣ and a′i. Therefore accessing this second memory does not

impact the processing time, because it is read simultaneously

to the last xi used to compute a′i, as shown in Fig. 24. The

corresponding implementation is shown in Fig. 11.

For example, if we consider that s =
[

−1 1 1 −1
]T

,

then s′ =
[

−2 0 0 −2
]T

, and the combinations of the

portions of the incoming code become

a′0
a′1
a′2
a′3

=

−2 0 0 −2
−2 −2 0 0
0 −2 −2 0
0 0 −2 −2

x0

x1

x2

x3

. (15)

Therefore, to compute each portion of the output (y0, y1,

...), it is necessary to read only two portions of the incoming

code (x0, x1, ...) instead of four, as illustrated in Fig. 24. The

processing starts by accessing all the portions of the input (x0,

x1, ...) and summing them to compute and store xΣ. Then, it

works as the pre-FFT sequential implementation except that

only the portions of the input that are not multiplied by zero

are accessed, and that xΣ will be added when each a′i will be

available.

With this implementation, the memory needed is twice

4NP (B0 + ⌈log2 NS⌉) bits for the accumulation, as for the

pre-FFT parallel implementation using two accumulators.

However, looking at the processing time of both implemen-

tations (Figs. 17 and 24), the one using the new method can

have a lower processing time because it is possible than more

than half of the sample of s′ are zeros, and because the zero-

padding has less impact.

For example, the L5 pilot secondary code contains 12

ones and 8 minus ones. Therefore, the code s′ will contain

12 zeros, i.e. 60 % of the total length. Making the same

numerical application as in Section III-G with the ”low-

cost” receiver, the memory needed for both implementations

is 72NP = 1474 560 bits, and the processing time is

36 003NP + 2NZ = 737 390 592 clock cycles for the pre-

FFT sequential implementation using the new method, and

40 005NP +1002NZ = 843 927 552 clock cycles for the pre-

FFT parallel implementation using two accumulators, which

means a reduction of about 12.6 %. Therefore, the use of

the proposed technique may be interesting for a hardware

implementation. Note that the use of double read access can

be exploited to approximately halve the processing time.

Of course, the choice of subtracting or adding one to the

secondary code in (12) depends on the code that we have.

The goal is to have as many zeros as possible in s′. Note that

there are also some variants of this method providing better

performance but not applicable to every code [35].

V. CONCLUSION

In this paper, we have performed a comparison of the

possible hardware implementations of the parallel code search

acquisition for GNSS signals having a secondary code. Since

applying directly the FFT over the entire tiered code is not

possible or at least extremely consuming in hardware, a better

solution already suggested in the literature is to perform

FFT-based circular correlations over the primary code and

to combine the results. Focusing on this solution, we have

compared different hardware implementations, including the

cases when the combinations are performed before or after the

FFT-based correlations; when they are performed sequentially

or in parallel, and when the output is provided in different

orders. Moreover, we also analyzed the memory requirements

and the processing time of each implementation.

11

From these comparisons, it has been shown that some

implementations are not interesting (such as the one using

a second FFT-based circular correlation for the secondary

code), since they consume more memory and provide a longer

processing time than other implementations. It has also been

shown that the direct correlation that applies the FFT over

the entire tiered code would not be interesting, because some

proposed parallel implementations provides slightly longer

processing times, but require much less memory.

Generally, the choice of the most suitable implementation

is a compromise between the memory used and the processing

time. However, if the various parameters are specified (such

as the quantization of the signals, the sampling frequency, the

number of coherent or non-coherent accumulation, the number

of frequency bins to test), it will be easy to evaluate both the

memory and the processing time using our results since all the

formulas are provided.

In addition, we also have proposed a new method that

approximately halves the number of operations related to

the secondary code correlation, and slightly reduces the total

processing time (12.6 %) for a hardware implementation. The

idea of this method (which is not an approximation) is to add

or subtract 1 to the binary secondary code to obtain a code

with at least half of zeros to perform the correlation.

APPENDIX A

MEMORY-BASED ACCUMULATOR

Memory of
NP adresses

wAddress

rDatawData

firstPeriod

rAddress
x

x y

y

 Σ
NP

NS 1

0

Fig. 12. Memory-based accumulator, summing NS sequences of NP

samples.

clock

x

firstPeriod

y

0

x0,0 x0,1 x0,2

wAddress

wData

rAddress

rData

Σ1,0 Σ1,1 Σ1,2

1 2

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

x0,0 x0,1 x0,2

x1,0 x1,1 x1,2

x0,0 x0,1 x0,2

Σ1,0 Σ1,1 Σ1,2

Σ1,0 Σ1,1 Σ1,2

Σ2,0 Σ2,1 Σ2,2

x2,0 x2,1 x2,2 x3,0 x3,1 x3,2

Σ2,0 Σ2,1 Σ2,2

Σ2,0 Σ2,1 Σ2,2 Σ3,0 Σ3,1 Σ3,2

x0,0 x0,1 x0,2

0 1 2

x0,0 x0,1 x0,2

0

0

1

0

1

Fig. 13. Timing diagram of Fig. 5, with NP = 3 and NS = 4. The notation
∑

s,p
corresponds to

∑s

k=0
xk,p.

Xk

Ck

Yk

Ck

yn

xn

N

xn

cn

Xk

Yk

yn

LN LN

cn

xn

cn

Xk

Ck

Yk

yn

Xk

Ck

Yk

xn

cn

xn

cn

repeated for each
full correlation

One time latency

N N

Fig. 14. Timing diagram of the implementation of the direct correlation over
the secondary code period (Fig. 2). The colors indicate successive periods,
which may be used for further coherent or non-coherent integration or for
testing other carrier frequencies. The processing time to compute K times the
full correlation is N+LN+N+LN+K×N = NP (KNS + 2NS)+2LN .

APPENDIX B

TIMING DIAGRAM OF THE IMPLEMENTATIONS

REFERENCES

[1] F. van Diggelen, A-GPS: Assisted GPS, GNSS, and SBAS, ser. GNSS
Technology and Applications Series. Artech House, 2009.

[2] A. Broumandan, J. Nielsen, and G. Lachapelle, “Coherent integration
time limit of a mobile receiver for indoor GNSS applications,” GPS

Solutions, vol. 16, no. 2, pp. 157–167, April 2012.

[3] T. Pany, B. Riedl, J. Winkel, T. Worz, R. Schweikert, H. Niedermeier,
S. Lagrasta, G. Risueno, and D. Banos, “Coherent integration time:
the longer, the better,” Inside GNSS, vol. 4, no. 6, pp. 52–61, Novem-
ber/December 2009.

[4] P. Gaggero and D. Borio, “Ultra-stable oscillators: limits of GNSS
coherent integration,” in Proceedings of the 21st International Technical

Meeting of the Satellite Division of The Institute of Navigation (ION

GNSS 2008), Savannah, USA, September 2008, pp. 565–575.

[5] C. Macabiau, L. Ries, F. Bastide, and J.-L. Issler, “GPS L5 receiver im-
plementation issues,” in Proceedings of the 16th International Technical

Meeting of the Satellite Division of The Institute of Navigation (ION

GPS/GNSS 2003), Portland, USA, September 2003, pp. 153–164.

[6] C. Mongrédien, G. Lachapelle, and M. Cannon, “Testing GPS L5
acquisition and tracking algorithms using a hardware simulator,” in
Proceedings of the 19th International Technical Meeting of the Satellite

Division of The Institute of Navigation (ION GNSS 2006), Fort Worth,
USA, September 2006, pp. 2901–2913.

[7] G. Corazza, C. Palestini, R. Pedone, and M. Villanti, “Galileo primary
code acquisition based on multi-hypothesis secondary code ambiguity
elimination,” in Proceedings of the 20th International Technical Meeting

of the Satellite Division of the Institute of Navigation (ION GNSS 2007),
Fort Worth, USA, September 2007, pp. 2459–2465.

[8] D. Borio, “M-sequence and secondary code constraints for GNSS signal
acquisition,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 47, no. 2, pp. 928–945, April 2011.

[9] N. Shivaramaiah, A. Dempster, and C. Rizos, “Exploiting the secondary
codes to improve signal acquisition performance in Galileo receivers,” in
Proceedings of the 21st International Technical Meeting of the Satellite

Division of The Institute of Navigation (ION GNSS 2008), Savannah,
USA, September 2008, pp. 1497–1506.

[10] Y. Tawk, A. Jovanovic, J. Leclère, C. Botteron, and P.-A. Farine, “A new
FFT-based algorithm for secondary code acquisition for Galileo signals,”
in IEEE Vehicular Technology Conference (VTC Fall), San Francisco,
USA, September 2011, pp. 1–6.

[11] C. Hegarty, M. Tran, and A. Van Dierendonck, “Acquisition algorithms
for the GPS L5 signal,” in Proceedings of the 16th International

Technical Meeting of the Satellite Division of The Institute of Navigation

(ION GPS/GNSS 2003), Portland, USA, September 2003, pp. 165–177.

[12] C. Yang, C. Hegarty, and M. Tran, “Acquisition of the GPS L5 signal
using coherent combining of I5 and Q5,” in Proceedings of the 17th

International Technical Meeting of the Satellite Division of The Institute

of Navigation (ION GNSS 2004), Long Beach, USA, September 2004,
pp. 2184–2195.

12

a0,n

pn

A0,k

pZ,n

PZ,k

Yi,k

s0 s1 s2

yi,n

L L2NP

xi,n

Ai,k

sn s3

x0,n x1,n x2,n x3,n

pn

PZ,k

Y0,k

NFFT

NZ

ai,n a0,n

s0 s1 s2s3

a1,n

pn

A1,k

PZ,k

Y1,k

s0 s1s2 s3 s0s1 s2 s3

a2,n a3,n

pn pn

A2,k

PZ,k

Y2,k

A3,k

PZ,k

Y3,k

s0

x0,n x1,n x2,n x3,n x0,n x1,n x2,n x3,n x0,n x1,n x2,n x3,n x0,n x1,n

s1

x2,n x3,n

s3s2

2NPNS 2NPNS L NFFT L NP 2

repeated for each full correlation One time latency

y0,n y1,n y2,n y3,n

Fig. 15. Timing diagram of the implementation of the pre-FFT secondary code removal in a sequential way (Fig. 3) with NS = 4. Grey parts indicate zeros
(NZ samples are padded to each accumulation result before the FFT, thus the FFTs length is NFFT = 2NP +NZ), and hatched parts indicate we do not care
about these samples. The processing time to compute K times the full correlation (i.e. K times NS outputs yi) is K×2NPN2

S
+NZ+L+NFFT +L+NP =

NP

(

2KN2

S
+ 3

)

+ 2NZ + 2L.

A0,k

pZ,n

PZ,k

Yi,k

s0 s1 s2

yi,n

Ai,k

sn s3

x0,n x1,n x2,n x3,n

pn

PZ,k

Y0,k

NFFT

NZ

ai,n a0,n

y0,n

a1,n

pn

A1,k

PZ,k

Y1,k

y1,n

a2,n a3,n

pn pn

A2,k

PZ,k

Y2,k

y2,n

A3,k

PZ,k

Y3,k

y3,n

pn

a0,n a1,n

pn

a2,n a3,n

pn pn

s0 s1 s2 s3

x0,n x1,n x2,n x3,n

A0,k

PZ,k

Y0,k

y0,n

A1,k

PZ,k

Y1,k

y1,n

A2,k

PZ,k

Y2,k

y2,n

A3,k

PZ,k

Y3,k

pn

a0,n

s0 s1 s2

x0,n x1,n x2,nxi,n

LL2NP

2NP NS

NFFT

NP

s3

x3,n

NFFT (NS – 2)

repeated for each full correlation

NFFT LL NFFT

One time latency

Fig. 16. Timing diagram of the implementation of the pre-FFT secondary code removal in a parallel way (Fig. 4) with NS = 4. The processing time to
compute K times the full correlation is K × [2NPNS +NZ +NFFT (NS − 2)] + NFFT + L + NFFT + L + NP = NP [4K (NS − 1) + 5] +
NZ [K (NS − 1) + 2] + 2L.

[13] J. Leclère, “Resource-efficient parallel acquisition architectures for mod-
ernized GNSS signals,” Ph.D. dissertation, École Polytechnique Fédérale
de Lausanne, Switzerland, 2014.

[14] M. Foucras, “Performance analysis of modernized GNSS signal acqui-
sition,” Ph.D. dissertation, INP Toulouse, France, 2015.

[15] D. M. Akos and M. Pini, “Effect of sampling frequency on GNSS
receiver performance,” NAVIGATION, Journal of The Institute of Navi-

gation, vol. 53, no. 2, pp. 85–96, Summer 2006.

[16] K. Borre, D. Akos, N. Bertelsen, P. Rinder, and S. Jensen, A software-

defined GPS and Galileo receiver. Single-frequency approach, ser.
Applied and Numerical Harmonic Analysis. Birkhäuser Boston, 2007.

[17] U. Cheng, W. Hurd, and J. Statman, “Spread-spectrum code acquisition
in the presence of Doppler shift and data modulation,” IEEE Transac-

tions on Communications, vol. 38, no. 2, pp. 241–250, February 1990.

[18] S. Spangenberg and G. Povey, “Code acquisition for LEO satellite
mobile communication using a serial-parallel correlator with FFT for
Doppler estimation,” in International Symposium on Communication

Systems and Digital Signal Processing (CSDSP), Sheffield, UK, April
1998.

[19] H. Mathis, P. Flammant, and A. Thiel, “An analytic way to optimize the
detector of a post-correlation FFT acquisition algorithm,” in Proceedings

of the 16th International Technical Meeting of the Satellite Division

of The Institute of Navigation (ION GPS/GNSS 2003), Portland, USA,
September 2003, pp. 689–699.

[20] D. van Nee and A. Coenen, “New fast GPS code-acquisition technique
using FFT,” Electronics Letters, vol. 27, no. 2, pp. 158–160, Jan 1991.

[21] D. Akopian, “Fast FFT based GPS satellite acquisition methods,” IEE

Proceedings Radar, Sonar and Navigation, vol. 152, no. 4, pp. 277–286,
August 2005.

[22] N. Ziedan, GNSS receivers for weak signals, ser. GNSS Technology and
Applications Series. Artech House, 2006.

[23] M. Foucras, O. Julien, C. Macabiau, and B. Ekambi, “A novel computa-
tionally efficient Galileo E1 OS acquisition method for GNSS software
receiver,” in Proceedings of the 25th International Technical Meeting of

the Satellite Division of the Institute of Navigation (ION GNSS 2012),
Nashville, USA, September 2012, pp. 365–383.

[24] J. Leclère, C. Botteron, and P.-A. Farine, “Comparison framework of
FPGA-based GNSS signals acquisition architectures,” IEEE Transac-

tions on Aerospace and Electronic Systems, vol. 49, no. 3, pp. 1497–
1518, July 2013.

[25] ——, “Expressing discrete convolutions and correlations using matri-
ces and polynomials: a unified presentation,” IEEE Signal Processing

Magazine, submission in 2017.

[26] Altera, FFT MegaCore Function User Guide, August 2014.

[27] Xilinx, LogiCORE IP Fast Fourier Transform Product Guide, October
2014.

[28] Lattice, FFT Compiler IP Core Users Guide, August 2011.

[29] Microsemi, Core FFT Handbook, September 2013.

13

A0,k

pZ,n

PZ,k

Yi,k

s0 s1 s2

yi,n

Ai,k

sn s3

x0,n x1,n x2,n x3,n

pn

PZ,k

Y0,k

NFFT

ai,n a0,n

y0,n

a1,n

pn

A1,k

PZ,k

Y1,k

y1,n

a2,n a3,n

pn pn

A2,k

PZ,k

Y2,k

y2,n

A3,k

PZ,k

Y3,k

y3,n

pn

a0,n a1,n

pn

a2,n a3,n

pn pn

s0 s1 s2 s3

x0,n x1,n x2,n x3,n

A0,k

PZ,k

Y0,k

y0,n

A1,k

PZ,k

Y1,k

y1,n

xi,n

LL2NP

(2NP NS+NZ) NS / 2

NFFT

NP

Repeated for each full correlation

NFFT LL NFFT

One time latency

s0 s1s2 s3

x0,n x1,n x2,n x3,n

s0 s1s2 s3

x0,n x1,n x2,n x3,n x0,n

s0

2NP NS NZ

Fig. 17. Timing diagram of the implementation of the pre-FFT secondary code removal in a parallel way (Fig. 4 with only two accumulators) with NS = 4.

The processing time to compute K times the full correlation is K ×
[

(2NPNS +NZ) NS

2

]

+NFFT + L+NFFT + L+NP = NP

(

KN2

S
+ 5

)

+

NZ

(

K
NS

2
+ 2

)

+ 2L.

X0,k X1,k

pZ,n

PZ,k

Ri,k

ri,n

pn

X2,k

r0,n r1,n r2,n

s0 s1 s2 s2s0 s1 s1s2 s0

yi,n y0,n y1,n y2,n

2NP

xi,n

Xi,k

mn

sn

X3,k

s3 s3 s3 s1 s2 s0s3

r3,n r0,n r1,n r2,n r3,n r0,n r1,n r2,n r3,n r0,n r1,n r2,n r3,n

y3,n

r0,n r1,n r2,n r3,n

s0 s1 s2 s3

y0,n

x0,n x1,n x2,n x3,n

pn pn pn

PZ,k PZ,k PZ,k PZ,k

R0,k R1,k R2,k R3,k

X0,k X1,k

pn

X2,k X3,k

x0,n x1,n x2,n x3,n

pn pn pn

PZ,k PZ,k PZ,k PZ,k

R0,k R1,k R2,k R3,k

NZ

r0,n r1,n r2,n r3,n r0,n r1,n r2,n r3,n

NFFT L LNFFT NFFT (NS –1)

NP (NS –1)

NP NS (NS –1)

NP NS

repeated for each full correlationOne time latency One time latency

Fig. 18. Timing diagram of the implementation of the post-FFT secondary code removal using a memory (Fig. 5) with NS = 4. The processing
time to compute K times the full correlation is NFFT + L + NFFT + L + K [NFFT (NS − 1)−NP (NS − 1) +NPNS (NS − 1)] + NPNS =
NP

[

K
(

N2

S
− 1

)

+NS + 4
]

+NZ [K (NS − 1) + 2) + 2L.

[30] J. Leclère, C. Botteron, and P.-A. Farine, “Resource and performance
comparisons for different acquisition methods that can be applied to
a VHDL-based GPS receiver in standalone and assisted cases,” in
IEEE/ION Position Location and Navigation Symposium (PLANS), May
2010, pp. 745–751.

[31] ——, “Acquisition of modern GNSS signals using a modified parallel
code-phase search architecture,” Signal Processing, vol. 95, pp. 177–
191, February 2014.

[32] J. Leclère, C. Botteron, R. Landry, and P.-A. Farine, “FFT splitting
for improved FPGA-based acquisition of GNSS signals,” International

Journal of Navigation and Observation, vol. 2015, November 2015,
article ID 765898.

[33] E. Kaplan and C. Hegarty, Understanding GPS: Principles and applica-

tions, 2nd ed., ser. GNSS Technology and Applications Series. Artech
House, 2005.

[34] J. Leclère, C. Botteron, and P.-A. Farine, “Implementing super-
efficient FFTs in Altera FPGAs,” EE Times Programmable Logic

Designline, February 2015, available online at www.eetimes.com,
http://infoscience.epfl.ch/record/204540.

[35] J. Leclère and R. Landry, “Complexity reduction for high sensitivity

acquisition of gnss signals with a secondary code,” in Proceedings of

the 29th International Technical Meeting of the Satellite Division of The

Institute of Navigation (ION GNSS 2016, Portland, OR, USA, September
2016, pp. 436–443.

Dr Jérôme Leclère received a master and an engineering degree in Elec-
tronics and Signal Processing from ENSEEIHT, Toulouse, France, in 2008,
and his Ph.D. in the GNSS field from EPFL, Switzerland, in 2014. He is
now with the LASSENA, ÉTS, Montréal, Canada. He focuses his researches
in the reduction of the complexity of the acquisition of GNSS signals,
with application to hardware receivers, especially using FPGAs, and on
the GNSS/INS integration. He developed an FPGA-based high sensitivity
assisted GPS L1 C/A receiver, and participated to the design of several
FPGA receivers, for space applications (L1 C/A) and for GNSS reflectometry
(L1/E1).

14

pn

x0,n

X0,k X1,k

pZ,n

PZ,k

Ri,k

pn

X2,k

s0 s1 s2 s2s0 s1 s1s2 s0

yi,n y0,n y1,n y2,n

2NP

xi,n

Xi,k

sn

X3,k

s3 s3 s3 s1 s2 s0s3

y3,n

x0,n x1,n x2,n x3,n

pn pn pn

PZ,k PZ,k

R0,k R1,k R2,k R3,k

NZ

pn

x0,n x1,n x2,n x3,n

pn pn pn pn

x0,n x1,n x2,n x3,n

pn pn pn pn

x0,n x1,n x2,n x3,n

pn pn pn

R0,k R1,k R2,k R3,k R0,k R1,k R2,k R3,k R0,k R1,k R2,k R3,k

X0,k X1,k

pn

s0

x0,n x1,n x2,n

pn pn

PZ,k PZ,k

R0,k R1,k

PZ,k PZ,k PZ,k PZ,k PZ,k PZ,k PZ,k PZ,k PZ,k PZ,kPZ,k PZ,k PZ,k PZ,k

X0,k X1,k X2,k X3,k X0,k X1,k X2,k X3,k X0,k X1,k X2,k X3,k

ri,n r0,n r1,n r2,n r3,n r0,nr0,n r1,n r2,n r3,n r0,n r1,n r2,n r3,n r0,n r1,n r2,n r3,n

LNFFT NFFT L
NFFT NS

NFFT NS
2

NP+NZ

repeated for each full correlationOne time latency

Fig. 19. Timing diagram of the implementation of the post-FFT secondary code removal without memory in a sequential way (Fig. 6) with NS = 4. The

processing time to compute K times the full correlation is NFFT +L+NFFT +L+KNFFTN2

S
−(NP +NZ) = NP

(

2KN2

S
+ 3

)

+NZ

(

KN2

S
+ 1

)

+
2L.

x2,n

pn

X0,k X1,k

pZ,n

PZ,k

Ri,k

ri,n

pn

X2,k

s0 s1 s2

yi,n yi,n

xi,n

Xi,k

sn

X3,k

s3

x0,n x1,n x2,n x3,n

pn pn pn

PZ,k PZ,k PZ,k PZ,k

R0,k R1,k R2,k R3,k

X0,k X1,k

pn

X2,k

s0 s1 s2

yi,n

X3,k

s3

x0,n x1,n x2,n x3,n

pn pn pn

PZ,k PZ,k PZ,k PZ,k

R0,k R1,k R2,k R3,k

pn

x0,n x1,n

pn

X0,k

PZ,k

R0,k

r0,n r1,n r2,n r3,n r0,n r1,n r2,n r3,n

LNFFT NFFT L NFFT NS NP+NZ

repeated for each full correlationOne time latency

2NP NZ

Fig. 20. Timing diagram of the implementation of the post-FFT secondary code removal without memory in a parallel way (Fig. 7) with NS = 4. The
processing time to compute K times the full correlation is NFFT+L+NFFT+L+KNFFTNS−(NP+NZ) = NP (2KNS + 3)+NZ (KNS + 1)+2L.

Dr Cyril Botteron is leading, managing, and coach-
ing the research and project activities of the Global
Navigation Satellite System and Ultra-Wideband and
mm-wave groups at École Polytechnique Fédérale de
Lausanne (EPFL). He is the author or co-author of
5 patents and over 80 publications in major journals
and conferences in the fields of wireless positioning
systems, GNSS-based navigation and sensing, ultra-
low-power radio frequency communications and in-
tegrated circuits design, and baseband analog and
digital signal processing.

Prof. Pierre-André Farine is professor in elec-
tronics and signal processing at EPFL, and is head
of the electronics and signal processing laboratory.
He received the M.Sc. and Ph.D. degrees in Mi-
cro technology from the University of Neuchâtel,
Switzerland, in 1978 and 1984, respectively. He
is active in the study and implementation of low-
power solutions for applications covering wireless
telecommunications, ultra-wideband, global naviga-
tion satellite systems, and video and audio process-
ing. He is the author or co-author of more than 100

publications in conference and technical journals and 50 patent families (more
than 270 patents).

15

X0,k X1,k

pn

X2,k

yi,n

mn

sn

X3,k

x0,n x1,n x2,n x3,n

pn pn pn

PZ,k PZ,k PZ,k PZ,k

R0,k R1,k R2,k R3,k

X0,k X1,k

pn

X2,k X3,k

x0,n x1,n x2,n x3,n

pn pn pn

PZ,k PZ,k PZ,k PZ,k

R0,k R1,k R2,k R3,k

r0,0 r1,0 r2,0

s0 s1 s2 s3

r3,0

y0,0 y1,0 y2,0 y3,0

r0,1 r1,1 r2,1 r3,1

s0 s1 s2s3 s0 s1s2 s3 s0s1 s2 s3

NS

s0 s1 s2 s3

y0,1

r0,0 r1,0 r2,0 r3,0 r0,0 r1,0 r2,0 r3,0 r0,0 r1,0 r2,0 r3,0

NS 2

r0,n r1,n r2,n r3,n r0,n r1,n r2,n r3,n

pZ,n

PZ,k

Ri,k

ri,n

xi,n

Xi,k

2NP NZ

LNFFT NFFT L NFFT (NS –1) NP NS
2

repeated for each full correlationOne time latency

Fig. 21. Timing diagram of the implementation of the post-FFT secondary code removal using a memory followed by a sequential circular correlation

(Fig. 8) with NS = 4. The processing time to compute K times the full correlation is NFFT + L + NFFT + L + K
[

NFFT (NS − 1) +NPN2

S

]

=

NP

[

K
(

N2

S
+ 2NS − 2

)

+ 4
]

+NZ [K (NS − 1) + 2] + 2L.

X0,k X1,k

pn

X2,k X3,k

x0,n x1,n x2,n x3,n

pn pn pn

PZ,k PZ,k PZ,k PZ,k

R0,k R1,k R2,k R3,k

X0,k X1,k

pn

X2,k X3,k

x0,n x1,n x2,n x3,n

pn pn pn

PZ,k PZ,k PZ,k PZ,k

R0,k R1,k R2,k R3,k

r0,0 r1,0 r2,0

s0 s1 s2 s3

r3,0

yi,0

r0,1 r1,1 r2,1 r3,1

NS

s0 s1 s2 s3

yi,1

pn

x0,n

pn

x1,n

yi,n

mn

sn

pZ,n

PZ,k

Ri,k

ri,n

xi,n

Xi,k

r0,n r1,n r2,n r3,n r0,n r1,n r2,n r3,n

2NP NZ

LNFFT NFFT L NFFT (NS –1) NS NP

repeated for each full correlationOne time latency

Fig. 22. Timing diagram of the implementation of the post-FFT secondary code removal using a memory followed by a parallel circular correlation (Fig.
9) with NS = 4. The processing time to compute K times the full correlation is NFFT + L + NFFT + L + K [NFFT (NS − 1) +NSNP] =
NP [K(3NS − 2) + 4] +NZ [K (NS − 1) + 2] + 2L.

16

rn,0

X0,k X1,k

pn

X2,k

yi,n

mn

sn

X3,k

x0,n x1,n x2,n x3,n

pn pn pn

PZ,k PZ,k PZ,k PZ,k

R0,k R1,k R2,k R3,k

X0,k X1,k

pn

X2,k X3,k

x0,n x1,n x2,n x3,n

pn pn pn

PZ,k PZ,k PZ,k PZ,k

R0,k R1,k R2,k R3,k

NS

pn

x0,n

pn

x1,n

Mk

Sk

sn

rn,0

Sk

yn,0

NZ,S

rn,1

sn

rn,1

NFFT,S LS

pZ,n

PZ,k

Ri,k

ri,n

xi,n

Xi,k

r0,n r1,n r2,n r3,n r0,n r1,n r2,n r3,n

LNFFT NFFT L NFFT (NS –1) NFFT,S NP

Repeated for each full correlationOne time latency

2NP NZ

2LS+NS

Sk

rn,2

sn

rn,2

Fig. 23. Timing diagram of the implementation of the post-FFT secondary code removal using a memory followed by an FFT-based circular correlation (Fig. 10)

with NS = 4. The processing time to compute K times the full correlation is NFFT+L+NFFT+L+K
[

NFFT (NS − 1) +NFFTS
NP

]

+2LS+NS =

NP

[

K
(

4NS +NZ,S − 2
)

+ 4
]

+NZ [K (NS − 1) + 2] + 2L+ 2LS +NS .

xΣ,n xΣ,nxΣ,n xΣ,n xΣ,nxΣ,n

A0,k

pZ,n

PZ,k

Yi,k

s0

yi,n

xi,n

Ai,k

sn

x0,n x1,n x2,n x3,n

pn

PZ,k

Y0,k

ai,n a0,n a1,n

pn

A1,k

PZ,k

Y1,k

a2,n a3,n

pn pn

A2,k

PZ,k

Y2,k

A3,k

PZ,k

Y3,k

x0,n x3,n x0,n x1,n x1,n x2,n x2,n x3,n x0,n x1,n x2,n x3,n

 ' s3 ' s3 ' s0 ' s3 ' s0 ' s3 ' s0 '

xΣ,n

' ' ' ' '

x0,n x3,n x0,n x1,n

s0 ' s3 ' s3 ' s0 ' s3 '

A0,k

pn

PZ,k

Y0,k

a0,n a1,n

pn

A1,k

PZ,k

Y1,k

a2,n

pn

xΣ,n

' ' '

x1,n

 '

x2,n

s0

y0,n y1,n y2,n y3,n y0,n

L L2NP NFFT

NZ2NPNS (2NP NS R)NS L NFFT L NP

repeated for each full correlation One time latency

Fig. 24. Timing diagram of the implementation of the pre-FFT secondary code removal in a sequential way using the new technique for the combinations
(Fig. 11) with NS = 4. R denotes the ratio between the number of non zero values in s

′ and NS (R = 0.5 here). The processing time to compute K times

the full correlation is K × [2NPNS + (2NPNSR)NS] +NZ + L+NFFT + L+NP = NP

[

2K
(

N2

S
R+NS

)

+ 3
]

+ 2NZ + 2L.

