This article was downloaded by: [106.51.226.7] On: 09 August 2022, At: 22:13
Publisher: Institute for Operations Research and the Management Sciences (ORSA)
INFORMS is located in Maryland, USA

ﬂ ORSA Journal on Computing

o
J L] (_ Publication details, including instructions for authors and subscription information:
' - http:// pubsonline.informs.org

Feature Article—Interior Point Methods for Linear
Programming: Computational State of the Art

Irvin J. Lustig, Roy E. Marsten, David F Shanno,

To cite this article:
Irvin J. Lustig, Roy E. Marsten, David F Shanno, (1994) Feature Article—Interior Point Methods for Linear Programming:
Computational State of the Art. ORSA Journal on Computing 6(1):1-14. https://doi.org/ 10.1287/ijoc.6.1.1

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/ PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 1994 INFORMS

Please scroll down for article—it is on subsequent pages

‘informs

With 12,500 members from nearly 90 countries, INFORMSis the largest international association of operationsresearch (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http:// www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.6.1.1
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

ORSA Journal on Computing
Vol. 6, No. 1, Winter 1994

0899-1499 /94 /06010001 $01.25
© 1994 Operations Research Society of America

FEATURE ARTICLE

o=

Interior Point Methods for Linear Programming:
Computational State of the Art

IRVIN J. LUSTIG /' Program in Statistics and Operations Research, Department of Civil Engineering and Operations
Research, Princeton University, Princeton, NJ 08544; Email: iro@dizzy.cplex.com

RoY E. MARSTEN /' School of Industrial Engineering and Operations Research, Georgia Institute of Technology,
Atlanta, GA 30332

DAvID F. SHANNO /' Rutgers Center for Operations Research, Rutgers University, New Brunswick, NJ 08903;
Email: shanno@dantzig.rutgers.edu

(Received: December 1992; revised: April 1993, July 1993; accepted: July 1993)

A survey of the significant developments in the field of interior
point methods for linear programming is presented, beginning
with Karmarkar’s projective algorithm and concentrating on the
many variants that can be derived from logarithmic bar-
rier methods. Full implementation details of the primal-dual
predictor-corrector code OB1 are given, including preprocess-
ing, matrix orderings, and matrix factorization techniques. A
computational comparison of OB1 with a state-of-the-art sim-
plex code using eight large models is given. In addition, com-
putational results are presented where OB1 is used to solve
two very large models that have never been solved by any
simplex code.

Interior point methods for mathematical programming
problems were introduced by Frisch'®! and were devel-
oped as a tool for nonlinear programming by Fiacco and
McCormick.'” While Fiacco and McCormick noted that
their proposed methods could be applied in full measure to
linear programming, neither they nor any other researchers
at that time seriously proposed that interior point methods
would provide a viable alternative to the simplex method
for actually solving linear programming problems.
Current interest in interior point methods for linear pro-
gramming was sparked by the paper by Karmarkar,?”]
which used projective transformations to demonstrate a
polynomial time complexity bound for linear programming
that was far better than any previously known bound.
Shortly after the appearance of Karmarkar’s paper, news-
paper accounts claimed that the new method was signifi-
cantly faster than existing implementations of the simplex
method. Although these claims were never scientifically

Subject classifications: Programming; linear.
Other key words. Linear programming algorithms.

validated, they did capture the attention of the mathemati-
cal programming community, as indicated by the large
number of papers (over 1300) published since 1984 (see
Kranich®® for a bibliography). Initial skepticism as to
whether interior point algorithms could ever compete with
simplex method implementations was quickly replaced by
cautious optimism that interior point methods could in fact
prove competitive.

Within two years of the publication of Karmarkar's
method, an implementation of an interior point method to
solve the dual problem, which became known as the dual
affine variant (Adler et al!'!), demonstrated overall superi-
ority over a specific implementation of the simplex method,
MINOS 4.0, on a set of linear programming problems
collected by David Gay (Gay™®), and distributed over
NETLIB. Shortly thereafter, similar performance was
demonstrated for a primal-dual path-following algorithm
(McShane, Monma, and Shanno!*®!), and serious develop-
ment of full-blown interior point codes that could be com-
paratively tested against commercial simplex codes began.

Examination of the comparative performance of simplex
and interior point codes had the interesting and important
side effect of rekindling interest in the simplex method.
During roughly the same period that interior point meth-
ods were being studied and implemented, huge advances
in the computational efficiency of the simplex method were
also achieved, dramatically lowering both the number of
iterations and computer time to solve problems. These
advances stem from such improvements as better crash
basis procedures, better handling of degeneracy, better

Copvright © 2001 All Rights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

Lustig, Marsten, and Shanno

partial pricing, implementation of primal and dual steepest
edge algorithms, faster and more stable matrix factoriza-
tions, better exploitation of cache memory, and better com-
bined phase 1-phase 2 algorithms. Two new simplex codes,
CPLEX (a trademark of CPLEX Optimization, Inc., Incline
Village, NV)’! and IBM’s OSL Release 2 simplex code,?f]
represent such a major improvement in simplex technology
that if the original interior point implementations had been
tested against these codes, it might well have discouraged
further development of interior point technology. In 1987,
the original small NETLIB test set of approximately 50
linear programs had virtually no problems for which inte-
rior point codes exhibited a clear advantage over the best
simplex codes. This is due to the fact that interior point
codes outperform simplex codes only on problems with, in
general, thousands of rows and columns, and none of the
initial NETLIB problems was sufficiently large.
Fortunately, as simplex codes improved, so did the tech-
nology of interior point codes. Also, larger models became
available for comparative testing. These models did not
easily lend themselves to efficient simplex starting bases
and had highly degenerate optimal solutions. Some of these
were added to the NETLIB test set. Many of the more
interesting models are proprietary models currently in use
at the organizations that constructed them. Due to their
proprietary nature, these models have not been included
in the NETLIB test set, but have been made available in
carefully controlled circumstances for comparative testing.
Many of these new models are significantly larger than any
test models that existed as recently as three years ago.
This paper is organized to provide a brief tutorial on the
recent history of interior point methods and implementa-
tion details of one successful interior point code. In Section
1, Karmarkar’s projective method is described. Section 2
develops logarithmic barrier methods, and uses them to
derive primal, dual, and primal-dual path-following algo-
rithms, as well as their affine variants. Section 3 deals with
the problem of initial feasibility, leading to contemporary
infeasible interior point algorithms, whereas Section 4
shows how to modify the method to efficiently incorpor-
ate upper bounds and free variables. In Section 5, the
predictor-corrector variant of the primal-dual method
is developed, followed by a discussion in Section 6 of
how many corrections to make. Section 7 illustrates the
dichotomy between algorithms with strong theoretical
properties and algorithms that are efficient in practice, and
indicates how this gap is beginning to close. Section 8
presents issues involved in implementing an efficient
interior point code. Computational results on 10 linear
programs and comparisons of the primal-dual predictor-
corrector code OB1 (Optimization with Barriers 1) with the
OSL simplex code are documented in Section 9. These
results show quite clearly that for the majority of large
models that we have been able to test, the theoretical
advantage in complexity of interior point methods is
becoming apparent. Thus, the results of this paper
demonstrate that the initial claims of the computational
superiority of interior point methods are now beginning to
appear. Section 10 closes with topics of current study.

1. Karmarkar's Projective Method
The linear programming problem considered by
Karmarkar®” is

minimize cTx
subject to Ax =0,
) . (1
e'x =1,
x>0,

where A is an m X n matrix, x and ¢ are n-vectors, and e
is the n-vector of all ones. Furthermore, Karmarkar assumes
that at x*, the optimal solution to (1), the optimal objective
function value satisfies cTx* = 0. This is not the standard
form for linear programming problems, which is defined in
Equation (11) in the next section, but Karmarkar demon-
strated how any linear programming problem can be put
into this form.

Briefly, Karmarkar’s algorithm begins with an initial
estimate x° to the solution of (1), where Ax® =10, e"x? =1,
and x° > 0. The algorithm moves to a new estimate x' via
the use of projective transformations. Let

X5'x

T(x) = —

oo (2)
eTXyx

where the diagonal matrix X, is defined by

x, =x°

7]]’ j=1/'--/n/

and T(x) is the projective transformation that takes x° into
(1/n)e. Define the matrix B by

AX,
B = (€))
and the vector & by
5= —v[I—BT(BBT) 'BlX,c, (4)

where v is a scalar step parameter. A new point ¢ is then
defined by

1
E=—e+ 8, (5)
n

and a new point x' by the inverse projective transforma-
tion T~'(¢) defined by

Xy é
eTX ¢

X' =T (¢ = (6)

Karmarkar then shows that for a proper choice of y in (4),
the algorithm determines an % with ¢’% <27"c"x in
O(nlL) iterations, where L is the number of bits needed to
represent the entries in A and c.

Karmarkar’s original algorithm dealt with the assump-
tion that ¢"x* = 0 by means of a sliding objective function.
A more elegant way of dealing with this is proposed by
Todd and Burrell®® who note that if »* is the opti-
mal value of the objective function, the modified objective

function
&Tx = cTx — v*elx

=(c—v*)x @)

Copviiaht © 2001 All Rights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

Interior Point Methods for Linear Programming

has optimal value 0 (since e’x = 1). Todd and Burrell then
use duality theory to determine a convergent sequence of
underestimates for the optimal value v*.

In order to obtain the proof of complexity for his method,
Karmarkar introduced the potential function

p(x) =Inc’x - Y Inx,. (8)
=1

He was able to demonstrate that for the proper choice of y
in (4), the potential function was reduced by at least a
constant amount each iteration, leading to the desired com-
plexity result. Although the choice of y in Karmarkar’s
initial paper proved much too small in practice, leading to
large iteration counts and poor comparisons with the sim-
plex method, many early investigations of Karmarkar's
method suggested choosing y by a line search of p(x). As
will be documented later, more effective large step meth-
ods have since been developed, obviating the need for line
searches of p(x) in general, but for some very difficult
problems, these may yet prove of practical value.

As a final note on the potential function p(x),
Karmarkar’s projective method can be derived as a con-
strained Newton method with respect to p(x). This fact
served to place the derivation of Karmarkar’s method
within the broader class of logarithmic barrier methods to
be discussed in Section 2.

An early implementation difficulty with Karmarkar’s
method involved converting the standard form linear pro-
gramming problem (11) to Karmarkar homogeneous form
(1). Karmarkar’s suggested method made the matrix A
twice as large. A better method due to Tomlin®®!! added a
dense row to A. Gay'"”) and de Ghellinck and Vial?"!
demonstrated how to apply Karmarkar’s method to prob-
lems in standard form, with a natural method for finding a
feasible point.

A potentially more serious problem with Karmarkar’s
method as a viable computational method arises from a
recent paper by Powell**) in which he demonstrates
a problem with n variables where the number of iterations
required by Karmarkar’s method is O(n), where n can be
made arbitrarily large. Methods to be developed in sub-
sequent sections have complexity of O(/nL), and thus
appear to have a worst case theoretical advantage.

To the best of our knowledge, there is no fully robust
implementation of the projective method that is sufficiently
efficient to be compared with state-of-the-art simplex codes.
Goffin and Vial®®? and Bahn et al.®’! have successfully used
projection methods for cutting plane algorithms, and
Yamashita®*! has implemented a dual projective algorithm,
but these implementations are prototype codes and they
cannot be fairly compared with commercial simplex codes
for solving general linear programs. As research intensified
on interior point methods, new methods, described in
the next section, took precedence in implementation, and
although the projective method has continued to figure
prominently in complexity analysis, it has been far less
important in the development of general implemented
algorithms.

2. Logarithmic Barrier Methods

Logarithmic barrier methods were introduced by Frisch!'®!
and developed by Fiacco and McCormick." Initially, the
concentration was on nonlinear problems of the form

f(x)
g(x) =0,

minimize
9

subject to i=1,...,m

where x = (x,,..., x,)7. Logarithmic barrier methods
transform (9) into a sequence of unconstrained problems of
the form

F(x) = pe Y In g, (%), (10)

=1

minimize

where p, is a scalar barrier parameter that satisfies u, > 0,
with lim, , . g, = 0. The algorithm to solve (9) is then

(i) Choose g > 0, € > 0, and x° such that ¢,(x°) > 0 for
alll <i<gm.
(i) Let x* = arg(min(f(x) — p, £, In g,(x)).
(iii) If u, < €, then stop. Otherwise, choose g, < u, set
k =k + 1, and go to (i).

Fiacco and McCormick show that when f(x) and g¢,(x)
meet certain general conditions, the sequence {x*} con-
verges to a solution of (9), and that lim, . u,/g,(x*) = A,,
where A, is the optimal Lagrange multiplier associated
with g (x).

2.1. Primal Log Barrier Methods for Linear Programming

The relationship between logarithmic barrier methods and
Karmarkar’s method was first noted by Gill et all?!! They
considered the linear programming problem in the standard
form

T

minimize c'x
subject to Ax = b, (11)
x>0,

transforming the problem to

n

cx—uY Inx
-1 (12)

Ax = b.

minimize
subject to

The Lagrangian for (12) is

n
Lx,y,p)=cx —pu Y Inx, —y"(Ax — b), (13)
;=1

and the first order conditions for (12) are
V.iL=c—puXle— ATy =0,
VVL= -Ax+b=0, (14)

where X is the diagonal matrix whose diagonal elements
are the variables x, 1 < j < n, and is denoted by X, when
evaluated at the iterate x*.

With the assumption that there exists a strictly interior

feasible point x%, ie, x¥>0 and Ax*= b, Newton’s

Copvriaht © 2001 All Riahts Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

4

Lustig, Marsten, and Shanno

method is applied to (14) in an attempt to determine a
better estimate to the solution of (11). This yields the search
direction

1
Ax* = — —X, PX,c + X, Pe, (15)
Mo

where
P = (I- X AT(AX2A) " AX,), 16)
and the new estimate x**! to the optimal solution is
K= xk 4 o Ax* ‘ 17)

for an appropriate step length «,. The barrier parameter u,
is then reduced by w1 = puy, 0 < p <1, and the algo-
rithm continues. Note that this is a major departure from
the Fiacco-McCormick algorithm in that only one Newton
step is taken for each value of u,.

The similarity between the directions defined by (15) and
8 defined by (4) was noted by Gill et al.*!) who show that
if the algorithm with a search direction defined by (15) is
applied to a problem in Karmarkar form (1), then at each
iteration there exists a value of u, such that the search
directions (4) and (15) are identical. Gay!"”) then showed
how to apply the Karmarkar algorithm to problems in the
standard form (11). This research, coupled with the inclu-
sion of the Todd-Burrell parameter underestimating the
objective function, led to the result that Karmarkar’s method
is just a special case of general logarithmic barrier methods
(see Gonzaga®®! and Shanno and Bagchil®®!), and also
focused attention on the development of logarithmic barrier
methods.

Independently of the work on logarithmic barrier meth-
ods, Barnesi*! and Vanderbei, Meketon, and Freedman!®’!
were developing what was to become known as the primal
affine method. In this method, A x* in (15) is replaced by

Axk = - X, PX;c, (18)

which is the limiting direction in (15) as p, — 0. It was
later discovered that this method had been initially pro-
posed by Dikinl’? 13 more than 15 years before Karmarkar’s
work.

To understand the relationship between the primal affine
and primal logarithmic barrier methods, only the role of
the barrier parameter u, needs to be considered. It is
crucial for interior point methods to remain in the interior
of the feasible region, yet from the very beginning, compu-
tational experience suggested that choosing a, in (17) to
get very close to the boundary of the region is most
efficient. If the problem

n
minimize — 2 In(x
]gl (1) (19)

subject to Ax =D,

that tries to find the analytic center of the feasible region is
considered (see Sonnevend*?!), then Newton’s method
applied to the first order conditions yields

Ax, = X, Pe. (20)

Thus, the search vector (15) is made up of a centering term
to keep away from the boundary, and an affine term that
leads toward an optimal solution. As u, — 0, optimality
dominates, whereas for large u,, the method proceeds
across the interior of the feasible region. As shown by den
Hertog and Roos/'!! most interior point methods have
search directions that are linear combinations of these two
vectors.

The paper by Gill et al.?!} actually describes an imple-
mentation of a pure primal barrier method, with computa-
tional results generally inferior to the MINOS 5.1 simplex
code, but better on a set of degenerate problems. These
results motivated further computational experimentation
with interior point methods because many important prob-
lems exhibit degeneracy, often to a large degree, and
degeneracy can cause serious problems for simplex codes.
The fact that the primal log barrier method solved the set
of degenerate problems faster than MINOS was viewed as
very encouraging. Because subsequent work has led to
much more efficient algorithms, further details of the origi-
nal algorithm will not be provided here.

As a final note on primal log barrier methods,
Anstreicher!” has shown that the original Fiacco—
McCormick implementation of their algorithm has polyno-
mial complexity when applied to linear programs. Thus a
polynomial algorithm for these problems existed nearly 20
years before Karmarkar’s work.

2.2. Dual Log Barrier Methods
The dual linear programming problem to the standard
form primal problem (11) is

ma>’<imize bTTy 1)
subject to Ay <c.

Adding dual slack variables z, 1 < j < 1, to (21) gives the
equivalent dual form

maximize bTy
subject to ATy +z=¢, (22)
z 2 0.

Renegarl*’! initially proposed applying Huard's?>! method
of centers to (21) and derived an algorithm with O(/nL)
complexity in the number of iterations. Subsequently, this
work was again shown to be a special case of logarithmic
barrier methods (see Gonzagal**]). Dual methods are easily
derived by applying the logarithmic barrier method to (21)
by writing the problem

by +). In(c, - aly), (23)
j=1

maximize

where 4, is the jth column of the matrix A. The first order
conditions are

b— pAZ le =0, (24)

Cobvraht © 2001 All Rights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

Interior Point Methods for Linear Programming

where Z is the n X n diagonal matrix with elements z, =
T ’ .
¢, — 4,y One step of Newton’s method yields

1 _ B}
Ay=—(AZ2AT) b — (AZ2AT) ' AZ e, (25)
I

where the first term in (25) represents a step toward opti-
mality and the second term is a centering step in the dual
space.

Again, as in the primal case, the dual affine variant is
derived by letting u — 0 in (25), yielding the direction

Ay =(AZ2AT) 'b. (26)

This was also discovered independently of logarithmic bar-
rier methods (see Adler et all'l). As previously noted, the
dual affine algorithm of [1] was the first implemented
algorithm to show superior performance against the MINOS
4.0 simplex code. The dual affine code was approximately
four times faster than MINOS (running on defaults) on the
NETLIB test set that was available at that time. These
results were extremely important in motivating further
computational work with the dual affine algorithm (e.g.,
Marsten et al.**!). Although this work showed that interior
point methods have great potential, the dual affine algo-
rithm was soon replaced by the superior algorithm defined
in the next section. In addition, den Hertog et al.l'”
have used a dual log barrier method in a cutting plane
application.

2.3. Primal-Dual Logarithmic Barrier Methods

The underlying theory of primal-dual interior point meth-
ods is due to Megiddo!*!! and was originally developed
into a convergent algorithm by Kojima, Mizuno, and
Yoshise.”) The algorithm can be easily derived by consid-
ering the first order conditions (14) of the primal problem
(11), or alternatively, by applying the logarithmic barrier
method to the dual problem (22) where dual slack variables
have been added. Here, the problem is

by +) Inz,
71=1 (27)

Aly+z=c¢,

maximize

subject to

with the Lagrangian

Lix,y,z,w)=b"y+) In z, - x"(ATy + z — o).
1=1

(28)
The first order conditions for (28) are
XZe = pe, (29a)
Ax = b, (29b)
ATy +z =, (29¢)

where X and Z are the previously defined diagonal matri-
ces and e is the n-vector of all ones. Conditions (29b) and
(29¢) are the usual linear programming optimality condi-

tions of primal and dual feasibility, whereas (29a) is the
usual complementarity condition in the limit as p — 0.

As before, Newton’s method can be applied to the condi-
tions (29), with resulting steps

Ay = —(AXZ'AT) ' AZ (),
Az = —ATAy,
Ax=Z"w(u)~ XZ7'Az, 30)

where v(u) = pe — XZe. An affine variant of (30) sets
= 0 at each step.

In comparing primal, dual, and primal-dual methods, it
is first instructive to note that all construct a matrix of the
form ADAT, where D is diagonal. The content of D varies,
but the computational work does not. This is also the same
type of matrix used by Karmarkar’s method.

Given this similarity, there are two immediate advan-
tages that appear when examining the primal-dual method.
The first is that for primal feasible x and dual feasible y
and z, the exact current duality gap c’x — b7y is always
known. It can easily be shown that for a feasible point
(x,y,2),

cTx = bTy =27z, (31)

and thus an excellent measure of how close the given
solution is to the optimal is always available. A second
advantage of the primal-dual method is that it allows for
separate step lengths in the primal and dual spaces, i.e.,

xF U= xK 4+ akAxk,
Y = gk 4 gk A Yk,
2K = 2K 4 ok Az, (32)

This separate step algorithm was first implemented by
McShane, Monma, and Shanno*’! and has proven highly
efficient in practice, significantly reducing the number of
iterations to convergence.

Thus far, the choice of the step length parameter has not
been addressed. In all implementations that take a few
iterations, a ratio test is first used to determine the largest
steps that can be taken before either some x, or, respec-
tively, some z, becomes negative. Let these respective
maximum steps be denoted as &, and a,. The subsequent
step is then chosen to be a constant multiple p of the
maximum step, i.e.,

Ap = p&p/
ap = pép. (33)

In our computational experience, p = 0.95 (or even p = 0.9)
seems to be the largest possible safe step for a primal or
dual affine variant, although a primal-dual affine variant is
not practical for any value of p. However for (30), which
contains the centering parameter u, the value p = 0.99995
works extremely well in practice, with an additional condi-
tion that ap <1 and o < 1. Centering does allow for
longer steps, and this largely accounts for the computa-
tional superiority of methods using barrier parameters as
opposed to affine variants.

Copvriaht © 2001 All Riahts Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOI: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

Lustig, Marsten, and Shanno

3. Initial Feasibility

The primal methods developed in the previous section
assume that an initial feasible point x° is available that
satisfies x° > 0 and Ax° = b. This assumption can be han-
dled by introducing an artificial column into (11). Let
x> 0 be specified. Then the problem

minimize cTx + ¢, x,
subject to Ax + (b — Ax®)x, = b, (34)
x,x,20,

has an initial solution x = x° and x, = 1. For ¢, suffi-
ciently large, it can be shown that (34) has the same
solution set as (11) assuming that (11) has a feasible solution.

Similarly, an artificial column can be added to the dual
problem (22), yielding the equivalent problem

maximize by + by,
subject to ATy +z+y,(ATy" +2° —¢c) = ¢, (35)
z>0, Y, <0.
Here, y, = —1 for an initial solution. Finally, a combina-

tion of the above techniques can be used to provide a
primal problem

minimize cTx + ¢, x,
subject to Ax +dpx, =1,
. 36)
dpx +x, =1,
X, %, X, 20,
and its dual
maximize by + b,y,
subject to ATy +dpy, +z=c,
dby +z,=c,, (37)
Ya + Zy, = 0,

2,2, 2,20,

where d, =b— Ax® and d, = A"y’ +z° — ¢, both of
which are feasible at the initial point.

A numerically unpleasant feature of formulations
(34)-(37) is the need to include artificial variables and their
attendant large costs in the problem to be solved. Lustig?®*
considers the possibility of allowing b, and ¢, to simuita-
neously go to infinity in (36) and (37), and shows that well
defined limiting directions Ax, Ay, and Az exist, which is
not true for either the primal or the dual case. These results
are not duplicated here since a preferred equivalent
interpretation is given below.

The primal-dual search directions (30) are derived by
applying Newton’s method to the first order conditions
(29), where under the assumption of feasibility we have the
Newton system

ZAx + XAz = pe — XZe,
AAx =0,
ATAy + Az =0. (38)

If we do not assume that the point (x, y, z) is feasible,
applying Newton’s method to (29) yields the system

ZAx + XAz = pe — XZe,
AAx =b — Ax,
ANAy+Az=c—- ATy -z, (39

which has the solution

Ay = —(AXZ7'AT) (AZ w(p) — AXZ 'rp — 1),
Az=—ATAy + rp,
Ax=Zw(p) - Z XAz, (40)

where 1, =c— ATy — z and rp = b — Ax. These search
directions are the directions derived by Lustig.*”! Clearly,
Newton’s method can be applied in similar fashion to
infeasible primal or dual methods. All computational results
in Section 9 for the primal-dual method are based on
Newton’s method applied to the infeasible problem without
the use of artificial variables.

4. Free Variables and Upper Bounds

All of the derivations of interior point methods assume
X, > 0 for all j=1,...,n. When free variables are con-
tained in a problem, some type of translation of the vari-
ables is necessary. A standard transformation splits free
variables as

X 41

X, =x
where x> 0and x; > 0. If this transformation is used and
the simplex method is applied, it is easy to show that at
most one of x; and x; will be basic at any one time.
However, because interior point methods attempt to find
points that are as far from the boundary as possible, this
can lead to both x and x; becoming extremely large. In
the OB1 code, documented in Sections 8 and 9, free vari-
ables are split as in (41). In addition, both variables are
translated so that, at each iteration, the smaller of the two
variables is set to a constant although the difference remains
unchanged. To date, this technique has worked well in
practice, even for problems with hundreds of free variables.

Simplex codes handle upper bounds in a simple and
straightforward manner. As shown in Choi, Monma,
and Shanno,”®! upper bounds are just as easily handled by
primal-dual interior point methods. The linear program
with bounded variables is

minimize cTx
subject to Ax=1b, (42)
0<x<u,

where some or all of the components of u may be infinite.
The first order conditions are

Ax =b,
x+s=u,
ATy +z-w=c,
XZe = pe,
SWe = ue, 43)

Cobpvriaht © 2001 All Riahts Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

7

Interior Point Methods for Linear Programming

and the search directions resulting from applying Newton’s
method to (43) are

Ay = (ABAT) '[(b — Ax)

+AO(c — ATy — z + w) + p()],

Ax=0[AAy — p(p) — (c — ATy — z + w)],

Az=uX le—Ze — X 'ZAx,

Aw = uS~le — We + S~ 'WAx,

As= —Ax, (44)
where 0 = (X7'Z + ST'W)™! and p(p) = w($~! —
XDe — (W — Z)e. Therefore, only the diagonal matrix and
the right-hand side change, but the essential computational
work remains the same. Note that in the derivation pre-
sented by Choi, Monma, and Shanno,®! it is assumed that

the current iterate always satisfies X, +s =u when
u, < .

]

5. Mehrotra's Predictor—Corrector Method

The primal-dual algorithm for problems with bounded
variables, described in the previous three sections, repre-
sents the first algorithm developed in OB1, as documented
by Lustig, Marsten, and Shanno.P! Shortly thereafter,
Mehrotral*®! proposed a predictor-corrector method that
can be derived directly from the first order conditions (29).
By substituting x + Ax, y + Ay, and z + Az in (29), it is
then desired that the new estimate satisfies

(X +AXNZ+ AZ)e = e,
Alx + Ax) =0,
AT(y+Ay) +z+Az=c. (45)

Collecting terms gives the system

XAz +ZAx = pe — XZe — AXAZe, (46a)
AAx =b — Ax, (46b)
AAy+Az=c~ A"y -z, (46¢)

where AX and AZ are n X n diagonal matrices with
elements Ax] and Az/, respectively. Examination shows
that (46) is identical to (39) with the exception of the
nonlinear term A XAZe in (46a). Mehrotra proposed first
solving the affine system

XAZ+ ZAX = —XZe,
AA% =b - Ax,

AAj+AZ=c— ATy -z, (47)
and then substituting the vectors A2 and AZ found by
solving (47) for the A XAZe term in the right-hand side of
(46). Furthermore, he suggested testing the reduction in

complementarity (x + apA %) (z + apAZ), where ap, and
ap, are again chosen to insure x > 0 and z > 0. If we let

§=(x+apAR) (2 + apAd), (48)
then Mehrotra’s estimate for u is
A~ 2, A
p,=(ir) (g) (49)
X'z n

This chooses u to be small when the affine direction pro-
duces a large decrease in complementarity and chooses u
to be large otherwise. The predictor-corrector algorithm,
with a minor variant of Mehrotra’s choice of u, is the
current algorithm implemented in OB1 (see Lustig, Marsten,
and Shannot*®)).

6. How Many Corpections?

In [43], Mehrotra motivates the predictor-corrector method
as a power series. Clearly, the algorithm of the previous
section can easily be extended to a higher order power
series by continuing to substitute at each step the A x and
Az terms found by solving (46) back into the right-hand
side of (46a) so that the algorithm is using multiple correc-
tions. For example, when multiple corrections are applied
to the NETLIB test problem afiro at a primal and dual
feasible point, we obtain Table I. Assuming that the goal is
to achieve the maximum reduction in complementarity, the
optimal number of corrections is four in this case. After
four corrections, the power series begins to diverge.

Although multiple corrections often produce lower com-
plementarity, each correction requires a new solution to
(46). Because the matrix does not change, only a single
factorization needs to be done, but multiple solutions to
(AOAT)Ay = r are required. Multiple corrections have
been extensively studied by Carpenter et al.”! This study
concludes that the most efficient number of corrections for
a general algorithm is one.

Furthermore, even a single correction can increase com-
plementarity. Lustig, Marsten, and ShannoP®® derive a test
to determine whether the correction term should be com-
puted or a straight primal-dual step should be taken.
Although this test has little computational effect on any
problem that has been solved to date, it is important in
terms of guaranteed convergence, which is discussed in the
next section.

7. Theoretical Issues
As noted in Section 1, Karmarkar’s algorithm was moti-
vated by his desire to find a method for linear program-

Table I. Effect of Multiple Corrections on Af1ro
Total Complementarity
Corrections Steplength After Step
0 0.626 466
1 0.685 392
2 0.750 311
3 0.827 215
4 0.886 141
5 0.773 282
6 0.784 268
7 0.206 988
8 0.200 996
9 0.016 1230

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

Lustig, Marsten, and Shanno

ming with provably good complexity. Renegar’s dual
method of centers*”] was similarly motivated. Since the
inception of Karmarkar’s complexity analysis, literally hun-
dreds of papers have been written on the complexity of
different variants of projective and logarithmic barrier
methods. No attempt is made to survey these results here.
The interested reader is referred to the excellent survey by
Gonzaga.l*!]

Until recently, there has been a large gulf between the-
ory and practice. The original paper by Kojima, Megiddo,
and Mizuno!?®] on the primal-dual method proved an O(nlL)
complexity with a rather convoluted choice of step length.
Monteiro and Adler!*?) quickly improved this to an O(/n L)
complexity result with ap = ap = 1 at each step, where u
is reduced so slowly from iteration to iteration that the
algorithm is hopelessly inefficient. Further results by Ye,
Gonzaga, and others (see Gonzagal®*)) began to allow for
larger steps, but these variants still did not correspond to
implemented algorithms.

Furthermore, theoretical results predict that the num-
ber of iterations will grow slowly. To date, the O(/nL)
bound is the best achieved. In practice, the number is even
smaller. As the results in Section 9 will demonstrate, the
number of iterations remains very small, and appears to be
O((log n)L). Lustig, Marsten, and Shanno®*! present empir-
ical evidence demonstrating this behavior.

The complexity issue became further clouded with the
removal of artificial variables and the introduction of infea-
sible interior point algorithms. All of the complexity results
had been derived using strictly feasible points. In fact, not
only was the complexity of infeasible interior point algo-
rithms unknown, there was no proof of global convergence
of the implemented algorithms. In an extremely interesting
recent paper, Kojima, Mizuno, and Yoshise*”! examine
an infeasible primal-dual method by defining a critical
neighborhood .#" consisting of points satisfying the three
conditions

(50a)
(50b)

xTz2 ypll ATy +z—cll or ATy +z —cll < ep, (500)

Xz, > vxTz/n, 1<j<mn,

Tz = ypll Ax = bll or ||Ax — bll < €p,

where v, yp, and vy, are specified constants, and €, and €y
are the desired infeasibility tolerances. The values B,, B,,
and B; are chosen as constants satisfying 0 < 8; < B, <
B; < 1. Let @ be the maximum value of @ 0 <@ <1,
such that
(xF, y*, z) + a(Ax, Ay, Az) €4 and (51a)
(x* + ad) (2% + alz) < (1 - a(l - B))(xH) 2*
(51b)

hold for every a € [0, @l. They then choose af € (0,1],

ak €(0,1], and (x¥*1, y**1, 2¥+1) such that
(xk+1, yk+1/ Zk+1) — (xk + a’{,Ax, yk + oq’SAy,
z¥+ akAz) e and (52a)

() 261 < (1 = &A1 - BN 25, (52b)

With the additional requirement that u = B,(x*)7z*/n,
they then show global convergence to an optimal solution
or that |(x, z)Il > * for an arbitrarily large value o*.
A polynomial time complexity bound for the infeasible
primal-dual algorithm is given by Mizuno.™!

In Lustig, Marsten, and Shanno,*! the global conver-
gence theory is extended to the predictor-corrector algo-
rithm. It is then shown that the globally convergent
algorithm is very efficient in practice, and helps greatly in
implementing a warm-start interior point algorithm, i.e., an
algorithm that can use an optimal solution to one lin-
ear program as the starting point for solving a second
linear program. Although the polynomial time complexity
of this exact algorithm is still under study, this recent work
seems to be finally closing the gap to the point where
implemented algorithms can be demonstrated to have
provably good theoretical properties.

8. Implementation Issues

This section briefly describes the implementation issues
that arise in constructing a logarithmic barrier interior
point code. While everything discussed here has been im-
plemented in the primal-dual predictor-corrector interior
point code OB1, the issues are essentially generic in that
they are important for a fast implementation of any loga-
rithmic barrier or projective interior point method.

8.1. The Cholesky Factorization

The single largest amount of computation time in solving
most linear programming problems using interior point
methods is expended on computing the Cholesky factoriza-
tion of A® AT, where the diagonal matrix @ is determined
by the specific choice of algorithm, as previously explained.
The Cholesky factorization computes a lower triangular
matrix L such that

AOAT = LDIT. (53)

Because the goal of implementing interior point methods is
to solve large problems quickly, it is important that the
factorization (53) be done as quickly as possible while
minimizing the storage requirement for L. In order to
accomplish the latter, OB1 offers the option of two matrix
orderings, the multiple minimum degree ordering (see
LiuP!) and the minimum local fill ordering (see Duff,
Erisman, and Reid!")). Both are heuristics for permuting
the rows of the matrix A®AT in order to minimize the
fillin in L. Generally, the minimum local fill algorithm
produces a sparser L, but at higher initial cost to obtain the
ordering. The multiple minimum degree algorithm pro-
duces a denser L, but often at a significant savings in the
cost of computing the ordering.

Once the ordering has been completed, OBl computes
the Cholesky factors (53) using a sparse column Cholesky
factorization (see George and Liu!’l). This again can be
implemented in two ways. The first way is called a left-
ward looking or “pulling” Cholesky, where all previously
computed columns that contribute to the factorization are

Y o PN S : .
vv,.,,..guf@‘%eeﬂ"ﬁiﬂ‘ﬁgﬁtﬁebclvcu

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

Interior Point Methods for Linear Programming

addressed as each new column is computed. The second
way is called a rightward looking or “pushing’” Cholesky,
where, after each column is computed, its contribution to
all future columns is computed and stored. The latter is
more complex to implement in terms of manipulating the
data structures of the factorization, but has the advantage
of better exploitation of cache memory. OBl again offers
the choice of Cholesky algorithms.

Modern computer architectures have different features
that can enhance the performance of an interior point
implementation. These features include cache memory,
pipelining, vectorization, and superscalar capabilities. A
discussion of these specific issues is beyond the scope
of this paper. One must evaluate the relative expense of
calculations involving integers versus calculations involving
floating point numbers. Experience in solving problems
on various computers indicates that each of the four possi-
ble combinations of ordering algorithms and Cholesky
algorithms is best for a different architecture. Denote
the two Cholesky algorithms by L (for left) and R (for
right), and the two orderings D (for multiple minimum
degree) and F (for minimum local fill). Table II gives the
most efficient pairing for four standard architectures. The
different combinations are needed because the rightward
looking Cholesky exploits the cache memories effectively
on the DECstation 5100 and RS/6000, whereas the extra
overhead of the rightward algorithm cannot be recovered
by the cache on the Sparcstation or on the CRAY, which
has no cache, but does have vectorization. In addition,
the superscalar architecture of the RS/6000 and the vector
capabilities of the CRAY make it less expensive to do more
vectorized floating point caiculations in the factorization
in order to save the logical, and hence not vectorizable,
overhead of the more expensive ordering.

An important issue in the Cholesky factorization is the
dense window. All ordering schemes force most of
the nonzeros of L to the lower right-hand corner, caus-
ing the last set of columns in L to be dense. When the
columns are sufficiently dense, indirect addressing may be
dispensed with, significantly speeding up the algorithm at
the expense of a little extra storage.

Finally, OB1 uses the concepts of supernodes and loop
unrolling to further speed up calculations. These are not
discussed here because they are properly the subject of a
survey on numerical linear algebra rather than interior
point methods. The interested reader is referred to Lustig,
Marsten, and Shanno.?’!

Table Il. Best Combination of Cholesky Algorithm and
Ordering on Various Architectures
Platform Cholesky Ordering
Sun Sparcstation 1 + L F
DECstation 5100 R F
IBM RS /6000 R D
CRAY Y/MP L D

8.2. Prohiem Reduction

The most important issue in creating a fast implementation
of an interior point method is clearly a fast implementa-
tion of the numerical linear algebra. For large linear pro-
grams, the second most important issue is preprocessing to
reduce problem size. Many large models are generated by
matrix generators and modeling programs that create linear
programs where preprocessing is very effective. The pre-
processor implemented in OB1 uses simple inferences either
to reduce problem size or to determine that the problem is
infeasible. The types of reductions used by OB1 are now
briefly described.

1. Empty rows are either removed because they are
redundant or the empty row is used to determine that
the problem is infeasible, depending on the row type
and the right-hand side.

2. Empty columns are used to set variables at either their
upper or lower bounds or zero. Otherwise, it is deter-
mined that the problem is dual infeasible depending
upon the bounds and the cost coefficient.

3. Fixed columns are removed and the right-hand side
altered.

4. Infeasible bounds (I, > u, for some j) are used to
determine that the problem is infeasible.

5. Dual redundancies are used to determine that the dual
is infeasible or to fix primal variables at bounds and
remove them from the model.

6. By substituting appropriate upper and lower bounds
for variables in rows, redundant rows are identified,
or a set of variables that must be set to bounds is
determined.

7. Rows reduced to simple bounds are either removed as
redundant or used to improve variable bounds.

8. Columns with only a single nonzero coefficient are
used to change the row type of the corresponding row
or to eliminate the variable from the problem.

9. Nonnegative elements of rows can be used to estimate
an upper bound on a variable. The minimum of ail
such implied upper bounds can be computed, and this
can be used to determine redundant rows.

10. Equality rows with one positive element and all
nonnegative variables can be used to pivot the corre-
sponding variable out of the model.

11. Equality rows with exactly two variables can be used to
pivot one of the variables out of the model.

In OB1, these reductions are applied in two phases. First,
Rules 10 and 11 are repetitively applied, followed by re-
peated applications of Rules 1 through 9. After a solution is
found to the reduced problem, a solution is found to the
original problem by using an “uncrushing” technique.
Because of the complexity of this uncrushing algorithm,
Rules 10 and 11 are not applied again after the second
phase. Overall, these rules have proven very effective in
producing significant reductions in large models. The com-
putational results of Section 9 will document experience
with a number of large models.

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

10

Lustig, Marsten, and Shanno

8.3. Starting Point
All interior point methods are sensitive to the initial esti-
mate x° to the solution. The starting point currently used
by OB1 is documented in Lustig, Marsten, and Shanno .8
Briefly, it computes an estimate X° = AT(AAT) b, and
adjusts all x ; that are below a threshold value to a new
value at or above the threshold value. The slack variables
for bounds are also set above a threshold value, so that
initial bound infeasibility in the constraint x + s =wu is
allowed. For the dual variables, y° is set to 0 and the
vectors z° and w® are set in order to attempt to satisfy
the dual feasibility constraints while again staying above a
certain threshold. In OBI1, the default primal and dual
threshold values may be altered by changing them in a
control file supplied by the user, called the SPEC file.
Although the rather complex starting point used as a
default by OB1 was determined after extensive computa-
tional experimentation, almost any model can be solved in
a smaller number of iterations by experimenting to find a
problem-specific good starting point. The best choice of
a default starting point is still very much an open question,
not unlike determining the best initial starting basis for a
simplex algorithm.

9. Computational Results

Initial computational studies comparing interior point codes
to simplex codes concentrated on the NETLIB test set and
generally compared performance against MINOS (for
example, see Lustig, Marsten, and Shannot®*). One dif-
ficulty with such a comparison is that the NETLIB test
set, although initially extremely valuable, has been made
uninteresting by the advances in both simplex and interior
point methods. Most of the NETLIB problems can be solved
in under 1 minute on a scientific workstation. Furthermore,
both CPLEX and the OSL Release 2 simplex codes are
anywhere from 2 to 10 times faster than MINOS, which is
basically a nonlinear programming code.

One result of the early comparisons is irrefutable.
Namely, for small problems, simplex codes are far more
efficient than interior point codes. An immediate question
arises as to what is small. In our experience, any problem
where the sum of the number of rows plus the number of
columns is less than 2000 is considered small and much
more likely to be solved faster by simplex codes. For
moderate problems, when the number of rows plus the
number of columns is less than 10,000, results get more
interesting. Here, good simplex codes and interior point
codes compete more evenly in that, overall, no one method
shows a clear advantage. On specific models, however, the
differences can be very dramatic depending on the struc-
ture of the nonzeros in the matrix A.

As work progressed on both simplex and interior point
codes, larger models became available for testing. An initial
set of comparative results of OBl versus OSL Release 1
simplex is documented in Lustig, Marsten, and Shanno %]
For this paper, we have collected eight recently formulated
real-world (as opposed to randomly generated) models of a
size that were previously considered impossibly large. Here

we have tested OB1 versus the OSL Release 2 simplex code.
Other barrier codes, such as OSL barrier or LOQO,!
would show somewhat different results, as would the
CPLEX simplex code. However, the results shown here do
accurately indicate differences between interior and sim-
plex methods. It is indicative of the rapid pace of recent
advances that these models are now solved by both meth-
ods on scientific workstations. As will be seen, however,
the interior point method has a pronounced advantage on
all but one model. While this can be interpreted as a
demonstration that the predicted advantage of interior point
codes on large models is simply becoming evident, we
hasten to add one note of caution. As stated, these models
are real and proprietary and were made available to us
for testing because they were difficuit or impossible to
solve with the technology available to the modeler. Thus,
they may represent a somewhat biased sample. Nonethe-
less, they clearly demonstrate that large real models exist
for which interior point methods are vastly superior to the
best contemporary simplex codes.

In addition, results are included for two extremely large
models constructed for Delta Air Lines that were success-
fully solved by OB1 on a CRAY Y/MP. To the best of our
knowledge, these problems have not been solved by any
simplex code. Again, these are real-world models and pre-
sent further strong evidence that interior point methods
represent a significant advance in the state of the art.

Before presenting the results, it is important to state how
the comparative runs were done. All comparisons are
against the OSL Release 2 simplex code. This code gives the
user the option of either a primal simplex or a dual simplex
algorithm and gives four choices for a crash basis that can
be used with either algorithm. All eight options were run
on each model. Although someone experienced with both
the model and the OSL simplex code could undoubtedly
improve upon these particular times by manipulating the
model or the solution technique, it is our contention that
the average user will probably run a particular model with
default settings using the crash option that the user finds
best for that model, if indeed the user is willing to experi-
ment with all possible starts. Against this, OB1 was always
run on pure defaults, exactly as the average user would try
to solve a problem. In one case, it is then shown how OB1
can be improved by altering the starting point in the
control file supplied by the user (the SPEC file).

Tables ITI-V depict the original sizes of the problems and
the reductions in model size after the problem is prepro-
cessed, as discussed in Section 8. The results of running
each of the eight models on an IBM RS /6000 Powerstation
530 using OSL Release 2 simplex, and OBl are shown in
Tables VI through XIIL For OSL, iteration counts and CPU
times (in seconds) are given for each pairing of crash option
and simplex algorithm (primal or dual). For OB1, the CPU
time and number of interior point iterations are given, as
well as the number of nonzeros in the Cholesky factoriza-
tion. For both programs, preprocessing time is included
and is usually less than 5% of the total time. Finally, as
Tables IV and V demonstrate, OSL and OB1 do not pro-
duce identical reductions. Thus, the tests can be considered

Cupyligillu

2001 AlFrRights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOI: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

1

Interior Point Methods for Linear Programming

Table ITI. Original Problem Size

Table VII. Results for energy2

Model Rows Columns Non-Zeros
energyl 16,223 28,568 88,340
energy?2 8,335 21,200 161,160
fuel 18,401 33,905 205,789
schedule 23,259 29,342 75,520
continent 10,377 57,253 198,214
car 43,387 107,164 189,864
energy3 27,145 31,053 268,153
initial 27,441 15,128 95,971

Table IV. Problem Size, after Pre-processing by OB1

Model Rows Columns Non-Zeros
energyl 12,237 25,964 81,788
energy?2 6,665 20,656 142,641
fuel 13,330 31,511 186,284
schedule 5,156 12,506 37,174
continent 6,869 57,158 183,649
car 43,387 107,164 189,864
energy3 9,519 31,053 192,138
initial 19,100 11,173 79,249

Table V. Problem Size, after Pre-processing by OSL

OSL OSL Iterations OSL Time
Crash Primal Dual Primal Dual
1 61,116 130,653 11,082.32 21,638.78
2 73,228 109,994 14,194.86 18,295.98
3 68,398 106,532 11,160.70 17,695.70
4 74,764 106,022 14,54850 17,418.24
OBl Iterations OB1 Time Cholesky Nonzeros
44 403.49 466,844

Table VIII. Results for fuel

OSL OSL Iterations OSL Time
Crash Primal Dual Primal Dual

1 78216 200,306 20,623.28 53,817.91

2 89,028 194,044 23,895.31 51,828.05

3 82,425 145,288 19,855.74 39,607.27

4 77,744 149,102 20,211.66 40,315.80

OBl Iterations OBI1 Time Cholesky Nonzeros
66 2,362.95 1,260,697

Table IX. Results for schedule

Model Rows Columns Non-Zeros OSL OSL Iterations OSL Time
energyl 12,907 24,245 77,253 Crash Primal Dual Primal Dual
energy2 6,940 18,497 128,132 1 64376 67,785 832410 12,271.12
fuel 14,918 30,762 172,960

2 74432 47,847 932744 7,891.47
schedule 7,923 14,689 43,709
. 3 75476 52,026 9,659.25 8,476.78
continent 6,924 45,777 184,035 1 72,887 59,039 9,50850 9,533.72
car 43,387 107,164 189,864 4 ! I T
energy3 9,640 28,649 195,516 OB1 Iterations OB1 Time Cholesky Nonzeros
initial 19,193 10,956 79,380
36 1,037.33 860,248
Table VI. Results for energyl Table X. Results for continent
OSL OSL Iterations OSL Time OSL OSL Iterations OSL Time
Crash Primal Dual Primal Dual Crash Primal Dual Primal Dual
1 24,153 58,802 3,559.45 11,748.93 1 15,797 103,588 1,954.03 30,276.37
2 28,098 44953 3,961.85 8,556.77 2 26,572 72,734 3,072.82 13,915.88
3 29,731 48,281 4,199.95 8,845.63 3 17,486 92,490 2,066.85 25,730.60
4 28,491 32439 4,233.47 6,333.40 4 23,783 55,630 2,83291 11,091.39
OBl Iterations OB1 Time Cholesky Nonzeros OBl Iterations OB1 Time Cholesky Nonzeros
35 215.61 143,258 64 771.48 313,078

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

Lustig, Marsten, and Shanno

Table XI. Results for car

OSL OSL Iterations OSL Time

Crash Primal Dual Primal Dual

1 21,194 26,232 8,588.33 13,084.82
2 21,065 25328 8,563.74 13,972.07
3 31,006 35354 10,027.83 18,593.98
4 31,006 35,354 10,01856 18,537.19

OB1 Iterations OB1 Time Cholesky Nonzeros
53 645.21 188,153

Table XII. Results for energy3

OSL OSL Iterations OSL Time
Crash Primal Dual Primal Dual

1 26,313 131,312 5,283.86 44,468.94

2 57,212 71,043 10,851.67 16,459.54

3 26435 157,730 527091 52,763.17

4 75,886 76,018 14,271.20 19,741.72
OBl Iterations OB1 Time Cholesky Nonzeros

86 865.31 341,084

64 691.95

“With altered starting point.

Table XIII. Results for initial

OSL OSL Iterations OSL Time
Crash Primal Dual Primal Dual
1 33,534 7,134 494216 1,646.88
2 24,725 4,716 3,151.83 831.81
3 > 19,6717 5,412 1,085.50
4 26474 5,046 6,256.45 1,026.25
OBl Iterations OB1 Time Cholesky Nonzeros
58 9,252.81° 6,753,621

“Primal with crash 3: OSL returned with the message “Numeri-
cal difficulties: the iterations are not yielding better solutions.” The
objective value was 69,765,303 while the optimum 1s at 56,007,256.

YOB1 was run on a Model 550 to solve initial. The Model 550 is
about 40% faster than the Model 530 that was used for the other
runs.

comparative tests of complete systems rather than algo-
rithms, although it is our belief that if both codes used the
same problem reductions, the results would change very
little.

As can be seen from the first seven models, OB1 always
outperformed the OSL simplex code by a significant
amount, ranging from at least 2.5 to 20 times faster. Fur-
thermore, the iteration counts for all models using OBl

were very low, as predicted by theory. The eighth model,
however, shows precisely how interior point methods can
sometimes require large computation times to solve a prob-
lem. For the problem initial, the number of nonzeros in A
is 79,249, yet the number in L is 6,753,621. When this sort
of catastrophic fill-in occurs, interior point methods often
cannot compete with simplex codes. For the most part,
however, the performance is excellent.

Two large models from Delta Air Lines were run on the
CRAY Y/MP M-90. The results are included in Tables XIV
and XV.

It is our contention that these last two models represent
the state of the art of the type of model that can currently
be solved by interior point methods. To the best of our
knowledge, neither model has been solved by any simplex
code, due to these models’ massive size and degeneracy.
Furthermore, the second model illustrates how parallelism
can be applied to interior point methods. The CRAY basic
linear algebra routines to parallelize a dense Cholesky
factorization were used. As the dense window contained
more than half the nonzeros of L and computations were
perfectly balanced, overall computation time was reduced
by a factor of four by using eight processors. Sparse parallel
factorizations that are equally efficient should further
improve this performance.

Table XIV. Results for Delta Model 1

rows = 99,533 columns = 117,117 | Al = 407,068
After pre-processing:
rows = 32,229 columns = 68,539 | Al = 240,371

Number of Cholesky nonzeros = 32,974,664

Solution: 54 iterations to 8 digits

Task Time (CRAY CPU secs.)
pre-processing 55.55
ordering 458.75
solution 28,940.39
post-processing 62.95

Table XV. Results for Delta Model 2

rows = 270,796 columns = 303,986 | Al = 849,216
After pre-processing:
rows = 45,116 columns = 101,790 | Al = 342,180

Number of Cholesky nonzeros = 105,394,294

Solution: 40 iterations to 6 digits

Task Time (Cray CPU secs.)
pre-processing 128 secs
ordering 1094 secs
solution 82 hours”

22 hours wall-clock time

7 H 1L CaYa¥aWl A -
cSepyright-€-2601+AlRights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

Interior Point Methods for Linear Programming

10. Conclusions and Future Directions

This paper summarizes the extremely rapid development
of interior point methods for linear programming and dis-
Cusses issues important for their implementation. Compu-
tational results clearly demonstrate that great progress has
been made in the capability of routinely solving larger
models by either simplex or interior point methods. Fur-
thermore, the results show that for many large models,
interior point codes are significantly faster.

Three current efforts are underway to further improve
interior point methods. First, work is underway to design
and implement a full warm-start capability in OB1, based
on the work of Lustig, Marsten, and Shanno,*! where
warm-starting an interior point code from a previously
obtained solution to a perturbation of the problem is
demonstrated. In some cases, this should make interior
point methods competitive with simplex methods using an
advanced basis.

A second area of current interest is in determining
an analytically valid way of detecting infeasibility and
unboundedness in interior point codes. Often, these
conditions are detected by the preprocessor. Otherwise,
the condition is generally manifested by either the primal
or dual objective function becoming unbounded. However,
the determination of an analytically valid and numerically
computable set of conditions without reintroducing artifi-
cial variables remains an interesting topic.

Finally, anyone actively engaged in using contemporary
linear programming codes is quickly convinced that an
ideal code contains both interior point and simplex meth-
ods, with an efficient basis recovery method included to
easily bridge between the. methods. Bixby and Saltzman!®!
present an initial study of this issue. Recent work by Bixby
and Lustig indicates that such a crossover, based on
Megiddo’s strongly polynomial algorithm,*? will prove
very efficient in practice. When an efficient crossover exists,
a combination of the two algorithms can be very efficient
(see Bixby et’alPl). The future practice of solving lin-
ear programs should be able to take advantage of both
algorithms to solve extremely difficult, if not presently
unsolvable, problems.

Acknowiedgments

The research of David Shanno is sponsored by the Air Force
Office of Scientific Research, Air Force System Command under
grant AFOSR-92-J0046. The United States Government 1s autho-
rized to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright notations thereon.

The authors would like to thank three anonymous referees for
their comments on an initial draft of this paper.

References

1. I AbLer, N.K. KARMARKAR, M.G.C. RESENDE and G. VEIGa,
1989. An Implementation of Karmarkar’s Algorithm for Linear
Programming, Mathematical Programming 44, 297~335.

2. K.M. ANSTREICHER, 1990. On Long Step Path Following and
SUMT for Linear and Quadratic Programming, Technical
Report, Yale School of Management, Yale University, New
Haven, CT.

i

-

o™

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

O. BanN, J.L. GorFEIN, J.P. VIAL and O.D. MERLE, 1991. Imple-
mentation and Behavior of an Interior Point Cutting Plane
Algorithm for Convex Programming: An Application to Geo-
metric Programming, Working Paper, University of Geneva,
Geneva, Switzerland.

E.R. BARNEs, 1986. A Variation on Karmarkar’s Algorithm
for Solving Linear Programming Problems, Mathematical
Programming 36, 174-182.

RE. Bixsy,].W. GREGORY, LJ. LusTiG, R.E. MARSTEN and D.F.
SHANNO, 1992. Very Large-Scale Linear Programming: A Case
Study in Combining Interior Point and Simplex Methods,
Operations Research 40, 885~897.

. REE. BixBy and M.]. SALTZMAN, 1992, Recovering an Optimal LP

Basis from an Interior Point Solution, Technical Report 607,
Department of Mathematical Sciences, Clemson University,
Clemson, SC.

T.J. CARPENTER, 1]. LUSTIG, .M. MULVEY and D.F. SHANNO, 1993.
Higher Order Predictor-Corrector Interior Point Methods with
Application to Quadratic Objectives, SIAM Journal on Optimiza-
tion 3, 696~725.

LC. CHol, C.L. MoNMa and D.F. SHANNO, 1990. Further Devel-
opment of a Primal-Dual Interior Point Method, ORSA Journal
on Computing 2, 304-311.

CPLEX OPTIMIZATION, INC., 1993. Using the CPLEX ™ Callable
Library and CPLEX™ Mixed Integer Library, Incline Village,
Nevada.

D. pEN HERTOG, J. KALiskl, C. Roos and T. TERLAKY, 1992, A
Logarithmic Barrier Cutting Plane Method for Convex Pro-
gramming, Technical Report, TUDelft, The Netherlands.

D. pEN HERTOG and C. Roos, 1991. A Survey of Search Direc-
tions in Interior Point Methods for Linear Programming,
Mathematical Programming 52, 481-509.

L1 DikIN, 1967. Iterative Solution of Problems of Linear and
Quadratic Programming, Doklady Akademii Nauk SSSR 174,
747-748. Translated in: Soviet Mathematics Doklady 8, 674-675,
1967.

LI DikIN, 1974. On the Convergence of an lterative Process,
Upravlyaemye Sistemi 12, 54—60. (in Russian).

LS. Durr, A. ERisMAN and J. RED, 1986. Direct Methods for
Sparse Matrices, Clarendon Press, Oxford, England.

A.V. Fiacco and G.P. McCORMICK, 1968. Nonlinear Program-
ming: Sequential Unconstrained Minimization Techmigues, John
Wiley & Sons, New York.

K.R. FRriscH, 1955. The Logarithmic Potential Method for Con-
vex Programming, Institute of Economics, Unuversity of Oslo,
Oslo, Norway (unpublished manuscript).

D.M. Gay, 1987. A Variant of Karmarkar’s Linear Program-
ming Algorithm for Problems in Standard Form, Mathematical
Programming 37, 81-90.

D.M. Gay, 1988. Electronic Mail Distribution of Linear Pro-
gramming Test Problems, Mathematical Programming Society
COAL Neuwsletter.

A. GEORGE and J. L, 1981. Computer Solution of Large Sparse
Positive Definite Systems, Prentice Hall, Englewood Cliffs, NJ.
G. DE GHELLINCK and J.P. ViaL, 1986. A Polynomial Newton
Method for Linear Programming, Algorithmica 1:4, 425-453.
P.E. GiLL, W. MURRAY, M.A. SAUNDERS, J.A. TOMLIN and M.H.
WRIGHT, 1986. On Projected Newton Barrier Methods for Lin-
ear Programming and an Equivalence to Karmarkar’s Projec-
tive Method, Mathematical Programming 36, 183-209.
J.L. GorFIN and J.P. ViaL, 1990. Cutting Planes and Column
Generation Techniques with the Projective Algorithm, Journal
of Optimization Theory and Applications 65, 409-429,

C.C. GoNzAGa, 1989. Conical Projection Algorithms for Linear
Programming, Mathematical Programming 43, 151-173.

Copvright © 2001 All Rights Reserved

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 22:13 . For personal use only, all rights reserved.

Published in ORSA Journal on Computing on February 01, 1994 as DOL: 10.1287/ijoc.6.1.1.
This article has not been copyedited or formatted. The final version may differ from this version.

14

24.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34,

35.

36.

37.

38.

Lustig, Marsten, and Shanno

C.C. GONZAGA, 1992. Path Following Methods for Linear Pro-
gramming, SIAM Review 34:2, 167-227.

P. Huarp, 1970. A Method of Centers by Upper-Bounding
Functions with Applications, pp. 1-30 in Nonlinear Program-
ming: Proceedings of a Symposium held at the Untversity of Wiscon-
sin, Madison, Wisconsin, May 1970,].B. Rosen, O.L. Mangasarian
and K. Ritter (eds.), Academic Press, New York.
INTERNATIONAL BUSINESS MACHINES CORPORATION, 1991. Opii-
mization Subroutine Library Guide and Reference, Release 2.

N.K. KARMARKAR, 1984. A New Polynomial-Time Algorithm
for Linear Programming, Combinatorica 4, 373-395.

M. Kojma, N. Mecopo and S. MizuNo, 1991. A Primal-Dual
Infeasible Interior Point Algorithm for Linear Programming,
Research Report RJ 8500, IBM Almaden Research Center, San
Jose, CA.

M. KojiMa, S. MizuNo and A. YOsHISE, 1989. A Primal-Dual
Interior Point Algorithm for Linear Programming, in Progress
in Mathematical Programming: Interior Point and Related Methods,
N. Megiddo (ed.), Springer Verlag, New York, pp. 29-47.

E. KrRANICH, 1991. Interior Point Methods for Mathematical
Programming: A Bibliography, Discussion Paper 171, Institute
of Economy and Operations Research, Fern Universitdt Hagen,
P.O. Box 940, D-5800 Hagen 1, West Germany.

J. Liu, 1985. Modification of the Minimum-Degree Algorithm
by Multiple Elimination, ACM Transactions on Mathematical
Software 11, 141~153.

LJ. LusTiG, 1990/91. Feasibility Issues in a Primal-Dual Interior
Point Method for Linear Programming, Mathematical
Programming 49, 145-162.

LJ. LusTiG, R.E. MARSTEN and D.F. SHANNO, 1990. The Primal-
Dual Interior Point Method on the Cray Supercomputer,
pp. 70-80 in Large-Scale Numerical Optimization, Papers from the
Workshop held at Cornell University, Ithaca, NY, October 1989, T.F.
Coleman and Y. Li (eds.), vol. 46 of SIAM Proceedings in
Applied Mathematics, Society of Industrial and Applied
Mathematics, (SIAM), Philadelphia, PA.

1J. LusTiG, RE. MARSTEN and D.F. SHanNO, 1991. Computa-
tional Experience with a Primal-Dual Interior Point Method for
Linear Programming, Linear Algebra and its Applications 152,
191-222.

1J. Lusti, R.E. MARSTEN and D.F. SHANNO, 1991. Interior
Method vs. Simplex Method: Beyond NETLIB, COAL Newsletter
19, 41-44.

L]. LusTiG, R.E. MARrsTEN and D.F. SHANNO, 1992. Computa-
tional Experience with a Globally Convergent Primal-Dual
Predictor-Corrector Algorithm for Linear Programming, Tech-
nical Report SOR 92-10, School of Engineering and Applied
Science, Department of Civil Engineering and Operations
Research, Princeton University, Princeton, NJ.

IJ. LusTiG, R.E. MARSTEN and D.F. SHANNO, 1992. The Inter-
action of Algorithms and Architectures for Interior Point Meth-
ods, pp. 190-205 in Advances in Optimization and Parallel Com-
puting, P.M. Pardolos (ed.), North-Holland, Amsterdam, The
Netherlands.

1]. LusTIG, R.E. MARSTEN and D.F. SHANNO, 1992. On Imple-
menting Mehrotra’s Predictor-Corrector Interior Point Method
for Linear Programming, SIAM Journal on Optimization 2,
435-449.

39.

40.

41.

42,

43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

R.E. MARSTEN, M.J. SALTZMAN, D.F. SHANNO, J.F. BALLINTIN and
G.S. PiERCE, 1989. Implementation of a Dual Affine Interior
Point Algonthm for Linear Programming, ORSA Journal on
Computing 1, 287-297.

K.A. McSHangE, C.L. MoNMA and D.F. SHANNO, 1989. An
Implementation of a Primal-Dual Interior Point Method for
Linear Programming, ORSA Journal on Computing 1, 70-83.

N. MEeGDDO, 1989. Pathways to the Optimal Set in Linear
Programming, pp. 131-138 in Progress in Mathematical Pro-
gramming: Interior Point and Related Methods, N. Megiddo (ed.),
Springer Verlag, NY.

N. MEGIDDO, 1991. On Finding Primal- and Dual-Optimal Bases,
ORSA Journal on Computing 3, 63~65.

S. MEHROTRA, 1992. On the Implementation of a Primal-Dual
Interior Point Method, SIAM Journal on Optimization 2:4,
575-601.

. S. MizuNO, 1992. Polynomiality of the Kojima-Megiddo-Mizuno

Infeasible Interior Point Algorithm for Linear Programming,
Technical Report 1006, School of Operations Research and
Industrial Engineering, Cornell University, Ithaca, NY.

R.D.C. MoNTEIRO and I. ADLER, 1989. Interior Path Follow-
ing Primal-Dual Algorithms: Part I. Linear Programming,
Mathematical Programming 44, 27-41.

MJD. PowsLL, 1991. On the Number of Iterations of
Karmarkar’s Algorithm for Linear Programming, Technical
Report DAMTP 1991/NA23, Department of Applied Mathe-
matics and Theoretical Physics, University of Cambridge,
Cambridge, UK.

J. RENEGAR, 1988. A Polynomial-Time Algorithm, Based
on Newton’s Method, for Linear Programming, Mathematical
Programming 40, 59~93.

D.F. SHANNO and A. BaGcHi, 1990. A Unified View of Interior
Point Methods for Linear Programming, Annals of Operations
Research 22, 55-70.

G. SONNEVEND, 1986. An “Analytic Center” for Polyhedrons
and New Classes of Global Algorithms for Linear (smooth,
convex) Programming, pp. 866-876, in System Modelling and
Optimization: Proceedings of the 12th IFIP Conference held in
Budapest, Hungary, September 1985, A. Prekopa, J. Szelezsan and
B. Strazicky, (eds.), vol. 84 of Lecture Notes in Control and
Information Sciences. Springer Verlag, Berlin, West Germany.
M.J. Topp and B.P. BURRELL, 1986. An Extension of Karmarkar’s
Algorithm for Linear Programming using Dual Variables,
Algorithmica 1:4, 409-424.

J.A. TOMLIN, 1987. An Experimental Approach to Karmarkar’s
Projective Method for Linear Programming, Mathematical
Programming Study 31, 175-191.

R.J. VANDERBEI, 1992. LOQO User’s Manual, Technical Report
SOR 92-5, School of Engineering and Applied Science, Depart-
ment of Civil Engineering and Operations Research, Princeton
University, Princeton, NJ.

R.J. VANDERBEI, M.S. MEKETON and B.A. FREEDMAN, 1986. A
Modification of Karmarkar’s Linear Programming Algorithm,
Algorithmica 1:4, 395-407.

. H. YAMASHITA, 1986. A Polynomially and Quadratically Con-

vergent Method for Linear Programming, Working Paper,
Mathematical Systems Institute, Inc., Tokyo, Japan.

Copvright © 2001 All Rights Reserved

