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Abstract. The use of state-of-the-art areal topography measurement instrumentation 

allows for a high level of detail in the acquisition of topographic information at 

micrometric scales. The three-dimensional geometric models of surface topography 

obtained from measured data create new opportunities for the investigation of 

manufacturing processes through characterisation of the surfaces of manufactured 

parts. Conventional methods for quantitative assessment of topography usually only 

involve the computation of texture parameters; summary indicators of topography-

related characteristics that are computed over the investigated area. However, further 

useful information may be obtained through characterisation of signature topographic 

formations, as more direct indicators of manufacturing process behaviour and 

performance. In this work, laser powder bed fusion of metals is considered. An original 

algorithmic method is proposed to isolate relevant topographic formations and to 

quantify their dimensional and geometric properties, using areal topography data 

acquired by state-of-the-art areal topography measurement instrumentation.  

 

1.!Introduction 
 

The investigation of a manufacturing process through the signature it leaves on the fabricated 

surface plays an important role in process development and optimisation [1, 2]. The topography 

of a manufactured surface results directly from the physical phenomena that take place during 

fabrication, and typically contains information useful to infer and reconstruct what happened. 

The investigation of the signature surface features left behind by a manufacturing process is, 

therefore, particularly valuable for those processes that are still at an early stage of 

industrialisation; such as additive manufacturing of metals via powder bed fusion [3-5]. 

 

Recent advances in areal topography measurement [6] allow a high level of detail in the 

acquisition of topographic information at micrometric and sub-micrometric scales. However, 

conventional topography data analysis and characterisation methods generally involve only the 

computation of areal texture parameters (in particular, the set of areal parameters defined in 

ISO 25178-2 [7, 8]). As such, most surface texture analyses are conceptually oriented towards 

capturing the properties of an entire measured region into a series of summary indicators 

(texture parameters). Feature-based parameters are present in ISO 25178-2, but they 

exclusively refer to very specific types of features (hills and dales, see [7, 9, 10]) which may 

not necessarily be able to address a wider array of characterisation needs, where the user may 

be interested in the identification and characterisation of surface topography formations of any 

shape and size [11]. An opportunity is, therefore, missed in fully exploiting the acquired 

topographic information, pertaining to individual topographic features [12].   

 

In this work, laser powder bed fusion (LPBF) of metals is examined [13]. Initial attempts at the 

measurement and identification of topographic features present on LPBF surfaces are found in 

recent research by the authors [14] and elsewhere [15, 16]. Here an approach is presented that 

allows for a comprehensive identification and characterisation of the most relevant signature 

topographic features of LPBF surfaces. An original, algorithmic approach to the automated 

identification and characterisation of the signature features is proposed, which can be applied 
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seams may not be present if the laser path is sufficiently dense, and/or the layer fabrication 

process is particularly well optimised.  

 

A large-scale waviness component also typically encompasses the whole surface, affecting the 

straightness and regularity of the weld tracks on the surface. Many factors may contribute to 

the existence of the waviness component, including warping due to cooling effects during the 

process, as well as the topography of the layers underneath. 

 

Finally, smaller-scale features are typically present on the LPBF surface, the most common of 

which is weld track ripples (chevron-shaped ripples overlaid onto the weld tracks, resulting 

from the interaction between the laser and the melt pool – see Figure 1) [17]. At even smaller 

scales, cracks due to thermal cycles and local oxidation spots become visible (barely noticeable 

in Figure 1 due to insufficient resolution) [21] .  

 

2.2! Measurement set-up 

In this study, a total of four separate regions are measured, sufficiently far from the sample 

borders to be considered representative of “steady-state” manufacturing process conditions (i.e. 

avoiding unconventional thermal effects typical of edge regions). Each region is measured 

using a Zygo Newview 8300 coherence scanning interferometer (CSI) [22] and a 20! 

magnification objective (numerical aperture of 0.4). The measurement was performed with 

optimised source and detection settings as in [23]. The size of each measured region 

(752.6 ! 752.6) "m, or (1842 ! 1842) points, here referred to as field of view (FOV), is 

obtained by stitching of 2 ! 2 individual height images each of size (420 x 420) "m. The pixel 

size is (0.409 ! 0.409) "m. Stitching was performed in Zygo’s proprietary software, Mx. 

 

3.! The feature-based characterisation pipeline 
 

3.1! Overview 

The feature-based characterisation pipeline proposed in this work is comprised of dedicated 

methods and algorithms designed to specifically capture each target feature and its attributes. 

The dedicated pipeline is implemented in Matlab, though it should be possible to replicate the 

described methods in any other suitable software development environment; including through 

extensions of commercial surface metrology software. A detailed description of the feature-

based characterisation pipeline is illustrated in the following sections; a diagrammatic overview 

is also provided in Appendix A1. 

 

The feature-based characterisation pipeline targets spatter formations, weld tracks and weld 

ripples, and their attributes (for example, position, orientation, shape, size and density within 

the FOV). Larger-scale waviness and smaller-scale thermal cracks and oxidisation pools are 

not considered in this work. The class of surfaces being investigated has straight and parallel 

weld tracks; typically, the case for as-built horizontal layers generated by a LPBF process in 

raster/cross-hatch scanning mode [24].  

 

3.2! Pre-processing of the dataset 

Topography data is assumed to take the form of a height map (a matrix of height values 

distributed along the rows and columns of a regular xy grid), as is generally the conventional 

output from current state-of-the-art commercial optical areal topography measurement 

instrumentation [6]. Data pre-processing consists of levelling, removal of non-measured points 

(voids) and removal of spike-like measurement artefacts. Levelling is implemented via least-

squares mean plane subtraction; voids are removed by replacement with weighted interpolation 

of valid neighbours [12]; and spike-like measurement artefacts are identified as local outliers 

and removed by interpolation of neighbours [25]. 

 

Page 3 of 16 AUTHOR SUBMITTED MANUSCRIPT - MST-106328.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Page 4 of 16AUTHOR SUBMITTED MANUSCRIPT - MST-106328.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Page 5 of 16 AUTHOR SUBMITTED MANUSCRIPT - MST-106328.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 
Figure 5. Spatter formations detected on a region of the test surface. 

 

In Figure 5, an extracted region taken from the first test dataset is shown, highlighting the 

identification of three spatter formations. In Figure 6, the dimensional and geometric 

characterisation of the spatter formations shown in Figure 5 is illustrated. In Figure 6a, shape 

analysis via image-moments is applied to compute footprint area and aspect ratio for each 

individual spatter feature. In Figure 6b, the heights of each individual feature hi,s are shown 

along with the top and bottom regions used to compute them. In this application, the topmost 

region of the feature is algorithmically found by height thresholding, using the threshold value 

corresponding to the 10 % areal material ratio (Smr(c) = 10 %, see ISO 25178-2 [7, 28]), 

evaluated on the areal material ratio curve computed for each individual formation. The use of 

the areal material ratio curve allows the definition of reference height value solely in terms of 

the percentage of material laying above/below it, and thus it is very robust to local shape 

irregularities. The bottom region is found by creating a selection mask defined as the set 

difference between the feature expanded areal footprint (morphological operator: dilate, 

structuring element disk of radius 4.5 "m) and the original one. It should be noted that the 

morphological operator only applies to the selection mask and is not altering the underlying 

topography in any way.  

 

a) b) 

Figure 6. Dimensional and geometric characterisation of spatter formations: a) areal attributes via image 

moments, including footprint area ai,s calculated on the feature footprints; b) height hi,s calculated as 

vertical distances between topmost and surrounding feature regions (highlighted in yellow). 
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As in width computation, the height of each weld track is computed at multiple cross-sections. 

At each, the top reference region is identified by the height threshold Smr(c) = 10 % (evaluated 

on the areal material ratio curve computed for the specific cross-section), whilst the bottom 

region is defined by the points located at the sides of the track. Mean values for the heights of 

the points belonging to the top and bottom regions are computed, and their differences are 

stored as local height values of the weld track at each cross-section.  

 

3.5! Identification and characterisation of the weld ripples 

Weld ripples can be studied in regions free of spatter. Potentially interesting target attributes 

are related to how ripples are distributed on the weld track (orientation, shape) and spacing. 

The region shown in Figure 10a has been extracted from one of the datasets. To remove the 

underlying shape of the weld tracks and thus isolate the ripple texture, a three-step process is 

applied: 1. a low-pass Gaussian convolution filter is applied with a cut-off of 40 "m to identify 

the underlying large-scale topography and remove it (i.e. the residual is kept). 2. a smoothed 

approximation of the residual is obtained by LOESS fitting (span: 0.02 % of the extents of the 

FOV, first order polynomial [31]) and also removed from the residual. The reason a second 

order polynomial is not needed for the LOESS fitting in the weld ripple case (used previously 

for weld tracks) is the small scale of the FOV, where the fitting is applied. An example result 

of the form removal process is shown in Figure 10b. 

 

a) 

b)  

Figure 10. Form-removal operation to remove weld track topography and highlight the weld ripples; a) 

original, levelled topography (height-based colouring); b) residual topography after high-pass Gaussian 

filtering and subtraction of the LOESS fit smoothed approximation (height-based colouring). 

 

The topography remaining after form removal can then be subjected to edge detection via the 

Canny algorithm [26], which leads to multiple detected edges, some of which represent ripple 

crests and valleys (see Figure 11a). Local edge orientation is then found by applying principal 

components analysis within a moving window of 5 ! 5 pixels to determine local main texture 

direction (Figure 11b). 
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a)  b)  
Figure 11. Edge detection after form removal; a) results of the Canny algorithm; b) edges coloured 

according to local direction. 

 

In order to compute the spacing between adjacent ripples, k-means clustering segmentation on 

local edge orientation [32] is applied to isolate the largest set of edges with similar orientation 

(Figure 12a). Selected edges are sectioned orthogonally to their mean direction, and a reference 

edge spacing measure is computed by computing the mean of the Euclidean distances of 

neighbouring intersection points laying along the same cross-section line (Figure 12b). As, 

typically, two crests are separated by a valley (i.e. amounting to three consecutive edges), ripple 

spacing is assumed as twice the edge reference spacing measure. Closer examination of Figure 

12b shows that not all intersections are reported by the algorithm. This failure is partly 

imputable to a hardcoded threshold on the maximum considerable distance between 

consecutive edges (case-specific, and computed based on initial observation of the results), and 

partly imputable to rounding error in the segment-to-segment intersection algorithms. This 

finding raises the issue of the importance of considering algorithmic error in the feature-based 

characterisation result and associated uncertainty, as further discussed in Section 5. 

 

a)  b)  
Figure 12. Characterisation of weld ripple spacing: a) edges with similar orientation extracted via 

clustering (k-means, k = 8); b) magnified view showing the local computation of ripple spacing as the 

distance between adjacent crests (green dots: intersection points between edges and cross sectioning 

lines; blue segments: valid samples for reference edge spacing computation). 

 

3.6! Validation method 

Validation of the proposed approach would, in theory, imply comparison to a reference 

procedure for feature-based characterisation of LPBF surfaces. However, there is no such 
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procedure, and in general, for any surface topography, there is no established method of 

algorithmically identifying and characterising individual topographic features.  

In this work, therefore, the results obtained by means of the proposed methods are compared to 

visual identification and manual measurement performed on the digital topography dataset 

through interactive functionality provided by commercial surface metrology software.  

MountainsMap by DigitalSurf [33] is used. The area of the i
th

 spatter feature as,i is obtained by 

drawing a closed contour around the visually identified feature. Height hs,i is similarly obtained 

by first tracing two closed contours, one delimiting the top region of the formation, the other 

delimiting its immediate surroundings. hs,i is then computed as the difference between two 

horizontal planes obtained by averaging the height values of points located within the traced 

regions. The width of the i
th

 weld track wwt,i is obtained by drawing two parallel straight lines 

approximately following valleys either side of the track. The distance between the two lines is 

then taken as wwt,i. Lines are always drawn in pairs around each weld track, visually averaging 

irregular track boundaries. Weld track orientation owt,i is the orientation of the pair of parallel 

lines previously drawn for computing wwt,i, measured with respect to the x axis. To determine 

track height, three closed contours are drawn: one to identify the top of the i
th

 weld track, and 

two regions at its sides. The height of the i
th

 track hwt,i is the height difference between the mean 

height of the top region and the mean height of the two side regions, aggregated. Each side 

region is reused for the neighbouring track. Weld ripples are too numerous to make the manual 

computation feasible, though sampled measurements of spacing are taken by drawing a pair of 

parallel lines along two consecutive ripple ridges and measuring the distance between these 

lines. 

 

4.! Results 
 

In Table 1, the performance of algorithmic and visual feature identification methods is shown, 

expressed in terms of the number of features detected on each topography dataset. Feature 

numbers could only be computed for spatter formations and weld tracks, as it was not possible 

to isolate individual weld ripples. Results were computed on the four test datasets obtained as 

described in Section 2.2. 

 
Table 1. Number of identified features in the four datasets 

Test dataset ID Number of identified weld tracks Number of identified spatter formations 

Algorithmic Visual Algorithmic Visual 

1 8 7 23 22 

2 7 6 36 23 

3 8 6 38 14 

5 8 6 24 19 

 

The discrepancies in the number of identified weld tracks shown in Table 1 are due to different 

choices made by the algorithm and the operator, in relation to how to handle track instances 

barely appearing at the boundary of each dataset. Such instances are automatically included by 

the identification algorithm, but are discarded later at the characterisation stage because they 

lack sufficient information. In this case, they were immediately discarded by the operator and 

thus not included in the results of visual identification. 

 

Concerning the number of spatter formations, the algorithmic method appears to be consistently 

returning a higher number of feature instances than the visual method. Further investigation of 

the results suggests that the operator discarded some of the smaller formations, interpreting 

them as noise or finding them to be visually indiscriminable from the background topography.  

 

In Figure 13, areas and heights of mutually recognised spatter formations acquired using the 

manual and algorithmic procedures are compared through the computation of confidence 

intervals (CIs) for the population mean (data collected by merging the results for all the feature 
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instances identified in the four datasets – the number of instances is reported in Table 1). In 

Figure 14, the same comparison is shown for widths and heights of the mutually recognised 

weld tracks. 

 

a) b)  
Figure 13. Spatter formations – area and height: confidence intervals on the mean at 95 % confidence 

for manual and algorithmic methods; a) population mean of as (spatter area); b) population mean of hs 

(spatter height). Sample obtained by aggregating all feature instances found in the four test datasets. 

a)  b)  

Figure 14. Weld tracks – width and height: confidence intervals on the mean at 95 % confidence level 

for manual and algorithmic methods; a) population mean of wwt (weld track width); b) population mean 

of hwt (weld track height). Sample obtained by aggregating all feature instances found in the four test 

datasets. 

 

Whilst value dispersion is similar between visual and algorithmic methods (see CI widths in 

Figure 13 and Figure 14), the differences between the means obtained from algorithmic and 

manual methods are more significant. This is to be expected, given that attributes are computed 

differently between the two methods, essentially assigning different meanings to the same 

name. This is a relevant issue which will be discussed in Section 5. 

 

In Figure 15, the results of manual and algorithmic computation of weld ripple spacing are 

shown. While the means are similar, the CI width for the manual method is much higher. This 

effect is due to both the smaller number of samples that can be collected by an operator in a 

reasonable time (five samples per dataset as opposed to approximately 400 samples per dataset 

in the algorithmic method), as well as the difficulties associated with reliable visual 

identification of weld ripple boundaries.  
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Figure 15. Weld ripple spacing: manual and algorithmic methods. Sample obtained by aggregating all 

feature instances found in the four test datasets. 

 

5.! Discussion 

 
5.1! Manual against algorithmic feature-based characterisation 

Feature-based characterisation based on visual identification and manual (computer-assisted) 

calculation of dimensional attributes is likely more flexible than the algorithmic method, given 

that it is performed by a human operator. However, the manual method is intrinsically less 

repeatable, its performance worsening with an increasing number of feature instances in the 

field of view. Moreover, the manual method is significantly less reproducible: as feature shapes 

become more complex and boundaries more difficult to ascertain, apparently straightforward 

concepts, such as width and height, become more difficult to define, and subjective 

interpretation on how feature dimensions should be calculated becomes a factor of concern. 

Visual identification methods are similarly burdened, and as features become more complex 

and less clearly distinguishable from the background, it is increasingly difficult to capture the 

reasoning process followed by an expert operator in the assessment of whether or not a 

particular region of the topography should be identified as a feature instance. 

 

Conversely, algorithmic approaches require greater initial investment to set-up. Moreover, the 

complexity of some feature shapes and their surroundings may render the endeavour of 

automated identification prohibitively difficult in some circumstances. Additionally, stricter 

checks on the results and handling of special cases are almost invariably necessary to filter out 

incorrectly identified topographic formations. Nevertheless, it is undeniable that, once an 

appropriate algorithmic pipeline is in place, both for identification and for characterisation of 

the target features, regardless of associated assessment error, significant advantages can be seen 

both in terms of repeatability and reproducibility. In terms of repeatability, algorithmic methods 

are particularly advantageous in cases where large numbers of feature instances are expected. 

In terms of reproducibility, algorithmic methods are particularly advantageous because the 

definitions of ‘what a feature is’ and ‘what a specific feature’s attributes are’ are implicitly cast 

in the procedure used to identify the feature and to compute its attributes.  

 

5.2! Generalising the feature-based approach 

The methods presented here have been “calibrated” for a specific test case, involving LPBF of 

metals. Different applications will likely require different set-ups of the main algorithmic data 

processing parameters, and in some cases may require entirely new solutions; specifically 

designed to overcome case-dependent challenges related to either feature identification, feature 

characterisation or both. Evidently, such a heavily-customised approach to feature-based 

characterisation requires a significant upfront overhead for identifying a suitable pipeline, and 

tuning it to the application-specific requirements. However, it is believed by the authors that 

this initial cost is balanced by the benefits discussed in the previous section, i.e. improved 

manual algorithmic
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repeatability and reproducibility, (resulting from the removal of subjective assessment) and the 

capability to address a higher number of feature instances per dataset.  

 

5.3! Measurement uncertainty 

As for any measurement method, some estimation of associated uncertainty should be provided 

together with the results of feature-based characterisation. In principle, as the proposed solution 

essentially comprises a series of data processing steps, the assessment of measurement 

uncertainty consists of both understanding the error associated to the input data (i.e. to the 

topography datasets as measured by areal topography measurement instruments), and how the 

associated uncertainty propagates through the algorithmic data processing pipeline. Methods 

for investigating measurement error associated to areal topography datasets have been recently 

introduced in the literature [17, 34-36], though investigation of error propagation through the 

feature-based characterisation pipeline is still at the initial stages [37]. Algorithmic error in 

particular must be investigated in great detail, as two different implementations of the same 

conceptual approach, or even the same implementation, evolving over time, may lead to 

different results. The investigation of uncertainties associated to dimensional and geometric 

characterisation of localised topographic features represents one of the major challenges in 

further development of the feature-based characterisation paradigm. 

 

6.! Conclusions 
 

An algorithmic approach has been presented for the automated identification and 

characterisation of signature features present on the surface of metallic parts fabricated using 

laser powder bed fusion. As opposed to describing surface topography through areal field 

texture parameters (such as those defined in the ISO 25178-2 standard), the proposed solution 

provides a customised data processing pipeline for extraction of information directly relating 

to the shape, size and position of topographic features of interest. 

 

The proposed solution examines weld tracks, spatter formations and weld ripples, computing 

attributes which are important to manufacturing researchers interested in gaining further insight 

into the manufacturing process. The proposed method has been applied to four test datasets 

extracted from a Ti6Al4V sample surface manufactured by a selective laser melting machine. 

Results produced using the proposed method have been compared to those obtained by visual 

identification and manual measurement, performed with the assistance of commercial software. 

The proposed method provides a more repeatable and reproducible result, overcoming the 

drawbacks of subjective assessment typical of human operators However, the issue is raised 

that apparently simple concepts, such as width or height, may acquire completely different 

meanings when considering complex feature shapes, depending on the procedure adopted to 

compute them. 

 

Texture parameters (e.g. those specified by ISO 25178-2) have the advantage that they can be 

calculated with little requirement for any prior knowledge of the surface (aside from that needed 

to set filter cut-offs and for form removal). By contrast, the feature-based characterisation 

approach illustrated in this work does indeed require prior knowledge about the shapes and 

sizes of the features that will be encountered (e.g. ballpark estimations for setting-up the method 

parameters). While evidently the need for knowledge is an obstacle to the ease of application 

and the generalisability of the method, feature-based characterisation provides a whole new set 

of opportunities for the development of more advanced data analysis pipelines.  

 

Although the proposed procedure has been designed to address a very specific application, (i.e. 

the characterisation of signature topographic features in laser powder bed fusion metallic 

surfaces), the solution presented in this work provides a clear indication of the importance of 

feature-based characterisation as a new paradigm for surface metrology. The general outcome 

of this work is the demonstration that customised analysis pipelines can be built to directly 
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address end-user information needs (for example, the desire to know the dimensional and 

geometric properties of specific features of interest), as opposed to simply computing a large 

array of summary indicators (i.e. ISO 25178-2 areal field texture parameters) which may not 

necessarily provide a direct answer to the matter being investigated, especially when links to 

processing parameters or final function are required.  
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