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Abstract—The objectives of this paper are to propose a method
that can accurately estimate the human heart rate using an
ultra-wideband radar system, and to determine the performance
of the proposed method through measurements. The proposed
method uses the feature points of a radar signal to estimate the
heart rate efficiently and accurately. Fourier- and periodicity-
based methods are inappropriate for estimation of instantaneous
heart rates in real time because heartbeat waveforms are highly
variable, even within the beat-to-beat interval. We define six
radar waveform features that enable correlation processing to
be performed quickly and accurately. In addition, we propose a
feature topology signal that is generated from a feature sequence
without using amplitude information. This feature topology signal
is used to find unreliable feature points, and thus to suppress
inaccurate heart rate estimates. Measurements were taken using
ultra-wideband radar, while simultaneously performing electro-
cardiography measurements in an experiment that was conducted
on nine participants. The proposed method achieved an average
root-mean-square error in the interbeat interval of 7.17 ms for
the nine participants. The results demonstrate the effectiveness
and accuracy of the proposed method. The significance of this
work for biomedical research is that the proposed method will
be useful in the realization of a remote vital signs monitoring
system that enables accurate estimation of heart-rate variability,
which has been used in various clinical settings for the treatment
of conditions such as diabetes and arterial hypertension.

Index Terms—signal processing, heart rate, ultra-wideband
radar, signal feature

I. INTRODUCTION

C
ONTINUOUS and noncontact measurement of human

vital signs is an important healthcare technology [1]

because such a technology would allow long-term moni-

toring capabilities to be realized without the attachment of

uncomfortable electrodes or sensors to the patient’s body.

Many studies have been conducted into the development of
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noncontact vital signs monitoring systems using ultrasound

[2] and microwaves [2]-[5].

Continuous measurement of respiration is useful in the

diagnosis of respiratory disorders such as sleep apnea, and

numerous studies have been conducted on this topic [4]-[15].

When compared with respiration, heart rate (HR) measure-

ment requires higher sensitivity to accurately detect target

displacement (usually the chest wall movement) that is of sub-

millimeter order, whereas the displacement due to respiration

is of the order of a few centimeters.

To achieve high sensitivity, continuous wave (CW)-based

systems that use motion-modulated phase information are

preferable. However, a received CW signal contains not only

the signal from the participant, but also stationary clutter,

crosstalk from the transmitter, and even signals from other

people if there are any in the surrounding area. These effects

must be dealt with using direct current (DC) suppression

techniques [4], [16], [17] and crosstalk suppression methods

with circular polarization [18]. Another approach is the use

of an ultra-wideband (UWB) radar system that has high range

resolution and thus mitigates the crosstalk and clutter in other

range bins. Systems that use impulse radio (IR) have large

fractional bandwidths, such as 200% [9], 70% [11] and 60%

[12]. These IR systems, however, suffer from relatively low

sensitivity to slight motions such as heartbeats.

In this study, we have chosen a radar system that has a

relatively narrow fractional bandwidth of 3% (726 MHz 10dB-

bandwidth and operating frequency of 26.4 GHz) but is still

classified as UWB radar by the US Federal Communications

Commission standard because its bandwidth exceeds 500

MHz. This system represents a compromise between CW-

based and IR-based systems because it has the high sensitivity

of CW-based systems, and the clutter suppression capability of

IR-based systems. By finding the correct range bin, this system

can obtain clutter-free vital signals without DC component or

crosstalk.

The time derivative of the instantaneous HR is called the

heart rate variability (HRV). HRV has been proposed as a

useful indicator for prevention of sudden cardiac death [19]

and diagnosis of stress syndromes [20]. Spectral analysis of

the HRV provides two components, the low frequency and

high frequency components, which are lower and higher than

0.15 Hz, respectively. The ratio of these components provides
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crucial information for sympatho-vagal balance evaluation

[2], [21]. For this purpose, it is essential to estimate the

instantaneous HR or its inverse number, the inter-beat interval

(IBI), in real time.

There are four distinct approaches for HR estimation:

the periodicity-based approach, the Fourier-based approach,

the template-waveform-based approach and the feature-based

approach. The first approach assumes the periodicity of the

vital signs. Conte et al. [22] proposed a maximum likelihood

period estimator that can accurately estimate the periodicity of

an arbitrary periodic signal. However, the problem with this

method is that real vital signals are not always periodic. The

second approach is based on Fourier analysis, wherein a signal

is modeled as a summation of sinusoidal waves. Fourier-based

methods include the use of well-known periodograms [5], [8],

[12], [17], spectrograms [23], and parametric methods such as

the maximum entropy method (MEM) [20] and the RELAX

algorithm [24]. The third approach requires a reference signal

that provides a template waveform. A received signal is then

modeled as a summation of these template waveforms with

various coefficients and delays [20], [21]. The challenge in

using this type of approach is that it is not always easy to

compose an ideal template waveform from real measurement

data.

The fourth approach uses feature points of the signals,

and this paper is categorized in that group. Several studies

have used this approach implicitly. The most common way to

analyze the correlation between electrocardiogram (ECG) data

and microwave data is via a comparison of the waveform peaks

[17], [25], [26], which are among the main signal features.

Hu et al.[16] estimated the HR using the zero-crossings of

a radar signal after application of various signal processing

techniques. In this case, zero-crossings were chosen as a

feature for IBI estimation.

This paper extends the fourth approach, and uses the feature

points of radar signals to estimate IBIs accurately. First,

we define six types of feature points from a radar signal.

Second, we propose an efficient IBI estimation method that

only calculates a correlation for a small number of time lags

that corresponds to matched feature points. Third, we use

the topological information from the signal features to reject

any unreliable features. Finally, the proposed methods are

applied to measurement data taken from nine test participants

to demonstrate the effectiveness of the proposed method. For

this purpose, we performed simultaneous measurements using

ultra-wideband radar and an ECG device.

II. MEASUREMENT SETUP AND PREPROCESSING

The radar equipment used in this study generates signals

with a center frequency of 26.4 GHz and an occupied band-

width (99%) of 780 MHz. The transmitted signal is modulated

by a pseudo-noise (PN) sequence, composed of an m-sequence

of 500 chip/s. The receiver uses the same PN sequence to

demodulate the received signal; this process is also called

pulse compression. The pulse-compressed signal is then down-

converted and sampled to obtain in-phase (I) and quadrature

(Q) signals with a fast-time sampling interval ∆tf of 2 ns,

90 deg.
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Fig. 1. Block diagram of the measurement system.

TABLE I
BIOMETRIC DATA OF THE TEST PARTICIPANTS.

Metrics Mean ± STD

Age 23.3 ± 1.6 years

Weight 61.4 ± 8.9 kg

Height 173.4 ± 6.1 cm

BMI 20.4 ± 2.0 kg/m2

which corresponds to a range bin size of 30 cm. The range

measurement interval ∆t is 1.285 ms, which corresponds to

the time resolution of a slow time. Hereafter ∆t denotes as

the sampling interval. A block diagram of the radar system is

shown in Fig. 1. We used two horn antennas that have 3-dB

beam-widths of ±11◦ in both the E- and H-planes.

It should be noted here that the frequency band (26 GHz)

used in this study has been adopted for automotive short

range radar (SRR) sensors in both Europe and the USA. We

originally developed a 26 GHz radar system [27] for use in

automotive SRR system applications. In this paper, however,

we use the same radar system for a different purpose: vital

signs monitoring.

We took data from nine healthy test participants using a

protocol that is approved by the Kyoto University Graduate

School and the Faculty of Medicine’s Ethics Committee. The

participants were all male with ages ranging between 21

and 27; this is largely because the participants were selected

from students of the Engineering department, where most of

TABLE II
MEASURED AND ESTIMATED HEARTBEAT INTERVAL RESULTS FOR TEST

PARTICIPANTS.

Participant Tobs [s] IBImin/max [s] HRave [bpm]

1 20 0.68/0.80 79.0

2 50 0.50/0.86 77.0

3 55 0.95/1.22 52.7

4 55 0.57/0.71 91.2

5 55 0.68/1.01 62.8

6 55 0.83/0.95 65.9

7 52 0.67/1.08 59.8

8 40 0.91/1.06 59.8

9 30 0.58/0.83 79.0
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Fig. 2. Measurement setup with test participant sitting in a chair with a
backrest.

the students are young males. The biometric statistical data

from these participants are shown in Table I. The highest

and lowest body mass indexes (BMIs) were 22.9 and 17.6,

respectively; these values are lower than the average BMI

because all participants are of East Asian origin and are

thus likely to have a relatively low BMI, especially if they

are young and male. The participants were clothed normally

during the measurements. We asked the participants to take off

any jackets, but did not impose any restrictions on the type of

clothing worn.

The test participants remained seated in a chair with their

back in contact with the backrest (see Fig. 2), facing the radar

antennas. The participants were instructed to hold their breath

and remain still during each measurement. Both antennas were

directed towards each participant’s chest, such that the main

lobe of the beam pattern was directed at the pit of the subject’s

stomach. The duration of each measurement varied from 20

to 55 s, depending on the length of time that each participant

could hold their breath. Table II shows the measurement

duration Tobs, the minimum and maximum IBIs IBImin/max,

and the average HR of each participant HRave.

A complex radar signal is denoted by s0(t, r), where the

real and imaginary parts are the I and Q channel outputs, t
is a slow time, and r is the range r = ctf/2 corresponding

to a fast time tf , where c is the speed of a radiowave. We

detect the range r0 by finding the maximum signal intensity

r0 = arg maxr

∫

|s0(t, r)|2dt to locate the target range. Then,

we apply an arctangent demodulation [3], [10], [23], [24] to

obtain the phase of the signal sp(t) = � s0(t, r0). The phase

is defined here such that a larger phase value corresponds to

a longer distance between the antenna and the target.

For comparison, we also measured the ECG using a wire-

less ECG device (RF-ECG EK, Micro Medical Device, Inc.,

Tokyo, Japan). The device samples the voltage between a pair

of electrodes attached to the chest of the test participant with a

sampling frequency of 204 Hz. The ECG data measured using

this device are used for reference to evaluate the accuracy of

the radar measurements. We detect the time intervals between

adjacent R-waves for comparison with the IBI estimates using

radar signals.
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Fig. 3. Raw data of ECG voltage (black) and radar phase signal (red).

Figure 3 shows an example of an ECG signal and a radar

signal phase sp(t) that were measured simultaneously. Their

peaks seem to be synchronized, and this will be quantitatively

analyzed later. The peak-to-peak amplitude of the radar signal

phase is approximately 0.35 rad, which corresponds to a

target displacement of 0.63 mm when considering the center

wavelength of 11.4 mm.

The phase signal sp(t) contains a trend component that

is caused by unintentional body movement. We estimate this

trend s1(t) by smoothing sp(t) using a Gaussian function that

is denoted by

gσ(t) =
1√

2πσ2
exp

(−t2

2σ2

)

, (1)

where σ is a scaling parameter. The smoothing can then be

written as

sσ(t) = gσ(t) ∗ sp(t), (2)

where the symbol ∗ is a convolution operator. To estimate

the signal trend, σ = σ0 must be larger than a typical

heartbeat interval. In this study, we chose σ0 = 1.285 s

which corresponds to a HR of 47 bpm; this value lower

than a typical HR. This trend, sσ0(t), is subtracted from

sp(t), and a smoothing technique is then applied to obtain

s(t) = (sp(t)−sσ0(t))∗gσ1(t). We chose a smoothing length

of σ1 = 6.4 ms in this study. Hereafter the signal s(t) denotes

the radar signal.

III. SIGNAL FEATURES AND ESTIMATING HEART RATE

Wang et al. [28] discussed some feature points of the radar

signal, but these feature points were not used quantitatively

in their analysis. Hu et al. [16] used the zero-crossings of a

processed radar signal to estimate HRs. Mikhelson et al. [17]

indicated that the peaks of a radar signal are synchronized

with the corresponding ECG signal. In this way, certain feature

points have attracted attention in some studies. However, these

have not been used systematically for HR estimation.

First, let us define the feature points that are used in later

sections for IBI estimation. The features used in this study are

• PK: peaks satisfying ds(t)/dt = 0 and d2s(t)/dt2 < 0,

• VL: valleys satisfying ds(t)/dt = 0 and d2s(t)/dt2 > 0,
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Fig. 4. Radar signal s(t) with feature points of PKs (solid red lines) and
VLs (dashed blue lines).

• RDP: rising derivative peak ds(t)/dt > 0, d2s(t)/dt2 =
0 and d3s(t)/dt3 < 0,

• RDV: rising derivative valley ds(t)/dt > 0,

d2s(t)/dt2 = 0 and d3s(t)/dt3 > 0,

• FDP: falling derivative peak ds(t)/dt < 0, d2s(t)/dt2 =
0 and d3s(t)/dt3 < 0, and

• FDV: falling derivative valley ds(t)/dt < 0,

d2s(t)/dt2 = 0 and d3s(t)/dt3 > 0.

Figure 4 shows an example of a radar signal s(t) and the

detected peaks (PK) and valleys (VL) are displayed in red and

blue, respectively. In this figure, we can see that there are two

peaks that are located close to each other (a pair at around

t = 0.7 s and t = 1.5 s) in each cycle. These double peaks

are occasionally found in radar signals, and have also been

observed by other researchers in the literature; for example,

see Fig. 6 of [20] and Fig. 11 (c) of [17]. The existence

of these double peaks indicates that simple peak detection is

insufficient for accurate HR estimation, because such a method

might detect the wrong one of the two peaks.

Figure 5 shows the time-derivative ds(t)/dt of the signal

in Fig. 4. Four feature points RDP, RDV, FDP and FDV are

also displayed using solid red lines (RDP and FDP) and dashed

blue lines (RDV and FDV). In this way, we can obtain limitless

numbers of feature points by differentiating the original signal

with respect to time multiple times. However, a higher-order

derivative emphasizes the higher frequency components, and

this makes the use of this derivative impractical for actual

noisy signals. Therefore, we detect and use these six features

in this paper.

IV. FEATURE-BASED CORRELATION FUNCTION

We detect the feature points PK, VL, RDP, RDV, FDP,

and FDV sequentially, and then store them in a sequence

fn (n = 1, · · · , N). The time and type of a feature point

fn are denoted by τn and gn, respectively, where gn ∈
{PK, VL,RDP, RDV, FDP,FDV}. The feature points are

arranged in ascending order as τ1 < τ2 < · · · < τN .

For each feature point, the first task is to find the next feature

point that has the highest correlation. The feature point must

also have the same feature type gn. We call this feature point
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Fig. 5. Differentiated radar signal ds(t)/dt and feature points, including
RDPs and FDPs (solid red lines) and RDVs and FDVs (dashed blue lines).

an associated feature point, with an index that is denoted by

m̂n. We perform this process by calculating the local cross-

correlation function. First, we define a (2K + 1) × 1 vector

composed of the signal samples around the n-th feature point

as

vn = [s(τn −K∆t), s(τn − (K −1)∆t), · · · , s(τn +K∆t)]T,
(3)

where ∆t is the sampling interval. We determine K using

K∆t = Tc/2 where Tc is the time span to calculate a

correlation. The DC component is subtracted as

vn = vn − 1

2K + 1
Uvn, (4)

where U is a (2K + 1)× (2K + 1) matrix that contains 1s in

all its elements. The correlation cm,n between the m-th and

n-th feature points is defined as

cm,n =
v

T
nvm

|vn| |vm| , (5)

if the feature points are of the same kind, where gn = gm.

The correlation cm,n is defined to be zero when gn �= gm.

For each feature point n, its associated feature point m̂n is

defined as

m̂n = max
m>n

cm,n. (6)

We can then estimate the IBI, or the instantaneous HR, as

h ((τm̂n
+ τn)/2) = τm̂n

− τn, (7)

where h(t) is the IBI at time t, and the time is defined as

the midpoint between two corresponding feature points in this

paper. Unlike conventional correlation functions, this method

only calculates the correlation values for a few possible com-

binations of feature points. For example, a typical heartbeat

signal s(t) has only a few peak points every second. Assuming

that the test participant has a normal heart rate, the correlation

integral only needs to be performed a few times for each

feature point, and this is even faster than using a fast Fourier

transform-based auto-correlation function. This means that the

proposed method is much faster than conventional methods.

The black curve at the bottom of Fig. 6 is an example of

the radar signal s(t), and its local correlation function for
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Fig. 6. A radar signal (lower black curve), its local auto-correlation function
(upper blue curve) and correlation coefficients evaluated using the proposed
method (red lines).

the reference feature point (PK) at t = 0.25 s is shown as

the blue curve at the top. Here, we set the window width

for the correlation process to be Tc = 1.8 s, which covers

an entire cycle of a normal heartbeat waveform. The three

red lines indicate the correlation values that were calculated

using our proposed method. There are only three matched

feature points (PKs) with time lags in the range between 0.5

and 1.3 s that correspond to HRs of between 45 and 120

bpm, respectively. In this way, the proposed method limits the

number of correlation values that have to be evaluated, which

enables the fast computation required in realtime applications.

V. FEATURE TOPOLOGY SIMILARITY FOR SELECTING

FEATURE POINTS

In the previous section, we proposed an efficient IBI es-

timation method using the feature points found in a wave-

form. However, not all detected features can be used for

IBI estimation because the waveform can even change within

the duration of a pulse-to-pulse interval. Figure 7 shows an

example of a signal with two cycles. The second cycle is

shifted to be above the first and is then superposed for ease of

comparison. The first and second cycles are represented by the

black and blue lines, respectively. In the figure, along with the

signal waveforms, the detected feature points are also shown:

the PK, VL, RDP, RDV, FDP, and FDV are marked with a red

cross, a blue cross, a red circle, a red-filled circle, a blue-filled

circle, and a blue circle, respectively.

It is observed that the feature points located around the

peaks show higher reproducibility than the points located

around the valleys. The feature point sequence around the

peaks is RDP-RDV-RDP-PK-FDV-VL-RDP-PK-FDV-FDP-

FDV for both cycles. In contrast, the feature point sequences

around the valleys are not consistent, with FDP-FDV-FDP-

FDV-FDP-FDV-VL-RDP-RDV for the first cycle, and FDP-

FDV-VL-RDP-PK-FDV-VL-RDP-RDV for the second cycle.

From this observation, we conclude that we need to find

reliable feature points that are consistent over at least a few

cycles. To perform pattern matching of these sequences, the

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time [s]

N
o

rm
a

liz
e

d
 S

ig
n

a
l

Fig. 7. Radar signal and feature points. PK, VL, RDP, RDV, FDP, and FDV
are marked with a red cross, a blue cross, a red circle, a red-filled circle, a
blue-filled circle, and a blue circle, respectively.
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Fig. 8. Schematic of state space representation of a radar signal measuring
heartbeats.

similarity of the sequences must be evaluated using topological

information rather than their waveform correlations.

We introduce a new approach to evaluate the topological

similarities of sequences. The six feature points (PK, VL, RDP,

RDV, FDP, and FDV) can be displayed schematically on a state

space with axes of d2s/dt2 and ds/dt (see Fig. 8). If a signal

is sinusoidal, then the state vector moves along the outer circle

in the figure, because for a signal s(t) = cos(ωt + θ),
[

d2s/dt2

ds/dt

]

= −ω

[

ω cos(ωt + θ)
sin(ωt + θ)

]

. (8)

The actual radar signal, however, has some inflection points

that correspond to the two additional states shown inside the

circle in Fig. 8.

Inspired by this, we generate a feature topology signal st(t),
which has a complex value, from the original signal s(t). st(t)
does not contain signal intensity information, because that

information is already used in the feature-based correlation

method that was introduced in the previous section. For the

n-th feature point fn, st(τn) can take a complex number form,

depending on the type of feature gn. In this case, st(τn) is set

to be 1, j, −j/2, −1, −j, and j/2 for VL, RDP, RDV, PK, FDV,
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Fig. 10. Example of feature phase signal.

and FDP, respectively. The proposed assignment of complex

values is illustrated in Fig. 9. For t �= τn, st(t) takes the value

of the closest feature point, which means that st(t) = st(τL),
where L is found from L = arg minl |τl − t|. Note that the

complex values for both RDV and FDP have opposite signs to

the corresponding points shown in Fig. 8. This is because the

proposed assignment has higher sensitivity when calculating

the cross-correlation. This can be understood by recalling that

in Fig. 7, the feature point pairs RDP-RDV and FDV-FDP

were often observed alternately. We use this characteristic to

improve the matching accuracy of our algorithm.

We show an example of the angle of a feature topology

signal, � st(t) in Fig. 10. In the lower part of the figure, the

original signal s(t) and its feature points fn (n = 1, · · · , N)
are shown as a blue line and red circles, respectively. The red

line in the upper part of the figure displays the phase of the

feature topology signal. We see that the phase remains constant

around each feature point.

Let us define the self-similarity matrix (SSM) M of the

topology signal st(t). The (m,n)-th element of M is defined

to be the local correlation between two feature points, fm and

fn as

Mm,n =

∣

∣

u
H
mun

∣

∣

2

|um|2 |un|2
, (9)

where ·H denotes the Hermitian transpose operator, and the
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Fig. 11. Self-similarity matrix of feature topology signal using the phase
assignment, as shown in Fig. 8.
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Fig. 12. Self-similarity matrix of feature topology signal using the proposed
phase assignment, as shown in Fig. 9.

complex vector un is a vector for the n-th feature point and

is defined as

un = [st(τn−Kt∆t), st(τn−(Kt−1)∆t), · · · , st(τn+Kt∆t)]T,
(10)

where Kt∆t = Tt/2.

Figures 11 and 12 show examples of SSMs M using a

measured signal from a participant. The former and latter were

generated using two different phase assignments: a simple

assignment of 1, j, j/2, −1, −j, −j/2 for VL, RDP, RDV,

PK, FDV, and FDP, and the proposed assignment as shown

in Fig. 9. We see only blurred blobs in Fig. 11, whereas

Fig. 12 shows clearer lines, which means that the proposed

phase assignment provides better resolution of the topological

similarity. Note that we only calculated the SSMs above for

comparative display. The actual proposed method calculates

the topological similarities for the associated feature indices n
and m̂n. Therefore, the SSM does not need to be calculated

during the actual processing, which means that the topological

similarities can be calculated quickly.

Figure 13 compares the feature topological similarity with

the waveform correlation that has already been shown in

Fig. 6. The feature topological similarity is shown in black

in the upper part of the figure. The topological similarity
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Fig. 13. Case when correlation and topological similarity are consistent.
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Fig. 14. Case with high correlation and low topological similarity. The
topological similarity detected the deformation of the waveforms.

has its largest value when the correlation value is also large.

We show another example in Fig. 14, in which waveform

deformation is observed; the second waveform is distorted

when compared with the first. While the correlation value is

relatively high, the feature topology similarity gives a lower

value, and thus successfully detects the deformation of the

waveform. Therefore, by using the feature topology similarity

and a suitable threshold, we can eliminate the unreliable

feature point pairs.

VI. PROCEDURE OF THE PROPOSED METHOD

The proposed method is performed using the following

procedure.

1) Obtain the phase signal sp(t) = � s0(t, r0), where r0 =
arg maxr

∫

|s0(t, r)|2dt.
2) Estimate a trend s1(t) = gσ0(t) ∗ sp(t) by smoothing.

3) Subtract the trend from the phase signal and apply

smoothing as s(t) = (sp(t) − s1(t)) ∗ gσ1(t).
4) Extract the feature points from s(t), ds(t)/dt, and

d2s(t)/dt2.

5) For each feature point n, calculate the correlation value

cm,n using Eqs. (3)-(5).

6) Find the associated feature point m̂n using Eq. (6) if

maxm cm,n > θc.

7) For each pair of associated feature points n and m =
m̂n, check their feature topology similarity Mm,n using

Eqs. (9) and (10).

8) If Mm,n > θt, calculate the IBI using Eq. (7).

9) Apply a median filter of length Nm to the IBI sequence,

followed by smoothing with correlation length σ2 to

obtain the final IBIs.

We set σ0 = 1.285 s, σ1 = 6.4 ms, σ2 = 0.2 s, Tc = 1.8 s,

Tt = 0.3 s, θc = 0.1 and θt = 0.7 and Nm = 11. When

searching for the maximum cm,n, we assume that the IBI

should be between 0.5 and 1.3 s, which corresponds to an

HR of between 120 and 45 bpm.

Although we have proposed a method with θc = 0.1 and

θt = 0.7, we must also vary these values to clarify the

effectiveness of the combined use of the correlation cm,n and

the feature topology similarity Mm,n. In the next section, we

compare the performance of the proposed method with two

other simplified methods: in the first, θc = 0.1 and θt = 0.0
and in the second, θc = 0.7 and θt = 0.0. These simplified

methods in practice do not use the feature topology when we

set θt = 0.0. The first method with θc = 0.1 maintains a low

threshold that leads to a low rejection ratio, which means that

even if the waveform correlation is as low as 0.1, we trust the

associated feature point. In contrast, the second method rejects

any correlation values lower than θc = 0.7, which leads to

stricter feature point selection.

VII. ACCURACY EVALUATION OF THE PROPOSED

METHOD

In this section, we apply the proposed method to actual

radar data that were measured simultaneously with the ECG

measurements for the nine participants. Figures 15 and 16

show the IBIs that were estimated using the proposed method

and the ECG data for participants 2 and 4, respectively. These

results illustrate the remarkable performance of the proposed

method. The estimate shown in Fig. 15 does not follow the

IBI of the ECG accurately when the HR changes abruptly

in the period from 25 to 30 s, which results in a relatively

large error. The estimate shown in Fig. 16 is good, apart from

the errors observed at t = 30 s. Figure 17 shows the radar

signal s(t) for participant 4, in which we see a sudden jolt

at around t = 30 s. This is the reason why the estimated IBI

is inaccurate in Fig. 16 during the same time period. Apart

from these irregular sections, the proposed method is able to

estimate the IBI accurately overall.

Because one of the purposes of this study is the development

of a method to monitor HRV, we now give an example

involving the participant with the largest heart rate variability.

Fig. 18 shows the IBIs that were estimated using both the

proposed method and the ECG data for participant 7, who had

the longest and shortest IBIs 0.67 s and 1.08 s, respectively.

As shown in this figure, the proposed method can accurately

estimate even dynamically changing IBIs. The RMS error in

IBI estimation for this participant is 7.9 ms.

In the proposed method, we use six types of waveform

features, while many existing technologies [17], [25], [26] only

use the waveform peaks to estimate the IBIs. For comparison,
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Fig. 15. IBIs estimated from the ECG (black) and the radar signal (red)
using the proposed method for participant 2.
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Fig. 16. IBIs estimated from the ECG (black) and the radar signal (red)
using the proposed method for participant 4.

let us show part of the radar signal s(t) for participant 4

and its peaks in Fig. 19, where the signal is the same as

that shown in Fig. 17. The waveforms are shown to be so

complicated that IBI estimation from the peaks is a difficult

task. To avoid this problem, we apply a smoothing technique

(Eq. (2)) with σ = 65.0ms to the raw radar signal and then

calculate the peaks (see Fig. 20). In this case, each cycle
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Fig. 17. Radar signal s(t) for participant 4.
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Fig. 18. IBIs estimated from the ECG (black) and radar (red) signal using
the proposed method for participant 7.
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Fig. 19. Zoomed section of radar signal s(t) for participant 4, showing the
signal peaks.

appears to have only a single peak, which makes the IBI

estimation process easier. The IBIs that were estimated using

the ECG, the proposed method, and the peaks in Fig. 20

are shown as black circles, red lines, and blue dashed lines

in Fig. 21, respectively. The accuracy of the IBIs that were

estimated using the peaks is lower than that of the IBIs that

were estimated using the proposed method. This is because

the multiple small peaks shown in Fig. 19 are averaged by the

smoothing technique, and the detailed information contained

in the waveform was spoiled. In this way, the use of multiple

feature points is shown to be useful for accurate IBI estimation.

Figure 22 shows the RMS error of the estimated IBIs,

where the error is defined as the difference between the

IBIs estimated from the radar signal and those estimated

from the ECG data. In this figure, we also applied the two

simplified methods with different parameters. The thresholds

are set to be (θc, θt) = (0.1, 0.0), (θc, θt) = (0.7, 0.0),
and (θc, θt) = (0.1, 0.7), where the last is for the proposed

method. In this figure, we see that the proposed method (in

red) gives the smallest error of 7.17 ms on average over the

nine participants, while the other two methods (shown in blue

and green) give errors of 13.6 and 12.6 ms; this means that

the proposed method can estimate IBIs more accurately than

the two methods that do not use the feature topology by 90.1
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Fig. 20. Smoothed radar signal with σ = 65.0ms for participant 4 showing
the signal peaks.
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Fig. 21. IBIs estimated using the ECG data (black circles), the proposed
method (red), and the conventional peak-based method (blue).

and 76.4 %, respectively.

Figure 23 shows the scattering diagram of the IBIs that were

estimated from the ECG data and the radar signal for partic-

ipant 6. The black and red plots indicate the results for the

proposed method with (θc, θt) = (0.1, 0.7) and for a method

without use of topology information with (θc, θt) = (0.1, 0.0),
respectively. It is observed that the proposed method provides a

higher correlation between the two data sets. This comparison

can be evaluated quantitatively using correlation coefficients.

Figure 24 shows the correlation coefficients of the IBIs that

were estimated from the radar signal and the ECG data. In this

figure, we see that the proposed method gives the highest cor-

relation coefficient when compared with the other two methods

that do not use topological information. When averaged over

the nine participants, the correlation coefficient of the proposed

method is 0.975, whereas the coefficients of the other two

methods are 0.903 and 0.929. The correlation coefficient is

thus improved by using the topological information by margins

of 8.0 and 4.9 % in comparison to the other two methods. This

result also demonstrates that the proposed method is effective

in the estimation of a dynamically changing HR. We therefore

conclude that the topological information of the features is

essential for accurate IBI estimation.
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Fig. 22. RMS error of IBIs estimated using the proposed method (in red)
with (θc, θt) = (0.1, 0.7), compared with the errors of correlation-based
methods with (θc, θt) = (0.1, 0.0) (in blue) and (θc, θt) = (0.7, 0.0) (in
green).
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Fig. 23. Scattering diagram of IBIs derived from ECG and radar data
using the proposed method (black) and the simplified method without use
of topology information (red) for participant 6.

VIII. CONCLUSION

We have proposed an efficient and accurate method for

instantaneous HR estimation using a UWB radar system. The

proposed method uses the feature points found in radar signals

to efficiently compute an approximate correlation function

that is used to find associated feature pairs. This method

enables quick correlation computation. In addition, we have

introduced a new concept called feature topology, which

uses the information of the feature sequence patterns, rather

than the original waveform itself. We devised an appropriate

mapping from the feature points to discrete complex numbers

to evaluate the reproducibility of the feature sequences. Using

the feature topology similarity, we can choose reliable feature

points to improve the IBI estimation accuracy. The estimated

IBIs were compared with the simultaneously measured ECG

data to evaluate the accuracy of the proposed method. The

results indicated the effectiveness of the proposed method,

which worked well for the data of all nine participants. The

next step in the course of this research is the extension of the

proposed method to cases with respiration. Another important

task in our future research will be to increase the number of
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Fig. 24. Correlation coefficients of IBIs estimated from the radar signal
and ECG data. The proposed method (in red) with (θc, θt) = (0.1, 0.7), is
compared with the correlation-based methods with (θc, θt) = (0.1, 0.0) (in
blue) and (θc, θt) = (0.7, 0.0) (in green).

participants and select from a wider sample of the population

that includes females, older people and subjects with higher

BMI values to investigate the performance of the proposed

method under various operating conditions.
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