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1 Introduction

Georegistration is the alignment of an observed image with a geodetically cali-

brated reference image. Such alignment allows each observed image pixel to inherit

the coordinates and elevation of the reference pixel it is aligned to. Accurate georeg-

istration of video has far-reaching implications for the future of automation. An agent

(such as a robot or a UAV), equipped with the ability to precisely assign geodetic co-

ordinates to objects or artifacts within its field of view, can be an indispensable tool

in applications as diverse as planetary exploration and automated vacuum cleaners.

In this chapter, we present an algorithm for the automated registration of aerial video

frames to a wide area reference image. The data typically available in this application

are the reference imagery, the video imagery and the telemetry information.

The reference imagery is usually a wide area, high-resolution ortho-image. Each

pixel in the reference image has a longitude, latitude and elevation associated with it

(in the form of a DEM - Digital Elevation Map). Since the reference image is usually

dated by the time it is used for georegistration, it contains significant dissimilarities

with respect to the aerial video data. The aerial video data is captured from a cam-

era mounted on an aircraft. The orientation and position of the camera are recorded,

per-frame, in the telemetry information. Since each frame has this telemetry informa-

tion associated with it, georegistration would seem to be a trivial task of projecting the

image onto the reference image coordinates. Unfortunately, mechanical noise causes

fluctuations in the telemetry measurements, which in turn causes significant projec-

tion errors, sometimes up to hundreds of pixels. Thus while the telemetry information

provides coarse alignment of the video frame, georegistration techniques are required

to obtain accurate pixel-wise calibration of each aerial image pixel. In this chapter,

we use the telemetry information to orthorectify the aerial images, to bring both im-

ageries into a common projection space, and then apply our registration technique to

achieve accurate alignment. The challenge in georegistration lies in the stark differ-

ences between the video and reference data. While the difference of projection view is

accounted for by orthorectification, four types of data distortions are still encountered:

(1) Sensor Noise in the form of erroneous Telemetry Data, (2) Lighting and Atmo-

spheric Changes, (3) Blurring, (4) Object Changes in the form of forest growths or



new construction. It should also be noted that remotely sensed terrain imagery has the

property of being highly self-correlated both as image data and elevation data. This

includes first order correlations (locally similar luminance or elevation values in build-

ings), second order correlations (edge continuations in roads, forest edges, and ridges),

as well as higher order correlations (homogeneous textures in forests and homoge-

nous elevations in plateaus). Therefore, while developing georegistration algorithms

the important criterion is the robust handling of outliers caused by this high degree of

self-correlation.

1.1 Previous Work

Currently several systems that use geolocation have already been deployed and tested,

such as Terrain Contour Matching (TERCOM) [10], SITAN, Inertial Navigation /

Guidance Systems (INS/IGS), Global Positioning Systems (GPS) and most recently

Digital Scene-Matching and Area Correlation (DSMAC). Due to the limited success

of these systems and better understanding of their shortcomings, georegistration has re-

cently received a flurry of research attention. Image-based geolocation (usually in the

form of georegistration) has two principal properties that make them of interest: (1)

Image capture and alignment is essentially a passive application that does not rely on

interceptable emissions (like GPS systems) and (2) Georegistration allows independent

per-frame geolocation thus avoiding cumulative errors. Image based techniques can

be broadly classified into two approaches: Intensity-based approaches and elevation-

based approaches.

The overriding drawback of Elevation-based approaches is that they rely on the

accuracy of recovered elevation from two frames, which has been found to be difficult

and unreliable. Elevation based algorithms achieve alignment by matching the refer-

ence elevation map with an elevation map recovered from video data. Rodrequez and

Aggarwal in [24] perform pixel-wise stereo analysis of successive frames to yield a

recovered elevation map or REM. A common representation (‘cliff maps’), are used

and local extrema in curvature are detected to define critical points. To achieve corre-

spondence, each critical point in the REM is then compared to each critical point in the

DEM. From each match, a transformation between REM and DEM contours can be re-

covered. After transforming the REM cliff map by this transformation, alignment veri-

fication is performed by finding the fraction of transformed REM critical points that lie

near DEM critical points of similar orientation. While this algorithm is efficient, it runs

into similar problems as TERCOM i.e. it is likely to fail in plateaus, ridges and depends

highly on the accurate reconstruction of the REM. Finally, no solution was proposed

for computing elevation from video data. More recently in ([25]), a relative position

estimation algorithm is applied between two successive video frames, and their trans-

formation is recovered using point-matching in stereo. As the error may accumulate

while calculating relative position between one frame and the last, an absolute position

estimation algorithm is proposed using image based registration in unison with eleva-

tion based registration. The image based alignment uses Hausdorff Distance Matching

between edges detected in the images. The elevation based approach estimates the ab-

solute position, by calculating the variance of displacements. These algorithms, while

having been shown to be highly efficient, restrict degrees of alignment to only two



(translation along x and y), and furthermore do not address the conventional issues

associated with elevation recovery from stereo.

Image-based registration, on the other hand, is a well-studied area. A somewhat

outdated review of work in this field is available in [4]. Conventional alignment tech-

niques are liable to fail because of the inherent differences between the two imageries

we are interested in, since many corresponding pixels are often dissimilar. Mutual In-

formation is another popular similarity measure, [30], and while it provides high levels

of robustness it also allows many false positives when matching over a search area of

the nature encountered in georegistration. Furthermore, formulating an efficient search

strategy is difficult. Work has also been done in developing image-based techniques

for the alignment of two sets of reference imageries [32], as well as the registration of

two successive video images ([3], [27]). Specific to georegistration, several intensity

based approaches to georegistration intensity have been proposed. In [6], Cannata et

al use the telemetry information to bring a video frame into an orthographic projection

view, by associating each pixel with an elevation value from the DEM. As the teleme-

try information is noisy the association of elevation is erroneous as well. However, for

aerial imagery that is taken from high altitude aircrafts the rate of change in elevation

may be assumed low enough for the elevation error to be small. By orthorectifying

the aerial video frame, the process of alignment is simplified to a strict 2D registra-

tion problem. Correspondence is computed by taking 32× 32 pixel patches uniformly

over the aerial image and correlating them with a larger search patch in the Reference

Image, using Normalized Cross Correlation. As the correlation surface is expected to

have a significant number of outliers, four of the strongest peaks in each correlation

surface are selected and consistency measured to find the best subset of peaks that

may be expressed by a four parameter affine transform. Finally, the sensor parame-

ters are updated using a conjugate gradient method, or by a Kalman Filter to stress

temporal continuity. An alternate approach is presented by Kumar et al in [18] and

by Wildes et al in [31] following up on that work, where instead of ortho-rectifying

the Aerial Video Frame, a perspective projection of the associated area of the Refer-

ence Image is performed. In [18], two further data rectification steps are performed.

Video frame-to-frame alignment is used to create a mosaic providing greater context

for alignment than a single image. For data rectification, a Laplacian filter at multi-

ple scales is then applied to both the video mosaic and reference image. To achieve

correspondence, coarse alignment is followed by fine alignment. For coarse alignment

feature points are defined as the locations where the response in both scale and space is

maximum. Normalized correlation is used as a match measure between salient points

and the associated reference patch. One feature point is picked as a reference, and the

correlation surfaces for each feature point are then translated to be centered at the ref-

erence feature point. In effect, all the correlation surfaces are superimposed, and for

each location on the resulting superimposed surface, the top k values (where k is a

constant dependant on number of feature points) are multiplied together to establish a

consensus surface. The highest resulting point on the correlation surface is then taken

to be the true displacement. To achieve fine alignment, a ‘direct’ method of alignment

is employed, minimizing the SSD of user selected areas in the video and reference

(filtered) image. The plane-parallax model is employed, expressing the transformation



between images in terms of 11 parameters, and optimization is achieved iteratively

using the Levenberg-Marquardt technique.

In the subsequent work, [31], the filter is modified to use the Laplacian of Gaussian

filter as well as it’s Hilbert Transform, in four directions to yield four oriented energy

images for each aerial video frame, and for each perspectively projected reference im-

age. Instead of considering video mosaics for alignment, the authors use a mosaic of

3 ‘key-frames’ from the data stream, each with at least 50 percent overlap. For corre-

spondence, once again a local-global alignment process is used. For local alignment,

individual frames are aligned using a three-stage Gaussian pyramid. Tiles centered

around feature points from the aerial video frame are correlated with associated patches

from the projected reference image. From the correlation surface the dominant peak is

expressed by its covariance structure. As outliers are common, RANSAC is applied for

each frame on the covariance structures to detect matches consistent to the alignment

model. Global alignment is then performed using both the frame to frame correspon-

dence as well as the frame-to-reference correspondence, in three stages of progressive

alignment models. A purely translational model is used at the coarsest level, an affine

model is then used at the intermediate level, and finally a projective model is used

for alignment. To estimate these parameters an error function relating the Euclidean

distances of the frame-to-frame and frame-to-reference correspondences is minimized

using the Levenberg-Marquardt Optimization.

1.2 Our Work

The focus of this paper is the registration of single frames, which can be extended

easily to include multiple frames. Elevation based approaches were avoided in favor

of image-based methods due to the unreliability of elevation recovery algorithms, es-

pecially in the self-correlated terrains typically encountered. It was observed that the

georegistration task is a composite problem, most dependant on a robust correspon-

dence module which in turn requires the effective handling of outliers. While previous

works have instituted some outlier handling mechanisms, they typically involve disre-

garding some correlation information. As outliers are such a common phenomenon, the

retention of as much correlation information as possible is required, while maintaining

efficiency for real-time implementation. The contribution of this work is the presen-

tation of a feature-based alignment method that searches over the entire set of corre-

lation surface on the basis of a relevant transformation model. As the georegistration

is a composite system, greater consistency in correspondence directly translates into

greater accuracy in alignment. The algorithm described has three major improvements

over previous works: Firstly it selects patches on the basis of their intensity values

rather than through uniform grid distributions, thus avoiding outliers in homogenous

areas. Secondly, relative strengths of correlation surfaces are considered, so that the

degree of correlation is a pivotal factor in the selection of consistent alignment. Fi-

nally, complete correlation information retention is achieved, avoiding the loss of data

by selection of dominant peaks. By searching over the entire set of correlation surfaces

it becomes possible not only to handle outliers, but also to handle the ‘aperture effects’

effectively. The results demonstrate that the proposed algorithm is capable of handling

difficult georegistration problems and is robust to outliers as well.
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Fig. 1. A diagrammatical representation of the workflow of the proposed alignment algorithm.

The four darker gray boxes (Reference Image, Aerial Video Frame, Sensor Model, and Eleva-

tion Model) represent the four inputs to the system. The three processes of Data Rectification,

Correspondence and Model Update are shown as well.

The structure of the complete system is shown in Figure 1. In the first module

Projection View rectification is performed by the orthographic projection of the Aerial

Video Image. This approach is chosen over the perspective projection of the reference

image to simplify the alignment model, especially since the camera attitude is approx-

imately nadir, and the rate of elevation change is fairly low. Once both images are in

a common projection view, feature-based registration is performed by linking correla-

tion surfaces for salient features on the basis of a transformation model followed by

direct registration within a single pyramid. Finally, the sensor model parameters are

updated on the basis of the alignment achieved, and the next frame is then processed.

The remainder of this chapter is organized as follows. In Section 2 the proposed

algorithm for feature-based georegistration is introduced, along with an explanation

of feature selection and feature alignment methods. Section 3 discusses the sensor

parameter update methods. Results are shown in Section 4 followed by conclusions in

Section 5.



2 Image Registration

In this paper, alignment is approached in a hierarchical (coarse-to-fine) manner,

using a four level Gaussian pyramid. Feature-based alignment is performed at coarser

levels of resolution, followed by direct pixel-based registration at the finest level of res-

olution. The initial feature-matching is important due to the lack of any distinct global

correlation (regular or statistical) between the two imageries. As a result,“direct” align-

ment techniques, i.e. techniques globally minimizing intensity difference using the

brightness constancy constraint, fail on such images since global constraints are often

violated in the context of this problem. However, within small patches that contain

corresponding image features, statistical correlation is significantly higher. The se-

lection of a similarity measure was normalized cross correlation as it is invariant to

localized changes in contrast and mean, and furthermore in a small window it linearly

approximates the statistical correlation of the two signals. Feature matching may be

approached in two manners. The first approach is to select uniformly distributed pixels

(or patches) as matching points as was used in [6]. The advantage of this approach is

that pixels, which act as constraints, are spread all over the image, and can therefore

be used to calculate global alignment. However, it is argued here that uniformly se-

lected pixels may not necessarily be the most suited to registration, as their selection

is not based on actual properties of the pixels intensities themselves (other than their

location). For the purposes of this algorithm, selection of points was based on their

response to a feature selector. The proposition is that these high response features are

more likely to be matched correctly and would therefore lend robustness to the entire

process. Furthermore, it is desirable in alignment to have no correspondences at all in

a region, rather than have inaccurate ones for it. Because large areas of the image can

potentially be textured, blind uniform selection often finds more false matches than

genuine ones. To ensure that there is adequate distribution of independent constraints

we pick adequately distributed local maximas in the feature space. Figure 2 illustrates

the difference between using uniformly distributed points (a) and feature points (b).

All selected features lie at buildings, road edges, intersections, points of inflexion etc.

2.1 Feature Selection

As a general rule, features should be independent, computationally inexpensive, robust,

insensitive to minor distortions and variations, and rotational invariant. Additionally,

one important consideration must be made in particular for the selection of features

for remotely sensed land imageries. It has already been mentioned that terrain imagery

is highly self-correlated, due to continuous artifacts like roads, forests, water bodies

etc. The selection of the basic features should be therefore related to the compact-

ness of signal representation. This means a representation is sought where features

are selected that are not locally self-correlated, and it is intuitive that in normalized

correlation between the Aerial and Reference Image such features would also have a

greater probability of achieving a correct match. In this paper, Gabor Filters are used

since they provide such a representation for real signals, [9].

Gabor filters are directional weighted sinusoidals convoluted by a Gaussian win-

dow, centered at the origins (in two dimensions) with the Dirac function. They are

defined as:



 

Fig. 2. Perspective Projection of the Reference Image. (a) The Aerial Video Frame displays what

the camera actually captured during the mission . (b) Orthographic Footprint of the Aerial Video

Frame on the Reference Imagery (c) The Perspective projection of Reference Imagery displays

what the camera should have captured according to the telemetry.

G(x, y, θ, f) = ei(fxx+fyy)e−(f2

x
+f2

y
)(x2+y2)/2σ2

(1)

where x and y are pixel coordinates, i =
√
−1, f is the central frequency, q is the filter

orientation, fx = f cos θ, fy = f sin θ, and s is the variance of the Gaussian window.

Figure 3 shows the four orientations of the Gabor filter were used for feature detection

on the Aerial Video Frame. The directional filter responses were multiplied to provide a

consensus feature surface for selection. To ensure that the features weren’t clustered to

provide misleading localized constraints, distributed local maximas were picked from

the final feature surface. The particular feature points selected are shown in Figure 4.

It is worth noting that even in the presence of significant cloud cover, and for occlusion

by vehicle parts, in which the uniform selection of feature points would be liable to

fail, the algorithm manages to recover points of interest correctly.

2.2 Robust Local Alignment

It is often over-looked that a composite system like georegistration cannot be any bet-

ter than the weakest of its components. Coherency in correspondence is often the point

of failure for many georegistration approaches. To address this issue a new transfor-

mation model based correspondence approach is presented in the orthographic projec-

tion view, however this approach may easily be extended to more general projection

views and transformation models. Transformations in the orthographic viewing space

are most closely modelled by affine transforms, as orthography accurately satisfies the



 

Fig. 3. Gabor filters are directional weighted sinusoidals convoluted by a Gaussian window. Four

orientations of the Gabor filter are displayed.

weak-perspective assumption of the affine-model. Furthermore, the weak perspective

model may also compensate for some minor errors introduced due to inaccurate eleva-

tion mapping. In general, transformation models may be expressed as

U(x) = T · X(x) (2)

where U is the motion vector, X is the pixel coordinate based matrix, and T is a

matrix determined by the transformation model. For the affine case particularly, the

transformation model has six parameters:

u(x, y) = a1x + a2y + a3 (3)

v(x, y) = a4x + a5y + a6 (4)

where u and v are the motion vectors in the horizontal and vertical directions.

The six parameters of affine transformation are represented by the vector a,

a = [a1 a2 a3 a4 a5 a6]

If a planar assumption (the relationship between the two images is planar) is made to

simplify calculation, the choice of an orthographic viewing space proves to be superior

to the perspective viewing space. All the possible transformations in the orthographic

space can be accurately modelled using six parameters of the affine model, and it is

easier to compute these parameters robustly compared to a possible twelve-parameter

model of planar-perspective transformation (especially, since the displacement can be



Fig. 4. Examples of features selected in challenging situations. Feature points are indicated by

the black ’+’s. Points detected as areas of high interest in the Gabor Response Image. Features

are used in the correspondence module to ensure that self-correlated areas of the images do not

contribute outliers. Despite cloud cover, occlusion by aircraft wheel, and blurring, salient points

are selected. These conditions would otherwise cause large outliers and consequently leads to

alignment failure.

quite significant). Furthermore, making a planarity assumption for a perspective pro-

jection view undermines the benefits of reference projection accuracy. Also, since the

displacement between images can be up to hundreds of pixels, the fewer the parame-

ters to estimate the greater the robustness of the algorithm. The affine transformation



is estimated in a hierarchical manner, in a four-level Gaussian pyramid. At the lower

resolution levels, the feature-matching algorithm compensates for the large displace-

ments, while a direct method of alignment is used at the finest resolution levels so that

information is not lost.

Feature Based Alignment

The Gabor Feature Detector returns n feature points (typically set to find between

ten and twenty), to be used in the feature-based registration process. A patch around

each feature pixel of the Aerial Video Frame is then correlated with a larger search

window from the Cropped Reference Image to yield n correlation surfaces. For Ti, the

patch around a feature point, the correlation surface is defined by normalized cross-

correlation. For any pair of images I2(x) and I1(x), the correlation coefficient rij

between two patches centered at location (xi, yj) is defined as

r(i, j) =

∑

wx

∑

wy
(φ2)(φ1)

√

∑

wx

∑

wy
(φ2)2

∑

wx

∑

wy
(φ1)2

(5)

where

φ1 = I1(x + [wx wy]T ) − µ1 (6)

φ2 = I2(x + [wx wy]T ) − µ2 (7)

and wx and wy are the dimensions of the local patch around (xi, yj), and µ1 and µ2

are the patch sample means.

To formally express the subsequent process of alignment, two coordinate systems

are defined for the correlation surface. Each element on a correlation surface has a rel-

ative coordinate position (u, v), and an absolute coordinate position (xf − u, yf − v),
where (xf , yf ) is the image coordinate of the feature point associated with each sur-

face. The relative coordinate (u, v) of a correlation element is the position relative to

the feature point around which the correlation surface was centered and the absolute

position of the correlation surface is the position of each element on the image coor-

dinate axes. Each correlation element ηi(u, v) can be considered as a magnitude of

similarity for the transformation vector from the feature point coordinate (xf , yf ), to

the absolute position of the correlation element (xf − u, yf − v). Figure 5 (b) shows

the absolute coordinate system and Figure 5 (c) shows the relative positions of each

correlation element. Peaks in the correlation surfaces denote points at which there is a

high probability of a match, but due to the nature of the Aerial Video Frame and the

Reference Image discussed earlier each surface may include multiple peaks or ridges.

Now, had the set of possible alignment transformations been only translational, the

ideal consensus transformation could have been calculated by observing the peak in

the element-wise sum (or product) of the n correlation surfaces. This ’sum-surface’

η(u, v) is defined over the relative coordinate system as,

η(u, v) =

n
∑

i=1

η1(u, v) (8)



On this ’sum-surface’, by picking the translation vector in the relative coordinate

system, from the center to the maximum peak the alignment transformation can be re-

covered. It can also be observed that since translation is a position invariant transform

(i.e. translation has the same displacement effect on pixels irrespective of absolute

location) the individual correlation surfaces can be treated independent of their hori-

zontal and vertical coordinates. Therefore the search strategy for finding the optimal

translational transformation across all the n correlations is simply finding the pixel co-

ordinates (upeak, vpeak) of the highest peak on the Sum-Surface. Put another way, a

translational vector is selected such that if it were applied simultaneously to all the cor-

relation surfaces, the sum of values of the center position would be maximized. When

the vector (upeak, vpeak) is applied to the correlation surface in the relative coordinate

system, it can be observed that η(0, 0) would be maximized for

η(u, v) =

n
∑

i=1

ηi(u
′, v′) (9)

where

u′ = u − upeak (10)

v′ = v − vpeak (11)

However, even though transformations between images are dominantly translational,

there usually is significant rotational and scaling as well, and therefore restricting the

transformation set to translation is obstructive to precise georegistration. So by extend-

ing the concept of correlation surface super-imposition to incorporate a richer motion-

model like affine, ‘position-dependent’ transforms like rotation, scaling and shear are

included in the set of possible transformations. Once again the goal is to maximize the

sum of the center position on all the correlation surfaces, only this time transforma-

tion of the correlation surfaces is not position independent. Each correlation surface, by

virtue of the feature point around which it is centered, may have a different transforma-

tion associated with it. This transformation would depend on the absolute position of

the element on the correlation surface rather than with its relative position as the affine

set of transformations is not location invariant. An affine transform may be described

by the six parameters specified in Equation 3 and 4. The objective then, is to find such

a state of transformation parameters for the correlation surfaces that would maximize

the sum of the pixel values at the original feature point locations corresponding to

each surface. The affine parameters are estimated by directly applying transformations

to the correlation surfaces. Figure 6 shows the correlation surfaces before and after

transformation. It can be observed that the positions of the center of correlation sur-

faces i.e. η(0, 0) remain fixed in both images. In practice, window sizes are taken to

be odd, and the sum of four pixel values around ηi(0, 0) are considered. The sum of

the surfaces is once again expressed as in 9, where η1 is the set of n affine-transformed

correlation surfaces. This time the relationship between (u′, v′) and (u, v) is defined

as,

xf − u′ = a1(xf − u) + a3(xf − u) + a5 (12)

yf − v′ = a2(yf − v) + a4(yf − v) + a6 (13)



and a search is performed over a so as to maximize Thus the function to be maximized

is,

F (a) = η(0, 0). (14)

In a sense, the correlation surfaces are affine-bound together to recover the most consis-

tent set of peaks. It should be noted that the range of the correlation surface depends on

the search window size, which in turn depends on the size of the orthorectified image.

This search is performed over a pyramid, and alignment recovered is propagated to the

next level. The recovered alignment is also applied to feature points as they are prop-

agated to a higher resolution level, so that correlation may be performed at each level

of the pyramid. The benefit of using this hierarchical approach is that it improves com-

putational efficiency and avoids the aliasing of high spatial frequency components that

require large displacements. To visualize the entire process, consider a feature point

Ivideo(xf , yf ). A patch of nine by nine pixels around Ivideo(xf , yf ) is correlated with

a fifteen by fifteen pixel search window around Iref (xf , yf ) to yield the correlation

surface ηf . Each element ηf (u, v) on the correlation surface is treated as a similarity

measure for the vector from Ivideo(xf , yf ), to the point Ivideo(xf + u, yf + v). When

the search is performed over the affine parameters, the affine transformation is applied

there are n correlation surfaces and each surface is transformed according to the abso-

lute position of the feature point around which it was centered. The task is to find the

six affine parameters such that the sum of the values at the center block in each corre-

lation surface (or F ) is maximized. Once alignment is recovered it is propagated to a

higher resolution level and correlation surfaces are computed around the feature points

again and the process is repeated. Maximization of F is achieved by a Quasi-Newton

optimization procedure, using a finite-difference computation of the relevant deriva-

tives. Because the positional information is maintained, every iteration places a set of

points of the correlation surface onto the feature point around which each surface was

initially centered. As the optimization progresses further the method moves towards

a consistent set of peaks. Transformations were propagated through the three bottom

levels of a Gaussian Pyramid to ensure that large displacements are smoothly captured.

It is worth noting that as the set of consistent correlation peaks are being transformed

to the feature point locations of the orthorectified image, it is the actually the inverse

affine transformation that is computed.

The advantage of maximizing in the process detailed is three-fold. Firstly, by main-

taining a ’continuous’ correlation surface (rather than thresholding for peaks and per-

forming consistency measurement on them) the most consistent set of peaks in the

correlation surface is naturally retrieved. This avoids thresholding and loss of image

correlation details. Secondly, by considering surfaces, relative strengths of peaks are

maintained: a stronger peak holds greater weight on the overall maximization process.

Thirdly, the algorithm returns the optimal affine fit, without the need for an extra con-

sistency step. In effect, the consistency and local alignment process are seamlessly

merged into one coherent module.
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Fig. 5. The coordinate systems of Correlation Surfaces (a) The Orthorectified Image and the

Cropped Reference Image. The smaller window in the Orthorectified Image is the feature patch

and the larger window in the Cropped Reference Image is the corresponding search area. (b)

The Absolute coordinate system for the resulting correlation. The coordinate system is (x, y) of

the original image. The black ’+’ indicates the position of (xf , yf ). (c) The relative coordinate

system, (u, v) defining distance from the feature point (xf , yf ) shown as the black ‘+’ in (b).

The ‘
⊗

’ shows the position of the peak in the correlation surface. The lack of any distinct peak

should be noted, a typical phenomenon due to the differences between reference and video data.

Direction Registration

Once the Reference Image and the Aerial Video Frame have been aligned through

feature-based registration, a direct hierarchical registration method is employed to



  

(a) (b)

Fig. 6. Absolute Position of Correlation Surfaces before and after transformation. (a) The ’+’s

mark the positions of the feature points. Two correlation surfaces are shown for illustrative

purposes as the other overlap. The ‘
⊗

′

indicates the position of the dominant peak. (b) The

correlation surfaces are transformed according to their absolute positions such the values at the

’+’s is maximized. The position of the ’+’ remains the same in both (a) and (b).

provide a final adjustment. Feature based methods characteristically have a ’window’

alignment, thereby losing information in the process of registration. To ensure that the

whole image information is used, an affine direct registration is applied as proposed

in [3] and [20]. The final transformation between the Aerial Image and the Cropped

Reference Image is then the product of the affine transforms recovered from the Local

Feature Match and this direct registration. As a general rule of minimization, the closer

the initial estimate is to the true solution the more reliable the minimization process

will be. The solution obtained after the feature-based alignment provides a close ap-

proximate to the answer that is then adjusted using this direct method. To ensure that

only a fine adjustment of the feature based method is performed the direct method is

implemented for a single level.

3 Sensor Update

So far two-dimensional registration of the ortho-rectified Aerial Image and the

Cropped Reference Image has been achieved. The registration is performed in the or-

thographic viewing space, providing six affine parameters. Using this 2D alignment,

it is possible to assign 3D geodetic coordinates to every pixel by simple pixel-to-pixel

correspondence from the Reference Image. The final objective of this paper was to

recover the adjustment to the sensor model parameters to affect alignment. However,

in order to recover the sensor model’s nine parameters further processing is required.

It is observed that there exists no unique solution (state of sensor parameters) corre-

sponding to any given affine transformation. The following three parameter pairs, in

particular, create an infinite space of solutions: (1) The camera focal length and the



 

Fig. 7. The top figure show the positions of nine of the twenty feature points marked by ’+’s

and their correlation surfaces centered at each feature point for the second level of the matching

pyramid. The bottom figure shows the results after alignment. It should be noted that the black

’+’s do not change their position. After the iterations the correlation surfaces are all positioned

so as to maximize the values at the feature points. It is worthwhile to note that the three surfaces

in the tree textured area were ’ignored’. For illustration purposes this diagram displays only

those surface that do not overlap, at the second level of a four level pyramid.



vehicle height, (2) The camera scan angle and the vehicle heading, and (3) The camera

elevation and the vehicle pitch. Each one can have an approximate canceling effect, as

the other in the pair, on the image captured. For instance, take the mutual effect of the

camera focal length and the height of the camera. Increasing the vehicle height or de-

creasing the camera focal length achieves an equivalent effect of the captured image.

To recover a plausible update of the sensor information two constraints are applied.

Firstly, covariance information for each parameter is used while estimating the accu-

rate updates of the sensor parameters and secondly the constraint of least change is

applied in the form of a distance measure from the original sensor parameters state.

To recover the sensor adjustments, point correspondences are established between

the Aerial Image and the Reference Image using the recovered 2D transformation.

The Euclidean distance between those points are then minimized by searching over

the nine parameters of the sensor model applying the constraints mentioned. As men-

tioned earlier the error function is critical to obtaining the fundamentally meaningful

adjustments in the sensor geometry. The error function employed here was

E = κ1Λ(s, Iref , Ivideo) + κ2Ψ(s, s′) (15)

where

s = [ s1 s2 s3 s4 s5 s6 s7 s8 s9 ] (16)

are the nine sensor parameters, vehicle longitude, vehicle latitude, vehicle height, ve-

hicle roll, vehicle pitch, vehicle heading, camera scan angle, camera elevation and

camera focal length, s
′ is the initial telemetry state. Λ gives the Euclidean distance

between the point correspondences of the two images using the current estimate of

sensor parameters. The original set of points is back-projected onto the image plane,

and a search is conducted to find a state of s that maps the projections of the points

to their matches on the ground. Ψ calculates the weighted Euclidean distance of each

adjusted sensor parameter from the initial telemetry data (weighted on the basis of the

covariance found in the telemetry). κ1 and κ2 are constants whose sum equal one, used

to assign a relative importance to the two constraints.

To ensure that the solution obtained from minimization is accurate two safe-checks

are employed. First, a least change constraint is placed to ensure that the solution

is realistically close to the original values. Second, the covariances provided in the

telemetry are used to weight the minimization process to provide unique solutions.

To manually calculate the analytical expression for the Jacobian required by the opti-

mization would probably take the better part of a week, so symbolic toolboxes of any

commercial mathematics software package can be used to generate the expressions.

The expressions would be the expanded form of

−→
X camera = Πt

−→
Xworld, (17)

where the coordinate transformation matrix Πt is



Πt =
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, (18)

or more concisely,
−→
X camera = GyGzRyRxRzT

−→
Xworld, (19)

where Gy is a rotation matrix in terms of the camera elevation angle ω, Gz is a rotation

matrix in terms of the camera scan angle τ , Ry is a rotation matrix in terms of the

vehicle pitch angle φ, Rx is a rotation matrix in terms of the vehicle roll angle β, Rz

is a rotation matrix in terms of the vehicle heading angle α, T is the translation matrix

derived from the vehicle latitude, longitude and height. Details of converting vehicle

longitude and latitude to meter distances from a reference point can be found using

many cartographic texts. Here it is assumed that the vehicle displacements ∆Tx, ∆Ty

and ∆Tz have been computed.

4 Results

To demonstrate the algorithm presented in this paper alignment for examples are

presented in this section. Despite the substantial illumination change to the extent of

contrast reversal (for watery areas), examination of the results shows a significant im-

provement on the initial estimate. Figure 9, 10 and 11 show the initial Video Frame

and Reference Imagery before and after registration. It should be noted that the image

sizes are upto 1500x1500 pixels, and figures are not to scale. The misalignments are

therefore appear to be scaled down as well. Visual inspection reveals a misalignment

after ortho-rectification of the Video Frame using the telemetry and sensor model. At-

tempts at minimizing this misalignment using brightness consistency constraints fails,

but with the proposed Correlation Surface Binding Algorithm proposed in this paper,

accurate alignment is achieved. Figure 12 provides further examples of correct reg-

istration. White circles are marked on the top two images to highlight the corrected

positions of features in the Aerial Video Frame.

The portion of the image set on which the algorithm presented did not perform

accurately, were of three types. The first type was images without any features at all,

like images of textured areas of trees. As there were no real features to use as con-

straints, the performance on these images was sub-par. The second problem faced was

the aperture problem where features present were linear, and thus only a single di-

mensional constraint could be retrieved from them. The most convincing method of



addressing both these issue is using some form of bundle adjustment as was used in

[6] and [31]. These methods were not used in this work since only video key-frames

with little or no overlap were available. The last problem faced was that of occlusion

by vehicle parts like tires and wings. This was addressed by calculating the fixed posi-

tions of the vehicle parts with respect to the camera in terms of the camera parameters

(camera elevation angle, camera scan angle, and camera focal length). The portion of

the image is then ignored or if it happened to cover too much of the image space, it is

summarily rejected.

The results yielded a pre-registration average error of 39.56 pixels and a post-

registration average of error 8.02 pixels per frame. As ground truth was not available

to assess the error automatically, manual measurement was performed per frame. The

results on a 30 key-frame clip is shown in Figure 8. The key-frames in the clip con-

tained adequate visual context to allow single frame registration. Linear features were

encountered causing some of the higher average errors reported.
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Fig. 8. Average error improvements over a 30 key-frame clip. Frame numbers are numbered

along the horizontal axis, while errors in terms of number of pixels are specified along the

vertical axis.

5 Conclusion

The objective of this paper was to present an algorithm that robustly aligns an

Aerial Video Image to an Area Reference Image and plausibly updates the sensor

model parameters, given noisy telemetry information along with elevation values for

the Area reference image. The major problems tackled here were rectifying the images



(a) (b)

(c) (d)

Fig. 9. Geo-Registration Results. (a) Aerial Video Frame. (b) Cropped Area of Reference Image.

(c) Orthorectified Video Frame placed upon Cropped Reference Image. (d) Gross Misalignment

by parametric direct Registration over a four level pyramid (using an affine transform). (e) Reg-

istration by feature linking.

by bringing them into a common viewing space, geodetic assignment for aerial video

pixels, and sensor model parameter adjustment. Various forms of distortions were tack-

led, adjusting for illumination, compensating for texture variation, handling clouds and

occlusion by vehicle parts. To achieve registration, the images are equalized and recti-

fied into an orthographic viewing space, after which Gabor features are extracted and

used to generate a normalized correlation surface per feature point. The hierarchical

affine-based feature alignment provides a robust coarse registration process with out-

lier rejection, followed by fine alignment using a direct method. The sensor parameters

are then adjusted using the affine transformation recovered and the distance of the so-

lution from the original telemetry information. It is to be expected that the sensor data

will improve with the forward march of technology, bringing with it the possibilities

of more sophisticated models for the georegistration problem. Any improvement in

the elevation data in particular would allow more confident use of three-dimensional

information and matching. Future directions of the work include solving the initial

alignment robustly in the perspective viewing space using more realistic rendering,

and performing registration without continuous telemetry information.



(a) (b)

(c) (d)

Fig. 10. Geo-Registration Results. (a) Aerial Video Frame. (b) Cropped Area of Reference Im-

age. (c) Orthorectified Video Frame placed upon Cropped Reference Image. (d) Gross Misalign-

ment by parametric direct Registration over a four level pyramid (using an affine transform). (e)

Registration by feature linking.
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Fig. 12. (a)-(d) The leftmost image is the Cropped Reference Image, the middle image is the

Orthorectified Image overlayed onto the Reference Image, and the rightmost image is the Final

Registered Image. The white circles highlight initially misaligned features.


