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Abstract: Centaurea is a genus compromising over 250 herbaceous flowering species and is used
traditionally to treat several ailments. Among the Egyptian Centaurea species, C. lipii was reported
to be cytotoxic against multidrug-resistant cancer cells. In this context, we aimed to explore the
metabolome of C. lipii and compare it to other members of the genus in pursuance of identifying its
bioactive principles. An LC-MS/MS analysis approach synchronized with feature-based molecular
networks was adopted to offer a holistic overview of the metabolome diversity of the Egyptian
Centaurea species. The studied plants included C. alexandrina, C. calcitrapa, C. eryngioides, C. glomerata,
C. lipii, C. pallescens, C. pumilio, and C. scoparia. Their constitutive metabolome showed diverse
chemical classes such as cinnamic acids, sesquiterpene lactones, flavonoids, and lignans. Linking
the recorded metabolome to the previously reported cytotoxicity identified sesquiterpene lactones
as the major contributors to this activity. To confirm our findings, bioassay-guided fractionation of
C. lipii was adopted and led to the isolation of the sesquiterpene lactone cynaropicrin with an IC50

of 1.817 µM against the CCRF-CEM leukemia cell line. The adopted methodology highlighted the
uniqueness of the constitutive metabolome of C. lipii and determined the sesquiterpene lactones to be
the responsible cytotoxic metabolites.

Keywords: Centaurea; cytotoxicity; LC-MS/MS; molecular networking; sesquiterpene lactones

1. Introduction

Centaurea is the fourth largest genus in the Asteraceae family [1] and has approximately
250 species (400 in an earlier classification) that are mostly centered in the Mediterranean
region. The genus includes diverse biologically active metabolites, including sesquiterpene
lactones, triterpenes, flavonoids, and lignans [2]. Owing to such metabolic diversity, many
biological activities were reported for its members such as anti-inflammatory, antimicrobial,
antioxidant, hepatoprotective, etc. [3].
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Traditionally, Centaurea species have long been used to cure several disorders, includ-
ing liver diseases, the common cold, diabetes, and malaria [4]. A variety of Centaurea
species are also prescribed as herbal remedies against inflammatory conditions, such as
abscesses, asthma, hemorrhoids, peptic ulcers, malaria, common colds, and abdominal
pain [5].

With an escalating demand for anticancer drugs to combat multidrug-resistant tumors,
re-exploring our natural resources for potential anticancer agents is warranted. This is
especially true since only a small proportion of plants have specifically been assayed for
antitumor activity. Following the primary objective of our group, which is to investigate
our natural resources for the discovery of potentially bioactive secondary metabolites [6–8],
Egyptian Centaurea species were previously screened for their cytotoxic potential toward
multidrug-resistant cancer cells. The results of the study revealed the superiority of C. lipii
in reducing the cell viability to less than 20% at a concentration of 10 µg/mL [9].

Such findings suggested the necessity of exploring the metabolome of C. lipii and
highlighting the metabolome differences in the regionally specific Centaurea species. Accord-
ingly, state-of-the-art metabolomic tools were exploited to map the metabolome diversity
of eight Centaurea species (C. alexandrina, C. calcitrapa, C. eryngioides, C. glomerata, C. lipii,
C. pallescens, C. pumilio, and C. scoparia) in the context of their formerly reported cytotoxic
activity against multidrug-resistant cancer cells. The adopted approach comprised LC-
MS/MS analysis combined with spectral similarity networks through the Global Natural
Products Social Molecular Networking (GNPS) platform. The recorded metabolome was
linked to the previously documented cytotoxic activity to highlight the potential bioactive
metabolites. This was followed by bioactivity-guided isolation of the cytotoxic metabolites
from C. lipii to validate our findings.

2. Results
2.1. Comparative Analysis of LC-MS/MS Profiles from Centaurea Species

The LC-MS/MS analysis of the selected Centaurea extracts showed clear qualitative
and quantitative differences as observed in their respective base peak chromatograms
(Supplementary Figure S1).

As C. lipii was the species with the most potent cytotoxicity, as indicated in a previous
screening of Egyptian plant extracts [9], the identification of the contributing metabolites
was our goal. Accordingly, a feature-based molecular network was constructed to better
visualize the metabolome diversity of the selected Centaurea species and to accentuate the
uniqueness of C. lipii.

2.2. MS/MS Molecular-Networking-Based Phytochemical Investigations

For a global overview, feature-based molecular networking (FBMN) was applied
for the visual exploration of the discrepancy in the recorded metabolome of the studied
species as well as for facilitating the metabolite annotation. The constructed FBMN was
then analyzed using a MolNetEnhancer workflow which enhances the data annotation via
combining outputs from different computational tools [10] (Figure 1a).

The constructed MN consisted of 977 nodes grouped in 77 clusters (with a minimum of
2 connected nodes) and 385 single nodes (Figure 1). Then, the node and edge attributes were
employed so that the color of a node corresponded to the name of the studied Centaurea
species. The nodes are displayed as a pie chart to reflect the distribution of each ion among
the 8 species (Figure 1).

The recorded metabolome encompassed unidentified clusters with no matches which
were manually inspected and identified (i.e., clusters b and c corresponded to the sesquiter-
pene lactones, Figure 1b) which could be explained by their presence as either ammonia
[M+NH4]+ or acetonitrile [M+ C2H3N +H]+ adducts.
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This includes 49 flavonoids, 15 sesquiterpene lactones, 10 lignans, four 134 
cinnamic acid derivatives, and two coumarins. Figure 2 displays 135 
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Figure 1. Metabolome profiling of 8 Egyptian Centaurea species and relative distribution of the
metabolites among the studied species. (a) Enhanced molecular network of the ESI-positive MS/MS
spectra using MolNetEnhancer showing different molecular families/clusters of the pooled metabo-
lites in the studied species. Node colors represent classes of putatively annotated metabolites with
matches found in the GNPS libraries. (b–g) Clusters of the different metabolite classes, shown as pie
charts illustrating their distribution in the studied Centaurea species.

The clusters of interest were as follows: cluster b: sesquiterpene lactones, cluster c:
sesquiterpene lactone glycosides, cluster d: flavones, cluster e: flavonoid glycosides, cluster
f: lignans, and cluster g: hydroxycinnamic acid derivatives (Figure 1b–g).

As delineated in Figure 1b and Supplementary Table S1, a total of 81 metabolites were
tentatively assigned belonging to different chemical classes. This included 49 flavonoids,
15 sesquiterpene lactones, 10 lignans, 4 cinnamic acid derivatives, and 2 coumarins. Figure 2
displays representative examples of the compounds reported here in the genus Centaurea
for the first time, and following is a discussion of the annotated metabolites in their
elution order.
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2.2.1. Hydroxycinnamic Acid Derivatives

Hydroxycinnamic acid derivatives were observed in the constructed FBMN (Figure 1g)
exclusively as ferulic acid derivatives as confirmed by their shared daughter ions at m/z
177 and 145. This included feruloyl quinic acid ester (1, m/z 369.1179 [M+H]+, C19H20O9)
previously reported to occur in Centaurea [11], followed by its amide derivatives as N-
feruloyl tyramine isomers (20 and 25, m/z 314.1388 [M+H]+, C18H19NO4), and N-feruloyl
tryptamine (66, m/z 337.1563 [M+H]+, C20H20N2O3) not formerly reported in Centaurea.

2.2.2. Sesquiterpene Lactones

Unlike the cinnamic acid derivatives which showed no significant difference in dis-
tribution among Centaurea species, sesquiterpene lactones showed a different pattern.
Sesquiterpene lactones were almost exclusively detected in C. lipii with few occurring in C.
calcitrapa and C. eryngioides.

Sesquiterpene lactones are a group of secondary metabolites widely distributed in the
Asteraceae family and are classified according to their carbocyclic skeletons into different
classes, i.e., germacranolides, eudesmanolides, guaianolides, and pseudoguaianolides.
Several sesquiterpene lactones were detected exclusively in C. lipii, belonging to the ger-
macranolides, guaianolides, cadinanolides, elemanolides, and eudesmanolides (Figure 3).
Annotated sesquiterpene lactones were detected as adducts of acetonitrile [M+C2H3N+H]+

while glycosidic derivatives were seen as ammonia adducts [M+NH4]+ (Supplementary
Table S1). Interestingly, the annotated sesquiterpene lactones were mostly reported previ-
ously in the genus except for the glycosidic ones which are reported here for the first time
in Centaurea.
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Figure 3. Examples of sesquiterpene lactones exclusively found in C. lipii.

Among the annotated sesquiterpene lactones, germacranolides were the most abun-
dant class. Germacranolide glycosides were tentatively assigned as dihydroparthenolide-O-
hexoside isomers (2 and 6, m/z 446.2385 [M+NH4]+, C21H32O9), particularly in C. calcitrapa
and C. eryngioides, and described for the first time in Centaurea.

The nonglycosidic ones were found mainly in C. lipii and included 7-hydroxy-10-
(hydroxymethyl)-6-methyl-3-methylidene-2-oxo–cyclodeca[b]furan-4-y-3,4-dihydroxy-2-
methylidenebutanoate (5, m/z 436.1966 [M+C2H3N+H]+, C20H26O8), 10-(hydroxymethyl)-
3,6-dimethyl-2-oxo-cyclodeca[b]furan-4-yl-4-(acetyloxy)-2-(hydroxymethyl)but-2-enoate (7,
m/z 464.2252 [M+C2H3N+H]+, C22H30O8), 4-acetylcnicin (10, m/z 462.1227 [M+C2H3N+H]+,
C22H28O8), incaspitolide D (11, m/z 496.2529 [M+C2H3N+H]+, C23H34O9), and incaspitolide
A (44, m/z 480.2583 [M+C2H3N+H]+, C23H34O8).
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A previous study reported the presence of 10 in C. calcitrapa collected in Spain [12], but
it was not detected in the same species included in this study which suggests the possible
effect of geographical factors on the chemical profiles of this species.

Similarly, a guaianolide glycoside dehydrolactuside C (38, m/z 464.1936 [M+C2H3N+H]+,
C21H26O9) and the elemanolide glycoside sarcaglaboside D (46, m/z 560.2703 [M+NH4]+,
C26H38O12) were detected. Nonglycosidic guaianolides were described as daucoguaianolac-
tone F (22, m/z 472.2333 [M+C2H3N+H]+, C24H30O7), 8-(acetyloxy)-9-hydroxy-9-(hydroxymethyl)-
3,6-dimethylidene-2-oxo-octahydroazuleno [4,5-b]furan-4-yl 2-(hydroxymethyl)
prop-2- enoate (23, m/z 432.2012 [M+C2H3N+H]+, C21H26O7), and clementein (47, m/z
432.2023 [M+C2H3N+H]+, C21H26O7). Though no reports exist for the bioactivity of 22,
metabolites with a daucoguaianolactone group were reported to possess cytotoxic activ-
ity [13]. Thus, this compound may contribute positively to the cytotoxicity of C. lipii [9].

Besides the observed germacranolides and guaianolides, the cadinanolide acetoxy-
dihydroxy-tetrahydroartemisinic acid methyl ester (8, m/z 382.2220 [M+C2H3N+H]+, C18H28O6)
and the eudesmanolide propyloxy-methyl-cryloxyivangustin (72, m/z 446.2173 [M+C2H3N+H]+,
C22H28O7) were observed.

2.2.3. Flavonoids

Similar to the bioactive sesquiterpene lactones discussed earlier, Centaurea species are
well known for their high content of flavonoids [14].

In our investigation, methylated flavonols and flavones were the predominant species,
occurring as diglycosides, monoglycosides, acylated monoglycosides, or as free aglycones.
In total, 49 flavonoids were annotated, some of which were previously reported to exist in
the genus (Supplementary Table S1). The detected flavonoids showed the typical fragmen-
tation sequence of O-glycosidic flavonoids of the loss of 162, 146, or 132 corresponding to
O-hexoside, O-deoxyhexoside, or O-pentoside, respectively.

Considering the studied Centaurea species, flavonoid glycosides were among the
most abundant metabolite class appearing as cluster e in the constructed MN (Figure 1e).
Among the annotated flavonoids, methoxylated flavones and flavonols occurred mainly
as monoglycosides, agreeing with the literature. Among the annotated flavonoid gly-
cosides were isomers of patuletin-O-glucoside (13, 15, and 17, m/z 495.1129 [M+H]+,
C22H22O13), luteolin-7-O-rutinoside (16, m/z 595.1663 [M+H]+, C27H30O15), isorhamnetin-O-
glucoside (19, m/z 479.1185 [M+H]+, C22H22O12), luteolin-7-O-glucoside (18, m/z 449.1082
[M+H]+, C21H20O11), isomers of hispidulin-7-O-glucuronide (24 and 30, m/z 477.1029 [M+H]+,
C22H20O12), isomers of spinacetin -O-glucoside (25 and 40, m/z 509.1289 [M+H]+, C23H24O13),
isomers of isorhamnetin-O-glucoside (27 and 37, m/z 479.1185 [M+H]+, C22H22O12), iso-
mers of apigenin-O-glucuronide (31 and 33, m/z 447.0927 [M+H]+, C21H18O11), isomers of
monomethoxy trihydroxyflavone-O-glucoside (34 and 42, 463.1240 [M+H]+, C22H22O11),
apigenin-O-hexoside (36, m/z 433.1132 [M+H]+, C21H20O10), isomers of trihydroxy-dimethoxy-
flavone-O-glucoside (41 and 48, m/z 493.1342 [M+H]+, C23H24O12), isomers of trimethoxy
trihydroxyflavone-O-glucoside (43 and 49, m/z 523.1451 [M+H]+, C24H26O13), along with
the apigenin-O-methyl glucuronide (52, m/z 461.1077 [M+H]+, C22H20O11) which were
previously reported in Centaurea species. Aside from the aforementioned flavonoid-O-
glycosides, one C-glycosidic flavonoid was annotated as (iso)vitexin (12, m/z 433.1135
[M+H]+, C21H20O10).

Likewise, the monoglycosides previously mentioned, the diglycosides are reported
here for the first time in Centaurea, i.e., spinacetin-O-gentiobioside (9, m/z 671.18 [M+H]+,
C29H34O18) and luteolin-O-pentosyl-O-hexoside (26, m/z 581.1502 [M+H]+, C26H28O15).
Similarly, the acylated flavonoid glycosides were not previously described, i.e., pentahydroxy-
monomethoxy flavone-O-acetyl hexoside (45, m/z 537.1239 [M+H]+, C24H24O14), rhamnocitrin-
O-hydroxy-methylglutaryl-hexoside (51, m/z 607.1670 [M+H]+, C28H30O15), luteolin-O-
acetyl hexoside (56, m/z 491.1192 [M+H]+, C23H22O12), isorhamnetin -O-acetyl hexoside
(57, m/z 521.1291 [M+H]+, C24H24O13), and syringetin O-acetyl hexoside (58, m/z 551.1389
[M+H]+, C25H26O14).



Molecules 2023, 28, 674 7 of 13

Lastly, 21 flavonoid aglycones were described in this study (Supplementary Table S1).
Regarding the distribution of the flavonoids, no specific pattern was observed except a
higher prevalence in C. alexandrina and C. pallescens (Figure 1e).

2.2.4. Lignans

In addition to sesquiterpene lactones and flavonoids, Centaurea is known to pro-
duce lignans [15], mainly as the dibenzylbutyrolactone type. Reported lignans include
matairesinol and arctigenin along with their glycosides matairesionoside and arctiin, which
were reported to exert anticancer effects against colorectal cancer [16].

In our study, lignan glycosides existed as ammonia adducts [M+NH4]+ as commonly
detected in the positive ionization mode used [17]. Annotated lignans included pre-
viously reported ones such as matairesinol-O-glucoside (14, m/z 538.2286 [M+NH4]+,
C26H32O11), isomers of arctigenin-O-glucoside (21, 29, and 39, m/z 552.2282 [M+NH4]+,
C27H34O11), matairesinol (50, m/z 359.1496 [M+H]+, C20H22O6), isomers of arctigenin (53
and 59, m/z 373.1637 [M+H]+, C21H24O6), and [(dimethoxyphenyl)methyl]-3-[(hydroxy-
methoxyphenyl) methyl]-tetrahydrofuranone (55, m/z 390.1914 [M+NH4]+, C21H27O6).

Additionally, the occurrence of secoisolariciresinol (32, m/z 327.1594 [M+H]+, C20H22O4) in
Centaurea is reported here for the first time together with the acetylated lignan glycosides
exemplified by acetyl matairesinoside (28, m/z 552.2438 [M+NH4]+, C27H34O11) occurring
exclusively in C. lipii.

2.3. Bioactivity-Guided Fractionation of C. lipii

According to the biological activity against CCRF-CEM cell lines that we previously
reported, the methylene chloride/methanol (1: 1) fraction of C. lipii showed significant
cytotoxic activity against CCRF-CEM with IC50 4.30 µM [9]. Consequently, C. lipii extract
was fractioned using a flash column to obtain five collective fractions. The cytotoxicity of
these subfractions was evaluated against a drug-sensitive CCRF-CEM leukemia cell line.
Fraction 1 (CL1) was found to be the most potent cytotoxic fraction with an IC50 value
1.81 µM (Figure 4).
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Figure 4. Dose response curves of C. lipii fractions towards drug-sensitive parental CCRF-CEM
tumor cells.

3. Discussion

In our study, an LC-MS/MS data analysis approach was adopted to highlight the
metabolic diversity of Egyptian Centaurea species with the aid of molecular networks
and the in silico fragmentation trees generated by Sirius. The adopted methodology was
advantageous in mapping the chemical space of Centaurea species that included cinnamic
acids, sesquiterpene lactones, flavonoids, and lignans. Among the annotated features,
21 compounds are reported to occur in the genus Centaurea for the first time.
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Additionally, the molecular networks delineated the uniqueness of the metabolic
profile of C. lipii, being especially rich in sesquiterpene lactones which might explain its
potent cytotoxic activity against multidrug-resistant cancer lines.

For instance, sesquiterpene lactones were detected solely in C. lipii (Figure 3) belong-
ing to the germacranolides, guaianolides, cadinanolides, elemanolides, and eudesman-
olides. Diverse biological activities were reported for sesquiterpene lactones, including
anti-inflammatory, antiparasitic, antiviral, cytotoxic, and others [18]. Moreover, sesquiter-
pene lactones were recognized as potential candidates for cancer treatment owing to their
selective inhibition of tumor and cancer stem cells [18]. Indeed, former investigations
have highlighted that the biological activity of sesquiterpene lactones is attributed to the
inhibition of enzymes, transcription factors, and/or functional proteins [18].

Since the late 1960s, the cytotoxicity of the sesquiterpene lactones has been investigated
to understand the underlying structure–activity relationships. The exocyclic α-methylene-
γ-lactone, together with the cyclopentenone and/or α, β-unsaturated ester, has a pivotal
role in enhancing cytotoxicity [19]. Further comparisons of different scaffolds revealed that
guaianolides and pseudoguaianolides possess the most potent activity [20]. These findings
might explain the pronounced cytotoxic activity observed in C. lipii in comparison to the
other Centaurea species.

Bioassay-guided fractionation confirmed such an assumption and led to the isolation
of cynaropicrin from the cytotoxic fraction with an IC50 of 1.817 µM against the CCRF-CEM
leukemia cell line. Cynaropicrin has been formerly reported to exist in several Centaurea
species, such as C. behen [21], C. ruthenica [22], and others. Additionally, its cytotoxic activity
against the CCRF-CEM leukemia cell line was formerly documented with an IC50 value
of 0.473 µg/mL [23]. Its cytotoxic properties were correlated to its ability to diminish the
generation of intracellular reactive oxygen species involved in carcinogenesis [24].

In conclusion, the described analysis proved efficient and competent for mapping
and correlating the constitutive metabolome of the selected Centaurea species and simulta-
neously allowed for the rapid detection of the bioactive metabolites. The outcomes were
further validated through bioactivity-guided isolation of the bioactive scaffold.

4. Materials and Methods
4.1. Plant Materials

Plant samples were collected from their respective locations as listed in Table 1 and
were identified by Prof. Dr. Kamal M. Zayed and Prof. Dr. Ibrahim Ahmed Elgarf,
taxonomists, Botany Department, Faculty of Science, Cairo University, Egypt. Voucher
specimens were deposited in the National Research Center’s herbarium (CAIRC), De-
partment of Phytochemistry and Plant Systematics, with respective voucher numbers as
tabulated in Table 1.

Table 1. The studied Centaurea species, and their respective collection sites.

Species Sample Code Voucher ID Collection Site Latitude
(N)

Longitude
(E)

C. alexandrina Ce.Alex M/2282 Marsa Matrouh 31◦23′37.81′′ 27◦01′7.64′′

C. calcitrapa Ce.Co M/2279 Marsa Matrouh 31◦03′41.10′′ 28◦12′31.6′′

C. eryngioides CE M/2284 Saint Catherine 28◦33′20.83′′ 33◦56′9.13′′

C. glomerata Ce.G M/2280 Rashid 30◦56′52.51′′ 30◦58′33.1′′

C. lipii CL M/2281 Egyptian north
coast 29◦38′16.55′′ 32◦18′23.72′′

C. pallescens Ce.PA M/2283 Marsa Matrouh 31◦22′37.01′′ 31◦03′41.16′′

C. pumilio CP M/2285 Egyptian north
coast 30◦54′9.06′′ 29◦26′8.63′′

C. scoparia Ce.Sco M/2278 Red Sea Coast 31◦03′41.16′′ 31◦03′41.16′′
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4.2. Chemicals
4.2.1. Chemicals and Reagents

Methylene chloride, methanol, and acetonitrile were purchased from Sigma Aldrich
(Steinheim, Germany). All the solvents used were of HPLC grade.

4.2.2. Preparation of the Extracts

The air-dried powdered aerial parts of the studied Centaurea species (100 g each) were
macerated separately in 1 L CH2Cl2/MeOH (1:1) for 24 h at room temperature and then
filtered. The filtrates were then evaporated under reduced pressure, lyophilized, and kept
frozen at −20 ◦C for further analyses.

4.2.3. LC-MS/MS Data Acquisition

Dried CH2Cl2/MeOH (1:1) extract of each species was redissolved in MeOH (HPLC
grade) to a final concentration of 2 µg/mL. Chromatographic separation was performed as
described before [25].

4.2.4. Data Preprocessing, Molecular Networking, and Compound Dereplication

The feature-based molecular network (FBMN) was built from each species’ HPLC-
HRMS/MS data (in positive mode). Firstly, The MSConvert program was used to convert
raw data files into 32-bit MzXML files, which were then loaded into Mzmine 2.53 for feature
identification [26]. The mgf file from the Mzmine was transferred through WinSCP (https:
//winscp.net accessed on 12 July 2021) to the Global Natural Products Social Molecular
Networking platform (https://gnps.ucsd.edu accessed on 12 July 2021) to create an MN
following the online protocol [27]. Subsequently, the constructed molecular network
was enhanced with a MolNetEnhancer to boost the chemical structural annotation. For
visualization of the resulting MN, Cytoscape (ver. 3.8.2.) was used.

Further data analysis was achieved by importing the mgf output file from Mzmine
2.53 to Sirius + CSI: Finger ID 4.4.29 for the molecular formula prediction (C, H, N, O, S, P)
and searching the structure database with 10 ppm m/z tolerance using PubChem online
database [28].

4.2.5. Cell Culture

The CCRF-CEM leukemia cells were kindly provided by Prof. Axel Sauerbrey (Depart-
ment of Pediatrics, University of Jena, Jena, Germany) [29]. The cell lines were authenticated
using Multiplex Cell Authentication (MCA) based on single-nucleotide polymorphism
profiling by Multiplexion GmbH (Heidelberg, Germany) as previously detailed [30]. Those
cell lines have been in culture for 14 years.

4.2.6. Resazurin Cytotoxicity Assay

The cytotoxicity of C. lipii fractions and the isolated compound was determined by
the resazurin reduction assay using a modified protocol previously described [9].

4.2.7. Extraction, Separation, and NMR-Based Structure Elucidation

The air-dried powdered aerial parts of C. lipii (100 g) were extracted with CH2Cl2/MeOH
(1:1). The extract (9 g) was then fractionated on a Diaion glass column (6 × 60 cm) and
eluted with solvent in a gradient of decreasing polarity starting with (100%) H2O followed
by a gradient of 20% MeOH, 40% MeOH, 50% MeOH, 60% MeOH, 80% MeOH, and finally
washed with 100% MeOH. We collected 31 fractions (500 mL of each solvent mixture) based
on the thin-layer chromatography profile using a vanillin–sulphuric acid spray reagent
for detection. Similar fractions were added to each other based on their chromatographic
patterns to yield the final five collective fractions which were H2O fraction (0.9 gm), CL-1
(2 gm), CL-2 (1.5 gm), CL-3 (1.2 gm), and CL-4 (2.5 gm). Fraction CL-1 (the most active
cytotoxic fraction) was subjected to isolation and purification by HPLC (4.6× 250 cm) using

https://winscp.net
https://winscp.net
https://gnps.ucsd.edu
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MeOH: H2O (40: 60%, 2.5 L) with the addition of 1 mL formic acid to afford compound 1
(4.5 mg).

High-performance liquid chromatography (HPLC) was performed on an Agilent
pump equipped with an Agilent-G1314 variable wavelength UV detector at 254 nm and
a semi-preparative reverse-phase column (Econosphere™, RP-C18, 5 µm, 250 × 4.6 mm,
Alltech, Deerfield, IL, USA). Precoated silica gel plates (Kiesel gel 60 F254, 0.25 mm) were
used for TLC analyses.

NMR spectra were measured on a Bruker 500 NMR spectrometer (USA) (500 MHz for
1H and 125 MHz for 13C). All chemical shifts (δ) are given in ppm units with reference to
TMS as an internal standard, and coupling constants (J) are reported in Hz.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28020674/s1, Supplementary Figure S1: Overlaid base
peak chromatogram of the studied Centaurea species in the positive ionization mode; Supplementary
Table S1: Compound assignment of the studied Centaurea species extracts as revealed by UPLC-
HRMS/MS analysis. Reference Citations of [11,31–80].
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