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Abstract. This paper studies the problem of matching two unsynchronized video
sequences of the same dynamic scene, recorded by different stationary uncalibrated
video cameras. The matching is done both in time and in space, where the spatial
matching can be modeled by a homography (for 2D scenarios) or by a fundamental
matrix (for 3D scenarios). Our approach is based on matching space-time trajectories
of moving objects, in contrast to matching interest points (e.g., corners), as done
in regular feature-based image-to-image matching techniques. The sequences are
matched in space and time by enforcing consistent matching of all points along
corresponding space-time trajectories.

By exploiting the dynamic properties of these space-time trajectories, we ob-
tain sub-frame temporal correspondence (synchronization) between the two video
sequences. Furthermore, using trajectories rather than feature-points significantly
reduces the combinatorial complexity of the spatial point-matching problem when
the search space is large. This benefit allows to match information across sensors
in situations which are extremely difficult when only image-to-image matching is
used, including: (a) matching under large scale (zoom) differences, (b) very wide
base-line matching, and (c) matching across different sensing modalities (e.g., IR
and visible-light cameras). We show examples of recovering homographies and
fundamental matrices under such conditions.

Keywords: sequence-to-sequence matching, alignment in space and time, dynamic
information, multi-sensor alignment, wide base-line matching, trajectory matching.

1. Introduction

Image-to-image matching methods, e.g., (Faugeras et al., 2001; Hartley
and Zisserman, 2000; Xu and Zhang, 1996; Bergen et al., 1992; Szeliski
and Shum, 1997; Zhang et al., 1995; Zoghlami et al., 1997), are inher-
ently restricted to the information contained in individual images, i.e.,
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the spatial variations within image frames (which capture the scene ap-
pearance). But there are cases when there is not enough common spatial
information within the two images to allow reliable image matching.
One such example is illustrated in Fig. 1. The input images 1.a and
1.b contain a single object, but we want to match (or align) the entire
frame. Alignment of image 1.a to image 1.b is not uniquely defined (see
Fig. 1.c). However, a video sequence contains much more information
than any individual frame does. In particular, a video sequence captures
information about scene dynamics such as the trajectory of the moving
object shown in Fig. 1.d and 1.e, which in this case provides enough
information for unique alignment both in space and in time (see Fig.
1.f). The scene dynamics, exemplified here by trajectories of moving
objects, is a property that is inherent to the scene, and is thus com-
mon to all sequences recording the same scene, even when taken from
different video cameras. It therefore forms an additional or alternative
powerful cue for matching video sequences.

The benefits of exploiting scene dynamics for matching sequences
was noted before. Caspi and Irani (Caspi and Irani, 2000) described a
direct (intensity-based) sequence-to-sequence alignment method. Their
method is based on finding the space-time transformation which min-
imizes the intensity differences (SSD) between the two sequences, and
was applied to cases where the spatial relation between the sequences
could be modeled by a 2D parametric transformation (a homography).
It was shown to be useful for addressing rigid as well as complex
non-rigid changes in the scene (e.g., flowing water), and changes in
illumination. However, that method does not apply when the two se-
quences have different appearance properties, such as with sensors
of different sensing modalities, nor when the spatial transformation
between the two sequences is very large, such as in wide base-line
matching, or in large differences in zoom.

This paper illustrates a feature-based approach for space-time match-
ing of video sequences. The “features” in our method are space-time
trajectories constructed from moving objects. This approach can re-
cover the 3D epipolar geometry between sequences recorded by widely
separated video cameras, and can handle significant differences in ap-
pearance between the two sequences.

The advantage of this approach over using regular feature-based
image-to-image matching is illustrated in Fig. 2. This figure shows two
sequences recording several small moving objects. Each feature point
in the image-frame of Fig. 2.a (denoted by A-E) can in principle be
matched to any other feature point in the image-frame of Fig. 2.b. There
is no sufficient information in any individual frame to uniquely resolve
the point correspondences. Point trajectories, on the other hand, have



additional shape properties which simplify the trajectory correspon-
dence problem (i.e., which trajectory corresponds to which trajectory)
across the two sequences, as shown in Fig. 2.c and 2.d.

Stein (Stein, 1998) and Lee et.al. (Lee et al., 2000) described a
method for estimating a time shift and a homography between two
sequences based on alignment of centroids of moving objects. How-
ever, in (Stein, 1998; Lee et al., 2000) the centroids were treated as
an unordered collection of feature points and not as trajectories. In
contrast, we enforce correspondences between trajectories, thus avoid-
ing the combinatorial complexity of establishing point matches of all
points in all frames, resolving ambiguities in point correspondences,
and allowing for temporal correspondences at sub-frame accuracy. This
is not possible when the points are treated independently (i.e., as a
“cloud of points”).

Section 2 formulates the underlying problem, and Section 3 presents
our sequence matching algorithm that is based on matching feature
trajectories. The algorithm receives as input two unsynchronized video
sequences and simultaneously estimates the parameters of the tem-
poral and spatial transformation (relation) between the two sequences.
Temporal misalignment (unsynchronization) occurs when the two input
sequences have a time-shift (offset) between them (e.g., if the cameras
were not activated simultaneously), and/or when they have different
frame rates (e.g., PAL vs. NTSC). The spatial relation between the
two sequences results from the camera setups. We have implemented
two variants for the two following camera setups: (i) when the spatial
relation between the two sequences is a 2D projective transformation
(i.e., a homography), and (ii) when the spatial relation between the
two sequences is expressed by epipolar geometry (i.e., a fundamental
matrix).

Section 4 shows that by replacing point features with trajectories
of moving points we can address several cases which are very difficult
for regular image-to-image matching. We show that situations that are
inherently ambiguous for image-to-image matching methods are often
uniquely resolved by the sequence-to-sequence matching approach. In
particular, these include situations where there is very little common
appearance (spatial) information across the two sequences, such as in
sequences of different sensing modalities (e.g., Infra-Red and Visible-
light sensors), large scale differences, and wide base-lines between the
cameras. We apply our method to such examples, and show that consis-
tency of the scene dynamics (i.e., temporal cues across sequences) can
become a major source of information for matching video sequences
both in time and in space.
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Figure 1. Spatial ambiguities in image-to-image alignment (a) and (b) show
two temporally corresponding frames from two different video sequences viewing
the same moving ball. There are infinitely many valid image alignments between
the two frames, some of them shown in (c). (d) and (e) display the two sequences
of the moving ball. There is only one valid alignment of the two trajectories of the
ball. This uniquely defines the alignment both in time and in space between the two
video sequences (f).

2. Problem Formulation

Let S and S′ be two input image sequences, where S denotes the “ref-
erence” sequence, and S′ denotes the second sequence. Let ~x = (x, y, t)
be a space-time point in the reference sequence S (namely, a pixel (x, y)
at frame (time) t) and let ~x′ = (x′, y′, t′) be the matching space-time
point in sequence S′. The recorded scene can change dynamically, i.e.,
it can include moving objects. The cameras can be either stationary or
jointly moving with fixed (but unknown) internal and relative external
parameters. In this setup correspondences in time and in space between
the video sequences can be described/modeled by a small set of param-

eters ~P = (~Pspatial, ~Ptemporal). Our goal is to recover these parameters.
The specific models that we address and their parameters are discussed
next.

Temporal misalignment results when the two input sequences have a
time-shift (offset) between them (e.g., if the cameras were not activated
simultaneously), and/or when they have different frame rates (e.g., PAL
vs. NTSC). Such temporal misalignments can be modeled by a 1-D
affine transformation in time t′ = s · t + ∆t, and is typically at sub-
frame time units. Note that in most cases s is known – it is the ratio
between the frame rates of the two cameras (e.g., for PAL and NTSC



sequences, it is s = 25/30 = 5/6). Therefore, in such cases ~Ptemporal

contains only one unknown parameter, ∆t.
To model the spatial parameters let us look at the spatial part of a

space-time point. Let ~p(t) = (x, y, 1)T denote the homogeneous coordi-
nates of only the spatial component of a space-time point ~x = (x, y, t)
in S. The spatial misalignment between two sequences results from the
fact that the two cameras have different external and internal calibra-
tion parameters. We will consider two possible cases: the 2D case and
the the 3D case:
(i) By the 2D case we refer to the case where the distance between the
camera projection centers is negligible relative to the distances of the
cameras to the scene, or else if the scene is roughly planar. In this 2D
case the space-time relation between the two sequences is expressed by
an unknown 3 × 3 homography H and the unknown ∆t:

H~p(t) ∼= ~p ′(s · t + ∆t).

In this case the nine spatial parameters ~Pspatial = [h11 h12 h13 h21 h22 h23 h31 h32 h33]
are defined up to a scale factor (hij are the 9 entries of H)1, and
~Ptemporal = ∆t.
(ii) By the 3D case we refer to the case where the cameras are disjoint
and the scene contains observable 3D variations. In this case the space-
time relation between the two sequences is expressed by an unknown
fundamental matrix F and the unknown ∆t :

~p ′(s · t + ∆t)
T
F~p = 0,

where [·]T denotes the transpose of a vector. In this case the spatial

relation parameters are: ~Pspatial = [f11 f12 f13 f21 f22 f23 f31 f32 f33],
where fij are the 9 entries of the 3 × 3 fundamental matrix F (up to a

scale factor), and ~Ptemporal = ∆t.

Note that in either case, F or H are shared by all temporally corre-
sponding pairs of frames because the cameras are fixed relative to each
other (both internal parameters and inter-camera external parameters
are fixed).

3. A Feature-Based Sequence Matching Algorithm

Typical feature-based image matching methods, e.g., (Faugeras et al.,
2001; Hartley and Zisserman, 2000; Xu and Zhang, 1996), first apply

1 The modification to other 2D parametric models, such as translation, similarity
or affine, is trivial (e.g., set h31 = h32 = 0 for a 2D affine model).
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(a)Frame from S1 (b) Frame from S2 (c) Sequence S1 (d) Sequence S2

Figure 2. Point correspondences vs. trajectory correspondences. (a) and
(b) display two frames out of two sequences recording five small moving objects
(marked by A,B,C,D,E). (c) and (d) display the trajectories of these moving objects
over time. When analyzing only single frames, it is difficult to determine the correct
point correspondences across images. However, point trajectories have additional
properties, which simplify the correspondence problem across two sequences (both
in space and in time).

a local operator to detect interest points in a pair of images (e.g.,
the Harris corner detector (Harris and Stephens, 1988)). Once interest
points are extracted in the two images, robust estimation methods, such
as RANSAC (Fischler and Bolles, 1981), LMS (Hampel et al., 1986),
etc., are used for finding corresponding points and recovering the spatial
relation between the two images. In order to decrease the possible
complexity of matching, a table of tentative matching is sometimes
constructed. In general, this tentative matching table may be based on
any property of a feature point, but usually it is based on brightness
values of small neighborhoods of the feature points (e.g., in (Xu and
Zhang, 1996) correlation was used).

Feature-based image matching can be generalized to feature-based
sequence matching by extending the notion of features from feature
points to feature trajectories. Let γ = {~xt0 , ~xt1 , . . . , ~xtn} be a space-
time trajectory (remember that by ~x = (x, y, t) we denote space-time
points). Denote by Γ and Γ′ the sets of all trajectories in sequences
S and S′ respectively, then spatio-temporal matching between the two
sequences can be recovered by establishing correspondences between
trajectories from the sets Γ and Γ′.

In particular, a single pair of (non-trivial) corresponding trajecto-
ries2 γ and γ′ can uniquely define: (i) the spatial relation, (ii) the
temporal relation, (iii) can provide a convenient residual error measure:

err(~P ) =
∑

~x∈γ

D(~x, ~x ′) =
∑

t∈[t0,...,tn]
d(~p(t), ~p ′(t′)), where [t0, . . . , tn] is

the temporal support of the space-time trajectory γ, ~p(t) is the spatial
position (i.e., pixel coordinates) of the space-time point ~x at time t (in

2 By a non-trivial trajectory we mean that it covers a large enough image region,
and that its points do not all belong to a degenerate configuration (e.g, a straight
line for a homography, or a plane for a fundamental matrix).



homogeneous coordinates), and ~p ′(t′) is the spatial position of ~x ′ in
the other sequence at time t′ = s · t + ∆t.

For the homography (2D) case the error measure is: d(~p, ~p ′) =
distH(H~p(t), ~p ′(s · t + ∆t)), where distH(q1, q2) is the distance be-
tween two points after normalizing each by its third coordinate. For
the fundamental matrix (3D) case the error measure is: d(~p, ~p ′) =
distF (F~p(t), ~p ′(s · t + ∆t)), where distF (l, q) is the distance (in pixels)
between a point q and a line l (an epipolar line).

We next outline the feature-based sequence-to-sequence alignment
algorithm that we have used in our experiments (which is a RANSAC/MDS
based algorithm). Each step of the algorithm is then explained in more
detail below:
(1) Construct feature trajectories (i.e., detect and track feature points
for each sequence).
(2) For each trajectory estimate its basic properties (e.g., dynamic vs.
static, see more examples below).
(3) Based on basic properties construct an initial table of tentative
matching between trajectories.
(4) Estimate candidate parameter vector ~P = (Pspatial, Ptemporal) by
repeatedly choosing (at random) a pair of possibly corresponding tra-

jectories3. At each trial compute the set of parameters ~P which mini-
mizes the error function err(~P ) defined above.

(5) Assign a score for each candidate set of parameters ~P to be the
number of corresponding pairs of trajectories whose residual error (or
median residual error) is small.
(6) Repeat steps (4) and (5) N times.

(7) Choose ~P which has the highest score.

(8) Refine ~P using all trajectory pairs that supported this candidate.
In our current implementation trajectories of moving objects were

computed (Step 1) by tracking unique points on blobs of moving ob-
jects. This was done either by tracking the center of mass of moving
objects, or the top point on the silhouettes of moving objects (the
reliability of the center of mass to be used as a feature point is discussed
in (Lee et al., 2000), and the reliability of extreme points on silhouettes
is discussed in (Wong and Cipolla, 2001)). The KLT feature tracker
(Lucas and Kanade, 1981; Tomasi and Kanade, 1991) may also be used
to generate additional feature trajectories. In the presence of many
trajectories, trajectory properties may be used to reduce the matching
complexity (Step 2). For example, dynamic trajectories (of moving ob-
jects) in one sequence are matched only against dynamic trajectories
in the other sequence. When the cameras are expected to have similar

3 If these are roughly along a straight line choose an additional pair.



photometric properties, the spatial properties of the features may also
be used (e.g., the size or color distribution of the moving object). When
we anticipate a significant change in appearance, shape properties of
the trajectories could still be used (e.g., normalized length, average
speed, curvature, 5-point projective invariance (Mundy and Zisserman,
1992)). Although some of these are not projective invariants, they are
useful in an initial search for crude tentative matching (Step 3).

A matching of a single pair of trajectories across the two sequences
induces multiple point correspondences across the camera views. These
point correspondences are used for computing the spatial and temporal
relation between the two sequences. To evaluate a candidate param-
eter vector ~P = (h11, · · · , h33, ∆t), or ~P = (f11, · · · , f33, ∆t) (where
h11, · · · , h33 or f11, · · · , f33 are the components of a homography H, or
a fundamental matrix F , respectively), we minimize the following error
function4 (Step 4 and Step 8) :

~P = argmin
~P

∑

γ∈Γ

∑

t∈support(γ)

d(~p(t), ~p ′(s · t + ∆t)) (1)

where d(·) is either distH(·) or distF (·), depending on whether the scene
is 2D or 3D. The minimization of Eq.(1) is performed by iterating the
following two steps:
(i) Fix ∆t and approximate H (or F ) using standard methods (e.g.,
(Hartley and Zisserman, 2000) Chapters 3 and 10, respectively).
(ii) Fix H (or F ) and refine ∆t. Since t′ = s ·t+∆t is not necessarily an
integer value (allowing a sub-frame time shift), it is interpolated from
the adjacent (integer time) point locations: t1 = ⌊t′⌋ and t2 = ⌈t′⌉. We
search for α = t′ − t1 (1 ≥ α ≥ 0) that minimizes the following term:

∑

γ∈Γ

∑

t∈support(γ)

d
(

~p(t) , ~p ′(t1) · (1 − α) + ~p ′(t2) · α
)

(2)

In our implementation we used a bounded number of refinement it-
erations (10 to 20), or stopped earlier if the residual error did not
change. An initial (integer) approximation for ∆t was derived using
exhaustive search over a small fixed temporal interval (20-25 frames in
our experiments).

Examples of applying the above algorithm to video sequences of
different scenarios are found in Figs. 3,4,5,6, (see figure captions for
further details).

4 In Step 4 the summation is only over the selected trajectory.



4. Benefits of Feature-Based Sequence Matching

When there are no dynamic changes in the scene, sequence-to-sequence
matching provides no benefit over image-to-image matching. The in-
crease in the data size (sequences vs. images) only increases the signal-
to-noise ratio, but does not provide new information. On the con-
trary, some degenerate cases may result in space-time ambiguities, see
(Caspi and Irani, 2000; Giese and Poggio, 2000; Stein, 1998). However,
when the scene dynamics is rich enough, sequence matching is superior
to image matching in multiple ways. Below we mention some of its
benefits:
(i) Resolving Spatial Ambiguities. Inherent ambiguities in image-
to-image matching occur, for example, when there is insufficient com-
mon appearance information across images. This can occur when there
is not enough spatial information in the scene, such as in the case of the
small ball against a uniform background in Fig. 1. Insufficient common
appearance information across images can also occur when the two cam-
eras record the scene at significantly different zooms (such as in Fig. 4.a
and 4.b), thus observing different features at different scales. It can also
occur when the two cameras have different sensing modalities (such as
the Infra-Red and visible-light cameras in Fig. 3.a and 3.b), thus sensing
different features in the scene. In those cases the photometric properties
of the two input sequences are very different. Yet, the trajectories of
moving objects over time are independent of the sensor properties, thus
form a powerful cue for matching across the two sequences. In other
words, the need for consistent appearance information is replaced by
consistent temporal behavior, as captured by trajectories of moving
objects estimated within each sequence separately.

If the two cameras are known to observe similar features (e.g., when
they have similar imaging properties and viewing direction), then a
regular feature detector and tracker (e.g., KLT) may also be used (for
static as well as for dynamic scene points). However, if the cameras
have different sensing modalities or a wide base-line, we prefer to select
“symbolic” features such as the center of gravity of the moving objects
(e.g., the cars and the kite in Fig. 3) or the upper tip of the silhouettes
of moving objects5 (e.g., the moving people or the ball in Fig. 6) as the
feature points.
(ii) Improved Accuracy for Unsynchronized Video. Even when
there is sufficient spatial information within the images, and accurate
frame correspondences is known between the two sequences, sequence-
to-sequence matching may still provide higher accuracy in the estima-

5 Implicitly assuming that the cameras are horizontal, and the object tip is not
occluded in one camera.



tion of the spatial transformation than image-to-image matching. This
is true even when all the spatial constraints from all pairs of correspond-
ing images across the two sequences are simultaneously used to solve for
the spatial transformation. This is because image-to-image matching is
restricted to matching of existing physical frames, whereas these may
not have been recorded at exactly the same time due to sub-frame tem-
poral misalignment between the two sequences. Sequence-to-sequence
matching, on the other hand, is not restricted to physical (“integer”)
image frames. It can thus spatially match information across the two se-
quences at sub-frame temporal accuracy. This leads to higher sub-pixel
accuracy in the spatial matching/alignment.

This phenomenon is mostly noticeable when the scene is highly
dynamic. Fig. 7 shows such an example.
(iii) Reduced Combinatorial Complexity. When the search space
for spatial correspondences is large (such as in wide base-line match-
ing, under large image rotations, or under large zoom differences),
sequence-to-sequence matching can be used to reduce the combinatorial
complexity. First, correspondence of trajectories is less ambiguous than
correspondence of feature points due to the added “shape” properties
of feature trajectories. This is illustrated in Fig. 2 and discussed in
Section 1. Second, in these cases the number of trials required by a
RANSAC-like algorithm is significantly lower in sequence-to-sequence
matching. We next analyze the difference between the number of trials
in both cases (image-to-image vs. sequence-to-sequence matching).

Let m be the minimal number of correspondences required for com-
puting a spatial transformation ~Pspatial (e.g., m = 4 for a homography;
m = 8 for a fundamental). Let ǫ be the probability that a feature match-
ing across the two images is correct (and therefore the probability of a
mismatch or an outlier is (1− ǫ)). A RANSAC-like matching algorithm
requires that at least one of the trials (i.e., one random sampling of
m correspondences) will not contain any mismatches (outliers). Let N
be the number of trials that are required to ensure with probability
p (usually p = 99%) that at least one random sample of m features
is free from mismatches. Then N is given by the following formula
(Rousseeuw, 1987; Hartley and Zisserman, 2000):

N ≥
log(1 − p)

log(1 − ǫm)
. (3)

This formula emphasizes why in a standard image-to-image matching
a limited search range for candidate feature correspondences is crucial:
a bounded number of candidate correspondence points guarantees that
ǫ is large enough (e.g., ǫ > 0.5), thus limiting the number of trials N
to a reasonable number.



However, when there is a large base-line between the cameras, a
large scale difference, or a large image rotation, then ǫ ≈ 1

#features

(the probability to choose corresponding features at random). ǫ may
be even smaller if the two sets of features from the two images are
inconsistent (i.e., different features are observed by the two cameras).
In such cases the contribution of sequence-to-sequence matching is most
prominent. Thus, for example, if we use image-to-image matching with
100 features (and without restricting the search range), then according
to Eq. (3) the number of necessary trials for computing a homography
(m = 4, ǫ = 1

100 , p = 99%) is N > 4.6 × 108 (which is obviously an
unreasonable number of trials!). On the other hand, in the case of
sequence-to-sequence matching, one pair of corresponding trajectories
(m = 1) provides the required number of point correspondences. Even
if we do not exploit distinguishing shape properties of trajectories and
assume that ǫ = 1

#trajectories
, we get a reasonable number of trials

N ≥ 459 (for m = 1, ǫ = 1
100 , p = 99%).

When dealing with unsynchronized video sequences we should also
take into account the temporal ambiguity. Thus, for each pair of cor-
responding trajectories, we further have to verify T possible matches,
where T is the range of possible temporal misalignments. Therefore, the
number of trials for an unsynchronized pair of sequences is O(T · N)
(in our experiments we usually allow for T = 25 frames, i.e., we assume
that the temporal offset between the two sequences is at most ∆t = 1
second).

When only trajectories of moving objects are used, the number of
trajectories is usually very small, leading to an additional reduction
in the complexity of trajectory matching. Furthermore, when moving
objects appear at different times in the sequence, the complexity of
trajectory matching is even further reduced. Note that a few such tra-
jectory correspondences induce a high number of point correspondences,
which enable robust recovery of spatial alignment/matching.

5. Applications and Results

The above mentioned benefits of sequence-to-sequence matching/alignment
give rise to new video applications, that are very difficult or even im-
possible to obtain using existing image-to-image matching tools. Some
of these are described in figures 3, 4, 5, 6 and briefly outlined below.

(i) Multi-sensor alignment. The same objects look different in vis-
ible and infra-red light, which often makes impossible to match them
across the views relying on their appearance. For example, 200 features



were extracted in the multi-sensor image pair of Fig. 3.a and Fig. 3.b
using Harris corner detector (Harris and Stephens, 1988), but only two
out of the 200 turned out belonging to the same real world point. On the
other hand, if we detect and track a moving object in both views, then
its trajectory no longer depends on the sensing modality of the camera,
and thus forms a powerful dynamic cue for alignment. An example of
multi-sensor sequence-to-sequence alignment is presented in Fig. 3. (In
this case a homography was computed).
(ii) Matching across significant zoom differences. Fig. 4 shows an
example of aligning sequences obtained at significantly different zooms.
Due to the large scale difference (1 : 3) the search range for correspond-
ing features is very large (the same features appear at distant locations
in the images). Furthermore, the scene is captured at significantly
different spatial resolutions, thus point neighborhoods look very differ-
ent, making the matching of conventional (point) features problematic.
The homography was accurately recovered using sequence-to-sequence
alignment. See caption of Fig. 4 for more details.
(iii) Wide base-line matching. Another difficult scenario for image
matching is the wide base-line case. When cameras capture the scene
from distant viewpoints, they see objects from different sides. We took
extreme examples of two cameras, situated on the opposite sides of
the scene (i.e., the cameras are facing each other; in fact each camera
sees the other camera). The cameras observe the same objects, but can
never see the same point.
Our algorithm succeeds to recover the fundamental matrix in this sit-
uation with reasonable accuracy, as shown in Figs. 5 and 6 (see figure
captions for more information).
(iv) New video applications. Unsynchronized video sequences can
be temporally matched (synchronized) at sub-frame accuracy. Such
sub-frame synchronization gives rise to new video applications includ-
ing super-resolution in time (Shechtman et al., 2002), where multiple
video sequences with low temporal resolution (low frame-rate) are com-
bined into a single high temporal resolution (high frame-rate) output
sequences.
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(e) (f)

Figure 3. Multi-Sensor Alignment. (a) and (b) display representative frames
from a PAL visible light sequence and an NTSC Infra-Red sequence, respec-
tively. The scene contains several moving objects: 2 kites, 2 moving cars,
and sea waves. The trajectories induced by tracking the moving objects are
displayed in (c) and (d). The two camera centers were close to each other,
therefore the spatial transformation was modeled by a homography. The out-
put after spatio-temporal alignment via trajectories matching (Section 3) is
displayed in (e) and (f). The recovered temporal misalignment was 1.31 sec.
The results are displayed after fusing the two input sequences (using Burt’s
fusion algorithm (Burt and Kolczynski, 1993)). We can now observe spatial
features from both sequences. In particular note the right kite which is more
clearly visible in the visible-light sequence (circled in green), and the left kite
which is more clearly visible in the IR sequence (circled in red).



(a) Zoomed-out (b) Zoomed-in (c) Superposition

Figure 4. Alignment of sequences obtained at different zooms. Columns
(a) and (b) display four representative frames from the reference sequence
and second sequence, showing a ball thrown from side to side. The sequence
in column (a) was captured by a wide field-of-view camera, while the sequence
in column (b) was captured by a narrow field-of-view camera. The cameras
where located next to each other (the spatial transformation was modeled by
a homography) and the ratio in zooms was approximately 1 : 3. The two
sequences capture features at significantly different spatial resolutions, which
makes the problem of inter-camera image-to-image alignment very difficult.
The dynamic information (the trajectory of the ball’s center of gravity), on the
other hand, forms a powerful cue for alignment both in time and in space. Col-
umn (c) displays superposition of corresponding frames after spatio-temporal
alignment, using the algorithm of Section 3 for estimating the homography
and the temporal correspondence between the two sequences. The dark (pink)
boundaries in (c) correspond to scene regions observed only by the reference
(zoomed-out) camera.



(a) First camera sequence:

(b) Second camera sequence:

(c) (d)

Figure 5. Wide Base-Line Matching Rows (a) and (b) display a few corre-
sponding frames of one person (out of three that took part in the experiment)
walking and sitting in a hall. The sequences were taken from two opposite
sides of the hall. Each camera is visible by the other camera and is marked
on the right-most frame by an arrow. Using background subtraction we extract
moving objects (people), and select their head tips (the highest point on the
silhouette) as feature points (this is illustrated for the second sequence in (b)).
The recovered epipolar geometry is displayed in (c) and (d). Static points and
their epipolar lines are displayed for verification only and were not used in the
computation. Note that the recovered epipoles (the intersection of the epipolar
lines) fall very close to their true locations (which is the position of the other
camera, marked by a white cross). In this example only one person at a time
enters the scene, thus the trajectory correspondence problem becomes simple.
An initial temporal alignment with accuracy within one second (25 frames)
was manually provided, and the final recovered temporal shift was -2.8 frames.
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(c) (d)
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Figure 6. Wide Base-Line Matching (a) and (b) display two representative
frames from two sequences of a basketball game taken from two opposite
sides of the basket field (the cameras are facing each other). Each camera
is visible by the other camera and is circled and marked by a white arrow.
Space-time trajectories induced by moving objects (ball and players) are dis-
played in (c)-(d) in different colors for the different objects. The recovered
epipolar geometry is displayed in (e) and (f). Points and their epipolar lines
are displayed in each image for verification. Note, that the only static objects
that are visible in both views are the basket ring and the board. Accuracy of
the recovered spatial alignment can be appreciated by the closeness of each
point to the epipolar line of its corresponding point, as well as by comparing
the intersection of epipolar lines with the ground truth epipole marked by a
cross (which is the other camera). In this example the relative blob size of
the moving objects was used to provide initial correspondence between the
trajectories across the two sequences. Two trajectories (instead of one) were
used on each RANSAC iteration, as most trajectories are planar. An initial
temporal alignment with accuracy within one second (25 frames) was manually
provided, and the final recovered temporal shift was 3.7 frames.



(a) In sequence 1:

(b) In sequence 2:

Figure 7. Subframe temporal synchronization (a) displays superposition of
the moving ball position in two consecutive frames in sequence 1 (at t = 0
and t = 1). The ball is falling at a high speed, thus its displacement is quite
noticeable. The feature point is the tip point of the ball in each frame (the
highest point on the ball). The dashed blue circle displays the interpolated ball
location at the correct time shift (i.e., the correct sub-frame time unit at which
the corresponding frame was recorded in the other sequence – sequence 2). In
this example it is 0.7 of a frame time, since the global temporal matching was
3.7 frames offset. (b) The red lines display the epipolar lines generated on
the image plane of sequence 2 by the “physical” ball in sequence 1 (imaged
at “integer” frames t = 0 and t = 1). The blue line displays the epipolar
line corresponding to the interpolated location of the ball at t = 0.7. It can be
clearly seen that the ball’s feature point (its tip) in sequence 2 is on the epipolar
line corresponding to the virtual point (its location at t = 0.7 in sequence 1).
This example also shows that a large error can be introduced by matching only
“integer” frames across two sequences (while ignoring the sub-frame temporal
offset).


