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The development of effective content-based multimedia search systems is an important research
issue, due to the growing amount of digital audio-visual information. In the case of images and
video, the growth of digital data has been observed since the introduction of 2D capture devices.
A similar development is expected for 3D data, as acquisition and dissemination technology of
3D models is constantly improving. 3D objects are becoming an important type of multimedia
data, with many promising application possibilities. Defining the aspects that constitute the

similarity among 3D objects, and designing algorithms that implement such similarity definitions,
is a difficult problem. Over the last few years, a strong interest in methods for 3D similarity

search has arisen, and a growing number of competing algorithms for content-based retrieval of
3D objects have been proposed. We survey feature-based methods for 3D retrieval, and we propose
a taxonomy for these methods. We also present experimental results, comparing the effectiveness
of some of the surveyed methods.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Curve, surface, solid, and object representations; I.3.7 [Computer Graph-

ics]: Three-Dimensional Graphics and Realism; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval

General Terms: Algorithms

Additional Key Words and Phrases: 3D model retrieval, Content-based similarity search

1. INTRODUCTION

The development of multimedia database systems and retrieval components is be-
coming increasingly important due to a rapidly growing amount of available multi-
media data. As we see progress in the fields of acquisition, storage, and dissemina-
tion of various multimedia formats, one likes to apply effective and efficient database
management systems to handle these formats. The need is obvious for image and
video content. In the case of 3D objects, a similar development is expected in the
near future. The improvement in 3D scanner technology and the availability of 3D
models widely distributed over the Internet are rapidly contributing to create large
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Fig. 1. Example of a similarity search on a database of 3D objects, showing a query object (q)
and a set of possible relevant retrieval answers (a).

databases of this type of multimedia data. Also, the rapid advances in graphics
hardware are making possible the fast processing of this complex data, making
this technology available to a wide range of potential users at a relative low cost
compared with the situation ten years ago.

One of the most important tasks in a multimedia retrieval system is to implement
effective and efficient similarity search algorithms. Multimedia objects cannot be
meaningfully queried in the classical sense (exact search), because the probability
that two multimedia objects are identical is negligible, unless they are digital copies
from the same source. Instead, a query in a multimedia database system usually
requests a number of the most similar objects to a given query object or a manually
entered query specification.

One approach to implement similarity search in multimedia databases is by using
annotation information that describes the content of the multimedia object. Un-
fortunately, this approach is not very practicable in large multimedia repositories
because in most cases, textual descriptions have to be generated manually, and are
difficult to extract automatically. Also, they are subject to the standards adopted
by the person who created them, and cannot encode all the information available
in the multimedia object. A more promising approach for implementing a similar-
ity search system is using the multimedia data itself, which is called content-based
search. In this approach, the multimedia data itself is used to perform a similarity
query. Figure 1 illustrates the concept of content-based 3D similarity search. The
query object is a 3D model of a chair. The system is expected to retrieve similar
3D objects from the database, as shown in Figure 1.

1.1 Similarity search in 3D object databases

The problem of searching similar 3D objects arises in a number of fields. Example
problem domains include Computer Aided Design/Computer Aided Manufacturing
(CAD/CAM), virtual reality (VR), medicine, molecular biology, military applica-
tions, and entertainment:
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—In medicine, the detection of similar organ deformations can be used for diagnos-
tic purposes. For example, the current medical theory of child epilepsy assumes
that an irregular development of a specific portion of the brain, called the hip-
pocampus, is the reason for epilepsy. Several studies show that the size and shape
of the deformation of the hippocampus may indicate the defect, and this is used
to decide whether or not to remove the hippocampus by brain surgery. Similarity
search in a database of 3D hippocampi models can support the decision process
and help to avoid unnecessary surgeries [Keim 1999].

—Structural classification is a basic task in molecular biology. This classification
can be successfully approached by similarity search, where proteins and molecules
are modeled as 3D objects. Inaccuracies in the molecule 3D model due to mea-
surement, sampling, numerical rounding, and small shift errors must be handled
accordingly [Ankerst et al. 1999b].

—For a number of years many weather forecast centers include pollen-forecasts
in their reports in order to warn and aid people allergic to different kinds of
pollen. Ronneberger et al. [2002] developed a pattern recognition system that
classifies pollen from 3D volumetric data acquired using a confocal laser scan
microscope. The 3D structure of pollen can be extracted. Grey scale invariants
provide components of feature vectors for classification.

—Forensic institutes around the world must deal with the complex task of iden-
tifying tablets with illicit products (drug pills). In conjunction with chemical
analysis, physical characteristic of the pill (e.g., shape and imprint) are used in
the identification process. The shape and imprints recognition methods include
object bounding box, region-based shape and contour-based shape, which can be
used to define a 3D model of the pill. A similarity search system can be used to
report similarities between the studied pill and the models of known illicit tablets
[Geradts et al. 2001].

—A 3D object database can be used to support CAD tools, because a 3D object can
model exactly the geometry of an object, and any information needed about it
can be derived from the 3D model, e.g., any possible 2D view of the object. These
CAD tools have many applications in industrial design. For example, standard
parts in a manufacturing company can be modeled as 3D objects. When a new
product is designed, it can be composed by many small parts that fit together
to form the product. If some of these parts are similar to one of the already
designed standard parts, then the possible replacement of the original part with
the standard part can lead to a reduction of production costs.

—Another industrial application is the problem of best fitting shoes [Novotni and
Klein 2001a]. A 3D model of the client’s foot is generated using a 3D scanning
tool. Next, a similarity search is performed to discard the most unlikely fitting
models according to the client’s foot. The remaining candidates are then exactly
inspected to determine the best match.

—A friend/foe detection system is supposed to determine whether a given object
(e.g., a plane or a tank) is considered friendly or hostile, based on its geometric
classification. This kind of system has obvious applications in military defense.
One way to implement such a detection system is to store 3D models of the known
friendly or hostile objects, and the system determines the classification of a given
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object based on the similarity definition and the database of reference objects.
As such decisions must be reached in real-time and are obviously critical, high
efficiency and effectiveness of the retrieval system is a dominant requirement for
this application.

—Movie and video game producers make heavy usage of 3D models to enhance
realism in entertainment applications. Re-usage and adaptation of 3D objects by
similarity search in existing databases is a promising approach to reduce produc-
tion costs.

As 3D objects are used in diverse application domains, different forms for object
representation, manipulation, and presentation have been developed. In the CAD
domain, objects are often built by merging patches of parametrized surfaces, which
are edited by technical personnel. Also, constructive solid geometry techniques are
often employed, where complex objects are modeled by composing primitives. 3D
acquisition devices usually produce voxelized objects approximations (e.g., com-
puter tomography scanners), or clouds of 3D points (e.g., in the sensing phase of
structured light scanners). Other representation forms like swept volumes or 3D
grammars exist. Probably the most widely used representation is to approximate
a 3D object by a mesh of polygons, usually triangles. For a survey on important
representation forms, see Campbell and Flynn [2001]. For 3D retrieval, basically all
of these formats may serve as input to a similarity query. Where available, infor-
mation other than pure geometry data can be exploited, e.g., structural data that
may be included in a VRML representation. Many similarity search methods that
are presented in the literature up to date rely on triangulations, but could easily be
extended to other representation forms. Of course, it is always possible to convert
or approximate from one representation to another one.

Research on describing shapes and establishing similarity relations between geo-
metric and visual shape has been done extensively in the fields of computer vision,
shape analysis and computational geometry for several decades. In computer vision,
it is usually tried to recognize objects in a scene by segmenting a 2D image and
then matching these segments to a set of a priori known reference objects. Specific
problems involve accomplishing invariance with respect to lighting conditions, view
perspective, clutter and occlusion. From the database perspective, it is assumed
that the objects are already described in their entity, which can be directly used.
Problems arise in the form of heterogeneous object representations (often certain
properties of 3D objects cannot be assured), and the decision problem per se is
difficult: What is the similarity notion? Where is the similarity threshold? How
much tolerance is sustainable in a given application context, and which answer set
sizes are required? In addition, the database perspective deals with a possibly large
number of objects, therefore the focus lies not only on accurate methods, but also
on fast methods providing efficient answer times even on large object repositories.

1.2 Feature vector paradigm

The usage of feature vectors (FVs) is the standard approach for multimedia retrieval
[Faloutsos 1996], when it is not clear how to compare two objects directly. The
feature-based approach is general and can be applied on any multimedia database,
but we will present it from the perspective of 3D object databases.
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Fig. 2. Feature based similarity search.

1.2.1 Feature vector extraction. Having defined certain object aspects, numeri-
cal values are extracted from a 3D object. These values describe the 3D object and
form a feature vector (FV) of usually high dimensionality. The resulting FVs are
then used for indexing and retrieval purposes. FVs describe particular characteris-
tics of an object based on the nature of the extraction method. For 3D objects, a
variety of extraction algorithms have been proposed, ranging from basic ones, e.g.,
properties of an object’s bounding box, to more complex ones, like the distribution
of normal vectors or curvature, or the Fourier transform of some spherical func-
tions that characterize the objects. It is important to note that different extraction
algorithms capture different characteristics of the objects. It is a difficult problem
to select some particular feature methods to be integrated into a similarity search
system, as we find that not all methods are equally suited for all retrieval tasks.
Ideally, a system would implement a set of “fundamentally” different methods,
such that the appropriate feature could be chosen based on the application domain
and/or user preferences. After a method is chosen and FVs are produced for all
objects in the database, a distance function calculates the distance of a query point
to all objects of the database, producing a ranking of objects in ascending distance.

Figure 2 shows the principle of a feature based similarity search. The FV is
extracted from the original 3D query object, producing a vector v ∈ R

d for some
dimensionality d.

The specific FV type and its given parametrization determine the extraction
procedure and the resulting vector dimensionality. In general, different levels of
resolution for the FV are allowed: More refined descriptors are obtained using
higher resolutions. After the FV extraction, the similarity search is performed
either by a full scan of the database, or by using an index structure to retrieve the
relevant models.

1.2.2 Metrics for feature vectors. The similarity measure of two 3D objects is
determined by a non-negative, real number. Generally, a similarity measure is
therefore a function of the form

δ : Obj × Obj → R
+

0

where Obj is a suitable space of 3D objects. Small values of δ denote strong
similarity and high values of δ correspond to dissimilarity.
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Let U be the 3D object database and let q be the query 3D object. There are
basically two types of similarity queries in multimedia databases:

—Range queries: A range query (q, r), for some tolerance value r ∈ R
+, reports all

objects from the database that are within distance r to q, that is, (q, r) = {u ∈
U, δ(u, q) ≤ r}.

—k Nearest neighbors (k-NN) queries: It reports the k objects from U closest to q,
that is, it returns a set C ⊆ U such as |C| = k and for all u ∈ C and v ∈ U−C),
δ(u, q) ≤ δ(v, q).

Assume that a FV of dimension d is taken for a similarity search. In typical
retrieval systems, the similarity measure δ(u, v) is simply obtained by a metric
distance L (~x, ~y) in the d-dimensional space of FVs, where ~x and ~y denote the FVs
of u and v, respectively. An important family of similarity functions in vector spaces
is the Minkowski (Ls) family of distances, defined as:

Ls (~x, ~y) =





∑

1≤i≤d

|xi − yi|
s





1/s

, ~x, ~y ∈ R
d, s ≥ 1.

Examples of these distance functions are L1, which is called Manhattan dis-
tance, L2, which is the Euclidean distance, and the maximum distance L∞ =
max1≤i≤d |xi − yi|.

A first extension to the standard Minkowski distance is to apply a weight vector
w, that weighs the influence that each pair of components exerts on the total
distance value. This is useful if a user has knowledge about the semantics of the
FV components. Then, she can manually assign weights based on her preferences
with respect to the components. If no explicit such knowledge exists, it is still
possible to generate weighting schemes based on relevance feedback, see e.g., [Elad
et al. 2002]. The basic idea in relevance feedback is to let the user assign relevance
scores to a number of retrieved results. Then, the query metric may automatically
be adjusted such that the new ranking is in better agreement with the supplied
relevance scores, and thereby (presumably) producing novel (previously not seen)
relevant objects in the answer set.

If the feature components correspond to histogram data, several further exten-
sions to the standard Minkowski distance can be applied. In the context of image
similarity search, color histograms are often used. The descriptors then consist of
histogram bins, and cross-similarities can be used to reflect natural neighborhood
similarities among different bins. One prominent example for employing cross-
similarities is the QBIC system [Ashley et al. 1995], where results from human per-
ceptual research are used to determine a suitable cross-similarity scheme. It was
shown that quadratic forms are the natural way to handle these cross-similarities
formally, and that they can be efficiently evaluated for a given database [Seidl and
Kriegel 1997]. If such intra-feature cross-similarities can be identified, quadratic
forms may also be used for 3D similarity search, as done, e.g., in the shape his-
togram approach (cf. Section 3.4.2). Apart from Minkowski and quadratic forms,
other distance functions for distributions can be borrowed from statistics and in-
formation theory. But, this variety also makes it difficult to select the appropriate
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distance function, as the retrieval effectiveness of a given metric depends on the
data to be retrieved and the extracted features [Puzicha et al. 1999].

1.3 Overview

The remainder of this article presents a survey of approaches for searching 3D ob-
jects in multimedia databases under the feature vector paradigm. In Section 2, we
first discuss fundamental issues of similarity search in 3D objects databases. In
Section 3, we then review and classify feature-based methods for describing and
comparing 3D objects that are suited for database deployment. A comparison in
Section 4 tries to contrasts the surveyed approaches with respect to important
characteristics, and gives experimental retrieval effectiveness benchmarks that we
performed on a number of algorithms. Finally, in Section 5 we draw some conclu-
sions and outline future work in the area.

2. PROBLEMS AND CHALLENGES OF 3D SIMILARITY SEARCH SYSTEMS

Ultimately, the goal in 3D similarity search is to design database systems that store
3D objects and effectively and efficiently support similarity queries. In this section,
we discuss the main problems posed by similarity search in 3D object databases.

2.1 Descriptors for 3D similarity search

3D objects can represent complex information. The difficulties to overcome in
defining similarity between spatial objects are comparable to those for the same task
applied to 2D images. Geometric properties of 3D objects can be given by a number
of representation formats, as outlined in the introduction. Depending on the format,
surface and matter properties can be specified. The object’s resolution can be
arbitrarily set. Given that there is no founded theory on a universally applicable
description of 3D shapes, or how to use the models directly for similarity search, in
a large class of methods for similarity ranking the 3D data is transformed in some
way to obtain numeric descriptors for indexing and retrieval. We also refer to these
descriptors as feature vectors (FVs). The basic idea is to extract numeric data
that describe the objects under some identified geometric aspect, and to infer the
similarity of the models from the distance of these numerical descriptions in some
metric space. The similarity notion is derived by an application context that defines
which aspects are of relevance for similarity. Similarity relations among objects
obtained in this way are then subject to the specific similarity model employed,
and may not reflect similarity in a different application context.

The feature-based approach has several advantages compared to other approaches
for implementing similarity search. The extraction of features from multimedia data
is usually fast and easily parametrizable. Metrics for FVs, as the Minkowski dis-
tances, can also be efficiently computed. Spatial access methods [Böhm et al. 2001]
or metric access methods [Chávez et al. 2001] can be used to index the obtained
FVs. All these advantages make the feature-based approach a good candidate for
implementing a 3D object similarity search engine.

3D similarity can also be estimated under paradigms other than the FV ap-
proach. Generally, non-numeric descriptions can be extracted from 3D objects,
like structural information. Also, direct geometric matching is an approach. Here,
it is measured how easily a certain object can be transformed into another one,
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Fig. 3. A 3D object in different scale and orientation (left), and also represented with increasing
level-of-detail (right).

and a cost associated by this transform serves as the metric for similarity. Usually
these metrics are computationally costly to compute and do not always hold the
triangle inequality, therefore it is more difficult to index the database under these
alternative paradigms.

2.2 Descriptor requirements and 3D pose normalization

Considering the descriptor approach, one can define several requirements that ef-
fective FV descriptors should meet. Good descriptors should abstract from the po-
tentially very distinctive design decisions that different model authors make when
modeling the same or similar objects. Specifically, the descriptors should be invari-
ant to changes in the orientation (translation, rotation and reflection) and scale
of 3D models in their reference coordinate frame. That is, the similarity search
engine should be able to retrieve geometrically similar 3D objects with different
orientations. Figure 3 (left) illustrates different orientations of a Porsche car 3D
object: The extracted FV should be (almost) the same in all cases. Ideally, an ar-
bitrary combination of translation, rotation and scale applied to one object should
not affect its similarity score with respect to another object.

Furthermore, a descriptor should also be robust with respect to small changes of
the level-of-detail, geometry and topology of the models. Figure 3 (right) shows
the Porsche car 3D object at four different levels of resolution. If such transforma-
tions are made to the objects, the resulting similarity measures should not change
abruptly, but still reflect the overall similarity relations within the database.

Invariance and robustness properties can be achieved implicitly by those de-
scriptors that consider relative object properties, e.g., the distribution of surface
curvature of the objects. For other descriptors, these properties can be achieved
by a preprocessing normalization step, which transforms the objects so that they
are represented in a canonical reference frame. In such a reference frame, direc-
tions and distances are comparable between different models, and this information
can be exploited for similarity calculation. The predominant method for finding
this reference coordinate frame is pose estimation by principal component analy-
sis (PCA) [Paquet et al. 2000; Vranić et al. 2001], also known as Karhunen-Loève
transformation. The basic idea is to align a model by considering its center of
mass and principal axes. The object is translated to align its center of mass with
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Fig. 4. Pose estimation using the PCA for three classes of 3D objects.

the coordinate origin (translation invariance), and then is rotated around the ori-
gin such that the x, y and z axes coincide with the three principal components
of the object (rotation invariance). Additionally, flipping invariance may be ob-
tained by flipping the object based on some moment test, and scaling invariance
can be achieved by scaling the model by some canonical factor. Figure 4 illustrates
PCA-based pose- and scaling normalization of 3D objects. For some applications,
matching should be invariant with respect to anisotropic scaling. For this purpose,
Kazhdan et al. [2004] proposed a method that scales objects, such that they are
maximally isotropic before computing FVs for shape matching.

While PCA is a standard approach to pose estimation, several variants can be
employed. When a consistent definition of object mass properties is not available,
as is usually the case in mesh representations, one has to decide on the input to
the PCA. Just using polygon centers or mesh vertices would make the outcome
dependent on the tessellation of the model. Then, it is advantageous to use a
weighing scheme to reflect the influence that each polygon contributes to the overall
object distribution when using polygon centers or mesh vertices [Vranić and Saupe
2000; Paquet and Rioux 2000]. Analytically, it is necessary to integrate over all
of the infinitesimal points on a polygon [Vranić et al. 2001]. Others use a Monte-
Carlo approach to sample many polygon points [Ohbuchi et al. 2002] to obtain PCA
input.

A few authors articulate fundamental critique on the PCA as a tool for 3D re-
trieval. Funkhouser et al. [2003] find PCA being unstable for certain model classes,
and consequently propose descriptors that do not rely on orientation information.
On the other hand, omitting orientation information may also omit valuable object
information.

A final descriptor property that is also desirable to have is the multi-resolution
property. Here, the descriptor embeds progressive model detail information, which
can be used for similarity search on different levels of resolution. It eliminates the
need to extract and store multiple descriptors with different levels of resolution,
if multi-resolution search is required, e.g., for implementing a filter-and-refinement
step. A main class of descriptors that implicitly provide the multi-resolution prop-
erty are those that perform a discrete Fourier or Wavelet transform of sampled
object measures.
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2.3 Retrieval system requirements

There are two major concerns when designing and evaluating a similarity search
system: Effectiveness and efficiency. To provide effective retrieval, the system is
supposed to return the most relevant objects from the database on the first ranks
given a query, and to hold back irrelevant objects from this ranking. Therefore,
it needs to implement discriminating methods to distinguish between similar and
non-similar objects. The above described invariants should be provided. However,
it is not clear what the exact meaning of similarity is. As obvious from the number
of different methods reviewed in Section 3, there exist a variety of concepts for
geometric similarity. The most formalizable one until now is global shape similarity,
like illustrated in the first row of chairs shown in Figure 1. But, in spite of significant
difference in their global shapes, two objects could still be considered similar given
they belong to some kind of semantic class, for example like in the second row
of chairs in Figure 1. Furthermore, partial similarity among different objects also
constitutes a similarity relationship within certain application domains. Most of the
current methods are designed for global geometric similarity, while partial similarity
still remains a difficult problem.

On the other hand, the search system has to provide efficient methods for de-
scriptor extraction, indexing and query processing on the physical level. This is a
need, because it can be expected that 3D databases will grow rapidly once 3D scan-
ning and 3D modeling become commonplace. In databases consisting of millions
of objects with hundreds of thousands of voxels or triangles each, which need to
be automatically described and searched for, efficiency becomes mandatory. Two
broad techniques exist to efficiently conduct fast similarity search [Faloutsos 1996].
A filter-and-refinement architecture first restricts the search space with some inex-
pensive, coarse similarity measure. On the created candidate set, some expensive
but more accurate similarity measure is employed in order to produce the result set.
It is the responsibility of such filter measures to guarantee for no false dismissals,
or at least only a few, in order to generate high-quality answer sets. Second, if
the objects in a multimedia database are already feature-transformed to numeri-
cal vectors, specially suited high-dimensional data structures along with efficient
nearest-neighbor query algorithms can be employed to avoid the linear scan of all
objects. Unfortunately, due to the curse of dimensionality [Böhm et al. 2001], the
performance of all known index structures deteriorates for high-dimensional data.
Application of dimensionality reduction techniques as a post-processing step can
help improving the indexability of high-dimensional FVs [Ngu et al. 2001].

Finally, note that in traditional databases the key-based searching paradigm im-
plicitly guarantees full effectiveness of the search, so efficiency aspects are the major
concern. In multimedia databases, where effectiveness is subject to some applica-
tion and user context, efficiency and effectiveness concerns are of equal importance.

2.4 Partial similarity

Almost all available methods for similarity search in 3D object databases focus on
global geometric similarity. In some application domains, also the notion of par-
tial similarity is considered. In partial similarity, similarities in parts or sections
of the objects are relevant. In some applications, complementarity between solid
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object segments constitutes similarity between objects, e.g., in the molecular dock-
ing problem [Teodoro et al. 2001]. In the case of 2D polygons, some solutions to
the partial similarity problem have been proposed [Berchtold et al. 1997]. For 3D
objects, to date it is not clear how to design fast segmentation methods that lead to
suited object partitions, which could be compared pairwise. Although partial sim-
ilarity is an important research field in multimedia databases, this survey focuses
on global geometric similarity.

2.5 Ground truth

A crucial aspect for objective and reproducible effectiveness evaluation in multime-
dia databases is the existence of a widely accepted ground truth. Up to now, this
is only partially the case for the research in 3D object retrieval. Up to now, each
research group in this field has collected and classified their own 3D databases. In
Section 4, we present our own prepared ground truth, which we use to experimen-
tally compare the effectiveness of several feature-based methods for 3D similarity
search. Recently, the carefully compiled Princeton Shape Benchmark was proposed
by Shilane et al. [2004]. The benchmark consists of a train database, which is pro-
posed for calibrating search algorithms, and a test database, which can then be
used to compare different search engines against each other. This benchmark could
eventually become the standard in evaluating and comparing retrieval performance
of 3D retrieval algorithms in the future.

3. METHODS FOR CONTENT-BASED 3D RETRIEVAL

This section reviews recent methods for feature-based retrieval of 3D objects. In
Section 3.1 an overview and a classification of the different methods discussed in
this survey is given. In Sections 3.2 – 3.7 we give a detailed description of many
individual methods, sorted according to our classification.

3.1 Overview and classification

Classifying methods for 3D description can be done along different criteria. A
popular differentiation from the field of shape analysis is according to the following
schema [Loncaric 1998]:

—Descriptors can be built based on the surface of an object, or based on interior
properties. Curvature of the boundary is an example of the first type of descrip-
tor, while measures for the distribution of object mass are of the second type of
description.

—Depending on the type of resulting object descriptor, numeric methods produce
a vector of scalar values representing the object, while spatial methods use other
means, e.g., a sequence of primitive shapes approximating the original shape, or
a graph representing object structure.

—Preserving descriptors preserve the complete object information, which allows the
lossless reconstruction of the original object from the description. Non-preserving
descriptors discard a certain amount of object information, usually retaining only
some part of information that is considered the most important.

A descriptor differentiation more specific to 3D models can be done based on the
type of model information focused on, e.g., geometry, color, texture, mass distri-
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Fig. 5. 3D descriptor extraction process model.

bution, and material properties. Usually, geometry is regarded most important for
3D objects, and thus, all descriptors presented in this survey make use of geome-
try input only. This is also because geometry is always specified in models, while
other characteristics are more application-dependent and cannot be assumed to be
present in arbitrary 3D databases.

Furthermore, one could differentiate descriptors with respect to integrity con-
straints assumed for the models, e.g., solid shape property, consistent face orienta-
tion, or the input type assumed (polygon mesh, voxelization, CSG set, etc.). Most
of the presented methods are flexible in that they allow for model inconsistencies
and assume triangulations. Of course, the description flexibility depends on the
model assumptions; additional information can be expected to yield more options
for designing descriptors.

Recently, we proposed a new way to classify methods for 3D model retrieval
[Bustos et al. 2005]. In this classification, the extraction of shape descriptors is be
regarded as a multistage process (see Figure 5). In the process, a given 3D object,
usually represented by a polygonal mesh, is first preprocessed to approximate the
required invariance and robustness properties. Then, the object is abstracted so
that its character is either of surface type, or volumetric, or captured by one or
several 2D images. Then, a numerical analysis of the shape may take place, from
the result of which finally the FVs are extracted.

We briefly sketch these basic steps in the following. Without losing generality,
we assume that the 3D object is represented by a polygonal mesh.

(1) Preprocessing. If required by the descriptor, the 3D model is preprocessed for
rotation (R), translation (T ), and/or scaling (S ) invariance.

(2) Type of object abstraction. There are three different types of object abstrac-
tion: Surface, volumetric, and image. Statistics of the curvature of the object
surface is an example of a descriptor based directly on surface, while measures
for the 3D distribution of object mass, e.g., using moment-based descriptors,
belong to the volumetric type of object abstraction. A third way to capture the
characteristics of a mesh would be to project it onto one or several image planes
producing renderings, corresponding depth maps, silhouettes, and so on, from
which descriptors can be derived. This forms image-based object abstractions.

(3) Numerical transformation. The main features of the polygonal mesh may be
captured numerically using different methods. E.g., voxels grids and image ar-
rays can be Wavelet transformed, or surfaces can be adaptively sampled. Other
numerical transformations include spherical harmonics (SH), curve fitting, and
the discrete Fourier transform (DFT). Such transforms yield a numerical rep-
resentation of the underlying object.
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(4) Descriptor generation. At this stage, the final descriptor is generated. It can
belong to one of the next three classes:
(a) Feature vectors (FV ) consist of elements in a vector space equipped with a

suitable metric. Usually, the Euclidean vector space is taken with dimen-
sions that may easily reach several hundreds.

(b) In statistical approaches, 3D objects are inspected for specific features,
which are summarized usually in the form of a histogram. For example, in
simple cases this amounts to the summed up surface area in specified volu-
metric regions, or, more complex, it may collect statistics about distances
of point pairs randomly selected from the 3D object. Usually, the obtained
histogram is represented as a FV, where each coordinate value correspond
to a bin of the histogram.

(c) The third category is better suited for structural 3D object shape descrip-
tion that can be represented in the form of a graph [Sundar et al. 2003;
Hilaga et al. 2001]. A graph can more easily represent the structure of an
object that is made up of or can be decomposed into several meaningful
parts, such as the body and the limbs of objects modeling animals.

Table I shows the algorithms surveyed in this paper with their references, prepro-
cessing steps employed, type of object abstraction considered, numeric transform
applied, and descriptor type obtained.

For presentation in this survey, we have organized the descriptors to the following
Subsections:

—Statistics (Section 3.2). Statistical descriptors reflect basic object properties like
the number of vertices and polygons, the surface area, the volume, the bounding
volume, and statistical moments. A variety of statistical descriptors are proposed
in the literature for 3D retrieval. In some application domains, simple spatial
extension or volumetric measures may already be enough to retrieve objects of
interest.

—Extension based descriptors (Section 3.3). Extension based methods build object
descriptors from features sampled along certain spatial directions from an objects
center.

—Volume-based descriptors (Section 3.4). These methods derive object features
from volumetric representations obtained by discretizing object surface into voxel
grids, or by relying on the models being already given in volumetric representa-
tion.

—Surface geometry (Section 3.5). These descriptors focus on characteristics derived
from model surface.

—Image based descriptors (Section 3.6). The 3D similarity problem may be reduced
to an image similarity problem by comparing 2D projections rendered from the
3D models.

While this survey focuses on FV-based descriptors, we recognize there exists
a rich body of work from computer vision and shape analysis which deals with
advanced 3D shape descriptors relying on structural shape analysis and customized
data structures and distance functions. In principle, these can also be used to
implement similarity search algorithms for 3D objects. Therefore, in Section 3.7 we
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Table I. Overview of the surveyed methods.

Descriptor Name Sect. Prepr. Obj. abs. Num. transf. Type

Simple statistics 3.2.1 RTS Volum. None FV

Parametrized stat. 3.2.2 RTS Surface Sampling FV

Geometric 3D moments 3.2.3 RTS Surface Sampling FV

Ray moments 3.2.3 RTS Surface Sampling FV

Shape distr. (D2) 3.2.4 None Surface Sampling Hist.

Cords based 3.2.5 RT Surface Sampling Hist.

Ray based w. SH 3.3.1 RTS Image Sampl.+SH FV

Shading w. SH 3.3.1 RTS Image Sampl.+SH FV

Complex w. SH 3.3.1 RTS Image Sampl.+SH FV

Ext. to ray based 3.3.2 RTS Image Sampl.+SH FV

Shape histograms 3.4.2 RTS Volum. Sampling Hist.

Rot. inv. point cloud 3.4.3 RTS Volum. Sampling Hist.

Voxel 3.4.4 RTS Volum. None Hist.

3DDFT 3.4.4 RTS Volum. 3D DFT FV

Voxelized volume 3.4.5 RTS Volum. Wavelet FV

Volume 3.4.5 RTS Volum. None FV

Cover sequence 3.4.5 RTS Volum. None FV

Rot. inv. sph. harm. 3.4.6 TS Volum. Sampl.+SH FV

Reflective symmetry 3.4.7 TS Volum. Sampling FV

Weighted point sets 3.4.8 RTS Volum. None Hist.

Surface normal direct. 3.5.1 None Surface None Hist.

Shape spectrum 3.5.2 None Surface Curve fitting Hist.

Ext. Gaussian image 3.5.3 R Surface None Hist.

Shape based on 3DHT 3.5.4 None Surface Sampling FV

Silhouette 3.6.1 RTS Image Sampl.+DFT FV

Depth Buffer 3.6.2 RTS Image 2D DFT FV

Lightfield 3.6.3 TS Image DFT, Zernike FV

Topological Matching 3.7.1 None Surface Sampling Graph

Skeletonization 3.7.2 None Volumetric Dist. transf., clustering Graph

Spin Image 3.7.3 None Surface Binning 2D Hist.

exemplarily recall 3D matching approaches based on topological graphs, skeleton
graphs, and a customized data structure built for each point in a 3D image (or
model).

Figure 6 summarizes the chosen organization of the methods surveyed in this
paper. The remainder of this section follows this organization.

3.2 Statistical 3D descriptors

3.2.1 Simple statistics. Bounding volume, object orientation and object volume
density descriptors are probably the most basic shape descriptors, and are widely
used in the CAD domain. In Paquet et al. [2000] the authors review several possible
simple shape descriptors. The bounding volume (BV ) is given by the volume of
the minimal rectangular box that encloses a 3D object. The orientation of this
bounding box is usually specified parallel to either the coordinate frame, or parallel
to the principal axes of the respective object. Also, the occupancy fraction of the
object within its bounding volume gives information on how “solid” respectively
“rectangular” the object is. Having determined the principal axes, it is also possible
to integrate orientation information in the description, relating the principal axes
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Fig. 6. Organization of 3D retrieval methods in this survey.
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Fig. 7. Principal axes-based bounding volume and orientation of an object with respect to the
original coordinate system (2D illustration).

to the given world coordinates of the object. Here, it is proposed to consider the
distance between the bounding volume’s center from the origin of the coordinate
system, as well as the angle enclosed between the principal axes and the coordinate
system. If only the bounding volume is considered, this descriptor is invariant
with respect to translation. If the bounding volume is determined edge-parallel the
object’s principal axes, it is also approximately invariant with respect to rotation.
In both variants, the bounding volume descriptor is not invariant with respect to
the object’s scale. Figure 7 illustrates.

3.2.2 Parameterized statistics. Ohbuchi et al. [2002] propose a statistical feature
vector which is composed of three measures taken from the partitioning of a model
into “slices” orthogonal to its three principal axes. The FV consists of 3∗3∗ (n−1)
components, where n is the number of equally-sized bins along the principal axes.
A sampling window is moved along the axes that considers the average measures
from consecutive pairs of adjacent slides, obtaining n − 1 values on each principal
axis for each of the three proposed measures (see Figure 8). The measures used are
the moment of inertia of the surface points, the average distance of surface points
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Fig. 8. Discretization of a model into 5 equally-sized “slices”, yielding 4 descriptor components.

from the principal axis, and as the variance in this distance. Selection of object
points for PCA and statistical measure calculation is done by randomly sampling a
number of points from the object’s faces (assuming a polygonal mesh), keeping the
number of points in each face proportional to its area. For retrieval, the authors
experiment with the standard Euclidean distance, as well as with a custom distance
called “elastic distance”, which allows for some shift in the bins to be compared
[Ohbuchi et al. 2002]. Both metrics are shown to produce similar results. The
authors conduct experiments on a VRML object database and conclude that their
descriptor is suited well for objects that possess rotational symmetry, like, e.g.,
chess figures. A sensitivity analysis indicates that there exists some optimal choice
for the number of analysis windows, given a number of total sampling points.

3.2.3 Geometric 3D moments. The usage of moments as a means of description
has a tradition in image retrieval and classification. Thus, moments have been
used in some of the first attempts to define feature vectors also for 3D object
retrieval. Statistical moments µ are scalar values that describe a distribution f .
Parametrized by their order, moments represent a spectrum from coarse-level to
detailed information of the given distribution [Paquet et al. 2000]. In the case of
3D objects, an object may be regarded as a distribution f(x, y, z) ∈ R

3, and the
moment µi,j,k of order n = i + j + k in continuous form can be given as:

µijk =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

f(x, y, z)xiyjzkdxdydz.

As is well known, the complete (infinite) set of moments uniquely describes a
distribution and vice versa. In its discrete form, objects are taken as finite point

sets P in 3D, and the moment formula becomes µijk =
∑|P |

p=1
xp

iyp
jzp

k. Because
moments are not invariant with respect to translation, rotation, and scale of the
considered distribution, appropriate normalization should be applied before mo-
ment calculation. When given as a polygon mesh, candidates for input to moment
calculation are the mesh vertices, the centers of mass of triangles, or other object
points sampled by some scheme. A FV can then be constructed by concatenating
several moments, e.g., all moments of order up to some n.

Studies that employ moments as descriptors for 3D retrieval include Vranić and
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Saupe [2001a], where moments are calculated for object points sampled uniformly
with a ray-based scheme (see Section 3.3.1), and Paquet et al. [2000], where mo-
ments are calculated from the centers of mass (centroids) of all object faces (see
Section 3.2.5). Vranić and Saupe [2001a] compare the retrieval performance of
ray-based with centroid-based moments, and conclude that the former are more
effective. Another publication that proposed the usage of moments for 3D retrieval
is Elad et al. [2002]. Here, the authors uniformly sample a certain number of
points from the object’s surface for moment calculation. Special to their analysis is
the usage of relevance feedback to adjust the distance function employed on their
moment-based descriptor. While in most systems a static distance function is em-
ployed, here it is proposed to interactively adapt the metric. A user performs an
initial query using a feature vector of several moments under the Euclidean norm.
She marks relevant and irrelevant objects in a prefix of the complete ranking. Then,
via solving a quadratic optimization problem, weights are calculated that reflect the
feedback so that in the new ranking using the weighted Euclidean distance, rele-
vant and irrelevant objects (according to the user input) are discriminated by a
fixed distance threshold. The user is allowed to iterate through this process, until a
satisfactory end result is obtained. The authors conclude that this process is suited
to improve search effectiveness.

3.2.4 Shape distribution. Osada et al. [2002] propose to describe the shape of a
3D object as a probability distribution sampled from a shape function, which re-
flects geometric properties of the object. The algorithm calculates histograms called
shape distributions, and estimates similarity between two shapes by any metric that
measures distances between distributions (e.g., Minkowski distances). Depending
on the shape function employed, shape distributions possess rigid transformation
invariance, robustness against small model distortions, independence of object rep-
resentation, and efficient computation. The shape functions studied by the authors
include the distribution of angles between three random points on the surface of a
3D object, and the distribution of Euclidean distances between one certain fixed
point and random points on the surface. Furthermore, they propose to use the
Euclidean distance between two random points on the surface, the square root of
the area of the triangle formed by triples of random surface points, or the cube
root of the volume of the tetrahedron between four random points on the surface.
Where necessary, a normalization step is to be applied for differences in scale.

Generally, the analytic computation of distributions is not feasible. Thus, the
authors perform random point sampling of an object, and construct a histogram to
represent a shape distribution. Retrieval experiments yielded that the best results
were achieved using the D2 distance function (distance between pairs of points on
the surface, see also figure 9) and using the L1 norm of the probability density
histograms, which were normalized by aligning the mean of each two histograms to
be compared.

Shape distributions for 3D retrieval have further been explored in Ip et al. [2002],
Ip et al. [2003], and Ohbuchi et al. [2003].

3.2.5 Cords-based descriptor. Paquet et al. [2000] present a descriptor that com-
bines information about the spatial extent and orientation of a 3D object. The
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Fig. 9. D2 distance histograms for some example objects. (Figure taken from Osada et al. [2002]
( c© 2002 ACM Press). Copyright is held by the owner.)

authors define a “cord” as a vector that runs from an object’s center of mass to
the centroid of a face of the object. For all object faces, such a cord is constructed.
The descriptor consists of three histograms, namely for the angles between the
cords and the object’s first two principal axes, and for the distribution of the cord
length, measuring spatial extension. The three histograms are normalized by the
number of cords. Using the principal axes as reference, the descriptor is invariant
to rotation and translation. It is also invariant to scale, as the length distribution
is binned to the same number of bins for all objects. It can be inferred that the
descriptor is not invariant to non-uniform tessellation changes.

3.3 Extension-based descriptors

3.3.1 Ray-based sampling with spherical harmonics representation. Vranić and
Saupe [2001a;2002] propose a descriptor framework that is based on taking samples
from a PCA-normalized 3D object by probing the polygonal mesh along regularly
spaced directional unit vectors uij as defined and visualized in Figure 10. The
samples can be regarded as values of a function on a sphere (||uij || = 1). The
so-called ray-based feature vector measures the extent of the object from its center
of gravity O in directions uij . The extent r(uij) = ||P (uij)−O|| in direction uij is
determined by finding the furthest intersection point P (uij) between the mesh and
the ray emitted from the origin O in the direction uij . If the mesh is not intersected
by the ray, then the extent is set to zero, r(uij) = 0. The number of samples, 4B2

(Figure 10), should be sufficiently large (e.g., B ≥ 32) so that sufficient information
about the object may be captured. The obtained samples can be considered as
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Fig. 10. Determining ray directions u by uniformly varying spherical angular coordinates θi and
ϕj .

components of a feature vector in the spatial domain. A similar FV called “Sphere
Projection” was considered by Leifman et al. [2003], which includes a number of
empirical studies, showing good performance with respect to to a ground truth
database of VRML models collected from the Internet.

Nonetheless, such a descriptor consists of a large dimensionality. In order to char-
acterize many samples of a function on a sphere by just a few parameters, spherical
harmonics [Healy et al. 2003] are proposed as a suitable tool. The magnitudes of
complex coefficients, which are obtained by applying the fast Fourier transform on
the sphere (SFFT) to the samples, are regarded as vector components. Thus, the
ray-based feature vector is represented in the spectral domain, where each vector
component is formed by taking into account all original samples. Having in mind
that the extent function is a real-valued function, the magnitudes of the obtained
coefficients are pairwise equal. Therefore, vector components are formed by using
magnitudes of non-symmetric coefficients. Also, an embedded multi-resolution rep-
resentation of the feature can easily be provided. A useful property of the ray-based
FV with spherical harmonic representation is invariance with respect to rotation
around the z-axis (when the samples are taken as depicted in Figure 10). The
inverse SFFT can be applied to a number of the spherical harmonic coefficients to
reconstruct an approximation of the underlying object at different levels, see Fig-
ure 11. Besides considering the extent as a feature aimed at describing 3D-shape,
the authors consider a rendered perspective projection of the object on an enclosing
sphere. The scalar product x(u) = |u ·n(u)|, where n(u) is the normal vector of the
polygon that contains the point O + r(u)u (if r(u) > 0), can be regarded as infor-
mation about shading at the point (θ, ϕ) on the enclosing sphere. A shading-based
FV is generated analogously to the ray-based FV, by sampling the shading func-
tion, applying the SFFT, and taking the magnitudes of low-frequency coefficients
as vector components. In extension to using either r(u) or x(u), also the combina-
tion of both measures in a complex function y(u) = r(u) + i · x(u) is considered by
the authors, and called the complex FV. The authors demonstrate experimentally,
that this combined FV in spherical harmonics representation outperforms in terms
of retrieval effectiveness both the ray-based and the shading-based FVs.

3.3.2 Extensions for ray-based sampling. Vranić [2003] further explores an im-
provement of the ray-based methods described above. Particularly, the author
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Fig. 11. Ray based feature vector (left). The right illustration shows the back-transform of the
ray-based samples from frequency to spatial domain.

proposes to not restrict the sampling at each ray to the last intersection point with
the mesh, but also to consider “interior” intersection points of the ray with model
surface. This is implemented by using concentric spheres centered at the model
origin and with uniformly varying radii, and associating all intersection points be-
tween rays and the mesh to the closest sphere each. For each ray and each sphere
radius, the largest distance between the origin and the intersection points associ-
ated with the respective ray and radius is set as the sampling value, if such a point
exists (otherwise, the respective sampling value is set to zero). The author thereby
obtains samples of functions on multiple concentric spheres. He defines two FVs by
applying the spherical Fourier transform on these samples, and extracting FV com-
ponents from either the energy contained in certain low frequency bands (RH1 FV)
as done in the approach by Funkhouser et al. [2003] and described in Section 3.4.6,
or from the magnitudes of certain low frequency Fourier coefficients (RH2 FV).
While RH2 relies on the PCA for pose estimation and includes orientation infor-
mation, RH1 is rotation invariant by definition, discarding orientation information.
The author experimentally evaluates the retrieval quality of these two descriptors
against the ray-based FV in spherical harmonics representation described above,
and against the FV defined by Funkhouser et al. [2003]. From the results the author
concludes that (1) RH1 outperforms the implicitly rotation invariant FV based on
the spherical harmonics representation of a model voxelization (see Section 3.4.6),
implying that the SFT is effective in filtering high frequency noise and (2) that
RH2 and the ray based FV, both relying on PCA, outperform the other two FVs,
implying that including orientation information using the PCA in FVs may posi-
tively affect object retrieval on average. As a further conclusion, the author states
that RH2 performs slightly better that the ray-based FV, implying that considering
interior model information can increase retrieval effectiveness.

3.4 Volume-based descriptors

3.4.1 Discretized model volume. A class encompassing several 3D descriptors
that are all derived from some form of volumetric discretization of the models is
reviewed in the following. Here, the basic idea is to construct a feature vector
from a model by partitioning the space in which it resides, and then aggregating
the model content that is located in the respective partitioning segments to form
the components of feature vectors. Unless otherwise stated, these descriptors rely
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Fig. 12. Shells and sectors as basic space decompositions for shape histograms. In each of the 2D
examples, a single bin is marked.

on model normalization, usually with PCA methods, to approximately provide
comparability between the spatial partitions of all models.

3.4.2 Shape histograms. Ankerst et al. [1999a] studied classification and similar-
ity search of 3D objects modeled as point clouds. They describe 3D object shapes
as histograms of point fractions that fall into partitions of the enclosing object space
under different partitioning models. One decomposition is the shell model, which
partitions the space into shells concentric to the object’s center of mass, keeping
radii intervals constant. The sector model decomposition uses equally-sized seg-
ments obtained by forming Voronoi partitions around rays emitted from the model
origin and pointing to the vertices of an enclosing regular polyhedron. Finally, a
combined model uses the intersection of shells and sectors, see Figure 12 for an illus-
tration. While the shell model is inherently rotation invariant, the sector and the
combined models rely on rotational object normalization. The authors propose the
quadratic form distance for similarity estimation in order to reflect cross-similarities
between histogram bins. Experiments are conducted in a molecular classification
setup, and good discrimination capabilities are reported for the high-dimensional
sector (122-dim) and combination (240-dim) models, respectively.

3.4.3 Rotation invariant point cloud descriptor. Kato et al. [2000] present a
descriptor that relies on PCA registration but at the same time is invariant to
rotations of 90 degrees along the principal axes. To construct the descriptor, an
object is placed and oriented into the canonical coordinate frame using PCA, and
scaled to fit into a unit cube with origin at the center of mass of the object and
perpendicular to the principal axes. The unit cube is then partitioned into 7×7×7
equally sized cube cells, and for each cell, the frequency of points regularly sampled
from the object surface and which lie in the respective cell, is determined. To
reduce the size of the descriptor, which until now consists of 343 values, all grid
cells are associated with one of 21 equivalence classes based on their location in
the grid. To this end, all cells that coincide when performing arbitrary rotations
of 90 degrees along the principal axes are grouped together in one of the classes
(see Figure 13 for an illustration). For each equivalence class, the frequency data
contained in the cells belonging to the respective equivalence class is aggregated,
and the final descriptor of dimensionality 21 is obtained. The authors presented
retrieval performance results on a 3D database, on which 7 × 7 × 7 was found to
be the best grid dimensionality, but state that in general the optimal size of the
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Fig. 13. Aggregating object geometry in equivalence classes defined on a 3 × 3 × 3 grid. (Figure

taken from Kato et al. [2000] ( c© 2000 IEEE). Copyright is held by the owner.)

Fig. 14. The voxel-based feature vector compares occupancy fractions of voxelized models in the
spatial or frequency domain.

descriptor depends on the specific database characteristics.

3.4.4 Model voxelization. Vranić and Saupe [2001b] present a FV based on the
rasterization of a model into a voxel grid structure, and experimentally evaluate the
representation of this FV in both the spatial and the frequency domain. The voxel
descriptor is obtained by first subdividing the bounding cube of an object (after
PCA-based rotation normalization) into n×n×n equally sized voxel cells. Each of

these voxel cells vijk, i, j, k ∈ {1, . . . , n} then stores the fraction pijk =
Sijk

S of the
object surface area Sijk that lies in voxel vijk, where S =

∑n
i=1

∑n
j=1

∑n
k=1

Sijk

is the total surface area of the model. In order to compute the value of Sijk, each
model triangle Ti (i = 1, . . . ,m) is subdivided into l2i (l ∈ N) coincident triangles,
where the value of l2i is proportional to the area of T . The value of STi

/l2i (STi

is the area of triangle Ti) is the attribute of the centers of gravity of the triangles
obtained by the subdivision. Finally, the value of Sijk is approximated by summing
up attributes of centroids lying in the corresponding voxel cell. The object’s voxel
cell occupancies constitute the FV of dimension n3. For similarity estimation with
this FV, a metric can be defined in the spatial domain (voxel), or after a 3D Fourier-
transform in the frequency domain (3DDFT). Then, magnitudes of certain k low-
frequency coefficients are used for description, enabling multi-resolution search.

Using octrees for 3D similarity search was also recently proposed by Leifman
et al. [2003], where the similarity of two objects is given by the sum of occupancy
differences for each non-empty cell pair of the voxel structure. The authors report
good retrieval capabilities of this descriptor.
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3.4.5 Voxelized volume. In the preceding section, an object was considered as
a collection of 2D-polygons, i.e., as a surface in 3D. This approach is the most
general applying to unstructured “polygon soups”. In the case of polygons giving
rise to a watertight model, one may want to use the enclosed volume to derive
shape descriptors. Such schemes require an additional preprocessing step after
pose normalization, namely the computation of a 3D bitmap that specifies the
inside/outside relation of each voxel with respect to the enclosed volume of the
polygonal model. Several methods for similarity estimation based on voxelized
volume data of normalized models have been proposed. Paquet et al. [2000] and
Paquet and Rioux [2000] propose a descriptor that characterizes voxelized models by
statistical moments calculated at different levels of resolution of the voxel grid, and
where the different resolutions are obtained by applying the Daubechies-4 wavelet
transform on the three-dimensional grid. Keim [1999] describes a similarity measure
based on the amount of intersection between the volumes of two voxelized 3D
objects.

Novotni and Klein [2001b] proposed to use the minimum of the symmetric volume
differences between two solid objects obtained when considering different object
alignments based on principal axes, in order to measure volume similarity. The
authors also give a technique that supports the efficient calculation of symmetric
volume differences based on the discretization of volumes into a grid. Sánchez-
Cruz and Bribiesca [2003] report a scheme for optimum voxel-based transformation
from one object into another one, which can be employed as a measure of object
dissimilarity.

Another volume based FV is presented in Heczko et al. [2002]. In order to remove
the topological requirement of a watertight model the volume of a given 3D-model
specified by a collection of polygons in defined in a different way. Each polygon
contributes a (signed) volume given by the tetrahedron that is formed by considering
the center of mass of all polygons as a vertex for a polyhedron with the given polygon
as a base face. The sign is chosen according to the normal vector for the polygon
given by the model. The space surrounding the 3D models is partitioned into sectors
similar to the method in Section 3.4.2 and in each sector the (signed) volumes of the
intersection with a generated polyhedra is accumulated and gives one component
of the FV. The partitioning scheme is as follows. The six surfaces of an object’s
bounding cube are equally divided into n2 squares each. Adding the object’s center
of mass to all squares, a total of 6n2 pyramid-like segments in the bounding cube
is obtained. For similarity search either the volumes occupied in each segment, or
a number of k first coefficients after a Fourier transform is considered. Figure 15
illustrates the idea in a 2D sketch. Experimental results with this descriptor are
presented in Section 4. It performs rather poorly, which may be attributed to the
fact that the used retrieval database does not guarantee consistent orientation of
the polygons.

Kriegel et al. [2003] present another approach for describing voxelized objects.
The cover sequence model approximates a voxelized 3D object using a sequence
of grid primitives (called covers), which are basically large parallelepipeds. The
quality of a cover sequence is measured as the symmetric volume difference between
the original voxelized object and the sequence of grid primitives. The sequence is
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Fig. 15. Volume based feature vector.

described as the set of unions or differences of the covers, and then each cover of
the sequence contributes with six values for the final descriptor (three values for
describing the position of the cover, and three values for describing the extension
of the cover). The main problem is the ordering of the covers in the sequence:
Two voxelized objects that are similar may produce features that are distant away,
depending on the ordering of the covers. To overcome this problem, the authors
propose to use sets of FVs (one FV for each cover) to describe the 3D objects, and
to compute a similarity measure between two sets of FVs that ensures that the
optimal sequence of covers, the one that produces the minimal distance between
the two objects, will be always considered.

3.4.6 Rotation invariant spherical harmonics descriptor. Funkhouser et al. [2003]
propose a descriptor based also on the spherical harmonics representation of object
samples. The main difference between this approach and the one reported in Sec-
tion 3.3.1, apart from the sampling function chosen, is that by descriptor design
it provides rotation invariance without requiring pose estimation. This is possi-
ble since the energy in each frequency band of the spherical transform is rotation
invariant [Healy et al. 2003].

Input to their transform is the binary voxelization of a polygon mesh into a grid
with dimension 2R ∗ 2R ∗ 2R, where each occupied voxel indicates the intersection
of the mesh with the respective voxel. To construct the voxelization, the object’s
center of mass is translated into grid position (R,R, R) (grid origin), and the object
is scaled so that the average distance of occupied voxels to the center of mass
amounts to R

2
, that is 1

4
of the grids edge length. By using this scale instead of

scaling it so that the bounding cube fits into the grid, it is possible to lose some
object geometry in the description. On the other hand, sensitivity with respect to
outliers is expected to be reduced. The 8R3 voxels give rise to a binary function
on the corresponding cube, which is written in spherical coordinates as fr(θ, φ)
with the origin (r = 0) placed at the cube center. The binary function is sampled
for radii r = 1, 2, . . . , R and sufficiently many angles θ, φ to allow computation of
the spherical harmonics representation of the spherical functions fr. The feature
vector consists of low frequency band energies of the functions fr, r = 1, . . . , R. By
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Fig. 16. Descriptor extraction process for the harmonics 3D descriptor. (Figure taken from
Funkhouser et al. [2003] ( c© 2003 ACM Press). Copyright is held by the owner.)

construction it is invariant with respect to rotation about the center of mass of the
object.

The authors presented experimental results conducted on a database of 1,890
models that were manually classified, comparing the harmonics 3D descriptor with
the shape histogram (see Section 3.4.2), shape distribution D2 (see Section 3.2.4),
EGI (see Section 3.5.3), and a moment based (see Section 3.2.3) descriptor. The
experiments indicated that their descriptor consistently outperformed the other
descriptors, which among other arguments was attributed to discarding rotation
information.

A generalization of this approach considering the full volumetric model informa-
tion was introduced in Novotni and Klein [2003;2004]. The authors form rotational-
invariant descriptors from 3D Zernike moments obtained from appropriately vox-
elized mesh models. The authors present the mathematical framework and discuss
implementation specifics. From analysis and experiments, they concluded that by
considering the integral of the volumetric information in extension to just sampling
it on concentric spheres, retrieval performance may be improved, and at the same
time a more compact descriptor is obtained.

3.4.7 Reflective symmetry descriptor. Kazhdan et al. [2003] present a descriptor
that is based on global object symmetry. The method is based on a function on
the unit sphere that measures reflective symmetry between two parts of an object
lying on the opposite sides of a cutting plane. The cutting plane contains the center
of gravity of the object, while the normal vector is determined by a point on the
unit sphere. The main idea of the approach is that the shape of an object may
be characterized by using an appropriate measure of symmetry and by sampling
the corresponding function at sufficiently many points. Briefly, for a given cutting
plane, the reflective symmetry is computed using a function f on concentric spheres.
The function f is defined by sampling a voxel-based representation of the object.
The voxel attributes are defined using an exponentially decaying Euclidean distance
transform. The reflective symmetry measure describes the proportion of f that is
symmetric with respect to the given plane and the proportion of f that is anti-
symmetric. The symmetric proportion is obtained by projecting the function f
onto the space π of functions invariant under reflection about the given plane and
by computing the L2 distance between the original function and the projection. The
anti-symmetric proportion is calculated in a similar manner, by projecting f onto
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Fig. 17. Visualization of the reflective symmetry measure (lower row) for certain objects (upper

row). The extension in direction u indicates the degree of symmetry with respect to the symmetry
plane perpendicular to u. (Figure taken from Kazhdan et al. [2003] ( c© 2003 Springer-Verlag) with

kind permission of Springer Science and Business Media. Copyright is held by the owner.)

the space π⊥ that is orthogonal to π and by computing the L2 distance between
f and the projection. Since the reflective symmetry measure is determined by
analyzing the whole object, a sample value of the function on the unit sphere gives
information about global symmetry with respect to a given plane.

For 3D retrieval, the similarity between objects is estimated by the L∞ norm
between their reflective symmetry descriptions. Analytically and experimentally,
the authors show the main properties of this approach to be stability against high-
frequency noise, scale invariance and robustness against the level of detail of the
object representation. Considering retrieval power, the algorithm is experimentally
shown to be “orthogonal” to some extent to other descriptors, in the sense that
overall retrieval power is increased when combining it with other descriptors. Figure
17 shows an example of reflective symmetry measures for several objects.

3.4.8 Point sets methods. The weighted point set method [Tangelder and Veltkamp
2003] compares two 3D objects represented by polyhedral meshes. A shape signa-
ture of the 3D object is defined as a set of points that consists of weighted salient
points from the object. The first step of the algorithm is to place the 3D object
into a canonical coordinate system, which is established by means of the PCA, and
to partition the object’s bounding cube into a rectangular voxel grid. Then, for
each nonempty grid cell one representative vertex as well as an associated weight
are determined by either one out of three methods explored by the authors. In the
first proposed method, for each nonempty cell one of the contained points is se-
lected based on the Gaussian curvature at the respective point, and associating the
Gaussian curvature with that point. The two other proposed methods average over
the vertices of a cell, and associate either a measure for the normal variation, or the
unit weight. The latter method is given in order to be able to support meshes with
inconsistent polygon orientation, because then curvature and normal variation can-
not be determined meaningfully. A variation of the Earth’s Mover Distance (EMD)
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[Rubner et al. 1998] 1, the so-called proportional transportation distance (PTD), is
introduced as the similarity function to compare two weighted point sets. The PTD
is described as a linear programming problem that can be solved, for example, using
the simplex algorithm. The authors state that the PTD is a pseudo-metric, which
makes it suitable to use for indexing purposes (in contrast, the EMD does not obey
the triangle inequality). Experiments were performed which indicate competitive
retrieval performance, while no clear winner could be identified among the three
proposed weighing methods.

Another approach that matches sets of points was introduced in Shamir et al.
[2003]. There, the point sets to be matched are obtained for each 3D model by
decomposing the model into a coarse-to-fine hierarchy of an elementary shape
(spheres). The point sets therefore consists of sphere radii and associated cen-
ters, and can be matched by a custom coarse-to-fine algorithm involving exhaus-
tive search on a coarse level, and graph matching techniques on finer levels in the
multiresolution representation.

3.5 Surface-geometry based descriptors

In this Section, we present 3D descriptors that are based on object surface mea-
sures. These surface measures include surface curvature measures, as well as the
distribution of surface normal vectors.

3.5.1 Surface normal directions. Paquet and Rioux [2000] consider histograms
of the angles enclosed between the first two principal axes each and the face normals
of all object polygons. Straightforward, it is possible to construct either one unifying
histogram, two separate histograms for the distribution with respect to the each of
the two first principal axes, or a bivariate histogram which reflects the dependency
between the angles. Intuitively, the bidimensional distribution contains the most
information. Still, such histograms are sensitive to the level of detail by which the
model is represented. An illustrating example is given by the authors. Considering
two pyramids where the sides of one of them is formed by inclined planes, and for
the other is formed by a stairway-like makeup. Obviously, the angular distributions
of the two pyramids will differ tremendously, while their global shape might be quite
similar.

3.5.2 Surface curvature. Zaharia and Prêteux [2001] present a descriptor for
3D retrieval proposed within the MPEG-7 framework for multimedia content de-
scription. The descriptor reflects curvature properties of 3D objects. The shape
spectrum FV is defined as the distribution of the shape index for points on the
surface of a 3D object, which is a function of the two principal curvatures. The
shape index is a scaled version of the angular coordinate of a polar representation
of the principal curvature vector, and it is invariant with respect to rotation, trans-
lation and scale by construction. Figure 18 illustrates some elementary shapes with
their corresponding shape index values. Because the shape index is not defined for
planar surfaces, but 3D objects are usually approximated by polygon meshes, the
authors suggest approximating the shape index by fitting quadratic surface patches

1The basic idea of the earth movers distance is to measure the distance between two histograms
by solving the transportation problem of converting one histogram into the other.
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Fig. 18. Shape index values for some elementary shapes. (Figure taken from Zaharia and Prêteux
[2001] ( c© 2001 SPIE). Copyright is held by the owner.).

to all mesh faces based on the respective face and adjacent faces, and using this
surface for shape index calculation. To compensate for potential estimation unre-
liability due to (near) planar surface approximations and (near) isolated polygonal
face areas, these are excluded from the shape index distribution based on a thresh-
old criterion, but the relative area of the sum of such problematic surface regions is
accumulated in two additional attributes named planar surface and singular sur-
face, respectively. These attributes together with the shape index histogram form
the final descriptor. Experiments conducted by the authors with this descriptor on
several 3D databases quantitatively show good retrieval results.

Surface curvature as a description for 3D models was also considered by Shum
et al. [1996]. In this work, the models were resampled by fitting a regularly tessel-
lated spherical polygon mesh onto the model. Then, the curvature was determined
for each vertex of the fitted spherical mesh, based on the vertex’ neighbor nodes.
Finally, the similarity measure between two models was obtained by minimizing
an lp norm between their curvature maps over all rotations of the map, thereby
supporting rotation invariance.

3.5.3 Extended Gaussian Image. The distribution of the normals of the poly-
gons that form a 3D object can be used to describe its global shape. One way to
represent this distribution is using the Extended Gaussian Image (EGI) [Horn 1984;
Ip and Wong 2002]. The EGI is a mapping from the 3D object to the Gaussian
sphere. To compute the EGI of a 3D object, the normal vectors of all polygons of
the 3D objects are mapped onto the respective point of the Gaussian sphere that
has the same normal as the polygon. To build a descriptor from this mapping, the
Gaussian sphere is partitioned into R × C cells (by using R different longitudes
and C − 1 different latitudes), where each cell corresponds to a range of normal
orientations. The number of mapped normals on cell cij gives the value of this cell.
All cell’s values are mapped to a R × C matrix, which is called the signature of
the 3D object. The similarity between two object signatures a and b is given by
sim(a, b) =

∑R
i=1

∑C
j=1

(|aij − bij | / |aij + bij |) [Ip and Wong 2002]. The EGI is
scale and translation invariant, but it requires rotational normalization. Retrieval
performance studies were performed in Kazhdan et al. [2003] and Funkhouser et al.
[2003]. Also, its performance was evaluated in recognition of aligned human head
models in Ip and Wong [2002]. There is also a complex version of the EGI (CEGI)
[Kang and Ikeuchi 1993], which associates a complex weight to each cell of the EGI.

3.5.4 Shape descriptor based on the 3D Hough transform. Zaharia and Prêteux
[2002] presents a descriptor based on the 3D Hough transform, the so-called canon-
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Fig. 19. Mapping from object normals to the Gaussian sphere.

ical 3D Hough transform descriptor (C3DHTD). The basic idea of the 3D Hough
transform is to accumulate three-dimensional points within a set of planes. These
planes are determined by parametrizing the space using spherical coordinates (e.g.,
a distances from the origin, b azimuth angles, and c elevation angles, thus obtaining
a · b · c planes). Each triangle t of the object contributes to each plane p with a
weight equal to the projection area of t on p, but only if the scalar product between
the normals of t and p is higher than a given threshold.

Rotation invariance for this descriptor is approximated by normalizing the 3D
object with PCA, determining its principal axes, and using its center of gravity as
the origin of the coordinate system for the Hough transform. However, it is argued
that PCA may fail to provide the correct orientation of a 3D object by just labeling
the principal axes according to the eigenvalues (in ascending or descending order).
For this reason, the 48 possible Hough transforms (one for each possible PCA-based
coordinate system) are aggregated into the descriptor.

The direct concatenation of 48 descriptors would lead to a high complexity in
terms of descriptor size and matching computation time. To solve this problem,
the authors propose to partition the unit sphere by projecting the vertices of any
regular polyhedron. This partitioning schema is then used as parametrization of the
space. Then, they show how to derive all Hough transforms from just one of them,
which is then called the generating transform. The similarity measure between two
canonical 3DHT descriptors from objects q and r, hq and hr respectively, is defined
as d(hq, hr) = min1≤i≤48

{∣

∣

∣

∣hq − hi
r

∣

∣

∣

∣

}

, where the set {hi
r} corresponds to one of

the 48 possible 3D Hough transforms of object r, and || · || denotes the L1 or L2

norm. Retrieval experiments were conducted, contrasting the proposed descriptor
with the shape spectrum (cf. Section 3.5.2) and EGI (cf. Section 3.5.3) descriptors,
attributing best performance to the C3DHT descriptor.

3.6 Image-based descriptors

In the real world, spatial objects, apart from means of physical interaction, are
recognized by humans in the way they are visually perceived. Therefore, a natural
approach is to consider 2D projections of spatial objects for similarity estimation.
Thereby, the problem of 3D retrieval is reduced to one in two dimensions, where
techniques from image retrieval can be applied. One advantage of image-based
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Fig. 20. Silhouettes of a 3D models. Note that, from left to right, the viewing direction is parallel
to the first, second, and third principal axes of the model. Equidistant sampling points are marked
along the contour.

retrieval methods over most of the other descriptors is that it is straightforward to
design query interfaces where a user supplies a 2D sketch which is then input to the
search algorithm [Funkhouser et al. 2003; Löffler 2000]. The problem of rotational
invariance can again be solved by either rotational normalization preprocessing, by
using rotational-invariant features, or by matching over many different alignments
simultaneously.

3.6.1 Description with silhouettes. A method called silhouette descriptor [Heczko
et al. 2002] characterizes 3D objects in terms of their silhouettes that are obtained
by parallel projections. The objects are first PCA-normalized and scaled into a
unit cube that is axis-parallel to the principal axes. Then, parallel projections
onto three planes each orthogonal to one of the principal axes are calculated. The
authors propose to obtain descriptors by concatenating Fourier descriptors of the
three resulting contours. To obtain the descriptors, a silhouette contour is scanned
by placing equally-spaced, sequential points onto the contour. The sequence of
centroid-distances of the (ordered) contour points is Fourier transformed, and mag-
nitudes of a number of low-frequency Fourier coefficients contributes to the feature
vector. Via PCA preprocessing, the Silhouette descriptor is pose and scale invari-
ant. Figure 20 illustrates the contour images of a car object.

Experimental results on the retrieval effectiveness of this descriptor were pub-
lished in Vranic [2004] and some results are also given in Section 4 of this survey.
Song and Golshani [2002] also address the usage of projected images for 3D re-
trieval. The authors propose to render object images from certain directions, and
to employ various distance functions on resulting image pairs, e.g., based on circu-
larity measures from the projections, or distances between vectors of magnitudes
after Fourier transform. Further work on image-based retrieval methods has been
reported in Ansary et al. [2004], Löffler [2000], and Cyr and Kimia [2004].

3.6.2 Description with depth information. Another image-based descriptor was
proposed in Heczko et al. [2002], and further discussed in Vranic [2004]. The so-
called depth buffer descriptor starts with the same setup as the silhouette descriptor:
the model is oriented and scaled into the canonical unit cube. Instead of three sil-
houettes, six grey-scale images are rendered using parallel projection, each two for
one of the principal axes. Each pixel encodes in an 8 bit grey value the orthog-
onal distance from the viewing plane (i.e., sides of the unit cube) of the object.
These images correspond to the concept of z- or depth-buffers in computer graph-
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Fig. 21. Depth buffer based feature vector. The first row of images shows the depth buffers of a
car model. Darker pixels indicate that the distance between view plane and object is smaller than
at brighter pixels. The second row shows coefficient magnitudes of the 2D Fourier transform of

the six images.

ics. After rendering, the six images are transformed using the standard 2D discrete
Fourier transform, and the magnitudes of certain k first low-frequency coefficients
of each image contribute to the depth buffer feature vector of dimensionality 6k.
An illustration of this method is given in Figure 21.

From our own experimental results (see Vranic [2004] as well as Section 4.2 in
this paper) we conclude that the depth buffer has good retrieval capability and is
able to outperform other descriptors on our benchmarking database.

Figure 21 shows the depth buffer renderings of a car object, as well as a visual-
ization of the respective Fourier transforms.

3.6.3 Lightfield descriptor. Chen et al. [2003] proposed a descriptor based on
images from many different viewing directions. The authors define the LightField
descriptor as certain image features extracted from a set of silhouettes that are
obtained from parallel projections of a 3D object. A camera system is defined, where
a camera is located on each of the vertices of a dodecahedron which is centered at the
object’s center, completely surrounding the object. The cameras’ viewing directions
point towards the center of the dodecahedron and the camera up-vector uniquely
defined. Considering parallel projections, due to symmetries at most 10 unique
silhouettes result from one such camera system. The similarity between two objects
is then defined as the minimum of the sum of distances between all corresponding
image pairs when rotating one camera system relative to the other, covering all 60
possible alignments of the camera systems. To further support rotation invariance
of this method, the authors consider not just one, but ten images per dodecahedron
vertex obtained by uniformly varying all camera positions in the neighborhood of
the vertex. For a full object to object comparison run, this leads to 5460 rotations
of one camera system in order to determine the final distance.

The image metric employed to compare each image pair is the l1 norm over a
vector of coefficients composed of 35 Zernike moments and 10 Fourier coefficients
extracted from the rendered silhouettes. For on-line retrieval purposes, this rather
expensive algorithm is accelerated by a multi stage filter-and-refinement process.
This process gradually increases the number of rotations, images and vector com-
ponents as well as the component quantization accuracy that are considered in each
refinement iteration, discarding all the objects that exhibit a distance greater than
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Fig. 22. The LightField descriptor determines similarity between 3D objects by the maximum
similarity when aligning sets of projections obtained from an array of cameras surrounding the
object. (Figure taken from Chen et al. [2003] ( c© 2003 Blackwell Publishing). Copyright is held
by the owner.)

the mean distance between the query object and all objects of the database. From
experiments conducted by the authors as well as those presented in Shilane et al.
[2004], it can be concluded that the retrieval quality of this method is excellent,
and that it outperforms a range of other methods presented.

3.7 Non-feature vector matching techniques

Up to now, we have reviewed 3D descriptors based on rather fast and easy to extract
vectors of real-values measures (feature vectors) defined on model characteristics
such as spatial extent, surface curvature, 2D projections and so on. While the fea-
ture vector approach is practical for application on large databases of 3D objects,
other paradigms for object description and matching exist, originating from com-
puter vision and shape analysis. While very powerful, methods from these fields
usually are computationally more complex, may lead to representations other than
real vectors, and demand for customized distance functions.

Graphs are a natural choice to capture model topology, but they often involve
complex extraction algorithms and matching strategies. Graphs have been derived
from model surface [Hilaga et al. 2001; McWherter et al. 2001; McWherter et al.
2001] and volumetric [Sundar et al. 2003] properties of 3D models. Similarity
calculation can proceed on the graphs themselves via customized graph matching
approaches [Hilaga et al. 2001; Bespalov et al. 2003] or via numeric descriptions
of the graphs obtained, e.g., using spectral theory [McWherter et al. 2001], or
combinations of both methods. In Sections 3.7.1 and 3.7.2, we exemplarily recall
two graph-based techniques, noting that a growing body of work exists in this area
[Bespalov et al. 2003; Biasotti et al. 2003].

Besides graphs and feature vectors, customized numeric data structures have
been proposed for 3D description and retrieval, such as the Spin Images recalled in
Section 3.7.3.

While all of these methods introduce interesting matching concepts, their appli-
cation to large databases of general 3D objects raises problems due to complexity



33

issues, or certain restrictions imposed on the types of 3D models supported.

3.7.1 Topological matching. Hilaga et al. [2001] present an approach to describe
the topology of 3D objects by a graph structure and show how to use it for matching
and retrieval. The algorithm is based on constructing so-called Reeb graphs from
the models which can be interpreted as information about the skeletal structure
of an object. The basic idea is to partition the object into connected portions by
analyzing a function µ that is defined over the entire object’s surface. Informally,
the Reeb graph generated from a 3D object is made up of nodes that represent
portions of the object for which µ assumes values ranging in certain value inter-
vals. Parent-child relationships between nodes represent adjacent intervals of these
function values for the contained object parts. For computing the similarity of
two objects, it is proposed to compare the topology of the objects respective Reeb
graphs, as well as similarities between the mesh properties of the model parts that
are associated with corresponding graph nodes.

Defining a suited function µ is critical to the construction of graphs suited for
object analysis and matching. E.g., the height function h(x, y, z) = z that returns
the height of a surface at position (x, y) is suited to analyze terrain data, where
orientation is well-defined. To be rotation, translation and scale invariant, Hilaga
et al. [2001] propose to use the appropriately normalized sum of geodesic distances
between a unique central point and all other points of the model surface as the
function µ. Intuitively, if for a point p of the objects surface, µ(p) is relatively low,
p is expected to be closer to the “center” of the object, while points on the object’s
periphery would possess higher function values. To construct the final descriptor
for an object, the range of possible function values is discretized into a number of
bins. For each bin, the restriction of the object to the parts containing µ-values in
the respective bin, topologically connected subparts are identified and aggregated
into a node of the Reeb graph each. By merging the nodes belonging to adjacent
bins, a given Reeb graph is recursively condensed into coarser Reeb graphs, and
the so-called multi-resolution Reeb graph (MRG) is obtained. The authors give
details on computing the descriptor and a coarse-to-fine MRG matching strategy.
Sensitivity and retrieval experiments are reported, indicating that the descriptor
is useful for retrieving topologically similar objects according to human notion.
Figure 23 schematically illustrates construction of a Reeb graph, and visualizes the
geodesic distance function on two similar, but deformed objects.

3.7.2 Skeleton-based object matching. Skeletons derived from solid objects can
be regarded as intuitive object descriptions. They are able to capture important
information about the structure of objects with applications in, e.g., object analysis,
compression, or animation. In order to use skeletons for 3D object retrieval, suitable
skeletonization algorithms and skeleton similarity functions have to be defined. In
a recent paper, Sundar et al. [2003] presented a framework for this task. To obtain
a thin skeleton, the authors proposed to first apply a thinning algorithm on the
voxelization of a solid object. The method reduces the model voxels to those voxels
that are important for object reconstruction, as determined by a heuristic that
relates the distance transform value of each voxel with the mean of the distance
transform values of the voxels among its 26-neighbors [Gagvani and Silver 1999].
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Fig. 23. Left is shown the construction of several Reeb graphs by recursively refining µ-intervals.
The right image visualizes the aggregated, normalized geodesic distance function evaluated on

two topologically similar objects. (Figure taken from [Hilaga et al. 2001] ( c© 2001 ACM Press).
Copyright is held by the owner.)

In a second step, the remaining voxels are clustered, and a minimum spanning tree
is constructed connecting the voxel clusters. Clustering and connecting proceed
subject to the condition of not violating the object boundary. The resulting tree
may be converted to a directed acyclic graph (DAG) by directing edges guided
by the distance transform values of the voxels within a cluster. It may also be
converted to a uniquely rooted tree [Siddiqi et al. 1998]. Having obtained a DAG,
to each node in the DAG a topological signature vector (TSV) is associated as a
node label, which is formed by sums of eigenvalues of the adjacency matrices of
all subtrees rooted at the considered node. The TSV is used to encode structural
information about the subgraph rooted at the respective node. As another node
label, measures for the distribution of distance transform values of the respective
cluster members are considered. These node labels constitute the input to a distance
function that measures similarity between individual nodes in skeletal graphs. The
final matching of two skeletal graphs is performed by establishing a set of node-
to-node correspondences between the graphs based on a greedy, recursive bipartite
graph matching algorithm [Shokoufandeh and Dickinson 2001]. A final measure for
the dissimilarity between two skeletal graphs may be obtained from the quality of
the node-correspondences as determined by their node label distance.

The authors demonstrated the capabilities of their framework by a number of
matches obtained from querying a test database (see Figure 24 for an example).
They emphasize the method’s suitability for matching articulated objects and also
the potential for finding partial matches between objects. The approach requires
several parameters to be set, e.g., the threshold levels for thinning and clustering.

3.7.3 Spin-images. A 3D descriptor using sets of so-called spin-images to char-
acterize 3D objects was proposed by Johnson and Hebert [1999] and, regarding the
matching process, modified in a study by de Alarcón et al. [2002]. The descriptor
is rotation and translation invariant by design. It requires a set of points on the
model surface and associated normal vectors (that is, an oriented point set O) as
input. The basic idea is to generate a set of two-dimensional histograms of the ob-
ject geometry in the neighborhood of selected points, and to use these descriptions
to search for point-to-point correspondences between two models. It can also be
used to search for correspondences between a model and a whole 3D scene. Via
refinement steps a final measure for similarity between parts of an object, or two
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Fig. 24. A pair of mutually best-matching objects from a database of about 100 models. (Figure
taken from Sundar et al. [2003] ( c© 2003 IEEE). Copyright is held by the owner.)

objects as a hole can be generated. We recall the description generation algorithm
in the following.

For each oi ∈ O, O for example chosen as the centers of mass of (oriented)
triangles of a model mesh, a so-called spin-image Si is generated by accumulating
the output of a mapping R

3 → R
2 in a two–dimensional index, the spin-image.

These spin-images describe object geometry in the neighborhood of oi. The set
of spin images gives an object description by a set of descriptions each local to
one point oi from the object. Given an object point oi and its associated normal
vector ni, the mapping is performed by building a 2dimensional histogram from
distances αi,j and βi,j . αi,j is defined as the distance of all points oj ∈ O, i 6= j
to the line L extending ni to infinity. βi,j is defined as the distance of all points
oj ∈ O, i 6= j to the plane through oi with normal vector ni. The pair of distance
distributions (αij , βij) for a point oi is then discretized into a two-dimensional
histogram Si, where for each distance bin the number of points oj that belong
to the respective bin is recorded. Note that this mapping is equal to discretizing
radius and elevation components of points oj in a cylindrical coordinate system
given by origin oi and normal vector ni. Via thresholding the relevant neighborhood
around oi is controlled; alternatively, one may consider the complete object as the
neighborhood. The authors suggest to apply bilinear filtering on the spin-images, in
order to reduce the impact of noise. Scaling invariance is provided by normalizing
the distance range to unit length. Figures 25 and 26 illustrate the spin images
generation process.

Due to potentially high storage and computation overhead when cross-comparing
all spin-images of two objects, and also the presence of redundant information
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Fig. 25. Building a spin image as a histogram of distances α and β of points in some neighborhood
with respect to basis point p. (Figure taken from Johnson and Hebert [1998] ( c© 1998 Elsevier)
with permission from Elsevier. Copyright is held by the owner.)

Fig. 26. Selected spin images generated from a 3D model. (Figure taken from Johnson [1997].
Copyright is held by the author.)

among close or symmetrically related spin images, Johnson and Hebert [1999] sug-
gest to perform compression on the set of an object’s spin images using dimension-
ality reduction. de Alarcón et al. [2002] propose a two-step data reduction process
by first clustering a spin-image set using the self-organizing map (SOM) algorithm
to group similar spin images, followed by application of a clustering algorithm.
This technique is suited to reduce the number of required descriptor comparisons
by checking only the spin image prototypes. Also, Assfalg et al. [2004] suggested
spin image post-processing techniques that help to reduce the number of spin im-
ages used to describe each object. Particularly, spin images were interpreted as
grey-scale images, which could be efficiently described by a low-dimensional region-
based description scheme from the content-based image retrieval (CBIR) domain.
Orthogonally, fuzzy clustering was proposed to reduce the number of spin images
to a smaller number of prototypes, onto which a sum of cluster distance function
was suggested.
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4. COMPARISON BETWEEN 3D DESCRIPTORS

Comparing the surveyed descriptors is a difficult task, since the amount of tech-
nical details given in the original literature did vary between different descriptors,
and most of the authors did employ individually compiled benchmarks when em-
pirically evaluating retrieval precision. We recognize it is a tremendous task to
(re-)produce an objective analytic and experimental comparison of the wealth of
3D retrieval methods, which is beyond our resources. What we provide here is
a limited comparison of key features of the surveyed algorithms, as well as an
experimental comparison of the retrieval performance measured against our own
benchmark, of a subset of algorithms of which we possess implementations.

4.1 Qualitative comparison

We first summarize the surveyed methods using the following main algorithm char-
acteristics:

—Proposed dimensionality gives either the dimensionality that was found to per-
form best if experiments were performed, or recommended values from the liter-
ature if available. It is generally agreed that the optimal dimensionality depends
on the experimental setup, that is, the choice of database and ground truth for
retrieval experiments.

—Invariance indicates the provided invariance (Rotation (R), Translation (T ),
Scale (S )), and how they are achieved (implicit or by object normalization).

—Required object representation gives the assumed object representation. Typi-
cally the algorithms work on triangulations, but some assume point clouds or
voxelizations.

—Consistency requirements states the properties required in addition to geometry
information, mainly topology and orientation of objects.

—The proposed metric mentions the distance function used in retrieval experiments
or recommended by the respective authors (if applicable). If an interval is given,
good retrieval results are reported throughout the interval.

Table II shows a qualitative comparison between the FVs surveyed in Section
3. Where more than one descriptor was proposed in a descriptor class (e.g., for
statistical moments), we chose the descriptor that was technically described best in
the literature, according to our view. We omitted descriptors from the table, in case
the technical description in the original sources were insufficient for this comparison.
In general, much technical detail is also encapsulated in the implementation of
object preprocessing such as mesh normalization, surface point resampling, choosing
voxel grid resolutions, etc. Also, parametrization of the numeric transform methods
often employed, such as Fourier and Spherical Harmonics transform, which in itself
may have an impact on retrieval performance of the methods, would have to be
considered. Such effects are not reflected in the comparison table.
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Table II. Comparison table between 3D descriptors.

Descriptor Proposed
Dim.

Invariance Req. Obj.
Represent.

Req. Obj.
Consistency

Proposed
Metric

Parametrized
Statistics
3.2.2

64× 3× 3 RTS via PCA Triangulation - L2, elastic
matching

Shape distri-
bution 3.2.4

1024 bins RT implicit, S
via hist. norm.

Triangulation - L1

Shape his-

tograms

3.4.2

122–240

bins

RTS via PCA Point cloud - Quadratic

form

Rot. inv.
point cloud
3.4.3

21 RTS via PCA Triangulation - Not specified

Voxel 3.4.4 172 RTS via PCA Triangulation - L1

Volume 3.4.5 486 RTS via PCA Triangulation Orientation L1

Cords 3.2.5 120 RT via PCA, S
via hist. norm.

Triangulation - L1

Ray-based
sampling
3.3.1

91–169 RTS via PCA Triangulation - L1, L2

Rot. inv.
sph. harm.
3.4.6

512 TS via norm., R
implicit

Triangulation - L2

Reflective
symmetry
3.4.7

- TS via norm., R
assumed

Triangulation - L∞

Surf. normal

properties

3.5.1

n.a. RT via PCA, S

implicit

Triangulation Orientation n.a.

Shape spec-
trum 3.5.2

10–100 RTS implicit Triangulation Orientation L1, L2

Ext. Gaus-
sian image
3.5.3

200 TS implicit, R
assumed

Triangulation Orientation Histogram
metric

Canonical

3DHT 3.5.4

2560 RTS via PCA Triangulation Orientation L1, L2

Weighted
point sets
3.4.8

25×3 cells
in signa-
ture

RTS via PCA Triangulation Orientation
(some of the
variants)

Solution to
transport
problem

Silhouette
3.6.1

375 RTS via PCA Triangulation - L1

Depth buffer
3.6.2

366 RTS via PCA Triangulation - L1

Lightfield
3.6.3

45 per im-
age

RTS implicit Triangulation - Multistage
matching

Topological
matching
3.7.1

n.a. RTS implicit,
non-structural
deformation

Triangulation Non-
disconnected
objects

Custom
graph
matching

Skeletonization
3.7.2

n.a. RTS implicit Volumetric Volume Custom
graph
matching

Sping Image
3.7.3

n.a. RTS implicit Point Cloud - Correlation
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Table III. Description of the classified set of our 3D object database.

Class id Description # of models

1 ants 6

2 rabbits 4

3 cows 7
4 dogs 4

5 fish-like 13
6 bees 5

7 CPUs 4

8 keyboards 8
9 cans 4

10 bottles 14

11 bowls 4
12 pots 4

13 cups 8

14 wine glasses 9
15 teapots 4
16 biplanes 5
17 helicopters 9

18 missiles 16
19 jet planes 18
20 fighter jet planes 26

21 propeller planes 10
22 other planes 4
23 zeppelins 6

24 motorcycles 5
25 sport cars 6
26 cars 23

27 Formula-1 cars 9
28 galleons 4

Class id Description # of models

29 submarines 5

30 warships 5

31 beds 7
32 chairs 24

33 office chairs 6
34 sofas 4

35 benches 3

36 couches 11
37 axes 4

38 glasses 7

39 knives 3
40 screws 3

41 spoons 3

42 tables 6
43 skulls 3
44 human heads 8
45 human masks 4

46 books 4
47 watches 2
48 sand clocks 4

49 swords 25
50 barrels 3
51 birches 4

52 flower pots 9
53 trees 11
54 weeds 9

55 human bodies 56

4.2 Experimental comparison

The database used for our experiments contains 1,838 3D objects that we collected
from the Internet 2. From this set, 472 objects were manually classified by shape
similarity into 55 different model classes. The rest of the objects were left as
“unclassified”. Each classified object of each model class was used as a query
object. The objects belonging to the same model class, excluding the query, were
taken as the relevant objects.

Table III gives a complete description of the classified objects of the database.
The first column indicates the class identification number. The second column
describes the 3D class models. The last column lists the number of objects per
model class.

We implemented 16 different types of FVs to perform experiments, which in-
cludes: statistical FVs (3D moments), geometry based FVs (principal curvature,
shape distribution, ray-based, ray-based with spherical harmonics, shading, com-
plex valued shading, cords-based, segment volume occupation, voxel based, 3DDFT,
rotation invariant spherical harmonics), image based FVs (depth buffer, silhouette),
and other approaches (rotation invariant point cloud descriptor).

2Konstanz 3D Model Search Engine. http://merkur01.inf.uni-konstanz.de/CCCC/
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4.3 Computational complexity of descriptors

Firstly, we compared the computational complexity of 16 implemented descriptors.
Typically, the computational cost of feature extraction is not of primary concern
as extraction needs to be done only once for a database, while additional extrac-
tion must be performed only for those objects that are to be inserted into the
database, or for query examples submitted by a user to the database. Nevertheless,
we present some efficiency measures taken on an Intel P4 2.4 GHz platform with
1 GB of main memory, running Microsoft Windows. We made the experience that
in general feature calculation is quite fast for most of the methods and 3D objects.
Shape spectrum is an exception. Due to the approximation of local curvature from
polygonal data by fitting of quadratic surface patches to all object polygons, this
method is very compute intensive. In general, PCA object preprocessing only con-
stituted a minor fraction of total extraction cost, as on average the PCA cost was
only 3.59 seconds for the complete database of 1,838 objects (1.96 milliseconds per
object on average).

Figure 27 shows the average extraction time as a function of the dimensionality
of a descriptor. We did not include in this chart those descriptors that posses
the multiresolution property (because we computed those descriptors only once,
using the maximum possible dimensionality), and we also discarded the curves
for shape spectrum (almost constant and one order of magnitude higher than the
others) and volume (a constant value for all possible dimensions, 387 milliseconds).
It follows that the extraction complexity depends on the implemented descriptor.
For example, one of them has constant extraction complexity (shape distribution),
others produce sub-linear curves (e.g., rotation invariant and cords), others produce
linear curves (e.g., ray-moments), and the rest produce super-linear curves (e.g.,
harmonics 3D and moments).

4.4 Effectiveness comparison between descriptors

We use precision versus recall figures [Baeza-Yates and Ribeiro-Neto 1999] for com-
paring the effectiveness of the search algorithms. Precision is the fraction of the
retrieved objects which are relevant to a given query, and recall is the fraction of
the relevant objects which have been retrieved from the database. That is, if R is
the set of relevant objects to the query, A is the set of objects retrieved, and RA is
the set of relevant objects in the result set, then

Precision =
|RA|

|A|
and Recall =

|RA|

|R|
.

All our precision versus recall figures are based on the eleven standard recall levels
(0%, 10%, . . . , 100%), and we average the precision figures over all test queries at
each recall level.

In addition to the precision at multiple recall points, we also calculate the R-
precision [Baeza-Yates and Ribeiro-Neto 1999] for each query, which is defined by
the precision when retrieving only the first N objects. The R-precision gives a
single number to rate the performance of a retrieval algorithm. This measure is
similar to the Bull-Eye Percentage (BEP) score adopted as an evaluation standard
by MPEG-7. The BEP is also a single value measure and equal to recall when
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Fig. 27. Average extraction time for some of the descriptors while varying its dimensionality.

retrieving the first 2N objects.
We tested all these FVs using different levels of resolution, from a few dimensions

up to 512, and we used the Manhattan (L1) distance as the similarity function
between vectors (we also tested L2 and Lmax, but we consistently obtained the best
effectiveness scores using L1). Table IV shows the best R-precision values obtained
with all the FVs in descending order. The first column lists the different descriptors.
The second column indicates the best dimensionality (in terms of effectiveness) of
the FV. The last column lists the average R-precision values obtained for each FV
with their best dimensionality.

The best overall FV among our set of implemented methods was the depth buffer,
with an average R-precision of 0.32. The difference in effectiveness between the best
and the worst performing FV (depth buffer and principal curvature, respectively)
was significant. However, the difference in effectiveness between “similar perform-
ing” FVs was small, specially when comparing the most effective descriptors. This
implies that in practice these best FVs should be suited about equally well for
retrieval of general polygonal objects. As a contrast, the effectiveness difference
between the worst and the best descriptor was significant (up to a factor of 3).
We observed that descriptors that rely on consistent polygon orientation like shape
spectrum or volume exhibited low retrieval rates, as consistent orientation is not
guaranteed for many of the models retrieved from the Internet. Also, the geometri-
cal moment-based descriptors seem to offer only limited discrimination capabilities.
Figures 28 and 29 show the precision vs. recall figures for all the implemented de-
scriptors (first eight and last eight descriptors according to Table IV, respectively).

Figures 30 and 31 (first eight and last eight descriptors, respectively) show the
effect of the descriptor dimensionality on the overall effectiveness. The figure shows
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Table IV. Average R-precision of the 3D descriptors.

Descriptor Best dimensionality Avg. R-precision

Depth buffer 366 0.3220
Voxel 343 0.3026

Complex valued shading 196 0.2974

Rays with spherical harmonics 105 0.2815
Silhouette 375 0.2736
3DDFT 365 0.2622

Shading 136 0.2386
Ray-based 42 0.2331

Rotation invariant point cloud 406 0.2265
Rotation invariant spherical harmonics 112 0.2219

Shape distribution 188 0.1930
Ray moments 363 0.1922
Cords-based 120 0.1728

3D moments 31 0.1648
Volume 486 0.1443

Principal curvature 432 0.1119
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Fig. 30. Dimensionality vs. R-precision, first eight descriptors according to Table IV.

that the effectiveness of the FVs first increases with dimensionality, but the im-
provement rate diminishes quickly for roughly more than 64 dimensions for most
FVs (except for 3DDFT). It is interesting to note that the saturation effect is
reached for most descriptors at roughly the same dimensionality level. This is an
unexpected result, considering that different FVs describe different characteristics
of 3D objects.

We also performed some tests using the Princeton Shape Benchmark [Shilane
et al. 2004], to contrast our experimental results with those obtained using a dif-
ferent 3D ground truth. In summary, we obtained the same results as with our
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Fig. 31. Dimensionality vs. R-precision, last eight descriptors according to Table IV.

database with only minor differences (see Bustos et al. [2005] for details).

4.5 Analysis of the experimental results

From the experimental results obtained in our experiments and on the limited set
of implemented descriptors, we conclude that the best descriptors on average are
those based on projections (2D, ray based) of the original 3D object, e.g., depth
buffer, silhouette, etc. Exceptions to this rule are the voxel FV and the 3DDFT
FV, which are volumetric descriptors and also obtained a good experimental ef-
fectiveness. Surface based descriptors obtained in general low effectiveness values.
All the implemented FVs showed good robustness with the respect to the level of
detail of the 3D objects. The good retrieval quality of image-based descriptors from
our experiments are in accordance with Chen et al. [2003], where an image-based
descriptor embedded in an advanced multi-stage matching framework was shown
to provide excellent retrieval results, and outperformed several other descriptors.

However, we also observed significant variance with respect to effectiveness of the
retrieval when comparing the results for classes of objects. For different classes of
objects, a different FV was usually the most effective one. Unfortunately, we could
not find a strong correlation between geometric properties of the 3D object class
and the best suited FV for that model class. A notable exception for this is the
Shape Spectrum descriptor (the worst descriptor on average), which obtained the
best retrieval effectiveness for the human model class. Shape spectrum was able to
recognize different models of human bodies in different poses, something that was
not possible for the rest of the implemented FVs. This can be attributed to the fact
that the Shape Spectrum descriptor considers the distribution of local curvature on
the 3D object, which does not vary considerably in similar 3D models with different
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poses (e.g., human bodies in different positions). Another observation that we made
is, that model classes which are difficult to correctly orient using PCA (cf. Figure
4, first row) are best retrieved by FVs that are inherently rotational invariant, e.g.,
rotational invariant spherical harmonics.

Besides these specific exceptions, it is difficult to assess a priori which FV will
have the best retrieval effectiveness for an unknown query object. On average,
depth buffer or voxel will do pretty well, but one would like to always select the
best FV given a query object. Therefore, it is hard to give a recommendation with
respect to which FV to implement into a 3D similarity search system, when one
wants to build one.

A promising approach to solve this problem is to resort to the usage of combina-
tions of feature vectors. The idea is to not only use one but several FVs together,
hence taking advantage of the particularities of each considered FV. A linear combi-
nation of FVs will not provide the optimal results, because if one of the considered
FVs has a very bad effectiveness for the given query object, then it will “spoil”
the final result. Dynamic weighting methods have been recently proposed [Bustos
et al. 2004b; 2004a], which aim to avoid this problem, giving only a high weight to
those FVs that are more promising to the query object. There, the goodness of a
FV is estimated against a training (or reference) database prior to performing the
weighted query against the actual database. The presented experimental results
showed noticeable improvements in the overall effectiveness of the retrieval system
by using dynamically generated combinations of FVs.

Regarding the nature of the surveyed FVs, we conclude that they are all proposed
for usage on databases which do not restrict the type of objects contained. In
practice, authors have used “general purpose” VRML models obtained from the
Internet, representing a wide spectrum of objects. Of course, if the type of models
to be supported can be anticipated in advance, it is possible to either perform
benchmarks targeted at the specific models to select the best FVs to implement.
On the other hand, if the relevant model features for the retrieval task are known,
it should be possible to design custom descriptors. E.g., in CAD databases it might
be possible to specify certain geometric features relevant for a construction process,
so one could design descriptors exploiting such knowledge. Identifying application-
specific requirements and designing descriptors that support them is an interesting
future work with high commercial potential, as we expect.

5. CONCLUSIONS

This survey described a variety of recently proposed feature-based descriptors for 3D
objects, and introduced a taxonomy to classify them. As we believe, the reported
feature extraction methods present the first important achievements in the search
for general-purpose, fast retrieval algorithms for 3D object databases. The feature
vector approach maps 3D objects to a vector of real values, which in term can
be used for distance calculation. Furthermore, it makes applicable the wide area
of multimedia indexing techniques, which have been researched for a long time
now [Böhm et al. 2001]. Retrieval systems may also profit from semi-interactive
query enhancement methods, like relevance feedback [Elad et al. 2002], annotation
information [Zhang and Chen 2001], or feature selection and combination techniques
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[Bustos et al. 2004b].

While many sophisticated object analysis and matching methods exist in the do-
main of computational geometry and computer vision, those are usually tailored
to specific recognition problems, and it is questionable whether these easily extent
to the database retrieval problem. This is due to restrictions imposed on the ob-
jects and due to computational complexity issues. Extracting feature vectors from
skeletal representations of the objects [Lou et al. 2004; Sundar et al. 2003] is an in-
teresting approach, but to date its applicability to the database retrieval problem in
terms of effectiveness and efficiency is unclear. Specifically, the robustness of such
methods with respect to feature extraction parametrization has to be explored.

Considering the wealth of feature extraction methods proposed so far (still, new
methods defining novel 3D features are proposed regularly), selecting the ones to
use when building an actual 3D retrieval system is a difficult problem. A complete
and fair comparison of all the main available methods seems not feasible, as it
is currently more attractive for researchers to propose new methods, than to re-
implement existing ones. But, considering computational complexity and object
consistency requirements can provide guidance in order to select application-specific
methods to implement.

In this survey, we compared the computational complexity of certain feature
vectors, which are currently implemented in our own system. In practice, the
normalization step and the descriptor computation cost is small, and almost all
descriptors can be computed in less than a second for an object on average, and
on a standard workstation. As the descriptor computation must be performed
only once per object, this implies that the described descriptors can be used for
real-world applications.

We also experimentally compared a wide variety of 3D FVs on a classified
database of 3D objects, formed by models collected from the Internet, and we
compared their retrieval performance using standard effectiveness measures from
the information retrieval domain (precision vs. recall diagrams and the R-precision
values). Our experimental comparison of 16 different 3D FVs shows that there is a
number of them that have good average effectiveness and work well in most cases
(e.g., depth buffer, voxel and complex FVs) for the types of 3D models one can find
on the Internet today.

There remain important open problems in the research of content-based descrip-
tion and retrieval of 3D objects, some of which we sketch in the following.

Considering searching 3D objects from heterogeneous databases, where the ob-
jects may be arbitrarily scaled and oriented in their respective coordinate systems,
scale and rotation invariant methods must either normalize the models, or em-
ploy descriptions that provide these invariances implicitly. Most methods to date
advocate rotation and translation normalization based on Principal Components
Analysis. As PCA may lead to counter-intuitive alignment results for certain 3D
models [Funkhouser et al. 2003; Tangelder and Veltkamp 2003], extensions and al-
ternatives to the PCA-based normalization need to be devised. Depending on the
application domain, additional invariance may be desirable, e.g., invariance with
respect to local deformations in geometry and topology, or invariance with respect
to anisotropic scaling [Kazhdan et al. 2004].
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Also, the current methods focus mainly on geometric aspects of 3D models. Left
aside are other attributes which are present in many 3D databases: Color, mate-
rial properties, and texture can be specified in many formats, like in the popular
VRML format. More specialized formats from the CAD domain usually contain also
structural object information and machining process information; This information
might as well be exploited for 3D retrieval.

How to improve the efficiency of 3D search systems is also an open issue. The
need for appropriate indexing techniques, considering the high dimensionality of the
descriptors seems obvious. Moreover, if we consider the segmentation of objects as
a possible approach for partial similarity search, then the original database with
a few thousands of models can be transformed into a database with millions of
objects, where efficiency considerations become mandatory.
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